JP2009292307A - Driving force transmission device for four-wheel drive car - Google Patents

Driving force transmission device for four-wheel drive car Download PDF

Info

Publication number
JP2009292307A
JP2009292307A JP2008147845A JP2008147845A JP2009292307A JP 2009292307 A JP2009292307 A JP 2009292307A JP 2008147845 A JP2008147845 A JP 2008147845A JP 2008147845 A JP2008147845 A JP 2008147845A JP 2009292307 A JP2009292307 A JP 2009292307A
Authority
JP
Japan
Prior art keywords
driving force
wheel drive
wheel
force transmission
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008147845A
Other languages
Japanese (ja)
Inventor
Satoru Suzuki
悟 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univance Corp
Original Assignee
Univance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univance Corp filed Critical Univance Corp
Priority to JP2008147845A priority Critical patent/JP2009292307A/en
Publication of JP2009292307A publication Critical patent/JP2009292307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission device for a four-wheel drive car capable of preventing low fuel-efficiency at the time of two-wheel driving by completely stopping rotation of a driving-force transmitting path to rear wheels at the time of the two-wheel driving. <P>SOLUTION: The power transmission device is provided with a front-wheel differential 16 for receiving input driving-force and outputting the driving-force to right-and-left front wheels 46, 48 and to a driving-force distribution device 14 via a bevel gear 50 and an output pinion 52, a rear-wheel differential 18 for receiving input driving-force distributed from the driving-force distribution device 14 and outputting the driving-force to right-and-left rear wheels 80, 82, a first clutch mechanism 20 capable of interrupting and permitting driving-force transmission between the front-wheel differential 16 and the bevel gear 50, and a second clutch mechanism 22 capable of interrupting and permitting driving-force transmission between the rear-wheel differential 18 and a right rear-wheel driving axle 78. In a four-wheel drive mode, the first clutch mechanism 20 and the second clutch mechanism 22 are connected with each other and driving-force distribution of the driving-force distribution device 14 is automatically controlled according to a traveling condition. In a two-wheel drive mode, the first clutch mechanism 20 and the second clutch mechanism 22 are disengaged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二輪駆動と四輪駆動を切り替え可能な四輪駆動車用駆動力伝達装置に関し、特に、二輪駆動時に駆動力の伝達に関わらない部分の回転を停止する四輪駆動車用駆動力伝達装置に係る。
The present invention relates to a drive power transmission device for a four-wheel drive vehicle capable of switching between two-wheel drive and four-wheel drive, and in particular, a drive force for a four-wheel drive vehicle that stops rotation of a portion not related to transmission of the drive force during two-wheel drive. Related to the transmission device.

従来のいわゆるオンデマンド型フルタイム四輪駆動車において、二輪駆動時は前輪を駆動し、四輪駆動時には後輪への駆動力の配分制御を多板クラッチ機構で行う四輪駆動車用駆動力伝達装置としては、例えば図6に示すものが知られている。   In a conventional so-called on-demand full-time four-wheel drive vehicle, the driving force for a four-wheel drive vehicle is controlled by a multi-plate clutch mechanism that drives the front wheels during two-wheel drive and controls the distribution of the drive force to the rear wheels during four-wheel drive. As a transmission device, for example, the one shown in FIG. 6 is known.

図6において、駆動力伝達装置400は四輪駆動車402に設けられ、エンジン404からの駆動力を変速機406で変速し、変速機406の出力ギア408とリングギア410を介して前輪差動装置412に入力すると共に前輪差動装置412に連結したベベルギア414を介して出力ピニオン416にも伝達する。   In FIG. 6, the driving force transmission device 400 is provided in the four-wheel drive vehicle 402, and the driving force from the engine 404 is shifted by the transmission 406, and the front wheel differential is transmitted via the output gear 408 and the ring gear 410 of the transmission 406. The signal is input to the device 412 and also transmitted to the output pinion 416 via the bevel gear 414 connected to the front wheel differential device 412.

出力ピニオン416からの駆動力はプロペラシャフト418を介して多板クラッチ機構420(駆動力配分装置)に伝達され、二輪駆動時に多板クラッチ機構420が開放(切り離された状態)されている場合は、駆動力は後輪差動装置426に伝達されずに前輪差動装置412にのみ伝達され、前輪差動装置412は左前輪428と右前輪430の回転速度差を吸収しつつ左前輪428と右前輪430に等しいトルクを与え回転させる。   When the driving force from the output pinion 416 is transmitted to the multi-plate clutch mechanism 420 (driving force distribution device) via the propeller shaft 418, when the multi-plate clutch mechanism 420 is released (disengaged) during two-wheel drive. The driving force is not transmitted to the rear wheel differential device 426 but is transmitted only to the front wheel differential device 412. The front wheel differential device 412 absorbs the rotational speed difference between the left front wheel 428 and the right front wheel 430, and the left front wheel 428. The right front wheel 430 is rotated by giving an equal torque.

四輪駆動時に多板クラッチ機構420が締結(接続された状態)されている場合では、駆動力は多板クラッチ機構420に連結したドライブピニオン422とリングギア424を介して後輪差動装置426にも伝達され、後輪差動装置426は左後輪432と右後輪434の回転速度差を吸収しつつ左後輪432及び右後輪434に等しいトルクを与え回転させる。   When the multi-plate clutch mechanism 420 is fastened (connected) during four-wheel drive, the driving force is transmitted to the rear-wheel differential device 426 via the drive pinion 422 and the ring gear 424 connected to the multi-plate clutch mechanism 420. The rear wheel differential device 426 absorbs the difference in rotational speed between the left rear wheel 432 and the right rear wheel 434 and rotates the left rear wheel 432 and the right rear wheel 434 with the same torque.

一般的に、オンデマンド型フルタイム四輪駆動車には、ドライバーが運転中にスイッチ操作で選択できる駆動モードとして、二輪駆動モード、四輪駆動オートモード、四輪駆動ロックモードが用意されている。   In general, on-demand full-time four-wheel drive vehicles are available in two-wheel drive mode, four-wheel drive auto mode, and four-wheel drive lock mode as drive modes that can be selected by the driver during operation. .

二輪駆動モードは、駆動力伝達装置400の多板クラッチ機構420を開放して二輪駆動状態で使用するモードであり、燃費が最も良いことから四輪による駆動力が必要ない乾燥舗装路などを走行する場合に選択する。   The two-wheel drive mode is a mode in which the multi-plate clutch mechanism 420 of the drive force transmission device 400 is opened and used in a two-wheel drive state, and travels on a dry pavement or the like that does not require a four-wheel drive force because it has the best fuel efficiency. Select if you want to.

四輪駆動オートモードは、走行中の各種車両状態をセンサで検出し、その検出信号に基づいてECU(Electronic control unit)により多板クラッチ機構420の前後輪への駆動力配分を最適な状態に自動的に制御するモードであり、路面状態に係わらず常時選択が可能な四輪駆動である。   In the four-wheel drive auto mode, various vehicle conditions during traveling are detected by sensors, and the distribution of driving force to the front and rear wheels of the multi-plate clutch mechanism 420 is optimized by an ECU (Electronic Control Unit) based on the detection signal. This mode is automatically controlled, and is a four-wheel drive that can always be selected regardless of the road surface condition.

このモードでは、多板クラッチ機構420の締結力は電磁アクチュエータや油圧アクチュエータにより連続的に増減され、後輪への駆動力がほぼゼロの二輪駆動状態と最大締結力との間で前後輪の駆動力配分を制御する。   In this mode, the fastening force of the multi-plate clutch mechanism 420 is continuously increased or decreased by an electromagnetic actuator or a hydraulic actuator, and the front and rear wheels are driven between the two-wheel drive state in which the driving force to the rear wheels is substantially zero and the maximum fastening force. Control power distribution.

四輪駆動ロックモードは、各種センサが検出した車両状態に係わらず多板クラッチ機構420を最大締結力に保持するモードであり、悪路走行などで四輪駆動としての走破性を最大限に発揮したい場合に選択する。   The four-wheel drive lock mode is a mode that keeps the multi-plate clutch mechanism 420 at the maximum engagement force regardless of the vehicle state detected by various sensors, and maximizes the driving performance as a four-wheel drive on rough roads. Select if you want to.

なお本願において、明確に区別する必要がない場合は、四輪駆動オートモード及び四輪駆動ロックモードを四輪駆動モードと総称する。
特開平11−125279号公報
In addition, in this application, when it is not necessary to distinguish clearly, a four-wheel drive auto mode and a four-wheel drive lock mode are named generically as a four-wheel drive mode.
Japanese Patent Laid-Open No. 11-125279

しかしながら、図6に示すような従来の四輪駆動車用駆動力伝達装置にあっては、二輪駆動モードであっても、変速機406からの駆動力はベベルギア414、出力ピニオン416、プロペラシャフト418及び多板クラッチ機構420の駆動側(前輪側)を回転させ、また左後輪432及び右後輪434と後輪差動装置426とが直結されているため、左後輪432及び右後輪434が回転することにより、後輪差動装置426、リングギア424、ドライブピニオン422及び多板クラッチ機構420の従動側(後輪側)が回転する。   However, in the conventional driving force transmission device for a four-wheel drive vehicle as shown in FIG. 6, the driving force from the transmission 406 is the bevel gear 414, the output pinion 416, and the propeller shaft 418 even in the two-wheel drive mode. In addition, the drive side (front wheel side) of the multi-plate clutch mechanism 420 is rotated, and the left rear wheel 432 and the right rear wheel 434 and the rear wheel differential 426 are directly connected, so the left rear wheel 432 and the right rear wheel By rotating 434, the rear wheel differential 426, the ring gear 424, the drive pinion 422, and the driven side (rear wheel side) of the multi-plate clutch mechanism 420 rotate.

すなわち、多板クラッチ機構420が開放され後輪に駆動力が伝達されない二輪駆動時に、たとえ多板クラッチ機構420が完全に開放されたとしても、図6に示すようにベベルギア414、出力ピニオン416、プロペラシャフト418、多板クラッチ機構420、ドライブピニオン422、リングギア424及び後輪差動装置426を含む後輪駆動力伝達区間436の各構成要素が回転してしまい、この区間におけるオイルの攪拌抵抗や軸受部の摩擦損失等による動力損失から燃費低下を招いてしまう問題がある。   That is, even when the multi-plate clutch mechanism 420 is completely opened when the multi-plate clutch mechanism 420 is opened and the driving force is not transmitted to the rear wheels, even if the multi-plate clutch mechanism 420 is completely released, the bevel gear 414, the output pinion 416, Each component of the rear wheel driving force transmission section 436 including the propeller shaft 418, the multi-plate clutch mechanism 420, the drive pinion 422, the ring gear 424, and the rear wheel differential 426 rotates, and the oil stirring resistance in this section In addition, there is a problem in that fuel efficiency is reduced due to power loss due to friction loss of the bearing portion.

また、多板クラッチ機構420には複数のクラッチ板が備わり、オイルで潤滑及び冷却されているが、クラッチ板の駆動側と従動側の回転速度差により発生するオイルの粘性抵抗やクラッチ板同士の接触による摩擦損失で発生する、いわゆる引き摺りトルクがドライブピニオン422とリングギア424との噛み合い、及び後輪差動装置426のフリクショントルクより大きいために、たとえ左後輪432及び右後輪434の回転が後輪差動装置426に伝達されなくとも、多板クラッチ機構420の側からドライブピニオン422、リングギア424及び後輪差動装置324を回転させてしまうことで動力損失を招き、燃費を悪化させる問題もある。   The multi-plate clutch mechanism 420 is provided with a plurality of clutch plates and is lubricated and cooled by oil. However, the oil viscous resistance generated by the difference in rotational speed between the drive side and the driven side of the clutch plate and The so-called drag torque generated by the friction loss due to contact is larger than the meshing force of the drive pinion 422 and the ring gear 424 and the friction torque of the rear wheel differential 426, so that even if the left rear wheel 432 and the right rear wheel 434 rotate. Even if the transmission is not transmitted to the rear wheel differential 426, the drive pinion 422, the ring gear 424, and the rear wheel differential 324 are rotated from the multi-plate clutch mechanism 420 side, resulting in power loss and deterioration in fuel consumption. There is also a problem to make.

このように、従来のオンデマンド型フルタイム四輪駆動車にあっては、駆動力配分装置(多板クラッチ機構420)の伝達トルクをゼロにすることで、駆動力的には二輪駆動車となるが、エンジンからの駆動力を後輪へ伝えるまでの伝達経路(後輪駆動力伝達区間436)は常時回転している。そのため、二輪駆動モードであっても四輪駆動車は二輪駆動車に比べ燃費が悪くなる問題がある。   Thus, in the conventional on-demand type full-time four-wheel drive vehicle, by reducing the transmission torque of the driving force distribution device (multi-plate clutch mechanism 420) to zero, the driving force is two-wheel drive vehicle. However, the transmission path (rear wheel driving force transmission section 436) until the driving force from the engine is transmitted to the rear wheels is always rotating. Therefore, even in the two-wheel drive mode, the four-wheel drive vehicle has a problem that the fuel consumption is worse than that of the two-wheel drive vehicle.

本発明は、二輪駆動時に後輪への駆動力伝達経路の回転を完全に停止することで、二輪駆動時に燃費低下が起きない四輪駆動車用動力伝達装置を提供することを目的とする。
An object of the present invention is to provide a power transmission device for a four-wheel drive vehicle that does not cause a reduction in fuel consumption during two-wheel drive by completely stopping rotation of a drive force transmission path to a rear wheel during two-wheel drive.

この目的を達成するため本発明は次のように構成する。まず本発明は、後輪に伝達する駆動力を無段階に変更可能な駆動力配分装置を備え、前輪及び後輪に駆動力を配分する四輪駆動モードと、前輪のみに駆動力を伝達する二輪駆動モードとを切り替え可能な四輪駆動車用駆動力伝達装置を対象とする。   In order to achieve this object, the present invention is configured as follows. First, the present invention is provided with a driving force distribution device capable of steplessly changing the driving force transmitted to the rear wheels, a four-wheel drive mode for distributing the driving force to the front wheels and the rear wheels, and transmitting the driving force only to the front wheels. The target is a four-wheel drive vehicle driving force transmission device capable of switching between two-wheel drive modes.

本発明は、このような四輪駆動車用駆動力伝達装置に於いて、動力源からの駆動力を入力して左右前輪及び駆動力伝達方向変換部を介して駆動力配分装置に出力する前輪差動装置と、駆動力配分装置により配分された駆動力を入力して左右後輪に出力する後輪差動装置と、前輪差動装置と駆動力伝達方向変換部との駆動力伝達を切断及び接続可能な第1断接機構と、後輪差動装置と左右後輪の何れか一方又は両方との駆動力伝達を切断及び接続可能な第2断接機構を備えることを特徴とする。   The present invention provides a driving force transmission device for such a four-wheel drive vehicle in which a driving force from a power source is input and output to the driving force distribution device via the left and right front wheels and the driving force transmission direction converter. Disconnects the driving force transmission between the differential, the rear wheel differential that inputs the driving force distributed by the driving force distribution device and outputs it to the left and right rear wheels, and the front wheel differential and the driving force transmission direction changer. And a connectable first connecting / disconnecting mechanism, and a second connecting / disconnecting mechanism capable of disconnecting and connecting the driving force transmission to either one or both of the rear wheel differential and the left and right rear wheels.

あるいは、このような四輪駆動車用駆動力伝達装置に於いて、動力源からの駆動力を入力して左右前輪及び駆動力配分装置に出力する前輪差動装置と、駆動力配分装置により配分された駆動力を駆動力伝達方向変換部を介し入力して左右後輪に出力する後輪差動装置と、前輪差動装置と駆動力配分装置との駆動力伝達を切断及び接続可能な第1断接機構と、後輪差動装置と左右後輪の何れか一方又は両方との駆動力伝達を切断及び接続可能な第2断接機構を備えることを特徴とする。   Alternatively, in such a driving force transmission device for a four-wheel drive vehicle, the driving force from the power source is input and output to the left and right front wheels and the driving force distribution device, and distributed by the driving force distribution device. The driving force transmission between the rear wheel differential device that inputs the generated driving force via the driving force transmission direction conversion unit and outputs it to the left and right rear wheels, and the driving force transmission between the front wheel differential device and the driving force distribution device can be disconnected and connected. A first connection / disconnection mechanism, and a second connection / disconnection mechanism capable of disconnecting and connecting the driving force transmission between one or both of the rear wheel differential device and the left and right rear wheels, are provided.

ここで、四輪駆動モードは、第1断接機構及び第2断接機構を接続すると共に、駆動力配分装置の駆動力配分を走行条件に応じて制御し、二輪駆動モードは、第1断接機構及び第2断接機構を切断する。   Here, the four-wheel drive mode connects the first connecting / disconnecting mechanism and the second connecting / disconnecting mechanism, and controls the driving force distribution of the driving force distribution device according to the traveling condition. The contact mechanism and the second connection / disconnection mechanism are cut.

また、後輪差動装置は、後輪に駆動力を出力する第1出力要素及び第2出力要素を備え、第2断接機構は、後輪と第1出力要素との駆動力伝達を切断及び接続可能とする。   The rear wheel differential device includes a first output element and a second output element that output driving force to the rear wheel, and the second connecting / disconnecting mechanism disconnects driving force transmission between the rear wheel and the first output element. And connectable.

あるいは、後輪差動装置は、後輪に駆動力を出力する第1出力要素及び第2出力要素を備え、第2断接機構は、後輪と第1出力要素及び第2出力要素との駆動力伝達を切断及び接続可能とする。   Alternatively, the rear wheel differential device includes a first output element and a second output element that output driving force to the rear wheel, and the second connecting / disconnecting mechanism includes a rear wheel and the first output element and the second output element. The driving force transmission can be disconnected and connected.

あるいは、後輪差動装置は、駆動力配分装置から駆動力を入力する入力要素と、後輪に駆動力を出力する出力要素とを備え、第2断接機構は、入力要素と出力要素との駆動力伝達を切断及び接続可能とする。   Alternatively, the rear wheel differential device includes an input element that inputs the driving force from the driving force distribution device and an output element that outputs the driving force to the rear wheel, and the second connecting / disconnecting mechanism includes the input element and the output element. It is possible to disconnect and connect the driving force transmission.

更に、駆動力配分装置は、多板クラッチ機構の締結力を連続的に変化させ前輪及び後輪に伝達する駆動力の配分を制御する。
Further, the driving force distribution device controls the distribution of the driving force transmitted to the front wheels and the rear wheels by continuously changing the fastening force of the multi-plate clutch mechanism.

本発明によれば、前輪差動装置と駆動力配分装置との駆動力伝達を断接可能な第1断接機構と、後輪差動装置と左右後輪の何れか一方又は両方との駆動力伝達を断接可能な第2断接機構を備え、二輪駆動モードでは、第1断接機構及び第2断接機構を切断して後輪への駆動力伝達経路の回転を完全に停止することで二輪駆動時に燃費低下を防止でき、四輪駆動車でありながら二輪駆動専用車と同等の燃費が可能となる。
According to the present invention, the first connecting / disconnecting mechanism capable of connecting / disconnecting the driving force transmission between the front wheel differential device and the driving force distribution device, and driving the rear wheel differential device and / or the left and right rear wheels. A second connection / disconnection mechanism capable of connecting / disconnecting force transmission is provided, and in the two-wheel drive mode, the first connection / disconnection mechanism and the second connection / disconnection mechanism are disconnected to completely stop the rotation of the driving force transmission path to the rear wheels. As a result, fuel consumption can be prevented from being reduced during two-wheel drive, and fuel efficiency equivalent to that of a two-wheel drive vehicle can be achieved despite being a four-wheel drive vehicle.

図1は、本発明による四輪駆動車用駆動力伝達装置の第1実施形態を示す説明図であり、四輪駆動モードの状態である。図1において、本実施形態の駆動力伝達装置10は四輪駆動車12に設けられ、駆動力配分装置14、前輪差動装置16、後輪差動装置18、第1断接機構20及び第2断接機構22を備える。   FIG. 1 is an explanatory view showing a first embodiment of a driving force transmission device for a four-wheel drive vehicle according to the present invention, and is in a state of a four-wheel drive mode. In FIG. 1, the driving force transmission device 10 of this embodiment is provided in a four-wheel drive vehicle 12, and includes a driving force distribution device 14, a front wheel differential device 16, a rear wheel differential device 18, a first connecting / disconnecting mechanism 20, and A two-connection mechanism 22 is provided.

エンジン24からの駆動力は変速機26で変速され、変速機26の出力ギア28からリングギア30を介して前輪差動装置16に入力され、前輪差動装置16は、デフケース32の内部に回転自在に軸支したピニオン34、36と、ピニオン34、36に係合するサイドギア38、40を介して左前輪駆動軸42及び右前輪駆動軸44を駆動し、左前輪駆動軸42及び右前輪駆動軸44は各々左前輪46及び右前輪48を回転させ駆動力を路面に伝達する。   The driving force from the engine 24 is shifted by the transmission 26 and is input to the front wheel differential device 16 from the output gear 28 of the transmission 26 via the ring gear 30, and the front wheel differential device 16 rotates inside the differential case 32. The left front wheel drive shaft 42 and the right front wheel drive shaft 44 are driven via the freely supported pinions 34, 36 and the side gears 38, 40 engaged with the pinions 34, 36, and the left front wheel drive shaft 42 and the right front wheel drive are driven. The shafts 44 respectively rotate the left front wheel 46 and the right front wheel 48 to transmit driving force to the road surface.

コーナリング時や路面状態の変化等により左前輪46と右前輪54に回転速度差が生じても、前輪差動装置16は回転速度差を吸収し、左前輪46及び右前輪48に等しいトルクを与え回転させることができる。   Even if a rotational speed difference occurs between the left front wheel 46 and the right front wheel 54 due to cornering or changes in road surface conditions, the front wheel differential 16 absorbs the rotational speed difference and gives equal torque to the left front wheel 46 and the right front wheel 48. Can be rotated.

前輪差動装置16に入力された駆動力は、デフケース32に連結する第1断接機構20にも伝達され、四輪駆動モードで第1断接機構20が接続されている場合、ベベルギア50及び出力ピニオン52で駆動力の伝達方向を変換し(駆動力伝達方向変換部)、自在継手54、プロペラシャフト56、自在継手58を介して駆動力配分装置14にも伝達される。   The driving force input to the front wheel differential device 16 is also transmitted to the first connecting / disconnecting mechanism 20 connected to the differential case 32. When the first connecting / disconnecting mechanism 20 is connected in the four-wheel drive mode, the bevel gear 50 and The transmission direction of the driving force is converted by the output pinion 52 (driving force transmission direction converting portion), and is also transmitted to the driving force distribution device 14 via the universal joint 54, the propeller shaft 56, and the universal joint 58.

四輪駆動モードでは、駆動力配分装置14の多板クラッチ機構60が締結しているため、駆動力配分装置14に入力された駆動力は、ドライブピニオン62、リングギア64を介して後輪差動装置18に伝達され、後輪差動装置18は、デフケース66の内部に回転自在に軸支したピニオン68、70と、ピニオン68、70に係合するサイドギア72、74を介して左後輪駆動軸76及び右後輪駆動軸78を駆動し、左後輪駆動軸76及び右後輪駆動軸78は各々左後輪80及び右後輪82を回転させ駆動力を路面に伝達する。   In the four-wheel drive mode, since the multi-plate clutch mechanism 60 of the driving force distribution device 14 is fastened, the driving force input to the driving force distribution device 14 is the difference between the rear wheels via the drive pinion 62 and the ring gear 64. The rear wheel differential device 18 is transmitted to the moving device 18, and the rear wheel differential device 18 is connected to the left rear wheel via pinions 68, 70 rotatably supported inside the differential case 66 and side gears 72, 74 engaged with the pinions 68, 70. The drive shaft 76 and the right rear wheel drive shaft 78 are driven, and the left rear wheel drive shaft 76 and the right rear wheel drive shaft 78 rotate the left rear wheel 80 and the right rear wheel 82, respectively, and transmit the driving force to the road surface.

また四輪駆動モードでは、第2断接機構22は接続されサイドギア74と右後輪駆動軸78を連結しており、サイドギア74の回転はそのまま右後輪駆動軸78に伝達される。   In the four-wheel drive mode, the second connecting / disconnecting mechanism 22 is connected to connect the side gear 74 and the right rear wheel drive shaft 78, and the rotation of the side gear 74 is transmitted to the right rear wheel drive shaft 78 as it is.

コーナリング時や路面状態の変化等により左後輪80と右後輪82に回転速度差が生じても、後輪差動装置18は回転速度差を吸収し、左後輪80及び右後輪82に等しいトルクを与え回転させることができる。   Even if a difference in rotational speed occurs between the left rear wheel 80 and the right rear wheel 82 due to cornering or changes in road surface conditions, the rear wheel differential 18 absorbs the rotational speed difference, and the left rear wheel 80 and the right rear wheel 82 Can be rotated by applying a torque equal to.

ECU84は、四輪駆動オートモードにおいて、多板クラッチ機構60の締結力を連続的に変化させ、必要に応じてドライブピニオン62へ伝達する駆動力を増減させることで、駆動力配分装置14の前後輪の駆動力配分を制御し、四輪駆動ロックモードにおいては、多板クラッチ機構60を最大締結力に保持し、後輪を所定の最大トルクで駆動する。   In the four-wheel drive auto mode, the ECU 84 continuously changes the fastening force of the multi-plate clutch mechanism 60 and increases or decreases the driving force transmitted to the drive pinion 62 as necessary. The wheel driving force distribution is controlled, and in the four-wheel drive lock mode, the multi-plate clutch mechanism 60 is held at the maximum fastening force, and the rear wheels are driven with a predetermined maximum torque.

四輪駆動モードから二輪駆動モードに切り替えると、ECU84は、まず多板クラッチ機構60を開放し、続いて第1断接機構20及び第2断接機構22の連結を切断する。この場合、ECU84は、先に第1断接機構20及び第2断接機構22の連結を切断した後に多板クラッチ機構60を開放してもよい。   When the four-wheel drive mode is switched to the two-wheel drive mode, the ECU 84 first opens the multi-plate clutch mechanism 60, and then disconnects the first connection / disconnection mechanism 20 and the second connection / disconnection mechanism 22. In this case, the ECU 84 may release the multi-plate clutch mechanism 60 after first disconnecting the connection between the first connecting / disconnecting mechanism 20 and the second connecting / disconnecting mechanism 22.

第1断接機構20は、前輪差動装置16のデフケース32とベベルギア50との連結を断ち、リングギア30に入力した駆動力が出力ピニオン52、自在継手54、プロペラシャフト56及び自在継手58を介して多板クラッチ機構60を回転させることを防止する。   The first connecting / disconnecting mechanism 20 disconnects the differential case 32 of the front wheel differential device 16 from the bevel gear 50, and the driving force input to the ring gear 30 causes the output pinion 52, the universal joint 54, the propeller shaft 56, and the universal joint 58 to be connected. This prevents the multi-plate clutch mechanism 60 from rotating.

また、第2断接機構22は、後輪差動装置18のサイドギア74と右後輪駆動軸78との連結を絶ち、左後輪80及び右後輪82が路面から受ける回転力がリングギア64、ドライブピニオン62及び多板クラッチ機構60を回転させることを防止する。   Further, the second connecting / disconnecting mechanism 22 disconnects the connection between the side gear 74 of the rear wheel differential 18 and the right rear wheel drive shaft 78, and the rotational force received by the left rear wheel 80 and the right rear wheel 82 from the road surface is a ring gear. 64, the drive pinion 62 and the multi-plate clutch mechanism 60 are prevented from rotating.

これにより、二輪駆動モードでは、多板クラッチ機構60へ前後輪側からの回転は伝達されず、ベベルギア50から多板クラッチ機構60を経由してデフケース66までの区間は回転しない。従って、二輪駆動モードで燃費低下を招く要因である、後輪を駆動しない場合でも後輪への駆動力伝達経路が回転してしまう問題を解消できる。   Thereby, in the two-wheel drive mode, the rotation from the front and rear wheels is not transmitted to the multi-plate clutch mechanism 60, and the section from the bevel gear 50 through the multi-plate clutch mechanism 60 to the differential case 66 does not rotate. Therefore, it is possible to solve the problem that the driving force transmission path to the rear wheels rotates even when the rear wheels are not driven, which is a factor that causes a reduction in fuel consumption in the two-wheel drive mode.

図1において、仮に、二輪駆動モード時に後輪差動装置18のサイドギア74と右後輪駆動軸78が連結されているとすると、例えばサイドギア72及び74が同方向に同速度で回転する場合、ピニオン68及びピニオン70は回転(自転)せずにデフケース66及びリングギア64が回転する。   In FIG. 1, if the side gear 74 of the rear wheel differential 18 and the right rear wheel drive shaft 78 are connected in the two-wheel drive mode, for example, when the side gears 72 and 74 rotate in the same direction and at the same speed, The differential case 66 and the ring gear 64 rotate without rotating (rotating) the pinion 68 and the pinion 70.

サイドギア72及び74に回転速度差があったとしても同方向の回転であれば回転速度は変化するがデフケース66は回転し、デフケース66と共にリングギア64が回転することで係合しているドライブピニオン62及び多板クラッチ機構60が回転してしまう。   Even if there is a difference in rotational speed between the side gears 72 and 74, if the rotational speed is the same, the rotational speed will change, but the differential case 66 will rotate, and the differential gear 66 and the ring gear 64 will rotate to engage the drive pinion. 62 and the multi-plate clutch mechanism 60 are rotated.

多板クラッチ機構60が引き摺りトルクを発生するものであれば、多板クラッチ機構60の回転は更に、自在継手58、プロペラシャフト56、自在継手54、出力ピニオン52を介してベベルギア50まで伝達される。   If the multi-plate clutch mechanism 60 generates drag torque, the rotation of the multi-plate clutch mechanism 60 is further transmitted to the bevel gear 50 via the universal joint 58, the propeller shaft 56, the universal joint 54, and the output pinion 52. .

この、デフケース66からベベルギア50までの区間は二輪駆動時には回転する必要のない部位であるにも関わらず、この部分の回転がオイルの粘性抵抗や軸受部の摩擦損失等を引き起こす。すなわち、左前輪46及び右前輪48から路面に伝わった駆動力が左後輪80及び右後輪82を回転させることで、二輪駆動時には回転する必要のないこの区間を回転させ、動力損失となり燃費低下を招いてしまう。   Although the section from the differential case 66 to the bevel gear 50 is a portion that does not need to be rotated during two-wheel drive, the rotation of this portion causes oil viscosity resistance, friction loss of the bearing portion, and the like. That is, the driving force transmitted to the road surface from the left front wheel 46 and the right front wheel 48 rotates the left rear wheel 80 and the right rear wheel 82, thereby rotating this section that does not need to be rotated during two-wheel drive, resulting in power loss and fuel consumption. It will cause a decline.

そこで、本発明にあっては、二輪駆動モードでは第1断接機構20により、前輪差動装置16に入力された駆動力の多板クラッチ機構60への伝達を断つと共に、第2断接機構22によりサイドギア74と右後輪駆動軸78の連結を絶つことで、ベベルギア50からデフケース66までの駆動力伝達経路の回転を防止している。   Therefore, in the present invention, in the two-wheel drive mode, the first connecting / disconnecting mechanism 20 disconnects the driving force input to the front wheel differential device 16 to the multi-plate clutch mechanism 60 and the second connecting / disconnecting mechanism. 22, the side gear 74 and the right rear wheel drive shaft 78 are disconnected from each other, thereby preventing the drive force transmission path from the bevel gear 50 to the differential case 66 from rotating.

サイドギア74と右後輪駆動軸78の連結が絶たれると、右後輪82の回転はサイドギア74に伝わらず、そのため、左後輪80によるサイドギア72の回転はピニオン68及び70を介してサイドギア74を反対方向に回転させることが可能で、このピニオン68、70及びサイドギア74の回転抵抗よりも、リングギア64に繋がるドライブピニオン62からベベルギア50までの回転抵抗の方が大きいためデフケース66は回転しない。   When the connection between the side gear 74 and the right rear wheel drive shaft 78 is broken, the rotation of the right rear wheel 82 is not transmitted to the side gear 74, and therefore the rotation of the side gear 72 by the left rear wheel 80 is performed via the pinions 68 and 70. Since the rotational resistance from the drive pinion 62 connected to the ring gear 64 to the bevel gear 50 is greater than the rotational resistance of the pinions 68 and 70 and the side gear 74, the differential case 66 does not rotate. .

リングギア64が回転しないということは、後輪への駆動力伝達経路が回転しないことであり、この場合の動力損失はピニオン68、70及びサイドギア74が回転する部分だけとなり、第1断接機構20及び第2断接機構22がなく後輪への駆動力伝達経路が回転してしまう場合と比べて燃費向上が可能である。   The fact that the ring gear 64 does not rotate means that the driving force transmission path to the rear wheels does not rotate. In this case, the power loss is only the portion where the pinions 68 and 70 and the side gear 74 rotate, and the first connecting / disconnecting mechanism. The fuel consumption can be improved compared to the case where the driving force transmission path to the rear wheel rotates without the 20 and the second connecting / disconnecting mechanism 22.

図2は、図1の前輪差動装置16及び第1断接機構20を示す断面図であり、図の上方が四輪駆動車12の前側(前進方向)となる。図2において、前輪差動装置16、第1断接機構20、ベベルギア50及び出力ピニオン52が、変速機26に接続したハウジング86に収容されている。   FIG. 2 is a cross-sectional view showing the front wheel differential device 16 and the first connecting / disconnecting mechanism 20 of FIG. 1, and the upper side of the drawing is the front side (forward direction) of the four-wheel drive vehicle 12. In FIG. 2, the front wheel differential device 16, the first connection / disconnection mechanism 20, the bevel gear 50, and the output pinion 52 are accommodated in a housing 86 connected to the transmission 26.

ハウジング86の左側に位置する前輪差動装置16は、デフケース32のフランジ部32aに固定されたリングギア30、デフケース32に固定されたピニオン軸88に回転自在に軸支されたピニオン34及び36、デフケース32に回転自在に軸支され左前輪駆動軸42を回転不可に連結したサイドギア38、デフケース32に回転自在に軸支され右前輪駆動軸44を回転不可に連結したサイドギア40を備える。   The front wheel differential device 16 located on the left side of the housing 86 includes a ring gear 30 fixed to the flange portion 32a of the differential case 32, pinions 34 and 36 rotatably supported on a pinion shaft 88 fixed to the differential case 32, A side gear 38 that is rotatably supported by the differential case 32 and rotatably connected to the left front wheel drive shaft 42 and a side gear 40 that is rotatably supported by the differential case 32 and rotatably connected to the right front wheel drive shaft 44 are provided.

リングギア30は、変速機26の出力ギア28と噛み合い、サイドギア38及び40は各々ピニオン34及び36と噛み合っている。デフケース32は、左前輪駆動軸42側と右前輪駆動軸44側の両側を各々テーパーローラベアリング90、92によりハウジング86に回転自在に支持されている。   The ring gear 30 meshes with the output gear 28 of the transmission 26, and the side gears 38 and 40 mesh with the pinions 34 and 36, respectively. The differential case 32 is rotatably supported on the housing 86 by tapered roller bearings 90 and 92 on both the left front wheel drive shaft 42 side and the right front wheel drive shaft 44 side, respectively.

ハウジング86の右側には、デフケース32と同軸にベベルギア50を回転不可に嵌合したベベルギア軸94を備え、ベベルギア軸94はデフケース32側とベベルギア50側の両側を各々テーパーローラベアリング96、98によりハウジング86に回転自在に支持されている。   The right side of the housing 86 is provided with a bevel gear shaft 94 that is non-rotatably fitted to the bevel gear 50 coaxially with the differential case 32. The bevel gear shaft 94 is housed on both sides of the differential case 32 side and the bevel gear 50 side by tapered roller bearings 96 and 98, respectively. 86 is rotatably supported.

ハウジング86の右下側にはベベルギア50に噛み合う出力ピニオン52が備わり、出力ピニオン52は下方に接続する自在継手54を介してプロペラシャフト56に連結している。また、前輪差動装置16とベベルギア50の中間には第1断接機構20が備わる。   An output pinion 52 that meshes with the bevel gear 50 is provided on the lower right side of the housing 86, and the output pinion 52 is coupled to the propeller shaft 56 via a universal joint 54 that is connected downward. A first connecting / disconnecting mechanism 20 is provided between the front wheel differential 16 and the bevel gear 50.

第1断接機構20は、デフケース32の右端外周に形成した歯部32b、ベベルギア軸94の左端外周に形成した歯部94a、歯部32b、94aとスプライン結合しデフケース32とベベルギア軸94を連結する位置と連結を解除する位置でスライド可能なスリーブ100、スリーブ100の溝部100aに摺動自在に係合する先端部102aによりスリーブ100をスライドさせるフォーク102、フォーク102に固定され図示しないアクチュエータにより軸方向に駆動されるシフト軸104で構成される。   The first connecting / disconnecting mechanism 20 is spline-coupled with the tooth portion 32b formed on the outer periphery of the right end of the differential case 32 and the tooth portion 94a formed on the outer periphery of the left end of the bevel gear shaft 94, and the tooth portions 32b and 94a to connect the differential case 32 and the bevel gear shaft 94. The sleeve 100 is slidable at the position where it is to be disconnected and the position at which the connection is released, the fork 102 is slidable by the tip portion 102a slidably engaged with the groove portion 100a of the sleeve 100, and the shaft is driven by an actuator (not shown) fixed to the fork 102. It consists of a shift shaft 104 driven in the direction.

図2においては、二輪駆動時の第1断接機構20が非連結な状態を示し、スリーブ100はデフケース32の歯部32bと噛み合っておらず、デフケース32とベベルギア軸94との連結を解除する位置に在る。   FIG. 2 shows a state in which the first connecting / disconnecting mechanism 20 is not connected at the time of two-wheel drive, and the sleeve 100 is not engaged with the tooth portion 32b of the differential case 32, and the connection between the differential case 32 and the bevel gear shaft 94 is released. In position.

四輪駆動時には、シフト軸104をC方向にスライドすることでスリーブ100がデフケース32とベベルギア軸94とを連結し(想像線で図示)、第1断接機構20は連結状態になる。この状態で、リングギア30と噛み合う出力ギア28からの駆動力をベベルギア50、出力ピニオン52を介してプロペラシャフト56に伝達可能となる。   During four-wheel drive, the sleeve 100 connects the differential case 32 and the bevel gear shaft 94 by sliding the shift shaft 104 in the C direction (illustrated by an imaginary line), and the first connecting / disconnecting mechanism 20 is connected. In this state, the driving force from the output gear 28 meshing with the ring gear 30 can be transmitted to the propeller shaft 56 via the bevel gear 50 and the output pinion 52.

二輪駆動に戻る際には、シフト軸104をD方向にスライドすることでスリーブ100がデフケース32とベベルギア軸94の連結を解除し、第1断接機構20は非連結状態となる。この状態では、出力ギア28からの駆動力はプロペラシャフト56には伝達されない。   When returning to the two-wheel drive, the sleeve 100 releases the connection between the differential case 32 and the bevel gear shaft 94 by sliding the shift shaft 104 in the D direction, and the first connecting / disconnecting mechanism 20 is disconnected. In this state, the driving force from the output gear 28 is not transmitted to the propeller shaft 56.

図3は、図1の駆動力配分装置14、後輪差動装置18及び第2断接機構22を示す断面図であり、図の上方が四輪駆動車12の前側(前進方向)となる。図3において、上方から下方に駆動力配分装置14、ドライブピニオン62、後輪差動装置18及び後輪差動装置18の右方に第2断接機構22がハウジング106に収容されている。   FIG. 3 is a cross-sectional view showing the driving force distribution device 14, the rear wheel differential device 18, and the second connecting / disconnecting mechanism 22 of FIG. 1, and the upper side of the drawing is the front side (forward direction) of the four-wheel drive vehicle 12. . In FIG. 3, the second connecting / disconnecting mechanism 22 is accommodated in the housing 106 to the right of the driving force distribution device 14, the drive pinion 62, the rear wheel differential device 18, and the rear wheel differential device 18 from the upper side to the lower side.

本実施形態において、駆動力配分装置14は油圧制御される多板クラッチ機構60で構成され、四輪駆動時に多板クラッチ機構60の締結力を連続的に変化させ後輪80、82に伝達する駆動力の配分を制御する。   In the present embodiment, the driving force distribution device 14 is configured by a multi-plate clutch mechanism 60 that is hydraulically controlled, and continuously changes the fastening force of the multi-plate clutch mechanism 60 during four-wheel drive and transmits it to the rear wheels 80 and 82. Control the distribution of driving force.

多板クラッチ機構60は、上端部108aに自在継手58を接続しプロペラシャフト56から駆動力を入力するクラッチドラム108、クラッチドラム108に同軸にドライブピニオン62を回転不可に嵌合するクラッチハブ110、クラッチドラム108とクラッチハブ110の間に設けた多板クラッチ112を押圧するボールカム機構114、ボールカム機構114を駆動するプライマリークラッチ116を備える。   The multi-plate clutch mechanism 60 includes a clutch drum 108 that connects a universal joint 58 to an upper end portion 108a and inputs a driving force from a propeller shaft 56, a clutch hub 110 that non-rotatably engages a drive pinion 62 coaxially with the clutch drum 108, A ball cam mechanism 114 that presses a multi-plate clutch 112 provided between the clutch drum 108 and the clutch hub 110 and a primary clutch 116 that drives the ball cam mechanism 114 are provided.

ドライブピニオン62は、軸部62aをテーパーローラベアリング118、120によりハウジング106に回転自在に支持され、クラッチドラム108は、上端部108aをボールベアリング122によりハウジング106に対し回転自在に支持されると共に、ドライブピニオン62側の他端をボールベアリング124によりドライブピニオン62の軸部62aに対し回転自在に支持される。また、クラッチハブ110は、下部からピニオン62を挿入嵌合し保持すると共に上端部をボールベアリング126によりクラッチドラム108に対し回転自在に保持される。   The drive pinion 62 has a shaft portion 62a rotatably supported on the housing 106 by tapered roller bearings 118 and 120, and the clutch drum 108 has an upper end portion 108a rotatably supported on the housing 106 by a ball bearing 122. The other end of the drive pinion 62 is rotatably supported by a ball bearing 124 with respect to the shaft portion 62a of the drive pinion 62. In addition, the clutch hub 110 is inserted and fitted with the pinion 62 from below and is held, and the upper end of the clutch hub 110 is rotatably held by the ball bearing 126 with respect to the clutch drum 108.

ボールカム機構114は、クラッチハブ110と同軸に相対回転自在に設けられた一対の押圧カムプレート128と回転カムプレート130の対向するカム面のボールカム溝にボール132を挟んで保持している。   The ball cam mechanism 114 holds the ball 132 with a ball 132 sandwiched between a pair of pressing cam plates 128 provided coaxially with the clutch hub 110 and a cam surface facing the rotating cam plate 130.

多板クラッチ112は、押圧カムプレート128の押圧部128aとクラッチドラム108の受圧部108bとの間でクラッチハブ110あるいはクラッチドラム108に対し軸方向に移動可能に保持されている。   The multi-plate clutch 112 is held so as to be movable in the axial direction with respect to the clutch hub 110 or the clutch drum 108 between a pressing portion 128 a of the pressing cam plate 128 and a pressure receiving portion 108 b of the clutch drum 108.

押圧カムプレート128は、クラッチハブ110にスプライン結合して軸方向に移動可能で且つクラッチハブ110と共に回転し、クラッチハブ110との間に備わる皿バネ134により多板クラッチ機構60の開放方向に付勢されている。   The pressing cam plate 128 is splined to the clutch hub 110 and is movable in the axial direction. The pressing cam plate 128 rotates together with the clutch hub 110, and is attached to the release direction of the multi-plate clutch mechanism 60 by a disc spring 134 provided between the pressing cam plate 128 and the clutch hub 110. It is energized.

回転カムプレート130は、クラッチハブ110に回転自在に保持され、ボール132を介して押圧カムプレート128と共に回転するが、回転カムプレート130とクラッチドラム108の間にはスラスト軸受136が備わり、クラッチドラム108との回転速度差を吸収している。   The rotating cam plate 130 is rotatably held by the clutch hub 110 and rotates together with the pressing cam plate 128 via a ball 132. A thrust bearing 136 is provided between the rotating cam plate 130 and the clutch drum 108, and the clutch drum The difference in rotational speed with respect to 108 is absorbed.

プライマリークラッチ116は、クラッチドラム108と回転カムプレート130の間で回転カムプレート130に対し軸方向に移動可能に保持され、且つ回転カムプレート130と共に回転するクラッチ板138を備え、押圧板140がクラッチドラム108に固定された受圧板142に対しクラッチ板138を押圧し締結することでクラッチドラム108とクラッチハブ110の回転速度差を回転カムプレート130に伝達する。   The primary clutch 116 includes a clutch plate 138 that is held between the clutch drum 108 and the rotating cam plate 130 so as to be movable in the axial direction with respect to the rotating cam plate 130, and rotates together with the rotating cam plate 130. The clutch plate 138 is pressed against the pressure receiving plate 142 fixed to the drum 108 and fastened to transmit the rotational speed difference between the clutch drum 108 and the clutch hub 110 to the rotating cam plate 130.

クラッチドラム108の下方のハウジング106の中間部には、プライマリークラッチ116及びボールカム機構114を介して多板クラッチ112の締結力を制御する油圧ピストン機構144、油圧ピストン機構144に油圧を供給する油圧ポンプ146、油圧ポンプ146を駆動するサーボモータ148及びその油圧を検出する油圧センサ150を備える。   A hydraulic piston mechanism 144 that controls the fastening force of the multi-plate clutch 112 via a primary clutch 116 and a ball cam mechanism 114, and a hydraulic pump that supplies hydraulic pressure to the hydraulic piston mechanism 144, in the middle portion of the housing 106 below the clutch drum 108. 146, a servo motor 148 for driving the hydraulic pump 146 and a hydraulic sensor 150 for detecting the hydraulic pressure thereof.

プライマリークラッチ116の押圧板140は、クラッチドラム108をスライド可能に貫通する押圧軸152を介してスラスト軸受154と連結し、スラスト軸受154は油圧ピストン機構144のリング状の油圧ピストン156と係合している。油圧ピストン156はハウジング106に形成された油圧シリンダ158の内部に遊嵌され、プライマリークラッチ116を開放する位置と締結する位置に移動可能である。   The pressing plate 140 of the primary clutch 116 is connected to a thrust bearing 154 via a pressing shaft 152 that slidably penetrates the clutch drum 108, and the thrust bearing 154 engages with a ring-shaped hydraulic piston 156 of the hydraulic piston mechanism 144. ing. The hydraulic piston 156 is loosely fitted inside a hydraulic cylinder 158 formed in the housing 106, and is movable to a position where the primary clutch 116 is disengaged and a position where it is fastened.

プライマリークラッチ116により回転カムプレート130が押圧カムプレート128に対し所定方向に相対回転駆動されると、ボールカム機構114は、対向する面の傾斜溝であるボールカム溝に挟まれているボール132による押圧を受け、押圧カムプレート128及び皿バネ134を軸方向に押し、押圧カムプレート128の押圧部128aが多板クラッチ機構60の多板クラッチ112を押すことで、多板クラッチ機構60は油圧ピストン156の移動量に応じて伝達トルクを増加させ、最大押付け位置で直結状態となる。   When the rotary cam plate 130 is driven to rotate relative to the pressing cam plate 128 in a predetermined direction by the primary clutch 116, the ball cam mechanism 114 is pressed by the ball 132 sandwiched between the ball cam grooves that are inclined grooves on the opposing surfaces. Then, the pressing cam plate 128 and the disc spring 134 are pressed in the axial direction, and the pressing portion 128 a of the pressing cam plate 128 presses the multi-plate clutch 112 of the multi-plate clutch mechanism 60. The transmission torque is increased according to the amount of movement, and a direct connection state is established at the maximum pressing position.

本実施形態においては、多板クラッチ機構60の締結力を制御するために、油圧ピストン機構144による油圧アクチュエータを使用しているが、これは油圧アクチュエータに限らず、例えば電磁アクチュエータやその他のアクチュエータでも構わない。どのアクチュエータを使用するかは適宜選択可能である。   In this embodiment, a hydraulic actuator by the hydraulic piston mechanism 144 is used to control the fastening force of the multi-plate clutch mechanism 60. However, this is not limited to a hydraulic actuator, and may be an electromagnetic actuator or other actuator, for example. I do not care. Which actuator is used can be appropriately selected.

ハウジング106の下側には後輪差動装置18が設けられ、デフケース66のフランジ部66aに固定されたリングギア64、デフケース66に固定されたピニオン軸160に回転自在に軸支されたピニオン68及び70、デフケース66に回転自在に軸支され左後輪駆動軸76を回転不可に連結したサイドギア72、デフケース66に回転自在に軸支されサイドギア軸162を回転不可に連結したサイドギア74を備える。   A rear wheel differential 18 is provided on the lower side of the housing 106, and a ring gear 64 fixed to the flange portion 66 a of the differential case 66 and a pinion 68 rotatably supported by a pinion shaft 160 fixed to the differential case 66. And 70, a side gear 72 rotatably supported on the differential case 66 and non-rotatably connected to the left rear wheel drive shaft 76, and a side gear 74 rotatably supported on the differential case 66 and non-rotatably connected to the side gear shaft 162.

リングギア64は、多板クラッチ機構60に連結したドライブピニオン62と噛み合い、サイドギア72及び74は各々ピニオン68及び70と噛み合っている。デフケース66は、左後輪駆動軸76側とサイドギア軸162側の両側を各々テーパーローラベアリング164、166によりハウジング106に回転自在に支持されている。   The ring gear 64 meshes with the drive pinion 62 connected to the multi-plate clutch mechanism 60, and the side gears 72 and 74 mesh with the pinions 68 and 70, respectively. The differential case 66 is rotatably supported on the housing 106 by tapered roller bearings 164 and 166 on both sides of the left rear wheel drive shaft 76 side and the side gear shaft 162 side.

ハウジング106の右下側には第2断接機構22が備わり、第2断接機構22は、サイドギア軸162の右端面部に形成した歯部162a、右後輪駆動軸78の左端外周に形成した歯部78a、歯部78aとスプライン結合し歯部162aと歯部168aを係合してサイドギア軸162と右後輪駆動軸78を連結する位置と連結を解除する位置でスライド可能なスリーブ168、スリーブ168の溝部168bに摺動自在に係合する先端部170aによりスリーブ168をスライドさせるフォーク170、フォーク170に固定され図示しないアクチュエータにより軸方向に駆動されるシフト軸172で構成される。   A second connecting / disconnecting mechanism 22 is provided on the lower right side of the housing 106, and the second connecting / disconnecting mechanism 22 is formed on the outer periphery of the left end of the right rear wheel drive shaft 78 and the tooth portion 162 a formed on the right end surface portion of the side gear shaft 162. A toothed portion 78a, a sleeve 168 slidable at a position where the side gear shaft 162 and the right rear wheel drive shaft 78 are connected to and disconnected from each other by engaging the toothed portion 162a and the toothed portion 168a by spline coupling with the toothed portion 78a. The front end 170a slidably engages with the groove 168b of the sleeve 168. The fork 170 slides the sleeve 168, and the shift shaft 172 is fixed to the fork 170 and driven in the axial direction by an actuator (not shown).

図3においては、四輪駆動時の第2断接機構22が連結された状態を示し、スリーブ168は、歯部168aとサイドギア軸162の歯部162aとが噛み合っており、サイドギア軸162と右後輪駆動軸78とを連結する位置に在る。この状態で、リングギア64と噛み合うドライブピニオン62からの駆動力を右後輪駆動軸78を介して右後輪82に伝達可能となる。   FIG. 3 shows a state in which the second connecting / disconnecting mechanism 22 is connected during four-wheel drive, and the sleeve 168 is engaged with the tooth portion 168a and the tooth portion 162a of the side gear shaft 162, and the side gear shaft 162 and the right side. It exists in the position which connects with the rear-wheel drive shaft 78. In this state, the driving force from the drive pinion 62 meshing with the ring gear 64 can be transmitted to the right rear wheel 82 via the right rear wheel drive shaft 78.

二輪駆動時には、シフト軸172をD方向にスライドすることでスリーブ168のサイドギア軸162との連結が解除し(想像線で図示)、第2断接機構22は非連結状態になり、四輪駆動に戻る際には、シフト軸172をC方向にスライドすることでスリーブ168がサイドギア軸162と右後輪駆動軸78とを連結し、第2断接機構22は連結状態となる。   At the time of two-wheel drive, the shift shaft 172 is slid in the D direction to release the connection of the sleeve 168 with the side gear shaft 162 (illustrated by an imaginary line), and the second connecting / disconnecting mechanism 22 is disconnected, and the four-wheel drive is performed. When returning to, the shift shaft 172 is slid in the C direction so that the sleeve 168 connects the side gear shaft 162 and the right rear wheel drive shaft 78, and the second connecting / disconnecting mechanism 22 is in a connected state.

本実施形態において、図2に示す第1断接機構20はスライディングクラッチ方式を、図3に示す第2断接機構22はドッグクラッチ方式を使用しているが、第1断接機構20、第2断接機構22共に何れのクラッチ方式を使用することが可能であり、これ以外の他の方式でも構わない。また、連結を切断及び接続する両要素の回転速度を同期するシンクロ機構を備えても構わない。更に、シフト軸104及び172を駆動するアクチュエータは、空圧、油圧、電磁、何れの方式でも可能であり、他の方式でも構わない。   In the present embodiment, the first connecting / disconnecting mechanism 20 shown in FIG. 2 uses a sliding clutch system, and the second connecting / disconnecting mechanism 22 shown in FIG. 3 uses a dog clutch system. Any of the clutch systems can be used for the two connection / disconnection mechanism 22, and other systems may be used. Moreover, you may provide the synchro mechanism which synchronizes the rotational speed of both the elements which disconnect and connect. Furthermore, the actuator for driving the shift shafts 104 and 172 can be any of pneumatic, hydraulic, electromagnetic, and other systems.

図4は、本発明による四輪駆動車用駆動力伝達装置の第2実施形態を示す説明図であり、図1に示す第1実施形態に対し駆動力配分装置の位置及び第2断接機構が断接する要素が異なる点を除けば同じで構成である。   FIG. 4 is an explanatory view showing a second embodiment of the driving force transmission device for a four-wheel drive vehicle according to the present invention. The configuration is the same except that the elements that connect and disconnect are different.

図4において、本実施形態の駆動力伝達装置200は四輪駆動車202に設けられ、駆動力配分装置204、前輪差動装置16、後輪差動装置206、第1断接機構20及び第2断接機構208を備える。   In FIG. 4, the driving force transmission device 200 of this embodiment is provided in a four-wheel drive vehicle 202, and includes a driving force distribution device 204, a front wheel differential device 16, a rear wheel differential device 206, a first connecting / disconnecting mechanism 20, and A two-connection mechanism 208 is provided.

エンジン24からの駆動力は変速機26で変速され、変速機26の出力ギア28からリングギア30を介して前輪差動装置16に入力され、前輪差動装置16は、デフケース32の内部に回転自在に軸支したピニオン34、36と、ピニオン34、36に係合するサイドギア38、40を介して左前輪駆動軸42及び右前輪駆動軸44を駆動し、左前輪駆動軸42及び右前輪駆動軸44は各々左前輪46及び右前輪48を回転させ駆動力を路面に伝達する。   The driving force from the engine 24 is shifted by the transmission 26 and is input to the front wheel differential device 16 from the output gear 28 of the transmission 26 via the ring gear 30, and the front wheel differential device 16 rotates inside the differential case 32. The left front wheel drive shaft 42 and the right front wheel drive shaft 44 are driven via the freely supported pinions 34, 36 and the side gears 38, 40 engaged with the pinions 34, 36, and the left front wheel drive shaft 42 and the right front wheel drive are driven. The shafts 44 respectively rotate the left front wheel 46 and the right front wheel 48 to transmit driving force to the road surface.

コーナリング時や路面状態の変化等により左前輪46と右前輪54に回転速度差が生じても、前輪差動装置16は回転速度差を吸収し、左前輪46及び右前輪48に等しいトルクを与え回転させることができる。   Even if a rotational speed difference occurs between the left front wheel 46 and the right front wheel 54 due to cornering or changes in road surface conditions, the front wheel differential 16 absorbs the rotational speed difference and gives equal torque to the left front wheel 46 and the right front wheel 48. Can be rotated.

前輪差動装置16に入力された駆動力は、デフケース32に連結する第1断接機構20にも伝達され、四輪駆動モードで、第1断接機構20が接続されている場合、ベベルギア50及び出力ピニオン52で駆動力の伝達方向を変換し(駆動力伝達方向変換部)、駆動力配分装置204にも伝達される。   The driving force input to the front wheel differential device 16 is also transmitted to the first connecting / disconnecting mechanism 20 connected to the differential case 32. When the first connecting / disconnecting mechanism 20 is connected in the four-wheel drive mode, the bevel gear 50 is connected. Then, the transmission direction of the driving force is converted by the output pinion 52 (driving force transmission direction conversion unit), and is also transmitted to the driving force distribution device 204.

四輪駆動モードでは、駆動力配分装置204の多板クラッチ機構60が締結しているため、駆動力配分装置204に入力された駆動力は、自在継手54、プロペラシャフト56、自在継手58、ドライブピニオン62からリングギア64を介して後輪差動装置206に伝達される。   In the four-wheel drive mode, since the multi-plate clutch mechanism 60 of the driving force distribution device 204 is engaged, the driving force input to the driving force distribution device 204 is the universal joint 54, the propeller shaft 56, the universal joint 58, and the drive. It is transmitted from the pinion 62 to the rear wheel differential device 206 via the ring gear 64.

後輪差動装置206は、リングギア64を有するアウターケース210と、その内部に第2断接機構208により連結を断接可能なインナーケース212を設け、インナーケース212の内部に回転自在に軸支したピニオン68、70と、ピニオン68、70に係合するサイドギア72、74を介して左後輪駆動軸76及び右後輪駆動軸78を駆動し、左後輪駆動軸76及び右後輪駆動軸78は各々左後輪80及び右後輪82を回転させ駆動力を路面に伝達する。   The rear wheel differential device 206 is provided with an outer case 210 having a ring gear 64 and an inner case 212 that can be connected / disconnected by a second connecting / disconnecting mechanism 208 therein. The left rear wheel drive shaft 76 and the right rear wheel drive shaft 78 are driven via the supported pinions 68 and 70 and the side gears 72 and 74 engaged with the pinions 68 and 70, and the left rear wheel drive shaft 76 and the right rear wheel are driven. The drive shaft 78 rotates the left rear wheel 80 and the right rear wheel 82, respectively, and transmits the driving force to the road surface.

また四輪駆動モードでは、第2断接機構208は接続されアウターケース210とインナーケース212を連結しており、アウターケース210とインナーケース212は一体に回転し、リングギア64の回転は左後輪駆動軸76及び右後輪駆動軸78に伝達される。   In the four-wheel drive mode, the second connection / disconnection mechanism 208 is connected to connect the outer case 210 and the inner case 212, the outer case 210 and the inner case 212 rotate integrally, and the ring gear 64 rotates to the left rear. It is transmitted to the wheel drive shaft 76 and the right rear wheel drive shaft 78.

コーナリング時や路面状態の変化等により左後輪80と右後輪82に回転速度差が生じても、後輪差動装置206は回転速度差を吸収し、左後輪80及び右後輪82に等しいトルクを与え回転させることができる。   Even if a difference in rotational speed occurs between the left rear wheel 80 and the right rear wheel 82 due to cornering or changes in road surface conditions, the rear wheel differential device 206 absorbs the rotational speed difference, and the left rear wheel 80 and the right rear wheel 82 Can be rotated by applying a torque equal to.

ECU84は、四輪駆動オートモードにおいて、多板クラッチ機構60の締結力を連続的に変化させ、必要に応じてプロペラシャフト56へ伝達する駆動力を増減させることで、駆動力配分装置204の前後輪の駆動力配分を制御し、四輪駆動ロックモードにおいては、多板クラッチ機構60を最大締結力に保持し、後輪を所定の最大トルクで駆動する。   In the four-wheel drive auto mode, the ECU 84 continuously changes the fastening force of the multi-plate clutch mechanism 60, and increases or decreases the driving force transmitted to the propeller shaft 56 as necessary. The wheel driving force distribution is controlled, and in the four-wheel drive lock mode, the multi-plate clutch mechanism 60 is held at the maximum fastening force, and the rear wheels are driven with a predetermined maximum torque.

四輪駆動モードから二輪駆動モードに切り替えると、ECU84は、まず多板クラッチ機構60を開放し、続いて第1断接機構20及び第2断接機構208の連結を切断する。この場合、ECU84は、先に第1断接機構20及び第2断接機構208の連結を切断した後に多板クラッチ機構60を開放してもよい。   When the four-wheel drive mode is switched to the two-wheel drive mode, the ECU 84 first opens the multi-plate clutch mechanism 60 and then disconnects the first connection / disconnection mechanism 20 and the second connection / disconnection mechanism 208. In this case, the ECU 84 may release the multi-plate clutch mechanism 60 after first disconnecting the first connection / disconnection mechanism 20 and the second connection / disconnection mechanism 208.

第1断接機構20は、前輪差動装置16のデフケース32とベベルギア50との連結を断ち、リングギア30に入力した駆動力が出力ピニオン52を介して多板クラッチ機構60を回転させることを防止する。   The first connecting / disconnecting mechanism 20 disconnects the differential case 32 of the front wheel differential device 16 from the bevel gear 50, and the driving force input to the ring gear 30 rotates the multi-plate clutch mechanism 60 via the output pinion 52. To prevent.

また、第2断接機構208は、後輪差動装置206のアウターケース210とインナーケース212との連結を絶ち、左後輪80及び右後輪82が路面から受ける回転力がリングギア64、ドライブピニオン62、自在継手58、プロペラシャフト56、自在継手54及び多板クラッチ機構60を回転させることを防止する。   The second connecting / disconnecting mechanism 208 disconnects the outer case 210 and the inner case 212 of the rear wheel differential device 206, and the rotational force received by the left rear wheel 80 and the right rear wheel 82 from the road surface is the ring gear 64, The drive pinion 62, the universal joint 58, the propeller shaft 56, the universal joint 54, and the multi-plate clutch mechanism 60 are prevented from rotating.

これにより、二輪駆動モードでは、多板クラッチ機構60へ前後輪側からの回転は伝達されず、ベベルギア50から多板クラッチ機構60を経由してアウターケース210までの区間は回転しない。従って、二輪駆動モードで燃費低下を招く要因である、後輪を駆動しない場合でも後輪への駆動力伝達経路が回転してしまう問題を解消できる。   Thus, in the two-wheel drive mode, rotation from the front and rear wheels is not transmitted to the multi-plate clutch mechanism 60, and the section from the bevel gear 50 to the outer case 210 via the multi-plate clutch mechanism 60 does not rotate. Therefore, it is possible to solve the problem that the driving force transmission path to the rear wheels rotates even when the rear wheels are not driven, which is a factor that causes a reduction in fuel consumption in the two-wheel drive mode.

図5は、本発明による四輪駆動車用駆動力伝達装置の第3実施形態を示す説明図であり、図1に示す第1実施形態及び図4に示す第2実施形態に対し駆動力配分装置の位置及び第2断接機構が断接する要素が異なる点を除けば同じで構成である。   FIG. 5 is an explanatory view showing a third embodiment of the driving force transmission device for a four-wheel drive vehicle according to the present invention. The driving force distribution is compared with the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. The configuration is the same except that the position of the device and the elements to which the second connection / disconnection mechanism is connected / disconnected are different.

図5において、本実施形態の駆動力伝達装置300は四輪駆動車302に設けられ、駆動力配分装置304、前輪差動装置16、後輪差動装置18、第1断接機構20及び第2断接機構306、308を備える。   In FIG. 5, the driving force transmission device 300 of this embodiment is provided in a four-wheel drive vehicle 302, and includes a driving force distribution device 304, a front wheel differential device 16, a rear wheel differential device 18, a first connecting / disconnecting mechanism 20, and Two connection mechanisms 306 and 308 are provided.

エンジン24からの駆動力は変速機26で変速され、変速機26の出力ギア28からリングギア30を介して前輪差動装置16に入力され、前輪差動装置16は、デフケース32の内部に回転自在に軸支したピニオン34、36と、ピニオン34、36に係合するサイドギア38、40を介して左前輪駆動軸42及び右前輪駆動軸44を駆動し、左前輪駆動軸42及び右前輪駆動軸44は各々左前輪46及び右前輪48を回転させ駆動力を路面に伝達する。   The driving force from the engine 24 is shifted by the transmission 26 and is input to the front wheel differential device 16 from the output gear 28 of the transmission 26 via the ring gear 30, and the front wheel differential device 16 rotates inside the differential case 32. The left front wheel drive shaft 42 and the right front wheel drive shaft 44 are driven via the freely supported pinions 34, 36 and the side gears 38, 40 engaged with the pinions 34, 36, and the left front wheel drive shaft 42 and the right front wheel drive are driven. The shafts 44 respectively rotate the left front wheel 46 and the right front wheel 48 to transmit driving force to the road surface.

コーナリング時や路面状態の変化等により左前輪46と右前輪54に回転速度差が生じても、前輪差動装置16は回転速度差を吸収し、左前輪46及び右前輪48に等しいトルクを与え回転させることができる。   Even if a rotational speed difference occurs between the left front wheel 46 and the right front wheel 54 due to cornering or changes in road surface conditions, the front wheel differential 16 absorbs the rotational speed difference and gives equal torque to the left front wheel 46 and the right front wheel 48. Can be rotated.

前輪差動装置16に入力された駆動力は、デフケース32に連結する第1断接機構20にも伝達され、四輪駆動モードで、第1断接機構20が接続されている場合、駆動力配分装置304にも伝達される。   The driving force input to the front wheel differential device 16 is also transmitted to the first connecting / disconnecting mechanism 20 connected to the differential case 32. When the first connecting / disconnecting mechanism 20 is connected in the four-wheel drive mode, the driving force is It is also transmitted to the distribution device 304.

四輪駆動モードでは、駆動力配分装置304の多板クラッチ機構60が締結しているため、駆動力配分装置304に入力された駆動力は、ベベルギア50及び出力ピニオン52で駆動力の伝達方向を変換し(駆動力伝達方向変換部)、自在継手54、プロペラシャフト56、自在継手58、ドライブピニオン62からリングギア64を介して後輪差動装置18に伝達され、後輪差動装置18は、デフケース66の内部に回転自在に軸支したピニオン68、70と、ピニオン68、70に係合するサイドギア72、74を介して左後輪駆動軸76及び右後輪駆動軸78を駆動し、左後輪駆動軸76及び右後輪駆動軸78は各々左後輪80及び右後輪82を回転させ駆動力を路面に伝達する。   In the four-wheel drive mode, since the multi-plate clutch mechanism 60 of the driving force distribution device 304 is engaged, the driving force input to the driving force distribution device 304 changes the transmission direction of the driving force by the bevel gear 50 and the output pinion 52. Converted (driving force transmission direction changing portion), and transmitted from the universal joint 54, the propeller shaft 56, the universal joint 58, and the drive pinion 62 to the rear wheel differential 18 through the ring gear 64. The left rear wheel drive shaft 76 and the right rear wheel drive shaft 78 are driven through pinions 68 and 70 rotatably supported inside the differential case 66 and side gears 72 and 74 engaged with the pinions 68 and 70, The left rear wheel drive shaft 76 and the right rear wheel drive shaft 78 rotate the left rear wheel 80 and the right rear wheel 82, respectively, and transmit the driving force to the road surface.

また四輪駆動モードでは、左後輪駆動軸76と左後輪80の連結を断接可能な第2断接機構306及び右後輪駆動軸78と右後輪82の連結を断接可能な第2断接機構308は共に接続され、左後輪駆動軸76及び右後輪駆動軸78の回転はそのまま左後輪80及び右後輪82に伝達される。   In the four-wheel drive mode, the second connecting / disconnecting mechanism 306 capable of connecting / disconnecting the left rear wheel drive shaft 76 and the left rear wheel 80 and the connection of the right rear wheel driving shaft 78 and the right rear wheel 82 can be connected / disconnected. The second connecting / disconnecting mechanism 308 is connected together, and the rotation of the left rear wheel drive shaft 76 and the right rear wheel drive shaft 78 is transmitted to the left rear wheel 80 and the right rear wheel 82 as they are.

なお、第2断接機構は、第1実施形態においては、後輪差動装置と後輪駆動軸との間に配置されるが、第3実施形態においては、後輪駆動軸と後輪との間に配置される。   The second connecting / disconnecting mechanism is arranged between the rear wheel differential and the rear wheel drive shaft in the first embodiment, but in the third embodiment, the rear wheel drive shaft and the rear wheel are arranged. It is arranged between.

コーナリング時や路面状態の変化等により左後輪80と右後輪82に回転速度差が生じても、後輪差動装置18は回転速度差を吸収し、左後輪80及び右後輪82に等しいトルクを与え回転させることができる。   Even if a difference in rotational speed occurs between the left rear wheel 80 and the right rear wheel 82 due to cornering or changes in road surface conditions, the rear wheel differential 18 absorbs the rotational speed difference, and the left rear wheel 80 and the right rear wheel 82 Can be rotated by applying a torque equal to.

ECU84は、四輪駆動オートモードにおいて、多板クラッチ機構60の締結力を連続的に変化させ、必要に応じてベベルギア50へ伝達する駆動力を増減させることで、駆動力配分装置304の前後輪の駆動力配分を制御し、四輪駆動ロックモードにおいては、多板クラッチ機構60を最大締結力に保持し、後輪を所定の最大トルクで駆動する。   In the four-wheel drive auto mode, the ECU 84 continuously changes the fastening force of the multi-plate clutch mechanism 60, and increases or decreases the drive force transmitted to the bevel gear 50 as necessary, whereby the front and rear wheels of the drive force distribution device 304 are changed. In the four-wheel drive lock mode, the multi-plate clutch mechanism 60 is held at the maximum engagement force, and the rear wheels are driven with a predetermined maximum torque.

四輪駆動モードから二輪駆動モードに切り替えると、ECU84は、まず多板クラッチ機構60を開放し、続いて第1断接機構20及び第2断接機構306、308の連結を切断する。この場合、ECU84は先に第1断接機構20及び第2断接機構306、308の連結を切断した後に多板クラッチ機構60を開放してもよい。   When switching from the four-wheel drive mode to the two-wheel drive mode, the ECU 84 first opens the multi-plate clutch mechanism 60, and then disconnects the first connection / disconnection mechanism 20 and the second connection / disconnection mechanisms 306, 308 from each other. In this case, the ECU 84 may first release the multi-plate clutch mechanism 60 after disconnecting the connection between the first connecting / disconnecting mechanism 20 and the second connecting / disconnecting mechanisms 306, 308.

第1断接機構20は、前輪差動装置16のデフケース32と多板クラッチ機構60との連結を断ち、リングギア30に入力した駆動力が多板クラッチ機構60を回転させることを防止する。   The first connection / disconnection mechanism 20 disconnects the differential case 32 of the front wheel differential device 16 from the multi-plate clutch mechanism 60 and prevents the driving force input to the ring gear 30 from rotating the multi-plate clutch mechanism 60.

また、第2断接機構306が左後輪駆動軸76と左後輪80との連結を絶つと共に、第2断接機構308が右後輪駆動軸78と右後輪82との連結を絶ち、左後輪80及び右後輪82が路面から受ける回転力が後輪差動装置18、リングギア64、ドライブピニオン62、自在継手58、プロペラシャフト56、自在継手54、出力ピニオン52及び多板クラッチ機構60を回転させることを防止する。   The second connecting / disconnecting mechanism 306 disconnects the left rear wheel drive shaft 76 from the left rear wheel 80, and the second connecting / disconnecting mechanism 308 disconnects the right rear wheel drive shaft 78 from the right rear wheel 82. The rotational force received by the left rear wheel 80 and the right rear wheel 82 from the road surface is the rear wheel differential 18, the ring gear 64, the drive pinion 62, the universal joint 58, the propeller shaft 56, the universal joint 54, the output pinion 52, and the multi-plate. The clutch mechanism 60 is prevented from rotating.

これにより、二輪駆動モードでは、多板クラッチ機構60へ前後輪側からの回転は伝達されず、多板クラッチ機構60からプロペラシャフト56を経由して後輪差動装置18までの区間は回転しない。従って、二輪駆動モードで燃費低下を招く要因である、後輪を駆動しない場合でも後輪への駆動力伝達経路が回転してしまう問題を解消できる。   Thereby, in the two-wheel drive mode, the rotation from the front and rear wheels is not transmitted to the multi-plate clutch mechanism 60, and the section from the multi-plate clutch mechanism 60 via the propeller shaft 56 does not rotate. . Therefore, it is possible to solve the problem that the driving force transmission path to the rear wheels rotates even when the rear wheels are not driven, which is a factor that causes a reduction in fuel consumption in the two-wheel drive mode.

第1実施形態及び第2実施形態において、変速機26から前輪差動装置16に入力された駆動力は、デフケース32、ベベルギア50、出力ピニオン52、駆動力配分装置14の順に伝達されるため、第1断接機構20は、エンジン24からの駆動力を後輪80、82に伝達するのに係わる駆動力伝達経路の最上流である前輪差動装置16とベベルギア50(駆動力伝達方向変換部)との間に配置しているが、第3実施形態においては、駆動力が前輪差動装置16、駆動力配分装置14、ベベルギア50、出力ピニオン52の順に伝達されるため、第1断接機構20は、この駆動力伝達経路の最上流である前輪差動装置16と駆動力配分装置14との間に配置している。   In the first and second embodiments, the driving force input from the transmission 26 to the front wheel differential device 16 is transmitted in the order of the differential case 32, the bevel gear 50, the output pinion 52, and the driving force distribution device 14. The first connecting / disconnecting mechanism 20 includes a front wheel differential device 16 and a bevel gear 50 (a driving force transmission direction conversion unit) that are the most upstream of the driving force transmission path for transmitting the driving force from the engine 24 to the rear wheels 80 and 82. In the third embodiment, since the driving force is transmitted in the order of the front wheel differential device 16, the driving force distribution device 14, the bevel gear 50, and the output pinion 52 in the third embodiment, the first connection / disconnection is performed. The mechanism 20 is disposed between the front wheel differential device 16 and the driving force distribution device 14 which are the most upstream in the driving force transmission path.

この様に駆動力伝達装置10、200、300を構成することで、後輪80、82への駆動力伝達経路の最長区間の回転を停止することができ、この区間におけるオイルの攪拌抵抗や軸受部の摩擦損失等による動力損失を最小限にすることが可能である。   By configuring the driving force transmission devices 10, 200, and 300 in this manner, the rotation of the longest section of the driving force transmission path to the rear wheels 80 and 82 can be stopped. It is possible to minimize power loss due to friction loss of the part.

なお、本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含む。
In addition, this invention is not limited to said embodiment, The appropriate deformation | transformation which does not impair the objective and advantage is included.

本発明の四輪駆動車用駆動力伝達装置の第1実施形態を示す説明図Explanatory drawing which shows 1st Embodiment of the driving force transmission device for four-wheel drive vehicles of this invention. 第1実施形態の前輪差動装置及び第1断接機構を示す断面図Sectional drawing which shows the front wheel differential of 1st Embodiment and a 1st connection / disconnection mechanism. 第1実施形態の駆動力配分装置、後輪差動装置及び第2断接機構を示す断面図Sectional drawing which shows the driving force distribution apparatus, rear-wheel differential gear, and 2nd connection / disconnection mechanism of 1st Embodiment. 本発明の四輪駆動車用駆動力伝達装置の第2実施形態を示す説明図Explanatory drawing which shows 2nd Embodiment of the driving force transmission device for four-wheel drive vehicles of this invention. 本発明の四輪駆動車用駆動力伝達装置の第3実施形態を示す説明図Explanatory drawing which shows 3rd Embodiment of the driving force transmission device for four-wheel drive vehicles of this invention. 従来の四輪駆動車用駆動力伝達装置の実施例を示す説明図Explanatory drawing which shows the Example of the conventional driving force transmission device for four-wheel drive vehicles

符号の説明Explanation of symbols

10、200、300:駆動力伝達装置
12、202、302:四輪駆動車
14、204、304:駆動力配分装置
16:前輪差動装置
18、206:後輪差動装置
20:第1断接機構
22、208、306、308:第2断接機構
24:エンジン
26:変速機
28:出力ギア
30、64:リングギア
32、66:デフケース
34、36、68、70:ピニオン
38、40、72、74:サイドギア
42:左前輪駆動軸
44:右前輪駆動軸
46:左前輪
48:右前輪
50:ベベルギア
52:出力ピニオン
54、58:自在継手
56:プロペラシャフト
60:多板クラッチ機構
62:ドライブピニオン
76:左後輪駆動軸
78:右後輪駆動軸
80:左後輪
82:右後輪
84:ECU
86、106:ハウジング
88:ピニオン軸
90、92、96、98、118、120、164、166:テーパーローラベアリング
94:ベベルギア軸
100、168:スリーブ
102、170:フォーク
104、172:シフト軸
108:クラッチドラム
110:クラッチハブ
112:多板クラッチ
114:ボールカム機構
116:プライマリークラッチ
122、124、126:ボールベアリング
128:押圧カムプレート
130:回転カムプレート
132:ボール
134:皿バネ
136:スラスト軸受
138:クラッチ板
140:押圧板
142:受圧板
144:油圧ピストン機構
146:油圧ポンプ
148:サーボモータ
150:油圧センサ
152:押圧軸
154:スラスト軸受
156:油圧ピストン
158:油圧シリンダ
160:ピニオン軸
162:サイドギア軸
400:駆動力配分装置
402:四輪駆動車
404:エンジン
406:変速機
408:出力ギア
410:リングギア
412:前輪差動装置
414:ベベルギア
416:出力ピニオン
418:プロペラシャフト
420:多板クラッチ機構
422:ドライブピニオン
424:リングギア
426:後輪差動装置
428:左前輪
430:右前輪
432:左後輪
434:右後輪
10, 200, 300: Driving force transmission device 12, 202, 302: Four-wheel drive vehicle 14, 204, 304: Driving force distribution device 16: Front wheel differential device 18, 206: Rear wheel differential device 20: First disconnection Contact mechanism 22, 208, 306, 308: second connecting / disconnecting mechanism 24: engine 26: transmission 28: output gear 30, 64: ring gear 32, 66: differential case 34, 36, 68, 70: pinion 38, 40, 72, 74: Side gear 42: Left front wheel drive shaft 44: Right front wheel drive shaft 46: Left front wheel 48: Right front wheel 50: Bevel gear 52: Output pinion 54, 58: Universal joint 56: Propeller shaft 60: Multi-plate clutch mechanism 62: Drive pinion 76: Left rear wheel drive shaft 78: Right rear wheel drive shaft 80: Left rear wheel 82: Right rear wheel 84: ECU
86, 106: Housing 88: Pinion shaft 90, 92, 96, 98, 118, 120, 164, 166: Tapered roller bearing 94: Bevel gear shaft 100, 168: Sleeve 102, 170: Fork 104, 172: Shift shaft 108: Clutch drum 110: Clutch hub 112: Multi-plate clutch 114: Ball cam mechanism 116: Primary clutch 122, 124, 126: Ball bearing 128: Press cam plate 130: Rotating cam plate 132: Ball 134: Belleville spring 136: Thrust bearing 138: Clutch plate 140: Press plate 142: Pressure receiving plate 144: Hydraulic piston mechanism 146: Hydraulic pump 148: Servo motor 150: Hydraulic sensor 152: Press shaft 154: Thrust bearing 156: Hydraulic piston 158: Hydraulic cylinder 160: Nonion shaft 162: Side gear shaft 400: Driving force distribution device 402: Four-wheel drive vehicle 404: Engine 406: Transmission 408: Output gear 410: Ring gear 412: Front wheel differential device 414: Bevel gear 416: Output pinion 418: Propeller shaft 420: Multi-plate clutch mechanism 422: Drive pinion 424: Ring gear 426: Rear wheel differential 428: Left front wheel 430: Right front wheel 432: Left rear wheel 434: Right rear wheel

Claims (7)

後輪に伝達する駆動力を無段階に変更可能な駆動力配分装置を備え、前輪及び後輪に駆動力を配分する四輪駆動モードと、前輪のみに駆動力を伝達する二輪駆動モードとを切り替え可能な四輪駆動車用駆動力伝達装置に於いて、
動力源からの駆動力を入力して左右前輪及び駆動力伝達方向変換部を介して前記駆動力配分装置に出力する前輪差動装置と、
前記駆動力配分装置により配分された駆動力を入力して左右後輪に出力する後輪差動装置と、
前記前輪差動装置と前記駆動力伝達方向変換部との駆動力伝達を切断及び接続可能な第1断接機構と、
前記後輪差動装置と前記左右後輪の何れか一方又は両方との駆動力伝達を切断及び接続可能な第2断接機構を備えることを特徴とする四輪駆動車用駆動力伝達装置。
A four-wheel drive mode that distributes the drive force to the front wheels and the rear wheels and a two-wheel drive mode that transmits the drive force only to the front wheels are provided. In a switchable driving force transmission device for a four-wheel drive vehicle,
A front wheel differential device that inputs a driving force from a power source and outputs the driving force to the driving force distribution device via the left and right front wheels and a driving force transmission direction converter;
A rear wheel differential device for inputting the driving force distributed by the driving force distribution device and outputting it to the left and right rear wheels;
A first connecting / disconnecting mechanism capable of disconnecting and connecting the driving force transmission between the front wheel differential device and the driving force transmission direction changing unit;
A driving force transmission device for a four-wheel drive vehicle, comprising: a second connection / disconnection mechanism capable of disconnecting and connecting the driving force transmission between the rear wheel differential device and one or both of the left and right rear wheels.
後輪に伝達する駆動力を無段階に変更可能な駆動力配分装置を備え、前輪及び後輪に駆動力を配分する四輪駆動モードと、前輪のみに駆動力を伝達する二輪駆動モードとを切り替え可能な四輪駆動車用駆動力伝達装置に於いて、
動力源からの駆動力を入力して左右前輪及び前記駆動力配分装置に出力する前輪差動装置と、
前記駆動力配分装置により配分された駆動力を駆動力伝達方向変換部を介し入力して左右後輪に出力する後輪差動装置と、
前記前輪差動装置と前記駆動力配分装置との駆動力伝達を切断及び接続可能な第1断接機構と、
前記後輪差動装置と前記左右後輪の何れか一方又は両方との駆動力伝達を切断及び接続可能な第2断接機構を備えることを特徴とする四輪駆動車用駆動力伝達装置。
A four-wheel drive mode that distributes the drive force to the front wheels and the rear wheels and a two-wheel drive mode that transmits the drive force only to the front wheels are provided. In a switchable driving force transmission device for a four-wheel drive vehicle,
A front wheel differential device for inputting a driving force from a power source and outputting it to the left and right front wheels and the driving force distribution device;
A rear wheel differential device that inputs the driving force distributed by the driving force distribution device via the driving force transmission direction conversion unit and outputs it to the left and right rear wheels;
A first connecting / disconnecting mechanism capable of disconnecting and connecting the driving force transmission between the front wheel differential device and the driving force distribution device;
A driving force transmission device for a four-wheel drive vehicle, comprising: a second connection / disconnection mechanism capable of disconnecting and connecting the driving force transmission between the rear wheel differential device and one or both of the left and right rear wheels.
請求項1及び2記載の四輪駆動車用駆動力伝達装置に於いて、
前記四輪駆動モードは、前記第1断接機構及び第2断接機構を接続すると共に、前記駆動力配分装置の駆動力配分を走行条件に応じて制御し、
前記二輪駆動モードは、前記第1断接機構及び第2断接機構を切断することを特徴とする四輪駆動車用駆動力伝達装置。
In the driving force transmission device for a four-wheel drive vehicle according to claim 1 or 2,
In the four-wheel drive mode, the first connecting / disconnecting mechanism and the second connecting / disconnecting mechanism are connected, and the driving force distribution of the driving force distribution device is controlled in accordance with a traveling condition,
In the two-wheel drive mode, the driving force transmission device for a four-wheel drive vehicle is characterized in that the first connecting / disconnecting mechanism and the second connecting / disconnecting mechanism are disconnected.
請求項1乃至3記載の四輪駆動車用駆動力伝達装置に於いて、
前記後輪差動装置は、前記後輪に駆動力を出力する第1出力要素及び第2出力要素を備え、
前記第2断接機構は、前記後輪と前記第1出力要素との駆動力伝達を切断及び接続可能であることを特徴とする四輪駆動車用駆動力伝達装置。
In the driving force transmission device for a four-wheel drive vehicle according to claims 1 to 3,
The rear wheel differential device includes a first output element and a second output element that output driving force to the rear wheel,
The driving force transmission device for a four-wheel drive vehicle, wherein the second connecting / disconnecting mechanism is capable of cutting and connecting driving force transmission between the rear wheel and the first output element.
請求項1乃至3記載の四輪駆動車用駆動力伝達装置に於いて、
前記後輪差動装置は、前記後輪に駆動力を出力する第1出力要素及び第2出力要素を備え、
前記第2断接機構は、前記後輪と前記第1出力要素及び前記第2出力要素との駆動力伝達を切断及び接続可能であることを特徴とする四輪駆動車用駆動力伝達装置。
In the driving force transmission device for a four-wheel drive vehicle according to claims 1 to 3,
The rear wheel differential device includes a first output element and a second output element that output driving force to the rear wheel,
A driving force transmission device for a four-wheel drive vehicle, wherein the second connecting / disconnecting mechanism is capable of cutting and connecting driving force transmission between the rear wheel, the first output element, and the second output element.
請求項1乃至3記載の四輪駆動車用駆動力伝達装置に於いて、
前記後輪差動装置は、前記駆動力配分装置から駆動力を入力する入力要素と、前記後輪に駆動力を出力する出力要素とを備え、
前記第2断接機構は、前記入力要素と前記出力要素との駆動力伝達を切断及び接続可能であることを特徴とする四輪駆動車用駆動力伝達装置。
In the driving force transmission device for a four-wheel drive vehicle according to claims 1 to 3,
The rear wheel differential device includes an input element that inputs driving force from the driving force distribution device, and an output element that outputs driving force to the rear wheel,
The second connecting / disconnecting mechanism is capable of disconnecting and connecting driving force transmission between the input element and the output element.
請求項1乃至6記載の四輪駆動車用駆動力伝達装置に於いて、前記駆動力配分装置は、
多板クラッチ機構の締結力を連続的に変化させ前輪及び後輪に伝達する駆動力の配分を制御することを特徴とする四輪駆動車用駆動力伝達装置。
The driving force transmission device for a four-wheel drive vehicle according to any one of claims 1 to 6, wherein the driving force distribution device includes:
A driving force transmission device for a four-wheel drive vehicle characterized by controlling the distribution of the driving force transmitted to the front wheels and the rear wheels by continuously changing the fastening force of the multi-plate clutch mechanism.
JP2008147845A 2008-06-05 2008-06-05 Driving force transmission device for four-wheel drive car Pending JP2009292307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008147845A JP2009292307A (en) 2008-06-05 2008-06-05 Driving force transmission device for four-wheel drive car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008147845A JP2009292307A (en) 2008-06-05 2008-06-05 Driving force transmission device for four-wheel drive car

Publications (1)

Publication Number Publication Date
JP2009292307A true JP2009292307A (en) 2009-12-17

Family

ID=41540913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008147845A Pending JP2009292307A (en) 2008-06-05 2008-06-05 Driving force transmission device for four-wheel drive car

Country Status (1)

Country Link
JP (1) JP2009292307A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235757A (en) * 2010-05-10 2011-11-24 Toyota Motor Corp Control device of four-wheel drive vehicle
JP2012116433A (en) * 2010-12-03 2012-06-21 Fuji Heavy Ind Ltd Drive force distribution control device of all-wheel drive vehicle
GB2488410A (en) * 2011-02-18 2012-08-29 Land Rover Uk Ltd Driveline disconnect delay period.
JP2013100072A (en) * 2011-10-12 2013-05-23 Toyota Motor Corp Transfer device
JP2013521178A (en) * 2010-03-02 2013-06-10 ダイムラー・アクチェンゲゼルシャフト Drive system controller
WO2014076805A1 (en) * 2012-11-15 2014-05-22 トヨタ自動車株式会社 Four-wheel drive vehicle power transmission device
US8850928B2 (en) 2011-09-02 2014-10-07 GKN Driveline Japan Ltd. Power takeoff unit for automobile
JP2015160587A (en) * 2014-02-28 2015-09-07 日産自動車株式会社 Clutch control device of four-wheel drive vehicle
US9222530B2 (en) 2010-03-02 2015-12-29 Daimler Ag Drive train control arrangement
JP2016132307A (en) * 2015-01-16 2016-07-25 トヨタ自動車株式会社 Connection/disconnection device of vehicle
US10293686B2 (en) 2011-04-28 2019-05-21 Russell Osborn Vehicle and method of controlling a vehicle
CN111102071A (en) * 2019-12-06 2020-05-05 中联重科股份有限公司 Gear control method and device of power system in boarding operation and hoisting machinery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370557A (en) * 2001-06-15 2002-12-24 Tochigi Fuji Ind Co Ltd Four-wheel drive system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370557A (en) * 2001-06-15 2002-12-24 Tochigi Fuji Ind Co Ltd Four-wheel drive system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222530B2 (en) 2010-03-02 2015-12-29 Daimler Ag Drive train control arrangement
JP2013521178A (en) * 2010-03-02 2013-06-10 ダイムラー・アクチェンゲゼルシャフト Drive system controller
JP2011235757A (en) * 2010-05-10 2011-11-24 Toyota Motor Corp Control device of four-wheel drive vehicle
JP2012116433A (en) * 2010-12-03 2012-06-21 Fuji Heavy Ind Ltd Drive force distribution control device of all-wheel drive vehicle
GB2488410A (en) * 2011-02-18 2012-08-29 Land Rover Uk Ltd Driveline disconnect delay period.
GB2488410B (en) * 2011-02-18 2013-06-12 Land Rover Uk Ltd Vehicle and method of controlling a vehicle
US9630493B2 (en) 2011-02-18 2017-04-25 Jaguar Land Rover Limited Vehicle and method of controlling a vehicle
US10293686B2 (en) 2011-04-28 2019-05-21 Russell Osborn Vehicle and method of controlling a vehicle
EP2701935B1 (en) * 2011-04-28 2020-12-16 Jaguar Land Rover Limited Vehicle and method of controlling a vehicle
US8850928B2 (en) 2011-09-02 2014-10-07 GKN Driveline Japan Ltd. Power takeoff unit for automobile
JP2013100072A (en) * 2011-10-12 2013-05-23 Toyota Motor Corp Transfer device
WO2014076805A1 (en) * 2012-11-15 2014-05-22 トヨタ自動車株式会社 Four-wheel drive vehicle power transmission device
JP2015160587A (en) * 2014-02-28 2015-09-07 日産自動車株式会社 Clutch control device of four-wheel drive vehicle
JP2016132307A (en) * 2015-01-16 2016-07-25 トヨタ自動車株式会社 Connection/disconnection device of vehicle
CN111102071A (en) * 2019-12-06 2020-05-05 中联重科股份有限公司 Gear control method and device of power system in boarding operation and hoisting machinery
CN111102071B (en) * 2019-12-06 2021-07-13 中联重科股份有限公司 Gear control method and device of power system in boarding operation and hoisting machinery

Similar Documents

Publication Publication Date Title
JP2009292307A (en) Driving force transmission device for four-wheel drive car
US9199535B2 (en) Disconnectable driveline for all-wheel drive vehicle
US9511666B2 (en) Disconnectable driveline for all-wheel drive vehicle
EP2105336B1 (en) Driving force transmission device for four-wheel-drive vehicle
US9162567B2 (en) Single speed and two-speed disconnecting axle arrangements
EP2750911B1 (en) A forward carrier assembly with a reversible inter-axle differential for a tandem axle vehicle, a powertrain for a tandem axle vehicle, and a tandem axle vehicle
US6079535A (en) Transfer case with disconnectable transfer clutch
JP2011079421A (en) Driving force transmission device for four-wheel drive vehicle
US7611414B2 (en) Torque limiting clutches for power transfer units
JP2016075361A (en) Clutch mechanism for vehicle
JP5112890B2 (en) Driving force transmission system for four-wheel drive vehicles
JP6354203B2 (en) Transfer device for four-wheel drive vehicles
KR20160114731A (en) All-wheel drive with active dry disconnect system
CA2644587C (en) Transfer case with torque limiting clutch assembly
US20100192724A1 (en) Power transmission device with internal actuator
JP5869255B2 (en) Driving force connection / disconnection device
JP2012188000A (en) Driving force transmission device for four-wheel drive vehicle
JP2010058683A (en) Drive force transmission device for four-wheel drive vehicle
US8992365B2 (en) Mechanism for actuating a power transfer unit
KR100786533B1 (en) 4-wheel drive center axle disconnect system
US20050204838A1 (en) Multi-speed automatic layshaft transfer case
JP2010058684A (en) Drive force transmission device for four-wheel drive vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Effective date: 20120417

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120828

Free format text: JAPANESE INTERMEDIATE CODE: A02