JP2009290037A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2009290037A
JP2009290037A JP2008141852A JP2008141852A JP2009290037A JP 2009290037 A JP2009290037 A JP 2009290037A JP 2008141852 A JP2008141852 A JP 2008141852A JP 2008141852 A JP2008141852 A JP 2008141852A JP 2009290037 A JP2009290037 A JP 2009290037A
Authority
JP
Japan
Prior art keywords
solar cell
lens array
cell module
lens
conversion efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008141852A
Other languages
Japanese (ja)
Inventor
Michiyoshi Nagashima
道芳 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008141852A priority Critical patent/JP2009290037A/en
Publication of JP2009290037A publication Critical patent/JP2009290037A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a solar cell module having a high conversion efficiency that even a slanting light incident may be incident on a surface of a solar cell as vertically as possible, since if an angle of the light's incidence on the surface of the solar cell becomes greater, a reflection factor becomes greater to reduce the conversion efficiency. <P>SOLUTION: This concentrating solar cell module includes a first lens array 103 on one face of a transparent plate and a second lens array 104 on the other face of the transparent plate. An optical axis of each lens of the first lens array substantially coincides with an optical axis of each lens of the second lens array, and a solar cell 105 is provided coming into contact with a surface of the second lens array. Thus, the conversion efficiency rises irrespective of the angle of incidence and an incident location. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、変換効率を向上できる集光型太陽電池モジュールに関する。   The present invention relates to a concentrating solar cell module that can improve conversion efficiency.

太陽電池は、電卓、家庭の屋根、車、発電所などに広く利用されている。太陽電池の変換効率を高くするには、太陽電池表面における光の反射率を小さくし、多くの光を太陽電池に導く事が重要である。光が太陽電池表面に入射する角度が大きくなれば、反射率が大きくなり効率が低下する。斜めから入射する光も、太陽電池表面にできる限り垂直に近く入射する様に変換する事が望まれる。   Solar cells are widely used in calculators, home roofs, cars, power plants and the like. In order to increase the conversion efficiency of a solar cell, it is important to reduce the reflectance of light on the surface of the solar cell and guide a large amount of light to the solar cell. If the angle at which light is incident on the surface of the solar cell increases, the reflectance increases and the efficiency decreases. It is desirable to convert light incident from an angle so that it is incident as close to the solar cell surface as possible.

変換効率を改善するために、集光レンズを設けて効率を改善する太陽電池が提案されている(特許文献1および特許文献2を参照)。しかしながら、集光レンズだけでは、光の入射角度がある程度大きくなれば、太陽電池表面への入射角も大きくなり、反射率が大きくなる。   In order to improve the conversion efficiency, a solar cell is proposed in which a condenser lens is provided to improve the efficiency (see Patent Document 1 and Patent Document 2). However, with the condenser lens alone, if the incident angle of light increases to some extent, the incident angle to the surface of the solar cell also increases and the reflectance increases.

そこで、太陽電池表面の上に、図5に示す様な光学素子を設置して、変換効率をより改善するモジュールが提案されている(特許文献3を参照)。図5において、501は光学素子、502はその光軸、503および504は屈折面、505は太陽電池、506は被覆剤である。図5の光線Aの様に、斜めから入射した光は、屈折面503および504で屈折する事で、太陽電池505には小さい角度で入射する。従って、変換効率を高める事ができる。   Therefore, a module has been proposed in which an optical element as shown in FIG. 5 is installed on the surface of the solar cell to further improve the conversion efficiency (see Patent Document 3). In FIG. 5, 501 is an optical element, 502 is its optical axis, 503 and 504 are refractive surfaces, 505 is a solar cell, and 506 is a coating agent. Like the light ray A in FIG. 5, the light incident from an oblique direction is refracted by the refracting surfaces 503 and 504 so as to enter the solar cell 505 at a small angle. Therefore, the conversion efficiency can be increased.

しかしながら、図5の光線Bの様な入射光は、屈折面504への入射角が大きくなり透過率が低下する。また、入射角があまり大きくなれば(一般には45度程度)全反射により光が透過しない。すなわち、光が屈折面503に入射する位置によっては変換効率が低下する。屈折面504に反射防止膜を設けても、広い角度範囲で反射率を低下させるには限界がある。入射位置によらず変換効率の高い太陽電池モジュールが求められる。
特開平6−37344号公報 特開平8−330619号公報 特開2005−285948号公報
However, the incident light such as the light beam B in FIG. 5 has a large incident angle with respect to the refractive surface 504 and the transmittance decreases. Further, if the incident angle becomes too large (generally about 45 degrees), light is not transmitted by total reflection. That is, the conversion efficiency decreases depending on the position where the light enters the refractive surface 503. Even if an antireflection film is provided on the refracting surface 504, there is a limit in reducing the reflectance over a wide angle range. A solar cell module with high conversion efficiency is required regardless of the incident position.
JP-A-6-37344 JP-A-8-330619 JP 2005-285948 A

本発明は、前記従来の課題を解決するもので、入射角度にも入射位置にもよらず変換効率の高い太陽電池モジュールを提供する事を目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a solar cell module having high conversion efficiency regardless of an incident angle and an incident position.

本発明の太陽電池モジュールは、透明板の片面に第1レンズアレイを有し、前記透明板の他面に第2レンズアレイを有し、前記第1レンズアレイの各々のレンズの光軸と前記第2レンズアレイの各々のレンズの光軸が略一致し、前記第2レンズアレイの表面に接して太陽電池を設ける事を特徴とする。これにより、入射角度にも入射位置にもよらず変換効率の高い集光型太陽電池モジュールを提供できる。   The solar cell module of the present invention has a first lens array on one side of a transparent plate, a second lens array on the other side of the transparent plate, and the optical axis of each lens of the first lens array The optical axes of the lenses of the second lens array are substantially coincident, and a solar cell is provided in contact with the surface of the second lens array. Thereby, it is possible to provide a concentrating solar cell module with high conversion efficiency regardless of the incident angle and the incident position.

本発明の太陽電池モジュールは、第1レンズアレイに入射した光は、屈折して集光され、小さい角度で第2レンズ面に入射する。太陽電池は第2レンズアレイに接して形成されているので、入射角は小さく変換効率を高くする事ができる。   In the solar cell module of the present invention, the light incident on the first lens array is refracted and collected, and enters the second lens surface at a small angle. Since the solar cell is formed in contact with the second lens array, the incident angle is small and the conversion efficiency can be increased.

以下、本発明の実施形態について、図面を参照しながら説明する。
(実施形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)

図1は、本発明の実施形態1における太陽電池モジュールの断面図である。図1において、101は光学素子、102は光軸、103は第1レンズアレイ、104は第2レンズアレイである。第1レンズアレイ103の光軸と第2レンズアレイ104の光軸は略一致している。105は太陽電池であり、第2レンズアレイ表面104に接して設置されている。あるいは、表面104の上に直接に太陽電池が形成される。104の様な曲面にも薄膜太陽電池は形成する事ができる。   FIG. 1 is a cross-sectional view of a solar cell module according to Embodiment 1 of the present invention. In FIG. 1, 101 is an optical element, 102 is an optical axis, 103 is a first lens array, and 104 is a second lens array. The optical axis of the first lens array 103 and the optical axis of the second lens array 104 are substantially coincident. Reference numeral 105 denotes a solar cell, which is installed in contact with the second lens array surface 104. Alternatively, a solar cell is formed directly on the surface 104. Thin film solar cells can be formed on curved surfaces such as 104.

図1の光線AおよびBは、第1レンズ表面への入射位置が異なるが、共にレンズ表面103で屈折して、表面104に向かって集光される。表面104、すなわち、太陽電池表面もレンズ形状をしているので、光線AおよびBは小さい角度で太陽電池に入射する。従って、反射率が小さく変換効率を高くする事ができる。   Although the incident positions on the first lens surface are different, the light rays A and B in FIG. 1 are both refracted by the lens surface 103 and collected toward the surface 104. Since the surface 104, that is, the surface of the solar cell also has a lens shape, the light rays A and B are incident on the solar cell at a small angle. Therefore, the reflectance is small and the conversion efficiency can be increased.

第2レンズアレイと太陽電池の間に反射防止膜を設ける場合も、余り広い範囲の角度を考慮する必要がないので、膜設計や膜形成が比較的容易になる。   Also in the case of providing an antireflection film between the second lens array and the solar cell, it is not necessary to consider a very wide range of angles, so that film design and film formation are relatively easy.

図2は、本発明の実施形態1の太陽電池モジュールの斜視図である。第1レンズアレイも第2レンズアレイも単レンズのアレイである。この図2の構成では、東西南北のどの方向から入射する光に対しても変換効率を向上できる。
(実施形態2)
FIG. 2 is a perspective view of the solar cell module according to Embodiment 1 of the present invention. Both the first lens array and the second lens array are single lens arrays. In the configuration of FIG. 2, the conversion efficiency can be improved with respect to light incident from any direction of east, west, south, and north.
(Embodiment 2)

図3は、本発明の実施形態2の太陽電池モジュールの斜視図である。第1レンズアレイも第2レンズアレイもシリンドリカルレンズのアレイである。この図3の構成では、東西のどの方向から入射する光に対しても変換効率を向上できる。南北方向の入射光の変化には効果がないが、単純な平面太陽電池よりは変換効率を向上できる。
(実施形態3)
FIG. 3 is a perspective view of the solar cell module according to Embodiment 2 of the present invention. Both the first lens array and the second lens array are arrays of cylindrical lenses. In the configuration of FIG. 3, the conversion efficiency can be improved with respect to light incident from any direction of east and west. Although there is no effect on the change of incident light in the north-south direction, the conversion efficiency can be improved as compared with a simple planar solar cell.
(Embodiment 3)

従来の図5と同様に、第1レンズアレイ表面に被覆剤を設ける事もできる。図4に、実施形態3の太陽電池モジュールの断面図を示す。図4において、図1と同じ構成要素には同じ符号を付け説明を省略する。106は被覆剤である。光学素子101がポリカーボネートでできていれば屈折率は約1.58である。その場合は被覆剤にはPMMAなどを用いる事ができ、屈折率は約1.5である。図4の光線AおよびBに示す様に、図1と同様に太陽電池表面への入射角を小さくして、変換効率を向上できる。   Similarly to the conventional FIG. 5, a coating agent can be provided on the surface of the first lens array. In FIG. 4, sectional drawing of the solar cell module of Embodiment 3 is shown. In FIG. 4, the same components as those in FIG. 106 is a coating agent. If the optical element 101 is made of polycarbonate, the refractive index is about 1.58. In that case, PMMA or the like can be used as the coating agent, and the refractive index is about 1.5. As shown in rays A and B in FIG. 4, the conversion efficiency can be improved by reducing the incident angle on the surface of the solar cell as in FIG.

以上に開示した実施形態1〜3はいずれも本発明の一例を示したに過ぎず、本発明はこれらの実施形態により制限的に解釈されない。本発明の範囲は上記の実施形態ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The first to third embodiments disclosed above are merely examples of the present invention, and the present invention is not construed as being limited by these embodiments. The scope of the present invention is shown not by the above embodiments but by the scope of claims for patent, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims for patent.

本発明の太陽電池モジュールの利用分野は特に限定はないが、一般家庭の屋根、車、発電所に設置する太陽電池に有用である。また、光の方向を気にせずに電力を得られるので、電卓などの携帯機器に対しても応用できる。   The field of application of the solar cell module of the present invention is not particularly limited, but is useful for solar cells installed on roofs, cars, and power plants in general homes. Moreover, since electric power can be obtained without worrying about the direction of light, it can be applied to portable devices such as a calculator.

本発明の実施形態1における太陽電池モジュールの断面図。Sectional drawing of the solar cell module in Embodiment 1 of this invention. 本発明の実施形態1における太陽電池モジュールの斜視図。The perspective view of the solar cell module in Embodiment 1 of this invention. 本発明の実施形態2における太陽電池モジュールの斜視図。The perspective view of the solar cell module in Embodiment 2 of this invention. 本発明の実施形態3における太陽電池モジュールの断面図。Sectional drawing of the solar cell module in Embodiment 3 of this invention. 従来の太陽電池モジュールの断面図。Sectional drawing of the conventional solar cell module.

符号の説明Explanation of symbols

101 光学素子
102 光軸
103 第1レンズアレイ
104 第2レンズアレイ
105 太陽電池
106 被覆剤
501 光学素子
502 光軸
503 屈折面
504 屈折面
505 太陽電池
506 被覆剤
DESCRIPTION OF SYMBOLS 101 Optical element 102 Optical axis 103 1st lens array 104 2nd lens array 105 Solar cell 106 Coating agent 501 Optical element 502 Optical axis 503 Refraction surface 504 Refraction surface 505 Solar cell 506 Coating agent

Claims (3)

透明板の片面に第1レンズアレイを有し、前記透明板の他面に第2レンズアレイを有し、前記第1レンズアレイの各々のレンズの光軸と前記第2レンズアレイの各々のレンズの光軸が略一致し、前記第2レンズアレイの表面に接して太陽電池を設ける事を特徴とする太陽電池モジュール。 A first lens array is provided on one side of the transparent plate, a second lens array is provided on the other side of the transparent plate, and an optical axis of each lens of the first lens array and each lens of the second lens array The solar cell module is characterized in that the optical axes of the solar cell module and the solar cell module are provided in contact with the surface of the second lens array. 前記第1レンズアレイおよび第2レンズアレイが単レンズアレイである事を特徴とする請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the first lens array and the second lens array are single lens arrays. 前記第1レンズアレイおよび第2レンズアレイがシリンドリカルレンズアレイである事を特徴とする請求項1に記載の太陽電池モジュール。
The solar cell module according to claim 1, wherein the first lens array and the second lens array are cylindrical lens arrays.
JP2008141852A 2008-05-30 2008-05-30 Solar cell module Pending JP2009290037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141852A JP2009290037A (en) 2008-05-30 2008-05-30 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141852A JP2009290037A (en) 2008-05-30 2008-05-30 Solar cell module

Publications (1)

Publication Number Publication Date
JP2009290037A true JP2009290037A (en) 2009-12-10

Family

ID=41458950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141852A Pending JP2009290037A (en) 2008-05-30 2008-05-30 Solar cell module

Country Status (1)

Country Link
JP (1) JP2009290037A (en)

Similar Documents

Publication Publication Date Title
JP6600919B2 (en) Condensing mechanism, solar power generation device and window structure
US8119905B2 (en) Combination non-imaging concentrator
US8183519B2 (en) Light concentrating module
US6730840B2 (en) Concentrating photovoltaic module and concentrating photovoltaic power generating system
US20160043259A1 (en) Non-Imaging Light Concentrator
CA2622126A1 (en) Fresnel lens
CN101641860A (en) Concentrating photovoltaic system using a fresnel lens and nonimaging secondary optics
US20120234371A1 (en) Incident angle dependent smart solar concentrator
KR100934358B1 (en) A prism glass structure for enhancing the performance of sollar cell module
US20130240037A1 (en) Solar cell module and solar generator
US9960296B2 (en) Solar energy collecting module
JP2006332113A (en) Concentrating solar power generation module and solar power generator
US20140048117A1 (en) Solar energy systems using external reflectors
JP2007073774A (en) Solar battery
KR200436051Y1 (en) solar condensing apparatus
JP2009277464A (en) Dye-sensitized solar cell and dye-sensitized solar cell system
US20120298178A1 (en) Photovoltaic system for efficient solar radiation collection and solar panel incorporating same
JP6351459B2 (en) Solar cell module
Leutz et al. Developments and designs of solar engineering Fresnel lenses
TWI473279B (en) Solar concentrator
TWI537533B (en) Side-irradiated concentrated photovoltaic system
JP2009290037A (en) Solar cell module
TWI693787B (en) Flat-plate light collecting device
US20160172521A1 (en) Solar concentrator with microreflectors
US20150263667A1 (en) Sunlight-collecting system