JP2009288209A - Flame photometric detector - Google Patents

Flame photometric detector Download PDF

Info

Publication number
JP2009288209A
JP2009288209A JP2008144102A JP2008144102A JP2009288209A JP 2009288209 A JP2009288209 A JP 2009288209A JP 2008144102 A JP2008144102 A JP 2008144102A JP 2008144102 A JP2008144102 A JP 2008144102A JP 2009288209 A JP2009288209 A JP 2009288209A
Authority
JP
Japan
Prior art keywords
light
flame
photomultiplier
photometric detector
photomal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144102A
Other languages
Japanese (ja)
Other versions
JP5056592B2 (en
Inventor
Shigeaki Shibamoto
繁明 芝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008144102A priority Critical patent/JP5056592B2/en
Publication of JP2009288209A publication Critical patent/JP2009288209A/en
Application granted granted Critical
Publication of JP5056592B2 publication Critical patent/JP5056592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately achieve, according to an analysis purpose or the like, both a single photomultiplier structure with high sensitivity and a dual photomultiplier structure capable of simultaneous detection of a plurality of components by use of one thermal insulating block. <P>SOLUTION: The thermal insulating block 1 to form a hydrogen flame therein includes a first member 10 having a cylindrical inner space 11, and a second member 20 having a hemispherical inner space 21 and a hemispherical mirror surface 22 facing thereto. By inserting the second member 20 to the first member 10 from one open end surface side thereof, both are integrated together and the cylindrical inner space 11 is connected to the hemispherical internal space 21, whereby the thermal insulating block 1 is used as the thermal insulating block for single photomultiplier. The second member 20 is removed from the first member 10, and only the first member 10 is used as the thermal insulating block 1 for dual photomultiplier. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、主としてガスクロマトグラフ装置の検出器として利用される、炎光光度検出器(FPD=Flame Photometric Detector)に関する。   The present invention relates to a flame photometric detector (FPD) that is mainly used as a detector of a gas chromatograph apparatus.

ガスクロマトグラフ装置の検出器として、様々な方式の検出器が実用化されている。その中で、炎光光度検出器は硫黄化合物やリン化合物を選択的に検出する検出器であり、硫化水素、メチルメルカプタン等の悪臭成分の分析、薬品中の微量硫黄分の検出、残留農薬の分析、生化学成分の分析などに、広く利用されている。   Various types of detectors have been put to practical use as detectors for gas chromatograph apparatuses. Among them, the flame photometric detector is a detector that selectively detects sulfur compounds and phosphorus compounds, analysis of malodorous components such as hydrogen sulfide and methyl mercaptan, detection of trace sulfur in chemicals, residual pesticides. It is widely used for analysis and analysis of biochemical components.

図4は、特許文献1に記載の、従来知られている炎光光度検出器の概略構成図である。ガスクロマトグラフのカラム出口に連結される試料ガス管31、水素供給管32、及び空気供給管33は、上方にガス噴出口を有するノズル3に接続されている。ノズル3の周囲には透明な石英筒34が配設され、石英筒34全体は保温ブロック1で覆われている。保温ブロック1には図示しないヒータ及び温度センサが埋設されており、これにより保温ブロック1は所定温度に維持される。   FIG. 4 is a schematic configuration diagram of a conventionally known flame photometric detector described in Patent Document 1. In FIG. A sample gas pipe 31, a hydrogen supply pipe 32, and an air supply pipe 33 connected to the column outlet of the gas chromatograph are connected to a nozzle 3 having a gas jet outlet on the upper side. A transparent quartz cylinder 34 is disposed around the nozzle 3, and the entire quartz cylinder 34 is covered with the heat retaining block 1. A heater and a temperature sensor (not shown) are embedded in the heat retaining block 1, and thereby the heat retaining block 1 is maintained at a predetermined temperature.

保温ブロック1の側方には、凸レンズ37が配設された検出窓36が開口しており、検出窓36の外側には冷却フィンを備える接続筒体4を介して、干渉フィルタ5と光電子増倍管6とが配設されている。ノズル3の上部に形成される水素炎フレーム7を挟んで凸レンズ37と反対側の保温ブロック1内壁は球面状に形成されており、その内面は金属膜の蒸着等による凹面鏡35とされている。   A detection window 36 in which a convex lens 37 is disposed is opened to the side of the heat insulation block 1, and the interference filter 5 and the photoelectron increase are connected to the outside of the detection window 36 via a connection cylinder 4 having a cooling fin. A double pipe 6 is provided. The inner wall of the heat retaining block 1 opposite to the convex lens 37 is formed in a spherical shape across the hydrogen flame frame 7 formed on the upper part of the nozzle 3, and the inner surface thereof is a concave mirror 35 formed by deposition of a metal film or the like.

試料ガス管31を通して供給される窒素等のキャリアガス、水素供給管32を通して供給される水素ガス、及び、空気供給管33を通して供給される空気をノズル3先端で混合し、これを燃焼して水素炎フレーム7を形成する。ガスクロマトグラフのカラムから流出した試料成分がその水素炎フレーム7中に導入されると、試料成分は燃焼して固有の波長を有する光を発する。特に過水素の還元炎では、硫黄化合物やリン化合物の燃焼によって、それぞれ394[μm]、526[μm]の波長の光を発する。水素炎フレーム7から発した光は透明な石英筒34を透過し、干渉フィルタ5により特有の波長を有する光のみが選択的に透過されて光電子増倍管6に到達する。   Carrier gas such as nitrogen supplied through the sample gas pipe 31, hydrogen gas supplied through the hydrogen supply pipe 32, and air supplied through the air supply pipe 33 are mixed at the tip of the nozzle 3, and this is combusted to generate hydrogen. A flame frame 7 is formed. When the sample component flowing out from the column of the gas chromatograph is introduced into the hydrogen flame frame 7, the sample component burns and emits light having a specific wavelength. In particular, in a perhydrogen reducing flame, light having a wavelength of 394 [μm] and 526 [μm] is emitted by combustion of a sulfur compound and a phosphorus compound, respectively. The light emitted from the hydrogen flame frame 7 passes through the transparent quartz tube 34, and only the light having a specific wavelength is selectively transmitted by the interference filter 5 and reaches the photomultiplier tube 6.

水素炎フレーム7中の試料成分の燃焼部7aから発した光は四方に拡散するが、図4で右方向に進行して凸レンズ37に到達した光は、凸レンズ37によって平行光化される。そのため、凸レンズ37を通過した光の多くは干渉フィルタ5にほぼ垂直に入射し、干渉フィルタ5の波長特性に応じた特定の波長光のみが透過して光電子増倍管6に到達する。   The light emitted from the sample component burning portion 7 a in the hydrogen flame frame 7 diffuses in all directions, but the light that travels in the right direction in FIG. 4 and reaches the convex lens 37 is collimated by the convex lens 37. Therefore, most of the light that has passed through the convex lens 37 enters the interference filter 5 almost perpendicularly, and only light having a specific wavelength corresponding to the wavelength characteristic of the interference filter 5 is transmitted to reach the photomultiplier tube 6.

一方、図1で左方向に進行して凹面鏡35に到達した光は、凹面鏡35によってほぼ入射方向と反対方向に反射される。したがって、反射光は燃焼部7a付近を通過して凸レンズ37に到達する。このため、上述のように燃焼部7aから直接的に凸レンズ37に到達した光に加えて、この反射光も凸レンズ37により平行光化され、干渉フィルタ5に送られる。したがって、光電子増倍管6に入射する光量は凹面鏡35がない場合に比べてかなり増加するため、高い検出感度を達成することができる。このような、単一の光電子増倍管を用いた炎光光度検出器の構造を、シングルフォトマル(シングルフィルタ、又は全光反射)型という。   On the other hand, the light traveling in the left direction in FIG. 1 and reaching the concave mirror 35 is reflected by the concave mirror 35 in a direction almost opposite to the incident direction. Therefore, the reflected light passes through the vicinity of the burning part 7a and reaches the convex lens 37. For this reason, in addition to the light directly reaching the convex lens 37 from the burning part 7 a as described above, this reflected light is also converted into parallel light by the convex lens 37 and sent to the interference filter 5. Accordingly, the amount of light incident on the photomultiplier tube 6 is considerably increased as compared with the case where the concave mirror 35 is not provided, so that high detection sensitivity can be achieved. Such a structure of a flame photometric detector using a single photomultiplier tube is referred to as a single photomultiplier (single filter or total light reflection) type.

上記シングルフォトマル型の炎光光度検出器は高感度であるものの、装着した干渉フィルタ5の通過波長に対応した成分のみしか検出することができない。そのため、硫黄化合物とリン化合物と同時に検出することはできず、両化合物の混在した試料を分析する際には、例えば干渉フィルタを交換して2回の分析を実施する必要があり手間が掛かる。   Although the single photomultiplier flame photometric detector is highly sensitive, it can detect only the component corresponding to the passing wavelength of the mounted interference filter 5. Therefore, it cannot be detected simultaneously with the sulfur compound and the phosphorus compound, and when analyzing a sample in which both compounds are mixed, for example, it is necessary to replace the interference filter and perform the analysis twice, which is troublesome.

一方、リンと硫黄とにそれぞれ対応した波長光を透過させる2個の干渉フィルタと、それら透過光をそれぞれ検出する2個の光電子増倍管とを備えた、いわゆるデュアルフォトマル型の炎光光度検出器が従来知られている(特許文献2参照)。この検出器では、保温ブロックの側方の対向する2箇所に検出窓が設けられ、各検出窓の外側に干渉フィルタと光電子増倍管とが設けられる。これにより、水素炎フレーム中の燃焼部から発した光を同時に2つの光電子増倍管に導入して、異なる波長の光を検出することができる。しかしながら、この構造の場合、上記シングルフォトマル型とは異なり、球面状の凹面鏡による反射光を利用することができないため、感度が犠牲になることは避けられない。   On the other hand, a so-called dual photomultiplier flame luminous intensity comprising two interference filters that transmit light of wavelengths respectively corresponding to phosphorus and sulfur and two photomultiplier tubes that respectively detect the transmitted light. A detector is conventionally known (see Patent Document 2). In this detector, detection windows are provided at two opposing positions on the side of the heat insulation block, and an interference filter and a photomultiplier tube are provided outside each detection window. Thereby, the light emitted from the burning part in the hydrogen flame flame can be simultaneously introduced into the two photomultiplier tubes, and light of different wavelengths can be detected. However, in the case of this structure, unlike the single photomal type, since the reflected light from the spherical concave mirror cannot be used, it is inevitable that the sensitivity is sacrificed.

上述のようにシングルフォトマル型とデュアルフォトマル型とではそれぞれ長所、短所がある。   As described above, the single photomal type and the dual photomal type have advantages and disadvantages, respectively.

特開平11−237340号公報JP-A-11-237340 特開平11−237339号公報Japanese Patent Laid-Open No. 11-237339

従来、シングルフォトマル型炎光光度検出器とデュアルフォトマル型炎光光度検出器とは全く別の装置としてユーザに提供されている。そのため、シングルフォトマル型炎光光度検出器を購入したユーザは、複数の成分の分析を行いたい場合に、複数回の分析を行わなければならなかった。その結果、手間や時間が掛かるだけでなく、試料の量も余分に用意する必要があった。こうした手間や分析時間の増加を避けるには、デュアルフォトマル型の装置を購入しなければならないが、余計なコストが掛かり、低い頻度でしか複数同時分析の必要がない場合には大きな無駄が生じることになる。   Conventionally, a single photomultiplier flame photometric detector and a dual photomultiplier flame photometric detector are provided to users as completely separate devices. Therefore, a user who has purchased a single photomultiplier flame photometric detector has to perform a plurality of analyzes when he / she wants to analyze a plurality of components. As a result, not only is it time-consuming and time-consuming, but it is also necessary to prepare an extra amount of sample. In order to avoid such an increase in time and analysis time, it is necessary to purchase a dual photomal type device. However, it requires extra cost, and if multiple simultaneous analyzes are required only infrequently, a large waste occurs. It will be.

本発明は上記課題を解決するために成されたものであり、その目的とするところは、分析の目的に応じて、シングルフォトマル型による高感度分析とデュアルフォトマル型による複数成分同時分析とを適宜選択することができる炎光光度検出器を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to perform high-sensitivity analysis by single photomal type and simultaneous analysis of multiple components by dual photomal type according to the purpose of analysis. It is in providing the flame photometric detector which can select suitably.

上記課題を解決するために成された本発明は、保温ブロックの内部で発生させた水素炎フレーム中に試料成分を導入して燃焼させ、その燃焼により発した光を前記保温ブロックから取り出して特定の波長光を透過させる透過手段を通して光検出器へ導入する炎光光度検出器において、
前記保温ブロックは、両端面に開口が形成され、内壁が略筒状である第1部材と、該第1部材の一方の開口に装着自在で、内壁が凹面状の鏡面である第2部材と、から成り、
前記第2部材を前記第1部材に装着した状態で、該第1部材の他方の開口から取り出した光を検出するシングルフォトマル型の構成と、前記第2部材を用いずに、前記第1部材の両方の開口から取り出した光をそれぞれ検出するデュアルフォトマル型の構成とを選択可能としたことを特徴としている。
In order to solve the above problems, the present invention is directed to introducing a sample component into a flame flame generated inside a heat insulation block and burning it, and taking out the light emitted by the combustion from the heat insulation block and specifying it. In the flame photometric detector introduced into the photodetector through a transmission means that transmits light of the wavelength of
The heat retaining block includes a first member having openings at both end surfaces and an inner wall that is substantially cylindrical, and a second member that is attachable to one opening of the first member and whose inner wall is a concave mirror surface; Consists of
In a state where the second member is attached to the first member, a single photomal type configuration for detecting light extracted from the other opening of the first member, and the first member without using the second member. It is characterized in that it is possible to select a dual photomal type configuration that detects light extracted from both openings of the member.

なお、第1部材の略筒状の内壁面も鏡面とすることにより、シングルフォトマル型、デュアルフォトマル型のいずれの構成とした場合でも、より多くの光を保温ブロックから取り出して光検出器に導入することができる。   In addition, by making the substantially cylindrical inner wall surface of the first member a mirror surface, it is possible to take out more light from the heat insulation block in any case of a single photomultiplier type or a dual photomultiplier type. Can be introduced.

また、第2部材において、凹面状の鏡面は、水素炎フレーム中の燃焼部を中心とする円形状とすることが好ましい。   Further, in the second member, it is preferable that the concave mirror surface has a circular shape centering on the combustion portion in the hydrogen flame frame.

本発明に係る炎光光度検出器では、第2部材を第1部材の一方の開口に装着することにより、保温ブロックの内部に形成される水素炎フレームの燃焼部から発する光のうち、第1部材側に進む光は凹面鏡で反射されて他方の開口に向かって進む。つまり、図4に示したような、一体構造の保温ブロックを用いた場合と同様に、光検出器が設置された側とは反対側に放出された光も、試料成分の検出に有効に利用することができる。したがって、シングルフォトマル型の構成を採る場合には、高い検出感度を達成することができる。   In the flame photometric detector according to the present invention, by attaching the second member to one opening of the first member, the first of the light emitted from the combustion portion of the hydrogen flame frame formed inside the heat retaining block. The light traveling toward the member side is reflected by the concave mirror and travels toward the other opening. That is, as in the case of using an integral heat insulating block as shown in FIG. 4, the light emitted to the side opposite to the side where the photodetector is installed is also effectively used for detecting the sample component. can do. Therefore, when a single photomal type configuration is adopted, high detection sensitivity can be achieved.

一方、第2部材を第1部材から取り外して第1部材のみを保温ブロックとして使用し、その両側の開口にそれぞれ異なる波長特性の透過手段(干渉フィルタ)と光検出器(光電子増倍管)とを取り付ける場合には、凹面鏡による集光効果が得られないので、検出感度はシングルフォトマル型の構成と比べて落ちるものの、複数成分を同時に検出することができる。このようにデュアルフォトマル型の構成を採る場合には、シングルフォトマル型では不可能であった複数成分同時分析を達成することができる。   On the other hand, the second member is removed from the first member and only the first member is used as a heat insulation block, and transmission means (interference filters) and light detectors (photomultiplier tubes) having different wavelength characteristics are provided in the openings on both sides thereof. In the case of mounting, since the condensing effect by the concave mirror cannot be obtained, a plurality of components can be detected at the same time, although the detection sensitivity is lower than that of the single photomal type configuration. Thus, when adopting a dual photomal type configuration, it is possible to achieve simultaneous analysis of a plurality of components, which was impossible with the single photomal type.

以上のように、本発明に係る炎光光度検出器によれば、1つの保温ブロックを使用し、分析目的や試料の種類等に応じてシングルフォトマル型の構成とデュアルフォトマル型の構成とを簡便に組み替えることができる。それによって、ユーザは2種類の検出器を購入しなくても、高感度な単一成分分析と感度は若干落ちるものの複数成分の同時分析とを適宜選択的に実施することができる。   As described above, according to the flame photometric detector according to the present invention, a single heat insulating block is used, and a single photomal type configuration and a dual photomal type configuration are used depending on the purpose of analysis and the type of sample. Can be easily rearranged. Accordingly, even if the user does not purchase two types of detectors, high-sensitivity single component analysis and simultaneous analysis of a plurality of components can be selectively performed as appropriate although sensitivity is slightly reduced.

本発明に係る炎光光度検出器の一実施例を、図1〜図3を参照して説明する。図1は本実施例による炎光光度検出器の主要な構成部材である保温ブロック1の概略縦断面図である。図2は本実施例による炎光光度検出器をシングルフォトマル型として使用する場合の概略構成図である。図3は本実施例による炎光光度検出器をデュアルフォトマル型として使用する場合の概略構成図である。   An embodiment of a flame photometric detector according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic longitudinal sectional view of a heat retaining block 1 which is a main component of the flame photometric detector according to the present embodiment. FIG. 2 is a schematic configuration diagram when the flame photometric detector according to the present embodiment is used as a single photomultiplier type. FIG. 3 is a schematic configuration diagram when the flame photometric detector according to the present embodiment is used as a dual photomultiplier type.

図1(b)に示すように、本実施例の炎光光度検出器における保温ブロック1は、大別して2つの部材、つまり、シングルフォトマル型/デュアルフォトマル型のいずれの構成でも使用される第1部材10と、シングルフォトマル型の構成でのみ使用される第2部材20と、から成る。両部材10、20ともに、ステンレス等の金属体を切削加工したものとすることができる。   As shown in FIG. 1B, the heat insulation block 1 in the flame photometric detector of the present embodiment is roughly used in two members, that is, in any configuration of single photomultiplier type / dual photomultiplier type. It consists of a first member 10 and a second member 20 used only in a single photomal type configuration. Both members 10 and 20 can be made by cutting a metal body such as stainless steel.

第1部材10は両端面が開放された略筒状の内部空間11を有し、その内壁面は光を反射可能であるように鏡面12となっている。なお、図示していないが、第1部材10には後述するノズルを取り付けるための開口部や、両端開口以外に内部空間11と外部とを連通する排気孔などの開口部などが形成されている。   The 1st member 10 has the substantially cylindrical internal space 11 with which both end surfaces were open | released, The inner wall surface is the mirror surface 12 so that light can be reflected. Although not shown, the first member 10 has an opening for attaching a nozzle, which will be described later, and an opening such as an exhaust hole for communicating the internal space 11 with the outside in addition to the openings at both ends. .

第2部材20は、第1部材10の一方の端面開口の内側に嵌挿可能な外形を有し、その内部は略半球状に切削されて半球状内部空間21となっている。この半球状内部空間21に面する内壁面は、光を反射可能であるように鏡面22となっている。第1部材10、第2部材20の鏡面12、22はいずれも、金属体表面の細かい凹凸を除去するための表面加工がなされた後に、所定の金属が蒸着されて金属薄膜が形成されることにより、高効率の反射面となっている。もちろん、これ以外の方法で鏡面12、22を形成してもよい。   The second member 20 has an outer shape that can be inserted inside one end face opening of the first member 10, and the inside thereof is cut into a substantially hemispherical shape to form a hemispherical internal space 21. The inner wall surface facing the hemispherical inner space 21 is a mirror surface 22 so that light can be reflected. Both the mirror surfaces 12 and 22 of the first member 10 and the second member 20 are subjected to surface processing for removing fine irregularities on the surface of the metal body, and then a predetermined metal is deposited to form a metal thin film. Thus, a highly efficient reflecting surface is obtained. Of course, the mirror surfaces 12 and 22 may be formed by other methods.

第2部材20を第1部材10の内部空間11に完全に嵌挿すると、図1(a)に示すように、筒状の内部空間11のほぼ半分と半球状内部空間21とが連なって、一方の端面のみが開放された内部空間が形成された保温ブロック1となる。このとき、この内部空間に面する面のほぼ全ては鏡面12、22である。   When the second member 20 is completely inserted into the internal space 11 of the first member 10, as shown in FIG. 1A, approximately half of the cylindrical internal space 11 and the hemispherical internal space 21 are connected. The heat insulating block 1 is formed with an internal space in which only one end face is opened. At this time, almost all surfaces facing the internal space are mirror surfaces 12 and 22.

シングルフォトマル型の構成として使用する場合、図1(a)に示したように両部材10、20を一体化して構成した保温ブロック1に、ノズル3を取り付け、その保温ブロック1の唯一の端面開口を検出窓として、その外側に接続筒体4を装着し、それを介して干渉フィルタ5と光電子増倍管6を取り付ける。つまり、図2に示した構成となる。ここでは、水素炎フレーム7を囲む石英管や凸レンズは記載していないが、こうした部材を取り付けることは当然可能であり、基本的には、図4に示したシングルフォトマル型の構成と同一となる。   When used as a single photomal type configuration, as shown in FIG. 1A, the nozzle 3 is attached to the heat insulating block 1 formed by integrating both members 10 and 20, and the only end face of the heat insulating block 1 is provided. Using the opening as a detection window, the connecting cylinder 4 is attached to the outside, and the interference filter 5 and the photomultiplier tube 6 are attached through the connecting cylinder 4. That is, the configuration shown in FIG. Here, a quartz tube and a convex lens surrounding the hydrogen flame frame 7 are not described, but it is naturally possible to attach such a member, which is basically the same as the single-photomal configuration shown in FIG. Become.

即ち、ノズル3の先端上方に水素炎フレーム7を形成し、その中で試料成分を燃焼させて、成分に固有の光を発生させる。その光を半円形状の鏡面22で反射し、さらには散逸する光も鏡面12で反射して、効率良く干渉フィルタ5に導入し、その干渉フィルタ5に特有の波長光のみを選択して光電子増倍管6に導入して検出する。干渉フィルタ5は、例えばリン又は硫黄に対応した波長光を透過する特性を持つものとすればよい。これにより、高い感度で目的成分を検出することができる。   That is, the hydrogen flame frame 7 is formed above the tip of the nozzle 3 and the sample components are burned therein to generate light specific to the components. The light is reflected by the semicircular mirror surface 22, and the dissipated light is also reflected by the mirror surface 12 and efficiently introduced into the interference filter 5. Only the wavelength light peculiar to the interference filter 5 is selected and photoelectron is selected. It introduces into the multiplier 6 and detects. The interference filter 5 may have a characteristic of transmitting light having a wavelength corresponding to, for example, phosphorus or sulfur. Thereby, the target component can be detected with high sensitivity.

一方、デュアルフォトマル型の構成として使用する場合には、図1(b)に示したように第2部材20を第1部材10から取り外し、第1部材10のみで構成した保温ブロック1に、ノズル3を取り付け、その保温ブロック1の両側の2つの端面開口を検出窓として、その外側にそれぞれ接続筒体4a、4bを装着し、それを介して干渉フィルタ5a、5bと光電子増倍管6a、6bを取り付ける。つまり、図3に示した構成となる。ここでも、水素炎フレーム7を囲む石英管や凸レンズは記載していないが、こうした部材を取り付けることは当然可能である。2つの干渉フィルタ5a、5bは、例えば一方(5a)をリンに対応した波長光を透過する特性を持つものとし、他方(5b)を硫黄に対応した波長光を透過する特性を持つものとすればよい。   On the other hand, when used as a dual photomal type configuration, the second member 20 is removed from the first member 10 as shown in FIG. A nozzle 3 is attached, and two end face openings on both sides of the heat retaining block 1 are used as detection windows, and connecting cylinders 4a and 4b are respectively attached to the outside thereof, through which interference filters 5a and 5b and a photomultiplier tube 6a are attached. , 6b is attached. That is, the configuration shown in FIG. 3 is obtained. Again, a quartz tube or a convex lens surrounding the hydrogen flame frame 7 is not shown, but it is naturally possible to attach such a member. For example, one of the two interference filters 5a and 5b (5a) has a characteristic of transmitting light having a wavelength corresponding to phosphorus, and the other (5b) has a characteristic of transmitting light having a wavelength corresponding to sulfur. That's fine.

分析時には、ノズル3の先端上方に水素炎フレーム7を形成し、その中で試料成分を燃焼させて、成分に固有の光を発生させる。水素炎フレーム7から放出された光は同時に両側の干渉フィルタ5a、5bに導入され、干渉フィルタ5aではリンに対応した波長光のみが選択されて光電子増倍管6aに導入される。干渉フィルタ5bでは硫黄に対応した波長光のみが選択されて光電子増倍管6bに導入される。これにより、ノズル3に供給される試料ガス中に複数の成分(リン化合物と硫黄化合物)が混じっている場合でも、それらをそれぞれ独立に検出することができる。   At the time of analysis, a hydrogen flame frame 7 is formed above the tip of the nozzle 3 and the sample component is burned therein to generate light specific to the component. The light emitted from the hydrogen flame frame 7 is simultaneously introduced into the interference filters 5a and 5b on both sides. In the interference filter 5a, only the wavelength light corresponding to phosphorus is selected and introduced into the photomultiplier 6a. In the interference filter 5b, only light having a wavelength corresponding to sulfur is selected and introduced into the photomultiplier 6b. Thereby, even if a plurality of components (phosphorus compound and sulfur compound) are mixed in the sample gas supplied to the nozzle 3, they can be detected independently.

以上のように本実施例の炎光光度検出器では、1つの保温ブロック1を利用して、干渉フィルタや光電子増倍管などを適宜に組み合わせることで、シングルフォトマル型とデュアルフォトマル型とを自由に構成することができる。   As described above, in the flame photometric detector of this embodiment, by using one heat retaining block 1 and appropriately combining an interference filter, a photomultiplier tube, etc., a single photomultiplier type and a dual photomultiplier type are used. Can be configured freely.

なお、上記実施例は一例であって、本発明の趣旨の範囲で適宜変更や修正を行なえることは明らかである。   The above-described embodiment is an example, and it is obvious that changes and modifications can be made as appropriate within the scope of the present invention.

本発明の一実施例による炎光光度検出器の主要な構成部材である保温ブロックの概略縦断面図。The schematic longitudinal cross-sectional view of the heat retention block which is a main structural member of the flame photometric detector by one Example of this invention. 本実施例による炎光光度検出器をシングルフォトマル型として使用する場合の概略構成図。The schematic block diagram in the case of using the flame photometric detector by a present Example as a single photomal type | mold. 本実施例による炎光光度検出器をデュアルフォトマル型として使用する場合の概略構成図。The schematic block diagram in the case of using the flame photometric detector by a present Example as a dual photomultiplier type. 従来知られている炎光光度検出器の概略構成図。The schematic block diagram of the flame photometric detector conventionally known.

符号の説明Explanation of symbols

1…保温ブロック
10…第1部材
11…内部空間
12…鏡面
20…第2部材
21…半球状内部空間
22…鏡面
3…ノズル
31…試料ガス管
32…水素供給管
33…空気供給管
4、4a、4b…接続筒体
5、5a、5b…干渉フィルタ
6、6a、6b…光電子増倍管
7…水素炎フレーム
7a…燃焼部
DESCRIPTION OF SYMBOLS 1 ... Thermal insulation block 10 ... 1st member 11 ... Internal space 12 ... Mirror surface 20 ... 2nd member 21 ... Hemispherical internal space 22 ... Mirror surface 3 ... Nozzle 31 ... Sample gas pipe 32 ... Hydrogen supply pipe 33 ... Air supply pipe 4, 4a, 4b ... Connection cylinder 5, 5a, 5b ... Interference filter 6, 6a, 6b ... Photomultiplier tube 7 ... Hydrogen flame frame 7a ... Combustion part

Claims (1)

保温ブロックの内部で発生させた水素炎フレーム中に試料成分を導入して燃焼させ、その燃焼により発した光を前記保温ブロックから取り出して特定の波長光を透過させる透過手段を通して光検出器へ導入する炎光光度検出器において、
前記保温ブロックは、両端面に開口が形成され、内壁が略筒状である第1部材と、該第1部材の一方の開口に装着自在で、内壁が凹面状の鏡面である第2部材と、から成り、
前記第2部材を前記第1部材に装着した状態で、該第1部材の他方の開口から取り出した光を検出するシングルフォトマル型の構成と、前記第2部材を用いずに、前記第1部材の両方の開口から取り出した光をそれぞれ検出するデュアルフォトマル型の構成とを選択可能としたことを特徴とする炎光光度検出器。
Sample components are introduced into the flame flame generated inside the heat insulation block and burned, and the light emitted by the combustion is taken out of the heat insulation block and introduced into the photodetector through a transmission means that transmits light of a specific wavelength. In the flame photometric detector that
The heat retaining block includes a first member having openings at both end surfaces and an inner wall that is substantially cylindrical, and a second member that is attachable to one opening of the first member and whose inner wall is a concave mirror surface; Consists of
In a state where the second member is attached to the first member, a single photomal type configuration for detecting light extracted from the other opening of the first member, and the first member without using the second member. A flame photometric detector characterized by being able to select a dual photomal type configuration that respectively detects light extracted from both openings of a member.
JP2008144102A 2008-06-02 2008-06-02 Flame photometric detector Active JP5056592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144102A JP5056592B2 (en) 2008-06-02 2008-06-02 Flame photometric detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144102A JP5056592B2 (en) 2008-06-02 2008-06-02 Flame photometric detector

Publications (2)

Publication Number Publication Date
JP2009288209A true JP2009288209A (en) 2009-12-10
JP5056592B2 JP5056592B2 (en) 2012-10-24

Family

ID=41457550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144102A Active JP5056592B2 (en) 2008-06-02 2008-06-02 Flame photometric detector

Country Status (1)

Country Link
JP (1) JP5056592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132300A (en) * 2016-02-29 2017-09-05 株式会社岛津制作所 Flame photometer detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242060U (en) * 1985-08-30 1987-03-13
JPH10213545A (en) * 1997-01-30 1998-08-11 Shimadzu Corp Flame photometric type detector
JPH11237339A (en) * 1998-02-20 1999-08-31 Shimadzu Corp Gas chromatograph
JPH11237340A (en) * 1998-02-20 1999-08-31 Shimadzu Corp Flame photometric detector
JP2000162126A (en) * 1998-11-25 2000-06-16 Fuji Photo Film Co Ltd Image information reader
JP2006242623A (en) * 2005-03-01 2006-09-14 Mitsui Eng & Shipbuild Co Ltd Flow cytometer and fluorescence collecting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242060U (en) * 1985-08-30 1987-03-13
JPH10213545A (en) * 1997-01-30 1998-08-11 Shimadzu Corp Flame photometric type detector
JPH11237339A (en) * 1998-02-20 1999-08-31 Shimadzu Corp Gas chromatograph
JPH11237340A (en) * 1998-02-20 1999-08-31 Shimadzu Corp Flame photometric detector
JP2000162126A (en) * 1998-11-25 2000-06-16 Fuji Photo Film Co Ltd Image information reader
JP2006242623A (en) * 2005-03-01 2006-09-14 Mitsui Eng & Shipbuild Co Ltd Flow cytometer and fluorescence collecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132300A (en) * 2016-02-29 2017-09-05 株式会社岛津制作所 Flame photometer detector

Also Published As

Publication number Publication date
JP5056592B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP2416146B1 (en) Probe for gas analysis
JP4673887B2 (en) Exhaust gas analyzer
EP1998164B1 (en) Exhaust gas analyzer comprising a sensor unit
US8692997B2 (en) Optical gas and/or particulate sensors
FI95322B (en) Spectroscopic measuring sensor for the analysis of media
JP2001503865A (en) New multi-gas NDIR analyzer
EP3532823B1 (en) Gas detector system with ring reflector
JP2006194880A (en) Flame photometric detector with improved sensitivity
KR20110102869A (en) Spectrometer
CN103776942A (en) Chemiluminescent detector
JP6183227B2 (en) Insertion type gas concentration measuring device
KR20210087517A (en) Particle sensor for detecting particles or aerosols in flowing fluids using the laser-induced incandescent principle
JP2006184180A (en) Exhaust gas analyzer
JP5056592B2 (en) Flame photometric detector
SE0202292D0 (en) Gas analyzing arrangements
JP2019505794A (en) Portable device for detecting explosives, including a device for generating and measuring light emission of an indicator
KR20200126384A (en) Laser-guided incandescent particle sensor with confocal placement of laser spot and thermal radiation spot
JP5038923B2 (en) Exhaust gas analyzer
KR20180103760A (en) Optical sensor with deposition sensor
WO2011040588A1 (en) Temperature sensitive body, optical temperature sensor, temperature measuring device, and heat flux measuring device
JP2009097976A (en) Light measuring instrument and system
JP4842582B2 (en) Gas analyzer
WO2004072610A3 (en) Purging light beam paths in optical equipment
JP2009047612A (en) Exhaust gas analysis sensor
JP4949999B2 (en) Exhaust gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5056592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3