JP2009292202A - Method for reducing frictional resistance force between ship body and water - Google Patents

Method for reducing frictional resistance force between ship body and water Download PDF

Info

Publication number
JP2009292202A
JP2009292202A JP2008145478A JP2008145478A JP2009292202A JP 2009292202 A JP2009292202 A JP 2009292202A JP 2008145478 A JP2008145478 A JP 2008145478A JP 2008145478 A JP2008145478 A JP 2008145478A JP 2009292202 A JP2009292202 A JP 2009292202A
Authority
JP
Japan
Prior art keywords
hull
gas
water
exhaust port
frictional resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008145478A
Other languages
Japanese (ja)
Inventor
Zuei-Ling Lin
瑞麟 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008145478A priority Critical patent/JP2009292202A/en
Publication of JP2009292202A publication Critical patent/JP2009292202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Exhaust Silencers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing a frictional resistance force between a ship body and water by discharging gas into the water. <P>SOLUTION: This method includes: a step a of arranging an exhaust port 40 used for discharging the gas at and below a water line WL positioned in the forward edge of the hull 30 of the ship body 20; a step b of discharging the gas from the exhaust port 40, making the gas adhered to the hull 30 and go up along an inclined wall, partially separating the contact between the hull 30 and the water, and lowering the average density of the water contacted with the hull 30; a step c of selecting a position for discharging the gas, making the discharged gas adhered to the surface of the hull 30 and floated on the surface of the water from a prescribed position along a prescribed line of flow; and a step d of making the discharged gas contact with a cushioning layer of a high pressure section and a low pressure section, lowering the pressure of the water to the hull 30 in the high pressure section, and reducing the sucking force of the water to the hull 30 in the low pressure section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、船体と水の間の摩擦抵抗力を減少させる方法に関し、特に水中に気体を排出することによって船体と水の間の摩擦抵抗力を減少させる方法に関する。   The present invention relates to a method for reducing the frictional resistance between the hull and water, and more particularly to a method for reducing the frictional resistance between the hull and water by discharging gas into the water.

一般の船体は、動力で動く船舶、軍艦、航空母艦、郵船、貨物船、タンカー、プレジャーボート、水上バイク、模型船、水上飛行機および、無動力の石油用ボーリングとバージなどを含む。   Typical hulls include powered ships, warships, aircraft carriers, mail ships, cargo ships, tankers, pleasure boats, water bikes, model ships, seaplanes and non-powered oil boring and barges.

それぞれの船体は、機能性が異なるため、形体の設計が異なる。軍艦の場合、高速度が求められるため、造形は細長い流線形に設計される一方、積載量および喫水量は小さくなる。商船の場合、大積載量および大喫水量が求められるため、造形は幅広形に設計される一方、速度は遅くなる。なぜならば、水(海水および淡水を含む。以下、それらを総称して“水”という)の抵抗力が船舶の航行を阻害する主因となるからである。   Each hull is different in functionality, so the shape design is different. In the case of warships, high speed is required, so the modeling is designed in a slender streamline, while the load and draft are small. In the case of a merchant ship, since a large loading capacity and a large draft amount are required, the modeling is designed to be wide and the speed is slow. This is because the resistance of water (including seawater and fresh water, hereinafter collectively referred to as “water”) becomes the main factor that hinders the navigation of ships.

図1に示すのは船舶900の斜視図である。図2と図3はその側面図および平面図である。このような商用の船舶は、長さL´が数百メートル(m)で、幅B´が約60から70メートル(m)である。喫水の深さD´は、荷物を満載するか否かに関係し、一般的に15mから25mである。このような大型の商用の船舶は、水との接触面積が非常に大きい。流体力学(Fluid Mechanics)原理による摩擦抵抗力の数式は、次の通りである。
D=CDA1/2ρU2
D(drag coefficient):抵抗係数
A:流体との接触総面積
ρ:流体密度
U:航速(m/s)
FIG. 1 is a perspective view of a ship 900. 2 and 3 are a side view and a plan view, respectively. Such commercial ships have a length L ′ of several hundred meters (m) and a width B ′ of about 60 to 70 meters (m). The draft D 'is related to whether or not the baggage is fully loaded, and is generally 15 to 25 m. Such large commercial ships have a very large contact area with water. The formula of the frictional resistance force based on the fluid mechanics principle is as follows.
F D = C D A1 / 2ρU 2
C D (drag coefficient): Resistance coefficient A: Total contact area with fluid ρ: Fluid density U: Navigation speed (m / s)

船舶900の船殻930を海水に接触する平板と見なし、その長さL´が360m、幅B´が70m、喫水の深さD´が25mであり、かつ13ノットの速度で10℃の海水を航行する場合、船殻930の表面摩擦抵抗力はFD=CDA1/2ρU2数式によって算出することが可能である。またPurdue University(バーデュ大学)Robert W.FOX教授らが著作した非特許文献1によると、上述したL´、B´、D´およびUなどのデータによってFD数値を算出している。 The hull 930 of the ship 900 is regarded as a flat plate in contact with seawater, and its length L ′ is 360 m, width B ′ is 70 m, draft depth D ′ is 25 m, and seawater at 10 ° C. at a speed of 13 knots. When sailing, the surface frictional resistance of the hull 930 can be calculated by the formula F D = C D A1 / 2ρU 2 . Also, according to Non-Patent Document 1 Purdue University (Badeyu University) Robert W.FOX Prof. authored, L'described above, B', and calculates the F D numerical by data such D'and U.

航速が13ノット(一時間に一浬進む速さ)である場合、
航速U=13nm/hr×6076ft/nm×0.305m/ft×hr/3600s=6.69m/s。
また、10℃海水を航行する場合、
動粘度ν=1.37×10-62/s。
If the navigation speed is 13 knots
Navigation speed U = 13 nm / hr × 6076 ft / nm × 0.305 m / ft × hr / 3600 s = 6.69 m / s.
When navigating at 10 ° C seawater,
Kinematic viscosity ν = 1.37 × 10 −6 m 2 / s.

また、文献の付録に記載されたデータと数式によってCD、ρを計算すると、
D=0.00147 ρ=1020kg/m3
また、海水に接触する船殻930の長さL´と、海水に接触する船殻930の幅(W´=B´+2D´)によって海水との接触総面積Aを計算すると、
A=(360m)×(70+50)m=43200m2
In addition, when C D and ρ are calculated from the data and mathematical formulas described in the appendix of the literature,
C D = 0.00147 ρ = 1020 kg / m 3
Moreover, when the total contact area A with seawater is calculated by the length L ′ of the hull 930 that contacts seawater and the width (W ′ = B ′ + 2D ′) of the hull 930 that contacts seawater,
A = (360 m) × (70 + 50) m = 43200 m 2

上述した数式によって算出される数値は次の通りである。
D=CDA1/2ρU2
=0.00147×43200m2×1/2×1020kg/m3×(6.69)22/s2×N・s2/kg・m
D=1.45MN
The numerical values calculated by the above formula are as follows.
F D = C D A1 / 2ρU 2
= 0.00147 × 43200m 2 × 1/ 2 × 1020kg / m 3 × (6.69) 2 m 2 / s 2 × N · s 2 / kg · m
F D = 1.45MN

対応動力は次の通りである。
P=FDU=1.45×106N×6.69m/s×W・s/N・m
P=9.70MW ( 約13000馬力)
このデータにより、船舶900は表面摩擦抵抗力を克服するために非常に大きい動力を要することが証明された。
The corresponding power is as follows.
P = F D U = 1.45 × 10 6 N × 6.69 m / s × W · s / N · m
P = 9.70 MW (about 13,000 horsepower)
This data proved that the vessel 900 requires very large power to overcome the surface frictional resistance.

上述した例から次のことが判明した。陸上を走行する場合、抵抗力は空気、タイヤと路面の間の摩擦力によって生じ、水上を走行する場合、抵抗力は空気の抵抗力と、船殻と水の間の摩擦抵抗力とによって生じる。動力が同じである場合、陸上を走行する速度が水上を走行する速度より速い。温度が摂氏20℃で、気圧が一大気圧である場合、水の密度は1となり、空気の約800倍である。   From the above example, the following has been found. When traveling on land, the resistance force is generated by the friction force between the air and the tire and the road surface. When traveling on water, the resistance force is generated by the resistance force of the air and the friction resistance force between the hull and the water. . When the power is the same, the speed of traveling on land is faster than the speed of traveling on water. When the temperature is 20 degrees Celsius and the atmospheric pressure is one atmospheric pressure, the density of water is 1, which is about 800 times that of air.

従って、多くの研究者は船殻と水の間の摩擦抵抗力FDを減少させるための方法を積極的に研究している。従来の方法は、ノーズコーンおよび水中翼を装着することによって船殻と水の間の摩擦抵抗力を減少させる。ノーズコーンは船首のさざなみおよび波反射による抵抗力を減少させることが可能である。水中翼船は水中翼によって船体を高く支持し、船体と水の間の接触面積を減少させることが可能であるが、小型船舶にしか適用できない。またホバークラフトの場合、船体を支持するには極めて大きい気体を要するため、小型船舶にしか適用できない。それは水の密度ρを小さくすることができず、水と船殻の間の摩擦抵抗力、高圧区間の圧力と低圧区間の吸引力が解決されず依然として存在しているからである。 Therefore, many researchers are actively studying a method for reducing the frictional resistance force F D between the hull and water. Conventional methods reduce the frictional resistance between the hull and water by mounting a nose cone and hydrofoil. The nose cone can reduce resistance due to bow ripples and wave reflections. Hydrofoil ships can support the hull with the hydrofoil and reduce the contact area between the hull and water, but can only be applied to small ships. In the case of hovercraft, since a very large gas is required to support the hull, it can be applied only to small ships. This is because the density ρ of water cannot be reduced, and the frictional resistance force between the water and the hull, the pressure in the high pressure section and the suction force in the low pressure section are still unsolved.

図3に示すように、船殻930は、船首931の前端a´からb´、から胴部を経由し、船尾c´点までの部位と水との間に一層の薄い境界層(Boundary Layer)があるため、境界層に摩擦力が生じると抵抗力を生じさせ、物体が図3のc´点前の破線に示す航跡(wake)932を生じる。そのうちc´点は分離点(Separation Point)で、物体から離れた流体粒子に軌跡を生じさせ、かつc´点の内側に尾流933を生成することが可能である。つまり、a´点からb´点までの流線は高圧区間となり、b´点以降の小区間は乱流または低圧区間を生成し、c´点以降の尾流933は低圧区間を生成する。高圧区間の水流は船殻930に対し圧力を生成し、低圧区間の水流は船殻930に対し吸引力を生成する。「圧力」または「吸引力」などのいずれでも、船殻に前進を阻止する抵抗力をきたすため、克服しないと船体の効率を向上させることができない。   As shown in FIG. 3, the hull 930 has a thinner boundary layer (Boundary Layer) between the front end a ′ to b ′ of the bow 931, the body from the front end a ′ to b ′, and the water to the stern c ′ point. Therefore, when a frictional force is generated in the boundary layer, a resistance force is generated, and the object generates a wake 932 shown by a broken line before the point c ′ in FIG. Among them, the c ′ point is a separation point, and a trajectory is generated in the fluid particles away from the object, and a wake 933 can be generated inside the c ′ point. That is, the streamline from the point a ′ to the point b ′ is a high pressure section, the small section after the point b ′ generates a turbulent flow or a low pressure section, and the tail stream 933 after the point c ′ generates a low pressure section. The water flow in the high pressure section generates pressure on the hull 930, and the water flow in the low pressure section generates suction force on the hull 930. Either “pressure” or “suction force” causes a resistance force to prevent the hull from moving forward, and the hull efficiency cannot be improved unless it is overcome.

摩擦抵抗力を減少させる別の従来の技術は、コンピューターと水工試験によって船型を設計し、水波に有効に干渉することであるが、速度が限られた範囲内でなければ効果がない。それは、船型は異なる速度に伴い形体を変動させることによって水波に有効に干渉することはできないからである。従って効果は限られる。
上述した通り、従来の造船技術は水の抵抗力を克服しなくてはならないという問題を有する。
Another conventional technique for reducing frictional resistance is to design the hull form by computer and water engineering tests, effectively interfering with water waves, but it is not effective unless the speed is within a limited range. This is because the hull form cannot effectively interfere with water waves by varying its shape with different speeds. Therefore, the effect is limited.
As mentioned above, conventional shipbuilding techniques have the problem of having to overcome water resistance.

Purdue University(バーデュ大学)Robert W.FOX他。“INTRODUCTION TO FLUID MECHANICS (Sixth Edition)”Purdue University Robert W.FOX and others. “INTRODUCTION TO FLUID MECHANICS (Sixth Edition)”

本発明の主な目的は、水中に気体を排出することによって船体と水の間の摩擦抵抗力を減少させる方法を提供することである。
本発明のもう一つの目的は、気体が船底から排出され、上昇する際に圧縮可能な気体の体積は圧力に反比例するという原理に基づいて水圧を漸減させる一方、気体の体積を膨張させることである。
The main object of the present invention is to provide a method of reducing the frictional resistance between the hull and water by discharging gas into the water.
Another object of the present invention is to expand the gas volume while gradually reducing the water pressure based on the principle that the volume of compressible gas is inversely proportional to the pressure when the gas is exhausted from the ship bottom and rises. is there.

本発明のまたもう一つの目的は、気体が船底から排出され、上昇する際に船殻は曲線が大きくなり、排出された気体は船底から水面に浮上する行程が長くなるという現象によって抵抗力を降下させる効率を向上させることである。
本発明のまたもう一つの目的は、船底または船首から気体が排出され、船殻に付着させて船殻の傾斜壁に沿って上昇する際、上昇した気体で船殻を拭き掃除することを可能にする機能によって、海中生物の付着や繁殖を減少させ、メンテナンスの期限を延長することである。
Another object of the present invention is that the gas is exhausted from the bottom of the ship, and when rising, the hull has a large curve, and the exhausted gas has a resistance to the resistance by the phenomenon that the process of rising from the bottom of the ship to the water surface becomes longer. It is to improve the efficiency of descending.
Yet another object of the present invention is to allow the gas to be wiped and cleaned with the raised gas when it is exhausted from the bottom or bow and attached to the hull and rises along the inclined wall of the hull. The function to reduce the adherence and breeding of marine organisms and extend the maintenance deadline.

(効果)
本発明は、特に船体の全長、航速および喫水の深さなどのパラメーターに基づいて船体の前縁部の喫水線(Water Level)の下方の所定の位置に気体を排出し、有効な干渉を生成することにより、船体に接触する水面の平均密度ρを小さくし、かつ排出された気体によって高圧区間において船殻に対する水の圧力を降下させ、低圧区間において船殻に対する水の吸引力を減少させ、二重の効果を果たすことを可能にする方法である。
(effect)
The present invention generates effective interference by discharging gas to a predetermined position below the water line at the front edge of the hull based on parameters such as the overall length of the hull, navigation speed and draft depth. This reduces the average density ρ of the water surface in contact with the hull, reduces the water pressure on the hull in the high-pressure section by the discharged gas, and reduces the water suction force on the hull in the low-pressure section. It is a method that makes it possible to achieve a heavy effect.

本発明の原理は、気体が水底から排出されると垂直に上昇する特性によって船底から気体を排出し、気体を船殻に付着させて船殻の傾斜壁に沿って上昇させ、上昇した気体によって船殻と水との接触を部分的に隔離し、船殻に接触する水の平均密度を降下させること、および気体が水底から排出されると垂直に上昇する特性と気体の圧縮性(compressible)とによって船体に対する水の高圧区間と低圧区間において気体を排出し、緩衝層を生成し、かつ排出された気体によって高圧区間において船殻に対する水の圧力を降下させ、低圧区間において船殻に対する水の吸引力を減少させことである。これにより、航行際の圧力および吸引力などの二重の抵抗力を降下させる方法を達成することが可能である。   The principle of the present invention is that gas is discharged from the bottom of the ship by the property of rising vertically when the gas is discharged from the bottom of the water, and the gas is attached to the hull to rise along the inclined wall of the hull. Partially isolates the hull-water contact, lowers the average density of water in contact with the hull, and rises vertically when the gas is discharged from the bottom and the gas compressible The gas is discharged in the high-pressure section and the low-pressure section of the water to the hull, a buffer layer is formed, and the pressure of the water on the hull is lowered in the high-pressure section by the discharged gas, and the water on the hull is reduced in the low-pressure section. It is to reduce the suction force. As a result, it is possible to achieve a method of reducing double resistance forces such as the pressure and the suction force during navigation.

また、本発明は船体の造形を変更することを必要とせず、船首の所定の位置に気体排出に用いる排気口を配置し、かつ航速と喫水の深さなどのパラメーターに合わせて排出位置を選択することにより、排出された気体を船殻の表面に付着させ、所定の流線(Flow line)に沿って所定の位置から水面に浮上させるため、船殻の表面抵抗力を降下させる効率を最良に達成することが可能である。
さらに、本発明は、(気泡が30m深度から排出され、水面に浮上すると4倍膨張する特性によって)喫水が深い大型船舶に対し気体排出を行う場合、排出された気体は倍数で摩擦抵抗力を降下させる効果を得ることが可能である。
In addition, the present invention does not require a change in the shape of the hull, the exhaust port used for gas discharge is arranged at a predetermined position on the bow, and the discharge position is selected in accordance with parameters such as navigation speed and depth of draft In this way, the discharged gas adheres to the surface of the hull and rises from the predetermined position along the predetermined flow line to the surface of the water, so the efficiency of reducing the surface resistance of the hull is the best. Can be achieved.
Furthermore, the present invention (when air bubbles are discharged from 30m depth and expands four times when they rise to the surface of the water), when discharging gas to large ships with deep drafts, the discharged gas has a multiple of friction resistance. It is possible to obtain the effect of lowering.

上述の目的を達成するために、本発明による船体と水の間の摩擦抵抗力を減少させる方法は、次のステップを含む。
ステップaは、船体の船殻の前縁部に位置する喫水線およびその近くの下方の一定の位置に気体排出に用いる排気口を配置する。
ステップbは、気体が水底から排出されると垂直に上昇するという自然現象に基づいて水底から気体を排出し、気体を船殻に付着させて傾斜壁に沿って上昇させることにより、船殻と水との接触を部分的に隔離し、船殻に接触する水の平均密度を降下させる。
To achieve the above object, the method for reducing the frictional resistance between the hull and water according to the present invention includes the following steps.
In step a, the draft line located at the front edge of the hull of the hull and an exhaust port used for gas discharge are arranged at a certain lower position near the waterline.
Step b discharges the gas from the bottom of the water based on the natural phenomenon that the gas rises vertically when the gas is discharged from the bottom, and attaches the gas to the hull and raises it along the inclined wall. Partially isolates contact with water and lowers the average density of water in contact with the hull.

ステップcは、船殻の形体、航速、喫水の深さおよび水温などのパラメーターに合わせて気体排出位置を選択することにより、排出された気体を船殻の表面に付着させ、所定の流線に沿って所定の位置から水面に浮上させる。
ステップdは、気体の圧縮性によって排出された気体を高圧区間と低圧区間の緩衝層にあてて、高圧区間において船殻に対する水の圧力を降下させ、低圧区間において船殻に対する水の吸引力を減少させる。
これにより、航行の際に生じる圧力および吸引力などの二重の抵抗力を同時に降下させる。かつ排出された気体はステップbに述べられた特性を有する。従って、同じ動力で航速をより速くし、燃料費を大量削減し、二酸化炭素の減量を達成することが可能である。
Step c attaches the exhausted gas to the surface of the hull by selecting the gas discharge position according to parameters such as the shape of the hull, navigation speed, draft depth and water temperature. Along the surface of the water.
Step d applies the gas discharged by the compressibility of the gas to the buffer layer in the high-pressure section and the low-pressure section, reduces the water pressure on the hull in the high-pressure section, and reduces the water suction force on the hull in the low-pressure section. Decrease.
As a result, double resistance forces such as pressure and suction force generated during navigation are simultaneously lowered. And the exhausted gas has the characteristics described in step b. Therefore, it is possible to increase the navigation speed with the same power, reduce the fuel cost by a large amount, and achieve the reduction of carbon dioxide.

以下、本発明の実施形態を図面に基づいて説明する。
(一実施形態)
本発明の一実施形態による船体と水の間の摩擦抵抗力を減少させる方法は、ステップaとして、図4に示すように船体の船殻30の前縁部に位置する喫水線(Water Level,WL)およびその近くの下方に気体排出に用いる排気口40を配置する。本実施形態では、船体は船舶20であるが、それに限らず軍用、商用、レジャーまたはスポーツなどの任意の造形の船体または積載可能な物体である。船殻30の長さはLで表示され、幅はBで表示され、喫水の深さはDで表示され、航速はUで表示される。
本実施形態では、図5Aと図5Bに示すように、船殻30の船首31から後方に延伸する中央稜線301の互いに隣り合って対応する両側面に気体排出に用いる排気口40を配置する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(One embodiment)
The method for reducing the frictional resistance between the hull and water according to an embodiment of the present invention includes, as step a, a water line (Water Level, WL) located at the front edge of the hull hull 30 as shown in FIG. ) And an exhaust port 40 used for gas discharge is disposed below in the vicinity thereof. In this embodiment, the hull is the ship 20, but is not limited to this, and is a hull or a loadable object of any shape such as military, commercial, leisure or sports. The length of the hull 30 is indicated by L, the width is indicated by B, the depth of the draft is indicated by D, and the navigation speed is indicated by U.
In the present embodiment, as shown in FIGS. 5A and 5B, exhaust ports 40 used for gas discharge are disposed on both side surfaces of the central ridgeline 301 that are adjacent to and correspond to each other on the center ridgeline 301 that extends backward from the bow 31 of the hull 30.

船殻30の中央稜線の近くの両側上に排気口40を配置した本実施形態の断面図を図8に示す。以下、本実施形態をもとに、排気口40を説明する。
本実施形態における排気口40は、船殻30の表面に固着される管体から構成する。管体は数多くの気孔を有し、気孔は円形または細長い形を示す。船殻30の外側に設けられた管体から構成される排気口40の長所は、船殻30の変更を必要とせず、出荷後に排気口40を装着できることである。また、出荷前に船殻30の表面に数多くの排気口40を配置することもできる。
FIG. 8 shows a cross-sectional view of the present embodiment in which the exhaust ports 40 are arranged on both sides near the central ridge line of the hull 30. Hereinafter, the exhaust port 40 will be described based on this embodiment.
In the present embodiment, the exhaust port 40 is constituted by a tubular body fixed to the surface of the hull 30. The tube has a number of pores, which exhibit a circular or elongated shape. The advantage of the exhaust port 40 composed of a tube provided outside the hull 30 is that it is not necessary to change the hull 30 and the exhaust port 40 can be mounted after shipment. In addition, many exhaust ports 40 can be arranged on the surface of the hull 30 before shipment.

次に、ステップbとして、排気口40を使用して船殻30の喫水線WLの下方に気体を排出する。
図6に示すのは本実施形態における排気口40を使用するときの状態である。船殻30の内部に設置される気体加圧供給室50は、管線51によって空気またはエンジン室に生じる排気ガスを排気口40に送る。本実施形態は、排気口40を数多くの区間に形成し、気体加圧供給室50の管線51によって数多くの区間の排気口40のうちの一つを選んで気体を排出する。
Next, as step b, the gas is discharged below the draft line WL of the hull 30 using the exhaust port 40.
FIG. 6 shows a state when the exhaust port 40 in the present embodiment is used. The gas pressurization supply chamber 50 installed inside the hull 30 sends the exhaust gas generated in the air or the engine chamber by the pipe line 51 to the exhaust port 40. In the present embodiment, the exhaust port 40 is formed in many sections, and one of the exhaust ports 40 in the many sections is selected by the pipe line 51 of the gas pressurizing supply chamber 50 to discharge the gas.

図7に示すように、船殻30の内部に設置される電力供給室60は、電線61によって電源を排気口40の周辺の加熱装置41に出力し、水を気体に変化させて排出する。水の気化によって形成された気体は気泡を生成し、船殻30の表面に付着し流線に沿って上昇する。本実施形態は、排気口40を数多くの区間に形成し、電力供給室60によって数多くの区間の開閉(ON/OFF)を制御する。   As shown in FIG. 7, the power supply chamber 60 installed inside the hull 30 outputs power by a wire 61 to the heating device 41 around the exhaust port 40 to change the water into a gas and discharge it. The gas formed by the vaporization of water generates bubbles, adheres to the surface of the hull 30 and rises along the streamline. In the present embodiment, the exhaust port 40 is formed in many sections, and the power supply chamber 60 controls opening / closing (ON / OFF) of many sections.

次に、ステップcとして需要に応じて排気口40を選んで気体を排出する。
図8に示すように、船殻30が前進する際、前述したとおり、船首31は水に接触するa点からb点までの部分が高圧区間であり、特にb点の位置に乱流および小区間の低圧区間を生成するため、船殻30がある一定の航速で走行するとb点に極めて大きい表面摩擦抵抗力を生じさせる。このとき、本実施形態は喫水線WLの位置に近い排気口40を選んで気体70を大量に排出する。
次に、ステップdとして、排出された気体を高圧区間と低圧区間の緩衝層にあてる。排出された気体70は、喫水線WLに浮上するとb点に位置するため、高圧区間に生じる水の圧力だけでなく低圧区間に生じる水の吸引力を降下させ、同時に二種の抵抗力を同時に解消することができる。
Next, as step c, the exhaust port 40 is selected according to demand and the gas is discharged.
As shown in FIG. 8, when the hull 30 moves forward, as described above, the bow 31 is a high pressure section from the point a to the point b in contact with water. In order to generate a low-pressure section, when the hull 30 travels at a certain speed, a very large surface friction resistance is generated at point b. At this time, this embodiment selects the exhaust port 40 close to the position of the waterline WL and discharges a large amount of gas 70.
Next, as step d, the discharged gas is applied to the buffer layer in the high pressure section and the low pressure section. Since the exhausted gas 70 floats on the water line WL and is located at the point b, not only the pressure of the water generated in the high pressure section but also the suction force of the water generated in the low pressure section is reduced, and at the same time, the two types of resistance force are eliminated. can do.

本実施形態において、上述した気体の排出に用いる排気口40の状態を図9から図12に示す。
船殻30が静止状態になり、航速Uが0であるとき、排気口40から排出される気体70は、図9に示すように船殻30の表面に付着して船底の殻面に沿って上昇する。
In this embodiment, the state of the exhaust port 40 used for the gas discharge described above is shown in FIGS.
When the hull 30 is stationary and the navigation speed U is 0, the gas 70 discharged from the exhaust port 40 adheres to the surface of the hull 30 as shown in FIG. To rise.

図10に示すのは、船殻30の長さが300m、喫水が15m、航速が5ノットであるときの状態である。気体は水中から上昇する速度が18m/minである(気体が水深15mから排出される際、気体が船殻の弧線径路に沿った行程は18mである)ため、船首の喫水線WLより15m下方から気体を排出すると、上昇した気体70は図10に示す流線上の船首から150m離れるwのあたりの水面に浮上する。   FIG. 10 shows a state where the length of the hull 30 is 300 m, the draft is 15 m, and the navigation speed is 5 knots. Since the speed of the gas rising from the water is 18 m / min (when the gas is discharged from a depth of 15 m, the gas travels along the arc line of the hull is 18 m). When the gas is discharged, the raised gas 70 floats on the water surface around w, which is 150 m away from the bow on the streamline shown in FIG.

図11に示すのは、船殻30の長さが300m、喫水が15m、航速が10ノット(300m/min)である時の状態である。気体は水中から上昇する速度が18m/minである(気体が15m水深から排出される際、気体が船殻の弧線径路に沿った行程は18mである)ため、船首の下方の喫水線WLより15m下方から気体を排出すると、気体70は船尾cのあたりの水面に浮上する。   FIG. 11 shows a state where the length of the hull 30 is 300 m, the draft is 15 m, and the navigation speed is 10 knots (300 m / min). Since the speed of the gas rising from the water is 18 m / min (when the gas is discharged from a depth of 15 m, the gas travels along the arc line of the hull is 18 m), and therefore, 15 m from the draft line WL below the bow. When the gas is discharged from below, the gas 70 rises to the water surface around the stern c.

図12に示すのは、船殻30の長さが300m、喫水が10m、航速が15ノット(460m/min)である時の状態である。本実施形態は、航速が15ノットであり、前述した実施形態より速いため、船首の下方の喫水線より約10m下方から気体を排出すれば、気体70は船尾cのあたりの水面に浮上する。   FIG. 12 shows a state when the length of the hull 30 is 300 m, the draft is 10 m, and the navigation speed is 15 knots (460 m / min). Since the present embodiment has a navigation speed of 15 knots and is faster than the above-described embodiment, if the gas is discharged from about 10 m below the draft line below the bow, the gas 70 will rise to the water surface around the stern c.

以上の四つの状態において、気体を排出するとき、最適な気体排出位置に適量の気体を排出し、気体の流線を外殻の表面に付着および上昇させ、作用区域を最良にするために、船体の長さL、喫水の深さDおよび航速Uなどのパラメーターだけでなく当時の水温を考慮しなければならないことを説明した。つまり、高圧区間において船殻30に対する水の圧力を降下させ、低圧区間において船殻30に対する水の吸引力を降下させることにより航行際の圧力と吸引力などの二種の抵抗力を同時に降下させ、効率を向上させることができる。   In the above four states, when discharging the gas, in order to discharge the appropriate amount of gas to the optimal gas discharge position, attach and raise the gas streamline on the surface of the outer shell, and to optimize the working area, He explained that not only parameters such as the length of the hull L, the draft depth D, and the navigation speed U, but also the water temperature at that time must be taken into account. That is, by reducing the water pressure on the hull 30 in the high pressure section and lowering the water suction force on the hull 30 in the low pressure section, the two kinds of resistance forces such as the navigation pressure and the suction force are simultaneously decreased. , Can improve the efficiency.

(他の実施形態)
また、図13Aと図13Bに示すように、船殻35の船首36から後方に延伸する突出縁部302の中央底面に排気口45を配置することもできる。これにより、排気口45を真中に位置付け、両側から気体70を排出することができる。
(Other embodiments)
Further, as shown in FIGS. 13A and 13B, the exhaust port 45 can be disposed on the center bottom surface of the protruding edge 302 extending backward from the bow 36 of the hull 35. Thereby, the exhaust port 45 can be positioned in the middle, and the gas 70 can be discharged from both sides.

また特殊な船殻37、例えば図14Aと図14Bに示す平底船の場合、船首38の前縁部に沿って排気口47を配置するほかに、さらに平底面303の前側に一列の横方向の排気口47を配置することができる。これにより、後に気体70を排出し、平底面302全体と水との接触面に緩衝層を生成し、抵抗力を降下させることができる。   In addition, in the case of a special hull 37, for example, a flat bottom ship shown in FIGS. An exhaust port 47 can be arranged. Thereby, the gas 70 is discharged | emitted later, a buffer layer is produced | generated in the contact surface of the whole flat bottom face 302 and water, and resistance can be dropped.

本発明による船体と水の間の摩擦抵抗力を減少させる方法は、排気口の配置を船殻の形体によって選択可能であり、かつ位置が喫水線の下方でさえあればよい。
上述した通り、本発明は前述した排気口によって船底から気体を排出し、船殻と水との間の摩擦抵抗力を降下させるため、同じ馬力で航行する際の航速を増大させることが可能である。言い換えれば、本発明は比較的大きい馬力または推進力を要することなく、同じ所定の航速に達するため、燃料費と二酸化炭素の排気量を大量削減し、エネルギー不足の時代において経済効率と環境保護などを積極的に果たすことができる。
The method for reducing the frictional resistance between the hull and the water according to the invention requires that the arrangement of the outlets can be selected by the shape of the hull and that the position is only below the waterline.
As described above, the present invention exhausts gas from the bottom of the ship through the exhaust port described above, and lowers the frictional resistance between the hull and water, so it is possible to increase the navigation speed when sailing with the same horsepower. is there. In other words, the present invention achieves the same predetermined speed without requiring a relatively large horsepower or propulsive force, thus reducing the fuel cost and the amount of carbon dioxide emissions by a large amount, economic efficiency and environmental protection in an era of energy shortage, etc. Can be fulfilled actively.

従来の船舶の斜視図。The perspective view of the conventional ship. 従来の船舶の側面図。The side view of the conventional ship. 従来の船舶の平面図。The top view of the conventional ship. 本発明の一実施形態における船殻の側面図。The side view of the hull in one embodiment of the present invention. 本発明の一実施形態を説明する模式図。The schematic diagram explaining one Embodiment of this invention. 本発明の一実施形態を説明する模式図。The schematic diagram explaining one Embodiment of this invention. 本発明の一実施形態を説明する模式図。The schematic diagram explaining one Embodiment of this invention. 本発明の一実施形態を説明する模式図。The schematic diagram explaining one Embodiment of this invention. 本発明の一実施形態において、気体を排出する状態を示す模式図。The schematic diagram which shows the state which discharges | emits gas in one Embodiment of this invention. 本発明の一実施形態において、船殻が静止しているときの状態を示す説明図。Explanatory drawing which shows a state when a hull is stationary in one Embodiment of this invention. 本発明の一実施形態において、船殻の航速が5ノットの時の状態を示す説明図。In one Embodiment of this invention, explanatory drawing which shows a state when the navigation speed of a hull is 5 knots. 本発明の一実施形態において、船殻の航速が10ノットの時の状態を示す説明図。In one Embodiment of this invention, explanatory drawing which shows a state when the navigation speed of a hull is 10 knots. 本発明の一実施形態において、船殻の航速が15ノットの時の状態を示す説明図。In one Embodiment of this invention, explanatory drawing which shows a state when the navigation speed of a hull is 15 knots. 本発明の他の実施形態において、排気口が船殻の突出縁部の中央に配置された状態を示す模式図。The schematic diagram which shows the state by which the exhaust port was arrange | positioned in the center of the protrusion edge part of a hull in other embodiment of this invention. 本発明の他の実施形態において、排気口が船殻の突出縁部の中央に配置された状態を示す模式図。The schematic diagram which shows the state by which the exhaust port was arrange | positioned in the center of the protrusion edge part of a hull in other embodiment of this invention. 本発明の他の実施形態において、排気口が平底船に配置された状態を示す模式図。The schematic diagram which shows the state by which the exhaust port was arrange | positioned in the flat bottom ship in other embodiment of this invention. 本発明の他の実施形態において、排気口が平底船に配置された状態を示す模式図。The schematic diagram which shows the state by which the exhaust port was arrange | positioned in the flat bottom ship in other embodiment of this invention.

符号の説明Explanation of symbols

20:船舶、30:船殻、31:船首、301:中央稜線、302:突出縁部、303:平底面、40:排気口、41:加熱装置、50:気体加圧供給室、51:管線、60:電力供給室、61:電線、70:気体   20: ship, 30: hull, 31: bow, 301: center ridgeline, 302: protruding edge, 303: flat bottom surface, 40: exhaust port, 41: heating device, 50: gas pressurization supply chamber, 51: pipeline , 60: power supply room, 61: electric wire, 70: gas

Claims (6)

船体の船殻の前縁部に位置する喫水線およびその下方に気体排出に用いる排気口を配置するステップaと、
排気口から気体を排出し、気体を船殻に付着させて傾斜壁に沿って上昇させ、船殻と水との接触を部分的に隔離し、船殻に接触する水の平均密度を降下させるステップbと、
気体を排出する位置を選択し、排出された気体を船殻の表面に付着させ、所定の流線に沿って所定の位置から水面に浮上させるステップcと、
排出された気体を高圧区間と低圧区間の緩衝層にあてて、高圧区間において船殻に対する水の圧力を降下させ、低圧区間において船殻に対する水の吸引力を減少させるステップdと、
を含むことを特徴とする船体と水の間の摩擦抵抗力を減少させる方法。
A step a in which a water line located at the front edge of the hull of the hull and an exhaust port used for gas discharge are disposed below the water line;
Exhaust the gas from the exhaust port, attach the gas to the hull and raise it along the inclined wall, partially isolate the contact between the hull and the water, and lower the average density of water in contact with the hull Step b;
Selecting a position for discharging the gas, attaching the discharged gas to the surface of the hull, and floating on the surface of the water from a predetermined position along a predetermined streamline; and
Applying the discharged gas to a buffer layer in a high-pressure section and a low-pressure section, reducing the water pressure on the hull in the high-pressure section, and reducing the water suction force on the hull in the low-pressure section;
A method for reducing frictional resistance between a hull and water characterized by comprising:
気体は、空気、エンジンの排気ガスまたは気化した気体のいずれか一つから構成されることを特徴とする請求項1に記載の船体と水の間の摩擦抵抗力を減少させる方法。   The method of reducing frictional resistance between a hull and water according to claim 1, wherein the gas is any one of air, engine exhaust gas, or vaporized gas. 気体とエンジンの排気ガスは、船殻の内部に装着される気体加圧供給室から管線によって排気口へ輸送されることを特徴とする請求項2に記載の船体と水の間の摩擦抵抗力を減少させる方法。   The frictional resistance between the hull and water according to claim 2, wherein the gas and the exhaust gas of the engine are transported to an exhaust port by a pipeline from a pressurized gas supply chamber mounted inside the hull. How to reduce. 排気口は、数多くの区間より形成され、それぞれの区間の開閉は気体加圧供給室によって制御されることを特徴とする請求項3に記載の船体と水の間の摩擦抵抗力を減少させる方法。   4. The method of reducing frictional resistance between a hull and water according to claim 3, wherein the exhaust port is formed of a number of sections, and the opening and closing of each section is controlled by a gas pressurizing supply chamber. . 気化した気体は、船殻の内部に設置される電力供給室が電線によって電源を排気口の周辺の加熱装置に出力し、水を気化させることによって形成された気体を含み、それぞれの区間の開閉は電力供給室によって制御されることを特徴とする請求項2に記載の船体と水の間の摩擦抵抗力を減少させる方法。   Vaporized gas includes gas formed by the power supply chamber installed inside the hull outputting power to the heating device around the exhaust port by means of electric wires and vaporizing water, and opening and closing each section 3. The method of reducing frictional resistance between a hull and water according to claim 2, wherein the power is controlled by a power supply chamber. 船体は、軍用、商用、レジャーまたはスポーツ用のいずれか一つであることを特徴とする請求項1に記載の船体と水の間の摩擦抵抗力を減少させる方法。   The method according to claim 1, wherein the hull is any one of military, commercial, leisure, and sports.
JP2008145478A 2008-06-03 2008-06-03 Method for reducing frictional resistance force between ship body and water Pending JP2009292202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145478A JP2009292202A (en) 2008-06-03 2008-06-03 Method for reducing frictional resistance force between ship body and water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145478A JP2009292202A (en) 2008-06-03 2008-06-03 Method for reducing frictional resistance force between ship body and water

Publications (1)

Publication Number Publication Date
JP2009292202A true JP2009292202A (en) 2009-12-17

Family

ID=41540822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145478A Pending JP2009292202A (en) 2008-06-03 2008-06-03 Method for reducing frictional resistance force between ship body and water

Country Status (1)

Country Link
JP (1) JP2009292202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199480A (en) * 2014-04-06 2015-11-12 一夫 有▲吉▼ Energy saving vessel whose speed is increased by reducing friction resistance of sea water
JP2016193642A (en) * 2015-03-31 2016-11-17 三菱重工業株式会社 Friction resistance reduction device of air lubrication type ship, and ship
CN115924049A (en) * 2023-03-15 2023-04-07 哈尔滨工程大学 Marine propulsion device based on thermal effect drag reduction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150198A (en) * 1974-08-08 1976-05-01 Hideo Suzuki * senkansoku no mizu no nenseiteiko o renzokushitekyokyusuru kukiryu de genshosuru hoho *
JPS5697192U (en) * 1979-12-24 1981-08-01
JPH11180380A (en) * 1997-12-19 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd Friction reduction ship and friction reducing method for hull
JP2003252284A (en) * 2002-03-05 2003-09-10 National Maritime Research Institute Hull resistance reduction device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150198A (en) * 1974-08-08 1976-05-01 Hideo Suzuki * senkansoku no mizu no nenseiteiko o renzokushitekyokyusuru kukiryu de genshosuru hoho *
JPS5697192U (en) * 1979-12-24 1981-08-01
JPH11180380A (en) * 1997-12-19 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd Friction reduction ship and friction reducing method for hull
JP2003252284A (en) * 2002-03-05 2003-09-10 National Maritime Research Institute Hull resistance reduction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199480A (en) * 2014-04-06 2015-11-12 一夫 有▲吉▼ Energy saving vessel whose speed is increased by reducing friction resistance of sea water
JP2016193642A (en) * 2015-03-31 2016-11-17 三菱重工業株式会社 Friction resistance reduction device of air lubrication type ship, and ship
CN115924049A (en) * 2023-03-15 2023-04-07 哈尔滨工程大学 Marine propulsion device based on thermal effect drag reduction

Similar Documents

Publication Publication Date Title
US8122840B2 (en) Transom stern hull form and appendages for improved hydrodynamics
US7874258B2 (en) Method of reducing frictional resistance between ship body and water by releasing gases in water
CN104080694B (en) There is around propeller the air cavity of staged stern shape and use the boats and ships of air lubrication mode
TW200303274A (en) Air cushion vessel
CN101891006B (en) High-speed rounded bilge type boat utilizing air cavity to reduce resistance
US20130255559A1 (en) Foil structure for providing buoyancy and lift
Uithof et al. An update on the development of the Hull Vane
CN101574996A (en) Method for reducing frictional resistance of ship body and water by using gas release in water
EP2123551A1 (en) Method of reducing frictional resistance between ship body and water by releasing gases in water
AU2003230973B2 (en) Air induction system for marine vessel
JP2009292202A (en) Method for reducing frictional resistance force between ship body and water
CN107787287A (en) It is provided with the ship of moon pool
KR101541574B1 (en) Hull form intended for vessels provided with an air cavity
US6058872A (en) Hybrid hull for high speed water transport
CA2592697C (en) Ship bow
CN109070973B (en) Large-scale displacement hull ship
US20150217844A1 (en) Hull configuration for submarines and vessel of the displacement type with multihull structure
US3108561A (en) Boat hull for planing craft
US6631689B2 (en) Recycled cushion, finned, and bustled air cushion enhanced ship
KR20090129796A (en) Method of reducing frictional resistance between ship and body and water by releasing gases in water
TWI374103B (en)
US6604484B2 (en) Ship supported by submerged structure
RU2631089C1 (en) Ship hull
US20150291257A1 (en) Planing hydrofoils for marine craft
KR102612234B1 (en) Hull type of planning vessel with Air Lubricating System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130424

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140221

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140317

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140502