JP2009288097A - Object detector - Google Patents

Object detector Download PDF

Info

Publication number
JP2009288097A
JP2009288097A JP2008141404A JP2008141404A JP2009288097A JP 2009288097 A JP2009288097 A JP 2009288097A JP 2008141404 A JP2008141404 A JP 2008141404A JP 2008141404 A JP2008141404 A JP 2008141404A JP 2009288097 A JP2009288097 A JP 2009288097A
Authority
JP
Japan
Prior art keywords
vehicle
distance
irradiation
irradiated
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008141404A
Other languages
Japanese (ja)
Other versions
JP5184973B2 (en
Inventor
Yoshiro Matsuura
義朗 松浦
Masao Komatani
政男 駒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2008141404A priority Critical patent/JP5184973B2/en
Publication of JP2009288097A publication Critical patent/JP2009288097A/en
Application granted granted Critical
Publication of JP5184973B2 publication Critical patent/JP5184973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an object detector for detecting a stopped vehicle in distinction from a road marking or a road-placed object such as a reflective object embedded in a road surface. <P>SOLUTION: A radar device 1 scans horizontally and vertically with laser light to detect an object existing in front of an own vehicle. Further, a control part 2 is used for determining that the detected object is a road-placed object not hindering the traveling of the own vehicle when the following four conditions all hold good as to the detected object: (a) it is a stopped object; (b) the distance thereto from the own vehicle is shorter than a predetermined road-placed object determination distance D1; (c) the intensity of a reflected wave obtained by a preceding downward scan is larger than a road-placed object determination coefficient times (×α1) as large as the intensity of a reflected wave obtained by a preceding upward scan; and (d) the intensity of a reflected wave obtained by the preceding downward scan is larger than the intensity of a reflected wave obtained by a reference scan of this time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、レーザ光や電波等の電磁波を探査波として利用し、装置本体を取り付けた車両(自車両)の前方に位置する物体を検出する物体検出装置に関する。   The present invention relates to an object detection device that uses an electromagnetic wave such as a laser beam or a radio wave as an exploration wave to detect an object positioned in front of a vehicle (own vehicle) to which the apparatus main body is attached.

従来、自車両の前方に照射した探査波を走査して、この車両の前方に位置する先行車両の検出、および検出した先行車両までの距離を測定する車両用測距装置があった(例えば、特許文献1参照)。車両用測距装置は、探査波として、レーザ光や電波等の電磁波を利用する。この車両用測距装置を用いて先行車両との車間距離を一定に保つ定車間距離追従走行(ACC : Adaptive Cruise Control )や渋滞時(低速時)の追従走行(LSF: Low Speed Following )が行われている。また、自車両前方に、衝突が避けられない距離に存在する先行車両や停止物を検出した場合、制動を掛けて衝突時の被害を軽減するプリクラッシュセーフティシステムもある。これらの制御で対象になる先行車両は、走行中、または走行状態から停止した停止車両に限られると、検出した時点で既に停止状態であった停止車両が制御対象外になる。制御対象外になる停止車両が自車線上に停止している場合を考慮すると、検出した時点で既に停止状態であった停止車両も制御対象にする必要がある。検出時点で停止状態であった停止車両を制御対象として検出するには、停止車両を、路面標示や路面に埋め込まれた反射物(所謂、キャッツアイ)等の路面設置物や、歩道橋や上方に設置された看板等の上方設置物と区別して検出しなければならない。   Conventionally, there has been a vehicle ranging device that scans an exploration wave irradiated in front of the host vehicle, detects a preceding vehicle located in front of the vehicle, and measures a distance to the detected preceding vehicle (for example, Patent Document 1). A vehicle ranging device uses electromagnetic waves such as laser light and radio waves as exploration waves. Using this vehicle distance measuring device, constant distance between vehicles (ACC: Adaptive Cruise Control) that keeps the distance from the preceding vehicle constant, and following (LSF: Low Speed Following) in traffic jams (low speed) are performed. It has been broken. There is also a pre-crash safety system that applies braking to reduce the damage caused by a collision when a preceding vehicle or a stop that is present at a distance where a collision cannot be avoided is detected in front of the host vehicle. If the preceding vehicle to be controlled by these controls is limited to the stopped vehicle that is running or stopped from the running state, the stopped vehicle that has already been stopped at the time of detection is excluded from the control target. Considering the case where a stopped vehicle that is not to be controlled is stopped on its own lane, a stopped vehicle that has already been stopped at the time of detection needs to be a control target. In order to detect a stopped vehicle that was stopped at the time of detection as a control target, the stopped vehicle is placed on a road surface installation such as a road marking or a reflective object (so-called cat's eye) embedded in the road surface, or on a pedestrian bridge or above. It must be detected separately from the installed objects such as installed signs.

なお、ここで言う路面設置物や、上方設置物は、自車両の走行を妨げる障害物ではない。   In addition, the road surface installation thing and upper installation thing said here are not an obstruction which prevents driving | running | working of the own vehicle.

上述の路面設置物や、上方設置物を停止車両等の障害物であると誤検出しないようにする提案が特許文献2でなされている。この特許文献2では、探査波を上向きに照射する上方照射による走査と、探査波を下向きに照射する下方照射による走査と、を繰り返し、検出した物体毎に、上方照射時の反射強度と、下方照射時の反射強度とを比較し、路面設置物、上方設置物、または障害物(停止車両等)のいずれであるかを判定している。具体的には、上方照射時の反射強度と、下方照射時の反射強度との差分の絶対値が予め定めた範囲内であれば、障害物と判定する。また、上方照射時の反射強度と、下方照射時の反射強度との差分の絶対値が予め定めた範囲内でなく、下方照射時の反射強度が上方照射時の反射強度よりも大きければ、路面設置物と判定する。さらに、上方照射時の反射強度と、下方照射時の反射強度との差分の絶対値が予め定めた範囲内でなく、上方照射時の反射強度が下方照射時の反射強度よりも大きければ、上方設置物と判定する。
特開2006−337295号公報 特開2006− 98220号公報
Patent Document 2 proposes that the above-mentioned road surface installation object and the upper installation object be prevented from being erroneously detected as an obstacle such as a stopped vehicle. In this patent document 2, the scanning by the upper irradiation that irradiates the exploration wave upward and the scanning by the lower irradiation that irradiates the exploration wave downward are repeated for each detected object. The reflection intensity at the time of irradiation is compared to determine whether the object is a road surface installation object, an upward installation object, or an obstacle (stopped vehicle or the like). Specifically, if the absolute value of the difference between the reflection intensity at the time of upward irradiation and the reflection intensity at the time of downward irradiation is within a predetermined range, it is determined as an obstacle. In addition, if the absolute value of the difference between the reflection intensity at the time of the upper irradiation and the reflection intensity at the time of the lower irradiation is not within a predetermined range and the reflection intensity at the lower irradiation is larger than the reflection intensity at the upper irradiation, the road surface Judged as an installation. Furthermore, if the absolute value of the difference between the reflection intensity at the time of the upper irradiation and the reflection intensity at the time of the lower irradiation is not within the predetermined range and the reflection intensity at the upper irradiation is larger than the reflection intensity at the lower irradiation, Judged as an installation.
JP 2006-337295 A JP 2006-98220 A

この発明の目的は、停止車両を、路面標示や路面に埋め込まれた反射物等の路面設置物と、区別して検出することができる物体検出装置を提供することにある。   An object of the present invention is to provide an object detection device that can detect a stopped vehicle separately from road surface markings and road surface installations such as reflectors embedded in the road surface.

また、この発明は、停止車両を、歩道橋や上方に設置された看板等の上方設置物と、区別して検出することができる物体検出装置を提供することを目的とする。   Another object of the present invention is to provide an object detection device that can detect a stopped vehicle by distinguishing it from an upward installation such as a footbridge or a signboard installed above.

この発明の物体検出装置は、上記課題を解決し、その目的を達するために、以下のように構成している。   The object detection device of the present invention is configured as follows in order to solve the above-mentioned problems and achieve the object.

この物体検出装置では、照射手段が装置本体を取り付けた車両(自車両)の前方に探査波を照射し、検出手段がその探査波の反射波を検出する。探査波としては、レーザ光や電波等の電磁波を利用する。距離演算手段が、前記照射手段が探査波を照射してから、前記検出手段で反射波を検出するまでの時間に基づいて、今回照射した探査波を反射した物体までの距離を演算する。   In this object detection apparatus, the irradiating means irradiates the exploration wave in front of the vehicle (own vehicle) to which the apparatus main body is attached, and the detecting means detects the reflected wave of the exploration wave. As the exploration wave, electromagnetic waves such as laser light and radio waves are used. The distance calculation means calculates the distance to the object that reflected the probe wave that was irradiated this time, based on the time from when the irradiation means irradiates the exploration wave until the detection means detects the reflected wave.

また、照射方向切替手段が、前記照射手段が照射する探査波の垂直方向における照射方向を、基準方向と、この基準方向よりも下向きの下向き方向と、の間で切り換える。そして、物体判定手段が、前記距離演算手段で演算された距離が予め定めた路面設置物判定距離よりも短く、且つ、反射波の強度が、前記基準方向に照射したときよりも、前記下向き方向に照射したときのほうが大きい物体を、路面設置物と判定する。   Further, the irradiation direction switching unit switches the irradiation direction in the vertical direction of the exploration wave irradiated by the irradiation unit between a reference direction and a downward direction downward from the reference direction. Then, the object determination means is shorter in the downward direction than when the distance calculated by the distance calculation means is shorter than a predetermined road surface installation determination distance and the intensity of the reflected wave is irradiated in the reference direction. An object that is larger when it is irradiated is determined as a road surface installation object.

物体検出装置では、上下方向における探査波の拡がり角や、基準方向と下向き方向との角度差、道路勾配等によって、探査波を下向き方向に照射したときだけでなく、探査波を基準方向に照射したときにも、路面標示や路面に埋め込まれた反射物等の路面設置物で反射された反射波を検出することがある。通常、探査波を下向きに照射したときの路面設置物からの反射波の強度は、探査波を基準方向に照射したときに比べてある程度大きくなる。   The object detection device irradiates the exploration wave in the reference direction as well as when the exploration wave irradiates in the downward direction due to the divergence angle of the exploration wave in the vertical direction, the angle difference between the reference direction and the downward direction, the road gradient, etc. Even in this case, the reflected wave reflected by a road surface installation object such as a road marking or a reflection object embedded in the road surface may be detected. Usually, the intensity of the reflected wave from the road surface installation when the exploration wave is irradiated downward is increased to some extent as compared with the case where the exploration wave is irradiated in the reference direction.

一方、背の低い停止車両やリフレクタ設置位置の低い停止車両等に近づいているときに、自車両が、この停止車両からある程度離れている位置で、下方照射時の反射強度が上方照射時の反射強度に比べて相当大きくなることがある。これは、前方の停止車両のリフレクタでのレーザ光の反射が、上方照射時よりも、下方照射時のほうが大きくなることが主な原因である。   On the other hand, when approaching a stop vehicle with a short height, a stop vehicle with a low reflector installation position, etc., the reflection intensity at the time of downward irradiation is reflected at the time of downward irradiation at a position that is slightly away from the stop vehicle. May be considerably larger than strength. This is mainly due to the fact that the reflection of the laser beam at the reflector of the stopping vehicle ahead is larger during downward irradiation than during upward irradiation.

物体判定手段は、上述したように、前記距離演算手段で演算された距離が予め定めた路面設置物判定距離よりも短く、且つ、反射波の強度が、前記基準方向に照射したときよりも、前記下向き方向に照射したときのほうが大きい物体を、路面設置物と判定するので、背の低い停止車両やリフレクタ設置位置の低い停止車両等に近づいているときに、この停止車両を、路面設置物であると誤判定するのを防止できる。   As described above, the object determination means is shorter than the predetermined road surface installation determination distance calculated by the distance calculation means, and the intensity of the reflected wave is irradiated in the reference direction, Since the object that is larger when irradiated in the downward direction is determined as a road surface installation object, when the vehicle approaches a stop vehicle with a short height or a reflector with a low reflector installation position, It is possible to prevent erroneous determination as being.

また、上述の照射方向切替手段を、前記照射手段が照射する探査波の垂直方向における照射方向を、基準方向と、この基準方向よりも上向きの上向き方向と、の間で切り換える構成に置き換えるとともに、
上述の物体判定手段を、前記距離演算手段で演算された距離が予め定めた上方設置物判定距離よりも長く、且つ、物体判定手段を、反射波の強度が、前記基準方向に照射したときよりも、前記上向き方向に照射したときのほうが大きい物体を、上方設置物と判定する構成に置き換えてもよい。
Further, the irradiation direction switching means described above is replaced with a configuration in which the irradiation direction in the vertical direction of the exploration wave irradiated by the irradiation means is switched between a reference direction and an upward direction upward from the reference direction.
When the distance calculated by the distance calculation means is longer than the predetermined upper object determination distance, and the object determination means is more than when the reflected wave intensity is irradiated in the reference direction. Alternatively, an object that is larger when irradiated in the upward direction may be replaced with a configuration in which the object is determined as an upward installation object.

物体検出装置では、上下方向における探査波の拡がり角や、基準方向と上向き方向との角度差、道路勾配等によって、探査波を上向き方向に照射したときだけでなく、探査波を基準方向に照射したときにも、歩道橋や上方に設置された看板等の上方設置物で反射された反射波を検出することがある。通常、探査波を上向きに照射したときの上方設置物からの反射波の強度は、探査波を基準方向に照射したときに比べてある程度大きくなる。   The object detection device irradiates the exploration wave in the reference direction as well as when the exploration wave is radiated upward due to the divergence angle of the exploration wave in the vertical direction, the angle difference between the reference direction and the upward direction, the road gradient, etc. In some cases, a reflected wave reflected by an installation object such as a footbridge or a signboard installed above may be detected. Usually, the intensity of the reflected wave from the upper installation when the exploration wave is irradiated upward is increased to some extent as compared with the case where the exploration wave is irradiated in the reference direction.

一方、自車両がトラック等の比較的背の高い停止車両に接近したときには、上方照射時の反射強度が下方照射時の反射強度に比べて相当大きくなることがある。これは、前方の停止車両のリフレクタでのレーザ光の反射が、下方照射時よりも、上方照射時のほうが大きくなることが主な原因である。   On the other hand, when the host vehicle approaches a relatively tall stopped vehicle such as a truck, the reflection intensity at the time of upward irradiation may be considerably larger than the reflection intensity at the time of downward irradiation. This is mainly due to the fact that the reflection of the laser beam at the reflector of the stopped vehicle ahead is larger during upward illumination than during downward illumination.

ここでは、物体判定手段は、上述したように、前記距離演算手段で演算された距離が予め定めた上方設置物判定距離よりも長く、且つ、反射波の強度が、前記基準方向に照射したときよりも、前記上向き方向に照射したときのほうが大きい物体を、上方設置物と判定するので、トラック等の比較的背の高い停止車両に接近しても、この停止車両を、上方設置物であると誤判定するのを防止できる。   Here, as described above, the object determination means is when the distance calculated by the distance calculation means is longer than a predetermined upper object determination distance and the intensity of the reflected wave is irradiated in the reference direction. Since an object that is larger when illuminated in the upward direction is determined as an upper installation object, even if a relatively tall stopped vehicle such as a truck is approached, this stopped vehicle is an upper installation object. Can be prevented from being erroneously determined.

さらに、上述の照射方向切替手段を、前記照射手段が照射する探査波の垂直方向における照射方向を、基準方向と、下向き方向、および上向き方向、の間で切り換える構成に置き換えるとともに、
上述の物体判定手段を、上述した路面設置物、および上方設置物の両方について判定する構成としてもよい。また、前記路面設置物判定距離は、前記上方設置物判定距離と等しくしてもよいが、前記上方設置物判定距離よりも短く設定するのが好ましい。
Further, the irradiation direction switching unit described above is replaced with a configuration in which the irradiation direction in the vertical direction of the exploration wave irradiated by the irradiation unit is switched between the reference direction, the downward direction, and the upward direction,
It is good also as a structure which determines the above-mentioned object determination means about both the road surface installation thing mentioned above and an upper installation thing. The road surface installation object determination distance may be equal to the upper installation object determination distance, but is preferably set shorter than the upper installation object determination distance.

また、検出した物体が停止体でない場合には、この物体については、路面設置物や、上方設置物であるかどうかの判定対象から除外してもよい。このようにすれば、無駄な判定処理にかかる処理負荷が抑えられる。   In addition, when the detected object is not a stationary body, this object may be excluded from the determination target whether it is a road surface installation object or an upper installation object. In this way, the processing load for useless determination processing can be suppressed.

本発明によれば、路面設置物と、特に背の低い停止車両やリフレクタ設置位置の低い停止車両と、を区別して検出することができる。   According to the present invention, it is possible to distinguish and detect a road surface installation object and a stop vehicle with a particularly short height or a stop vehicle with a low reflector installation position.

また、上方設置物と、特にトラック等の比較的背の高い停止車両と、を区別して検出することができる。   Further, it is possible to distinguish and detect an upper installation object and particularly a relatively tall stopped vehicle such as a truck.

以下、この発明の実施形態について説明する。   Embodiments of the present invention will be described below.

図1は、この発明にかかる物体検出装置を適用した、レーダ装置の主要部の構成を示すブロック図である。このレーダ装置1は、取り付けた車両(自車両)の前方に位置する物体の検出、および検出した物体までの距離の測定が行える。レーダ装置1は、探査波としてレーザ光を使用する。レーダ装置1は、制御部2と、LD(Laser Diode)3と、LD駆動部4と、走査部5と、垂直走査位置検出部6と、水平走査位置検出部7と、PD(Photo Diode)8と、受光部9と、メモリ10と、を備えている。   FIG. 1 is a block diagram showing a configuration of a main part of a radar apparatus to which an object detection apparatus according to the present invention is applied. The radar apparatus 1 can detect an object located in front of an attached vehicle (own vehicle) and measure a distance to the detected object. The radar apparatus 1 uses laser light as an exploration wave. The radar apparatus 1 includes a control unit 2, an LD (Laser Diode) 3, an LD driving unit 4, a scanning unit 5, a vertical scanning position detection unit 6, a horizontal scanning position detection unit 7, and a PD (Photo Diode). 8, a light receiving unit 9, and a memory 10.

制御部2は、レーダ装置1本体各部の動作を制御する。LD駆動部4は、制御部2からの指示にしたがって、LD3の発光を制御する。LD3から出射されたレーザ光は、このLD3の発光面に対向して配置した投光レンズ5aを介して、自車両前方に照射される。   The control unit 2 controls the operation of each part of the main body of the radar apparatus 1. The LD drive unit 4 controls the light emission of the LD 3 in accordance with an instruction from the control unit 2. The laser beam emitted from the LD 3 is irradiated to the front of the host vehicle through a light projecting lens 5a disposed to face the light emitting surface of the LD 3.

走査部5は、制御部2からの指示にしたがって、投光レンズ5aを移動し、自車両前方に照射しているレーザ光を所定の走査範囲で走査する。垂直走査位置検出部6は、走査部5によるレーザ光の垂直方向の走査位置を検出し、制御部2に出力する。また、水平走査位置検出部7は、走査部5によるレーザ光の水平方向の走査位置を検出し、制御部2に出力する。また、走査部5は、レーザ光の走査位置、すなわち投光レンズ5aの位置、に応じてPD8の受光面に対向させて配置した受光レンズ5bを移動させる。自車両前方に照射したレーザ光が前方の物体(例えば、車両や路面)で反射して戻ってきた反射光は、受光レンズ5bにより集光され、PD8の受光面に入射される。PD8は、入射されたレーザ光(反射波)の受光量に応じた信号出力する。受光部9は、PD8の出力信号を処理し、反射波の受光量を数値化し、これを反射波の強度として制御部2に出力する。制御部2は、入力された反射波の強度を、垂直走査位置検出部6と水平走査位置検出部7から入力された走査位置に対応してメモリ10に記億する。また、メモリ10には、検出した物体について、その物体が路面設置物や、上方設置物であると判定した物体であるかどうか示すフラグ等を記憶する。   The scanning unit 5 moves the light projecting lens 5a in accordance with an instruction from the control unit 2, and scans the laser light applied to the front of the host vehicle within a predetermined scanning range. The vertical scanning position detection unit 6 detects the scanning position of the laser beam in the vertical direction by the scanning unit 5 and outputs it to the control unit 2. Further, the horizontal scanning position detection unit 7 detects the scanning position of the laser beam in the horizontal direction by the scanning unit 5 and outputs it to the control unit 2. Further, the scanning unit 5 moves the light receiving lens 5b arranged to face the light receiving surface of the PD 8 in accordance with the scanning position of the laser light, that is, the position of the light projecting lens 5a. The reflected light that is reflected by the front object (for example, vehicle or road surface) of the laser beam irradiated in front of the host vehicle is collected by the light receiving lens 5b and is incident on the light receiving surface of the PD 8. The PD 8 outputs a signal corresponding to the amount of received laser light (reflected wave) received. The light receiving unit 9 processes the output signal of the PD 8, digitizes the amount of received light of the reflected wave, and outputs this to the control unit 2 as the intensity of the reflected wave. The control unit 2 stores the intensity of the input reflected wave in the memory 10 corresponding to the scanning position input from the vertical scanning position detection unit 6 and the horizontal scanning position detection unit 7. Further, the memory 10 stores a flag indicating whether or not the detected object is a road surface installation object or an object determined to be an upper installation object.

ここで言う路面設置物とは、路面標示や路面に埋め込まれた反射物(所謂、キャッツアイ)等であり、上方設置物とは、歩道橋や上方に設置された看板等である。路面設置物や、上方設置物は、自車両の走行を妨げる障害物ではない。   The road surface installation referred to here is a road marking, a reflective object embedded in the road surface (so-called cat's eye) or the like, and the upper installation object is a footbridge or a signboard installed above. The road surface installation object and the upper installation object are not obstacles that prevent the vehicle from traveling.

さらに、制御部2には、車速センサ20や車両制御部21等が接続されている。車速センサ20は、自車両の走行速度を検出し制御部2に入力する。車両制御部21は、制御部2から入力された、検出された前方の先行車両や障害物等の位置に応じて、先行車両の追従走行や、自車両の制動等にかかる自車両の走行制御を行う。   Furthermore, a vehicle speed sensor 20, a vehicle control unit 21, and the like are connected to the control unit 2. The vehicle speed sensor 20 detects the traveling speed of the host vehicle and inputs it to the control unit 2. The vehicle control unit 21 controls the traveling of the host vehicle according to the following traveling of the preceding vehicle, the braking of the host vehicle, or the like in accordance with the detected position of the preceding preceding vehicle or obstacle input from the control unit 2. I do.

ここで、走査部5について、より詳細に説明しておく。図2は、走査部の構成を示す図である。走査部5は、投光レンズ5a、および受光レンズ5bに加えて、駆動回路30と、水平方向駆動用コイル31と、垂直方向駆動用コイル32と、水平方向板バネ33と、垂直方向板バネ34とを備えている。制御部2は、走査位置を指示する制御信号を駆動回路30に入力する。駆動回路30は、入力された制御信号に基づき、水平方向駆動用コイル31と垂直方向駆動用コイル32に駆動電流を供給する。水平方向駆動用コイル31は、投光レンズ5aと受光レンズ5bを一体的に支持する支持部材を水平方向に移動させ、垂直方向用コイル32は、投光レンズ5aと受光レンズ5bを一体的に支持する支持部材を垂直方向に移動させる。支持部材は、水平方向板バネ33により水平方向に移動自在に支持されているとともに、垂直方向板バネ34により垂直方向に移動自在に支持されている。したがって、支持部材(投光レンズ5aと受光レンズ5b)は、駆動電流により水平方向駆動用コイル31に発生した力と水平方向板バネ33に発生する反力がつりあう水平方向の位置に移動して静止するとともに、垂直方向駆動用コイル32に発生した力と垂直方向板バネ34に発生する反力がつりあう位置に移動して静止する。   Here, the scanning unit 5 will be described in more detail. FIG. 2 is a diagram illustrating a configuration of the scanning unit. The scanning unit 5 includes a driving circuit 30, a horizontal driving coil 31, a vertical driving coil 32, a horizontal leaf spring 33, and a vertical leaf spring in addition to the light projecting lens 5a and the light receiving lens 5b. 34. The control unit 2 inputs a control signal indicating the scanning position to the drive circuit 30. The drive circuit 30 supplies a drive current to the horizontal direction drive coil 31 and the vertical direction drive coil 32 based on the input control signal. The horizontal driving coil 31 moves a support member that integrally supports the light projecting lens 5a and the light receiving lens 5b in the horizontal direction, and the vertical coil 32 integrally moves the light projecting lens 5a and the light receiving lens 5b. The supporting member to be supported is moved in the vertical direction. The support member is supported by a horizontal plate spring 33 so as to be movable in the horizontal direction, and supported by a vertical plate spring 34 so as to be movable in the vertical direction. Therefore, the support members (the light projecting lens 5a and the light receiving lens 5b) move to a horizontal position where the force generated in the horizontal driving coil 31 by the driving current and the reaction force generated in the horizontal leaf spring 33 are balanced. While stationary, it moves to a position where the force generated in the vertical driving coil 32 and the reaction force generated in the vertical leaf spring 34 are balanced, and is stationary.

なお、投光レンズ5a、および受光レンズ5bの位置は、図示していないセンサにより検出しており、このセンサ出力を駆動回路30に入力することでサーボ機構を構成している。   The positions of the light projecting lens 5 a and the light receiving lens 5 b are detected by a sensor (not shown), and the servo output is configured by inputting the sensor output to the drive circuit 30.

このように、走査部5は、投光レンズ5aおよび受光レンズ5bを、水平方向と垂直方向の両方向に移動することができる。走査部5による投光レンズ5aおよび受光レンズ5bの移動による、レーザ光の光路を図3に示す。図3(A)は、投光レンズ5aおよび受光レンズ5bを水平方向に移動したときのレーザ光の光路を示し、図3(B)は、投光レンズ5aおよび受光レンズ5bを垂直方向に移動したときのレーザ光の光路を示している。投光レンズ5aは、上述したように、LD3の発光面に対向して配置している。また、受光レンズ5bは、PD8の受光面に対向して配置している。   In this way, the scanning unit 5 can move the light projecting lens 5a and the light receiving lens 5b in both the horizontal direction and the vertical direction. FIG. 3 shows an optical path of the laser light caused by the movement of the light projecting lens 5a and the light receiving lens 5b by the scanning unit 5. 3A shows the optical path of the laser light when the light projecting lens 5a and the light receiving lens 5b are moved in the horizontal direction, and FIG. 3B shows the light projecting lens 5a and the light receiving lens 5b being moved in the vertical direction. The optical path of the laser beam is shown. As described above, the light projecting lens 5a is disposed to face the light emitting surface of the LD3. The light receiving lens 5b is disposed to face the light receiving surface of the PD 8.

LD3から出射されたレーザ光は、投光レンズ5aの中心方向に偏光される。投光レンズ5aの位置が中心にある場合は、図3(A)、(B)の実線で示した光路で、レーザ光は正面前方に照射される。正面前方に照射されたレーザ光は、前方の物体(例えば、車両や路面)で反射され、図3(A)、(B)の実線で示す光路で、受光レンズ5bに入射し、PD8によって受光される。また、走査部5によって、図中、上方向に投光レンズ5aが移動した場合、レーザ光は、図3(A)、(B)の点線で示した光路で、図中、上方向に照射される。そして、照射されたレーザ光は、図中、上方向の物体で反射され、図3(A)、(B)の点線で示す光路で、受光レンズ5bに入射し、PD8によって受光される。   The laser light emitted from the LD 3 is polarized in the center direction of the light projecting lens 5a. When the position of the light projecting lens 5a is at the center, the laser light is irradiated forward in front of the optical path shown by the solid line in FIGS. The laser light emitted in front of the front is reflected by a front object (for example, a vehicle or a road surface), enters the light receiving lens 5b along the optical path shown by the solid line in FIGS. 3A and 3B, and is received by the PD 8. Is done. Further, when the light projecting lens 5a is moved upward in the figure by the scanning unit 5, the laser beam is irradiated in the upward direction in the figure along the optical path indicated by the dotted lines in FIGS. 3 (A) and 3 (B). Is done. The irradiated laser light is reflected by an object in the upward direction in the figure, enters the light receiving lens 5b along the optical path indicated by the dotted line in FIGS. 3A and 3B, and is received by the PD 8.

このように、走査部5は、投光レンズ5aと受光レンズ5bを一体的に水平方向に移動することで、レーザ光を水平方向に走査することができる。また、同様に、走査部5は、投光レンズ35と受光レンズ36を一体的に垂直方向に移動することで、レーザ光を垂直方向に走査することができる。   Thus, the scanning unit 5 can scan the laser light in the horizontal direction by moving the light projecting lens 5a and the light receiving lens 5b integrally in the horizontal direction. Similarly, the scanning unit 5 can scan the laser light in the vertical direction by moving the light projecting lens 35 and the light receiving lens 36 integrally in the vertical direction.

次に、このレーダ装置1におけるレーザ光の走査について説明する。このレーダ装置1では、水平方向の走査を3フレームで構成している。各フレームは、右方向への走査である。また、各フレームの垂直方向におけるレーザ光の照射方向は、基準方向、この基準方向よりも下向きの下向き方向、および基準方向よりも上向きの上向き方向である。レーダ装置1は、図4に示すように、垂直方向におけるレーザ光の照射方向を上向き方向に設定した水平走査(以下、上走査と言う。)、垂直方向におけるレーザ光の照射方向を下向き方向に設定した水平走査(以下、下走査と言う。)、垂直方向におけるレーザ光の照射方向を基準方向に設定した水平走査(以下、基準走査と言う。)を、この順番に繰り返すことにより、水平方向および垂直方向の走査(2次元走査)を連続して行う。レーダ装置1は、検出した物体毎に、その物体が移動体、または停止体であるかどうかや、停止体である場合に、その停止体が路面標示や路面に埋め込まれた反射物等の路面設置物や、歩道橋や上方に設置された看板等の上方設置物であるかどうかを判定する。   Next, laser beam scanning in the radar apparatus 1 will be described. In the radar apparatus 1, horizontal scanning is composed of three frames. Each frame is a scan in the right direction. The irradiation direction of the laser beam in the vertical direction of each frame is a reference direction, a downward direction downward from the reference direction, and an upward direction upward from the reference direction. As shown in FIG. 4, the radar apparatus 1 has a horizontal scanning (hereinafter referred to as “upward scanning”) in which the laser beam irradiation direction in the vertical direction is set to the upward direction, and the laser beam irradiation direction in the vertical direction is set to the downward direction. By repeating the set horizontal scanning (hereinafter referred to as “downward scanning”) and the horizontal scanning (hereinafter referred to as “reference scanning”) in which the irradiation direction of the laser beam in the vertical direction is set as the reference direction, the horizontal direction is obtained. In addition, scanning in the vertical direction (two-dimensional scanning) is continuously performed. For each detected object, the radar apparatus 1 determines whether or not the object is a moving body or a stop body, and when the object is a stop body, the road surface such as a reflective object embedded in the road marking or the road surface. It is determined whether the object is an installation object or an upward installation object such as a pedestrian bridge or a signboard installed above.

図5は、レーダ装置の動作を示すフローチャートである。制御部2は、垂直方向におけるレーザ光の照射方向を基準方向に設定した基準走査が完了すると(s1)、今回の基準走査でレーザ光を照射した水平方向の検出領域毎に、レーザ光を反射したターゲットまでの距離を計測する(s2)。ターゲットまでの距離Lは、LD3がレーザ光を出射したタイミングT1から、PD4がLD3から出射されたレーザ光の反射光を受光したタイミングT2までの時間差(T2−T1)を用い、
L=c×(T2−T1)/2 (c:レーザ光の伝搬速度)
で算出できる。
FIG. 5 is a flowchart showing the operation of the radar apparatus. When the reference scanning in which the laser beam irradiation direction in the vertical direction is set as the reference direction is completed (s1), the control unit 2 reflects the laser beam for each horizontal detection region irradiated with the laser beam in the current reference scanning. The distance to the target is measured (s2). The distance L to the target uses a time difference (T2−T1) from timing T1 when the LD 3 emits the laser beam to timing T2 when the PD 4 receives the reflected light of the laser beam emitted from the LD 3.
L = c × (T2−T1) / 2 (c: propagation speed of laser light)
It can be calculated by

制御部2は、s2で検出したターゲットをグループ化する(s3)。s3では、今回検出したターゲット毎に、その位置を水平面上の2次元座標に変換する。今回の基準走査で検出したときの位置と前回の基準走査で検出したときの位置、自車両の速度を用いて、移動ベクトルを算出する。そして、その位置が近接し、且つ移動ベクトルがほぼ同じであるターゲットを同一物体であるとしてグループ化する。すなわち、同じグループに属するターゲットを、同じ物体として検出する。制御部2は、車速センサ20から入力されている自車両の走行速度を用いて、移動ベクトルを算出する。制御部2は、s3にかかるグループ化によって検出した物体毎に、自車両との距離、自車両に対する方位、その物体の幅等を算出する(s4)。そして、制御部2は、今回検出した物体毎に、自車両の走行を妨げる停止車両等の障害物であるかどうかを判定する障害物判定処理を行う(s5)。   The control unit 2 groups the targets detected in s2 (s3). In s3, for each target detected this time, the position is converted into two-dimensional coordinates on the horizontal plane. A movement vector is calculated using the position detected by the current reference scan, the position detected by the previous reference scan, and the speed of the host vehicle. Then, the targets whose positions are close and whose movement vectors are substantially the same are grouped as the same object. That is, targets belonging to the same group are detected as the same object. The control unit 2 calculates a movement vector using the traveling speed of the host vehicle input from the vehicle speed sensor 20. For each object detected by the grouping related to s3, the control unit 2 calculates a distance from the own vehicle, an orientation relative to the own vehicle, a width of the object, and the like (s4). And the control part 2 performs the obstruction determination process which determines whether it is obstructions, such as a stop vehicle which prevents driving | running | working of the own vehicle for every object detected this time (s5).

図6は、この障害物判定処理を示すフローチャートである。制御部2は、今回の基準走査で検出した検出物体の中から、本処理の判定対象とする検出物体を決定する(s11)。制御部2は、判定対象とした検出物体について、路面設置物であるかどうかを示す路面設置物フラグ、および上方設置物であるかどうかを示す上方設置物フラグをリセットする(s12)。制御部2は、判定対象とした検出物体が停止体であるかどうかを判定する(s13)。s13では、先に算出した、この検出物体の移動ベクトルによって停止体であるかどうかを判定する。制御部2は、s13で停止体でないと判定すると、今回の基準走査で検出した検出物体の中に、本処理を行っていない未処理の検出物体があるかどうかを判定し(s17)、未処理の検出物体があればs11に戻る。未処理の検出物体がなければ、本処理を終了する。   FIG. 6 is a flowchart showing this obstacle determination process. The control unit 2 determines a detection object to be determined in this process from the detection objects detected by the current reference scan (s11). The control unit 2 resets a road surface installation flag indicating whether the detected object is a road surface installation object and an upper installation object flag indicating whether it is an upper installation object (s12). The control unit 2 determines whether or not the detected object as a determination target is a stationary body (s13). In s13, it is determined whether or not the object is a stationary body based on the previously calculated movement vector of the detected object. When determining that the object is not a stop object in s13, the control unit 2 determines whether there is an unprocessed detected object that has not been subjected to the present process among the detected objects detected in the current reference scan (s17). If there is a detected object to be processed, the process returns to s11. If there is no unprocessed detected object, this process ends.

なお、s13では、判定対象の検出物体が、移動体であると判定した場合だけでなく、停止体であるか移動体であるか判定できなかった場合も、s17に進む。   In s13, the process proceeds to s17 not only when it is determined that the detection object to be determined is a moving body, but also when it is not possible to determine whether the detection object is a stop body or a moving body.

制御部2は、s13で停止体であると判定すると、この物体が路面設置物であるかどうかを判定する路面設置物判定処理を行う(s14)。   When determining that the object is a stopped body in s13, the controller 2 performs a road surface installation determination process for determining whether or not the object is a road surface installation (s14).

図7は、路面設置物判定処理を示すフローチャートである。制御部2は、上述のs11で判定対象とした検出物体について、今回の基準走査で検出した、この検出物体までの距離が予め定めた路面設置物判定距離D1よりも短いかどうかを判定する(s21)。制御部2は、この検出物体までの距離が路面設置物判定距離D1以上であれば、この検出物体を路面設置物でないと判定し、本処理を終了する。   FIG. 7 is a flowchart showing a road surface installation determination process. The control unit 2 determines whether the distance to the detected object detected by the current reference scan is shorter than the predetermined road surface installation determination distance D1 for the detected object to be determined in s11 described above ( s21). If the distance to the detected object is equal to or greater than the road surface installation determination distance D1, the control unit 2 determines that the detected object is not a road surface installation object, and ends the present process.

制御部2は、この検出物体までの距離が路面設置物判定距離D1よりも短ければ、直前の下走査で得られた、この検出物体からの反射波の強度(PD8の受光量)が、前回の上走査で得られた、この検出物体からの反射波の強度の路面設置物判定係数倍(×α1)よりも大きいかどうかを判定する(s22)。α1は、1以上の値が好ましい。制御部2は、前回の下走査で得られたこの検出物体からの反射波の強度が、前回の上走査で得られたこの検出物体からの反射波の強度の路面設置物判定係数倍(×α1)よりも小さいと判定すると、本処理を終了する。   If the distance to the detected object is shorter than the road surface installation determination distance D1, the control unit 2 determines that the intensity of the reflected wave from the detected object (the amount of light received by the PD8) obtained in the previous down scan is the previous time. It is determined whether or not the intensity of the reflected wave from the detected object obtained by the upper scanning is larger than the road surface installation object determination coefficient multiple (× α1) (s22). α1 is preferably a value of 1 or more. The control unit 2 determines that the intensity of the reflected wave from the detected object obtained in the previous lower scan is a road surface installation object determination coefficient multiple of the intensity of the reflected wave from the detected object obtained in the previous upper scan (× If it is determined that it is smaller than α1), this process is terminated.

制御部2は、前回の下走査で得られたこの検出物体からの反射波の強度が、前回の上走査で得られたこの検出物体からの反射波の強度の路面設置物判定係数倍(×α1)よりも大きいと判定すると、前回の下走査で得られた、この検出物体からの反射波の強度が、今回の基準走査で得られた、この検出物体からの反射波の強度よりも大きいかどうかを判定する(s23)。制御部2は、前回の下走査で得られたこの検出物体からの反射波の強度が、今回の基準走査で得られた、この検出物体からの反射波の強度以下であると判定すると、本処理を終了する。一方、制御部2は、前回の下走査で得られた、この検出物体からの反射波の強度が、今回の基準走査で得られた、この検出物体からの反射波の強度よりも大きいと判定すると、この検出物体について、路面設置物判定フラグをセットし(s24)、本処理を終了する。s24では、検出物体を、路面設置物であると判定している。   The control unit 2 determines that the intensity of the reflected wave from the detected object obtained in the previous lower scan is a road surface installation object determination coefficient multiple of the intensity of the reflected wave from the detected object obtained in the previous upper scan (× If it is determined that it is greater than α1), the intensity of the reflected wave from the detected object obtained in the previous lower scan is greater than the intensity of the reflected wave from the detected object obtained in the current reference scan. Is determined (s23). When the control unit 2 determines that the intensity of the reflected wave from the detected object obtained in the previous lower scan is equal to or lower than the intensity of the reflected wave from the detected object obtained in the current reference scan, The process ends. On the other hand, the control unit 2 determines that the intensity of the reflected wave from the detected object obtained in the previous lower scan is greater than the intensity of the reflected wave from the detected object obtained in the current reference scan. Then, a road surface installation determination flag is set for this detected object (s24), and this process is terminated. In s24, it is determined that the detected object is a road surface installation object.

このように、制御部2は、検出物体について、以下の(a)〜(d)の4つの条件が成立したときに、その検出物体を自車両の走行を妨げない路面設置物であると判定する。   As described above, when the following four conditions (a) to (d) are satisfied for the detected object, the control unit 2 determines that the detected object is a road surface installation that does not hinder the traveling of the host vehicle. To do.

(a)停止物体である
(b)自車両からの距離が予め定めた路面設置物判定距離D1よりも短い
(c)前回の下走査で得られた反射波の強度が、前回の上走査で得られた反射波の強度の路面設置物判定係数倍(×α1)よりも大きい
(d)前回の下走査で得られた反射波の強度が、今回の基準走査で得られた反射波の強度よりも大きい
ここで、自車両が路面設置物の上を通過する場合のレーザ光の照射状況を図8に示す。図8に示すように、基本的には下走査において、レーザ光が路面設置物に照射されるが、レーザ光の広がりや道路勾配等の要因により、上走査や基準走査においても、レーザ光が路面設置物に照射されることがある。この場合の受光量分布例を図9に示す。図9に示すように、下走査で得られる反射波の受光量が、上走査や基準走査で得られる受光量に対し突出した大きさになる。このことから、上述の(c)、(d)の条件により、検出物体が路面設置物であるかどうかの判定が、受光量に基づいて判定できる。
(A) Stopped object (b) The distance from the host vehicle is shorter than the predetermined road surface installation determination distance D1 (c) The intensity of the reflected wave obtained in the previous lower scan is the previous upper scan (D) The intensity of the reflected wave obtained in the previous down scan is the intensity of the reflected wave obtained in the current reference scan. Here, the irradiation state of the laser beam when the host vehicle passes over the road surface installation is shown in FIG. As shown in FIG. 8, the laser beam is irradiated on the road surface installation basically in the lower scan, but the laser beam is also emitted in the upper scan and the reference scan due to factors such as the spread of the laser beam and the road gradient. Road surface installations may be irradiated. An example of the received light amount distribution in this case is shown in FIG. As shown in FIG. 9, the received light amount of the reflected wave obtained by the lower scan becomes a size protruding from the received light amount obtained by the upper scan and the reference scan. From this, it can be determined based on the amount of received light whether or not the detected object is a road surface installation object under the above conditions (c) and (d).

なお、上述の(c)における路面設置物判定係数α1は、上走査と、下走査とにおけるレーザ光の垂直方向の照射角度差や、レーザ光の垂直方向の拡がり角等に基づいて適当に設定すればよく、例えばα1は10程度にすればよい。   Note that the road surface installation object determination coefficient α1 in (c) is appropriately set based on the vertical irradiation angle difference of the laser light between the upper scanning and the lower scanning, the vertical spread angle of the laser light, and the like. For example, α1 may be about 10.

一方で、図10に示すように、自車両が背の低い車両やリフレクタ設置位置の低い停止車両に接近する場合にも、この停止車両からある程度離れた遠方で、上走査、基準走査、および下走査で得られる受光量が図9に示す状態になることがある。この場合に、この停止車両を、路面設置物であると誤判定をするのを防止するために、上述の(b)の条件を設けている。図10(A)に示すように、背の低い車両やリフレクタ設置位置の低い停止車両から、ある程度離れた遠方では上走査、基準走査、および下走査で得られる受光量が図9に示す状態になるが、図10(B)に示すように、停止車両に対してある程度まで接近したときには、上走査、基準走査、および下走査で得られる受光量は、図11に示す状態になる。これは、自車両が停止車両に対してある程度まで接近したときには、背の低い車両やリフレクタ設置位置の低い停止車両であっても、基準走査のレーザ光がリフレクタによって反射されるからである。   On the other hand, as shown in FIG. 10, even when the host vehicle approaches a short vehicle or a stopped vehicle with a low reflector installation position, the upper scan, the reference scan, and the lower scan are performed at some distance from the stopped vehicle. The amount of light received by scanning may be in the state shown in FIG. In this case, the condition (b) described above is provided in order to prevent the stop vehicle from being erroneously determined as a road surface installation. As shown in FIG. 10A, the amount of light received by the upper scan, the reference scan, and the lower scan is as shown in FIG. 9 at a distance far from a short vehicle or a stopped vehicle with a low reflector installation position. However, as shown in FIG. 10B, when the vehicle approaches the vehicle to a certain extent, the received light amount obtained by the upper scan, the reference scan, and the lower scan is in the state shown in FIG. This is because when the host vehicle approaches the stopped vehicle to some extent, the reference scanning laser beam is reflected by the reflector even if the vehicle is a short vehicle or a stopped vehicle with a low reflector installation position.

上述したように、路面設置物判定距離D1にかかる条件(b)を設けているので、図10(A)に示す状況で検出した検出物体が路面設置物であると誤判定されるのを防止でき、その結果、検出物体に対する路面設置物であるかどうかの判定精度を向上することができる。   As described above, since the condition (b) relating to the road surface installation object determination distance D1 is provided, it is possible to prevent the detection object detected in the situation shown in FIG. 10A from being erroneously determined as a road surface installation object. As a result, it is possible to improve the determination accuracy of whether or not the detected object is a road surface installation.

なお、路面設置物判定距離D1は、下走査と、基準走査とにおけるレーザ光の垂直方向の照射角度差や、レーザ光の垂直方向の拡がり角等に基づいて適当に設定すればよく、例えばD1は30m程度に設定すればよい。   Note that the road surface installation object determination distance D1 may be appropriately set based on the vertical irradiation angle difference of the laser light between the downward scanning and the reference scanning, the vertical divergence angle of the laser light, and the like. May be set to about 30 m.

図6に戻って、制御部2は、s14にかかる路面設置物判定処理を行うと、今回の処理対象である検出物体について、路面設置物判定フラグがセットされているかどうかを判定する(s15)。すなわち、s14にかかる路面設置物判定処理で路面設置物であると判定されたかどうかを判定する。制御部2は、s15で路面設置物判定フラグがセットされていると判定すると、s17に進む。一方、s15で路面設置物判定フラグがセットされていないと判定すると、s16に進み、以下に示す上方設置物判定処理を行い、s17に進む。   Returning to FIG. 6, when the road surface installation determination process according to s14 is performed, the control unit 2 determines whether or not the road surface installation determination flag is set for the detected object that is the current processing target (s15). . That is, it is determined whether or not it is determined that the road surface installation object is determined in the road surface installation object determination process according to s14. When determining that the road surface installation determination flag is set in s15, the control unit 2 proceeds to s17. On the other hand, if it determines with the road surface installation determination flag not being set by s15, it will progress to s16, will perform the upper installation determination process shown below, and will progress to s17.

図12は、上方設置物判定処理を示すフローチャートである。制御部2は、今回の基準走査で検出した、この検出物体(s11で、本処理の判定対象とした検出物体)までの距離が予め定めた上方設置物判定距離D2よりも長いかどうかを判定する(s31)。上方設置物判定距離D2は、上述した路面設置物判定距離D1よりも長い。制御部2は、この検出物体までの距離が上方設置物判定距離D2以下であれば、この物体を上方設置物と判定することなく本処理を終了する。   FIG. 12 is a flowchart showing the upward installation object determination process. The control unit 2 determines whether or not the distance to the detected object (detected object to be determined in this process in s11) detected by the current reference scan is longer than a predetermined upper installation object determination distance D2. (S31). The upper installation object determination distance D2 is longer than the road surface installation object determination distance D1 described above. If the distance to the detected object is equal to or less than the upper installation object determination distance D2, the control unit 2 ends this process without determining that the object is an upper installation object.

制御部2は、この検出物体までの距離が上方設置物判定距離D2よりも長ければ、前回の上走査で得られた、この検出物体からの反射波の強度が、前回の下走査で得られた、この検出物体からの反射波の強度の上方設置物判定係数倍(×α2)よりも大きいかどうかを判定する(s32)。制御部2は、前回の上走査で得られた、この検出物体からの反射波の強度が、前回の下走査で得られた、この検出物体からの反射波の強度の上方設置物判定係数倍(×α2)よりも大きくないと判定すると、本処理を終了する。α2は、1以上の値が好ましい。   If the distance to the detection object is longer than the upper object determination distance D2, the control unit 2 obtains the intensity of the reflected wave from the detection object obtained in the previous upper scan in the previous lower scan. In addition, it is determined whether or not the intensity of the reflected wave from the detected object is greater than the upper object determination coefficient multiple (× α2) (s32). The control unit 2 determines that the intensity of the reflected wave from the detected object obtained in the previous upper scan is the upper object determination coefficient times the intensity of the reflected wave from the detected object obtained in the previous lower scan. If it is determined that it is not larger than (× α2), this process is terminated. α2 is preferably a value of 1 or more.

制御部2は、前回の上走査で得られたこの検出物体からの反射波の強度が、前回の下走査で得られたこの検出物体からの反射波の強度の上方設置物判定係数倍(×α2)よりも大きいと判定すると、前回の上走査で得られたこの検出物体からの反射波の強度が、今回の基準走査で得られたこの検出物体からの反射波の強度よりも大きいかどうかを判定する(s33)。制御部2は、前回の上走査で得られたこの検出物体からの反射波の強度が、今回の基準走査で得られたこの検出物体からの反射波の強度以下であると判定すると、本処理を終了する。一方、制御部2は、前回の上走査で得られたこの検出物体からの反射波の強度が、今回の基準走査で得られたこの検出物体からの反射波の強度よりも大きいと判定すると、この検出物体について、上方設置物判定フラグをセットし(s34)、本処理を終了する。s34では、検出物体を、上方設置物であると判定している。   The control unit 2 is configured such that the intensity of the reflected wave from the detected object obtained in the previous upper scan is multiplied by the upper object determination coefficient times the intensity of the reflected wave from the detected object obtained in the previous lower scan (× If it is determined that it is greater than α2), whether the intensity of the reflected wave from the detected object obtained in the previous upper scan is greater than the intensity of the reflected wave from the detected object obtained in the current reference scan Is determined (s33). When the control unit 2 determines that the intensity of the reflected wave from the detected object obtained in the previous upper scan is less than or equal to the intensity of the reflected wave from the detected object obtained in the current reference scan, Exit. On the other hand, when the control unit 2 determines that the intensity of the reflected wave from the detected object obtained in the previous upper scan is larger than the intensity of the reflected wave from the detected object obtained in the current reference scan, For this detected object, the upper object determination flag is set (s34), and this process is terminated. In s34, it is determined that the detected object is an upward installation object.

このように、制御部2は、検出物体について、以下の(f)〜(i)の4つの条件が成立したときに、その検出物体を自車両の走行を妨げない上方設置物であると判定する。   As described above, when the following four conditions (f) to (i) are satisfied for the detected object, the control unit 2 determines that the detected object is an upward installation that does not hinder the traveling of the host vehicle. To do.

(f)停止物体である
(g)自車両からの距離が予め定めた上方設置物判定距離D2よりも長い
(h)前回の上走査で得られた反射波の強度が、前回の下走査で得られた反射波の強度の上方設置物判定係数倍(×α2)よりも大きい
(i)前回の上走査で得られた反射波の強度が、今回の基準走査で得られた反射波の強度よりも大きい
ここで、自車両が上方設置物(頭上看板)の下を通過する場合のレーザ光の照射状況を図13に示す。図13に示すように、基本的には上走査において、レーザ光が上方設置物に照射されるが、レーザ光の広がりや道路勾配等の要因により、基準走査や下走査においてもレーザ光が上方設置物に照射されることがある。この場合の受光量分布例を図14に示す。図14に示すように、上走査で得られる受光量が、基準走査や下走査で得られる受光量に対し突出した大きさになる。このことから、上述の(h)、(i)の条件により、検出物体が上方設置物であるかどうかの判定が、受光量に基づいて判定できる。
(F) Stopped object (g) The distance from the host vehicle is longer than a predetermined upper installation object determination distance D2. (H) The intensity of the reflected wave obtained in the previous upper scan is the previous lower scan. (I) The intensity of the reflected wave obtained in the previous upper scan is greater than the intensity of the reflected wave obtained in the current reference scan. Here, FIG. 13 shows an irradiation state of the laser beam when the host vehicle passes under the upper installation object (overhead signboard). As shown in FIG. 13, basically, the laser beam is irradiated to the upper object in the upper scan, but the laser beam is also raised in the reference scan and the lower scan due to factors such as the spread of the laser beam and the road gradient. The installation may be irradiated. An example of the received light amount distribution in this case is shown in FIG. As shown in FIG. 14, the amount of received light obtained by the upper scan becomes a size protruding from the amount of received light obtained by the reference scan and the lower scan. From this, it can be determined based on the amount of received light whether or not the detected object is an upward installation object under the above conditions (h) and (i).

なお、上述の(h)における上方設置物判定係数α2は、上走査と、下走査とにおけるレーザ光の垂直方向の照射角度差や、レーザ光の垂直方向の拡がり角等に基づいて適当に設定すればよい。路面設置物判定係数α1と、上方設置物判定係数α2と、は同じ値であってもよいし、異なっていてもよい。例えば、α2は、α1と同じ10程度に設定すればよい。   Note that the upper object determination coefficient α2 in (h) is appropriately set based on the vertical irradiation angle difference of the laser light between the upper scanning and the lower scanning, the vertical spread angle of the laser light, and the like. do it. The road surface installation determination coefficient α1 and the upper installation determination coefficient α2 may be the same value or may be different. For example, α2 may be set to about 10 which is the same as α1.

一方で、図15に示すように、自車両がトラック等の背の高い停止車両に接近した場合に、上走査、基準走査、および下走査で得られる受光量が、上述した図14に示す状態になることがある。この場合に、この停止車両を、上方設置物であると誤判定をするのを防止するために、上述の(g)の条件を設けている。図15(A)に示すように、トラック等の背の高い停止車両に接近したときには、上走査、基準走査、および下走査で得られる受光量が図14に示す状態になるが、図15(B)に示すように、この停止車両に対してある程度離れた位置では、上走査、基準走査、および下走査で得られる受光量は、図11に示す状態になる。これは、自車両がトラック等の背の高い停止車両に接近したときには、上走査で停止車両のリフレクタに照射されるレーザ光の光量が増大し、基準走査のレーザ光がリフレクタに照射されるからである。   On the other hand, as shown in FIG. 15, when the host vehicle approaches a tall stopped vehicle such as a truck, the amount of received light obtained by the upper scan, the reference scan, and the lower scan is the state shown in FIG. May be. In this case, in order to prevent the stop vehicle from being erroneously determined to be an upward installation object, the above-described condition (g) is provided. As shown in FIG. 15 (A), when approaching a tall stopped vehicle such as a truck, the amount of received light obtained by the upper scan, the reference scan, and the lower scan becomes the state shown in FIG. As shown in FIG. 11B, the received light amount obtained by the upper scan, the reference scan, and the lower scan is in the state shown in FIG. This is because when the host vehicle approaches a tall stopped vehicle such as a truck, the amount of laser light applied to the reflector of the stopped vehicle in the upper scan increases, and the laser beam of the reference scan is applied to the reflector. It is.

上述のように、上方設置物判定距離D2にかかる条件(g)を設けているので、図15(A)に示す状況で検出した検出物体が上方設置物であると誤判定されるのを防止でき、その結果、検出物体に対する上方設置物であるかどうかの判定精度を向上することができる。   As described above, since the condition (g) relating to the upper installation object determination distance D2 is provided, it is possible to prevent the detection object detected in the situation illustrated in FIG. 15A from being erroneously determined to be the upper installation object. As a result, it is possible to improve the determination accuracy as to whether or not the object is an upward installation object.

なお、上方設置物判定距離D2は、下走査と、基準走査とにおけるレーザ光の垂直方向の照射角度差や、レーザ光の垂直方向の拡がり角等に基づいて適当に設定すればよく、例えばD2は50m程度に設定すればよい。   The upper object determination distance D2 may be appropriately set based on the vertical irradiation angle difference of the laser light between the lower scanning and the reference scanning, the vertical spread angle of the laser light, and the like. May be set to about 50 m.

制御部21は、今回の基準走査で検出した全ての検出物体について、s5にかかる障害物判定処理を完了すると、その処理結果を車両制御部21等に通知する(s6)。車両制御部21は、通知された処理結果に基づいて、自車両の走行制御を行う。   When the obstacle determination process for s5 is completed for all the detected objects detected in the current reference scan, the control unit 21 notifies the vehicle control unit 21 and the like of the processing result (s6). The vehicle control unit 21 performs traveling control of the host vehicle based on the notified processing result.

また、上記実施形態では、路面設置物判定処理において、上述した(c)、(d)にかかる判定を行うとしたが、この(c)にかかる判定を無くしてもよい。また、(d)にかかる判定を、前回の下走査で得られた反射波の強度が、今回の基準走査で得られた反射波の強度の所定倍(×α3、例えば、α3は、1.2程度)よりも大きいかどうかを判定する処理に置き換えてもよい。   Moreover, in the said embodiment, although the determination concerning (c) and (d) mentioned above was performed in the road surface installation thing determination process, the determination concerning this (c) may be eliminated. Further, in the determination of (d), the intensity of the reflected wave obtained in the previous lower scan is a predetermined multiple of the intensity of the reflected wave obtained in the current reference scan (× α3, for example, α3 is about 1.2. ) May be replaced with a process for determining whether or not it is greater than.

同様に、上述の上方設置物判定処理における、上述した(h)にかかる判定を無くしてもよい。また、(i)にかかる判定を、前回の上走査で得られた反射波の強度が、今回の基準走査で得られた反射波の強度の所定倍(×α4、例えば、α4は、1.2程度)よりも大きいかどうかを判定する処理に置き換えてもよい。   Similarly, the determination relating to (h) described above in the above-described upper object determination process may be eliminated. Further, in the determination according to (i), the intensity of the reflected wave obtained in the previous upper scan is a predetermined multiple of the intensity of the reflected wave obtained in the current reference scan (× α4, for example, α4 is about 1.2. ) May be replaced with a process for determining whether or not it is greater than.

また、停止体であることが確認できていない検出物体については、路面設置物判定処理や上方設置物判定処理を行わないので、無駄な判定処理の実行が抑えられ、装置本体の負荷を低減することができる。   In addition, for a detected object that has not been confirmed to be a stationary body, the road surface installation object determination process and the upper object determination process are not performed, so execution of useless determination processes can be suppressed and the load on the apparatus main body can be reduced. be able to.

上述した、実施形態では、上走査、下走査、基準走査の順番に繰り返した。これに限らず、上走査、基準走査、下走査、基準走査のような順番で繰り返し、基準走査を行う毎に、上述した障害物判定処理を実行する構成としてもよい。   In the above-described embodiment, the scan is repeated in the order of the upper scan, the lower scan, and the reference scan. The present invention is not limited to this, and the above-described obstacle determination process may be executed each time the reference scan is performed repeatedly in the order of the upper scan, the reference scan, the lower scan, and the reference scan.

また、上述した実施形態では、レーザ光を探査波として使用する装置を例にして本願発明を説明したが、本願発明は、探査波としてミリ波等の電波を使用する物体検出装置にも適用できる。例えば、ミリ波を機械的に走査し、走査した方向からの反射波があった場合に、ミリ波を出射した方向を物体検出方向とする構成の装置や、出射したミリ波の反射の位相差に基づいて、物体検出方向を算出する構成の装置にも、適用できる。探査波としてミリ波を使用する装置における検出物体までの距離の検出は、ミリ波を照射してから反射波を検出するまでの時刻差に基づいて行える。このように、本願発明は、出射した探査波を反射した物体が存在する方位、この物体までの距離、および反射波の強度を検出することができる構成の装置であれば、適用可能である。   In the above-described embodiment, the present invention has been described by taking an apparatus that uses laser light as a search wave as an example. However, the present invention can also be applied to an object detection apparatus that uses a radio wave such as a millimeter wave as a search wave. . For example, when a millimeter wave is mechanically scanned and there is a reflected wave from the scanned direction, an apparatus configured to set the direction in which the millimeter wave is emitted as an object detection direction, or a phase difference in reflection of the emitted millimeter wave The present invention can also be applied to an apparatus configured to calculate the object detection direction based on the above. Detection of the distance to the detection object in a device that uses millimeter waves as the exploration wave can be performed based on the time difference from the irradiation of the millimeter wave to the detection of the reflected wave. As described above, the present invention can be applied to any apparatus that can detect the azimuth in which an object reflecting the emitted exploration wave exists, the distance to the object, and the intensity of the reflected wave.

レーダ装置の主要部の構成を示す図である。It is a figure which shows the structure of the principal part of a radar apparatus. 走査部の構成を示す図である。It is a figure which shows the structure of a scanning part. 投光レンズと受光レンズの移動によるレーザ光の光路変化を説明する図である。It is a figure explaining the optical path change of the laser beam by the movement of a light projection lens and a light reception lens. 上走査、基準走査、下走査の繰り返しを説明する図である。It is a figure explaining repetition of a top scan, a standard scan, and a bottom scan. レーダ装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a radar apparatus. 障害物判定処理を示すフローチャートである。It is a flowchart which shows an obstacle determination process. 路面設置物判定処理を示すフローチャートである。It is a flowchart which shows a road surface installation thing determination process. 自車両が路面設置物の上を通過する場合のレーザ光の照射状況を示す図である。It is a figure which shows the irradiation condition of the laser beam when the own vehicle passes on the road surface installation thing. 上走査、基準走査、および下走査における、自車両が路面設置物の上を通過する場合の受光量を示す図である。It is a figure which shows the light reception amount in case the own vehicle passes on the road surface installation thing in an upper scan, a reference | standard scan, and a lower scan. 自車両が背の低い車両やリフレクタ設置位置の低い停止車両に接近する場合のレーザ光の照射状況を示す図である。It is a figure which shows the irradiation condition of the laser beam when the own vehicle approaches a short vehicle or a stop vehicle with a low reflector installation position. 上走査。基準走査、および下走査における、先行車両からの反射波の受光量を示す図である。Scan up. It is a figure which shows the light reception amount of the reflected wave from a preceding vehicle in a reference | standard scan and a downward scan. 上方設置物判定処理を示すフローチャートである。It is a flowchart which shows an upper installation thing determination process. 自車両が上方設置物の下を通過する場合のレーザ光の照射状況を示す図である。It is a figure which shows the irradiation condition of the laser beam when the own vehicle passes under the installation object of the upper direction. 上走査、基準走査、および下走査における、自車両が上方設置物の下を通過する場合の受光量を示す図である。It is a figure which shows the light reception amount in case the own vehicle passes under the installation object in an upper scan, a reference | standard scan, and a lower scan. 自車両がトラック等の背の高い停止車両に接近する場合のレーザ光の照射状況を示す図である。It is a figure which shows the irradiation condition of the laser beam when the own vehicle approaches a tall stop vehicle, such as a truck.

符号の説明Explanation of symbols

1−レーダ装置
2−制御部
3−LD(Laser Diode)
4−LD駆動部
5−走査部
6−垂直走査位置検出部
7−水平走査位置検出部
8−PD(Photo Diode)
9−受光部
10−メモリ
1-Radar device 2-Control unit 3-LD (Laser Diode)
4-LD driving unit 5-Scanning unit 6-Vertical scanning position detection unit 7-Horizontal scanning position detection unit 8-PD (Photo Diode)
9-Light receiving unit 10-Memory

Claims (5)

車両に取り付け、この車両の前方に位置する物体を検出する物体検出装置において、
前記車両の前方に探査波を照射する照射手段と、
前記照射手段が照射した探査波の反射波を検出する検出手段と、
前記照射手段が探査波を照射してから、前記検出手段で反射波を検出するまでの時間に基づいて、今回照射した探査波を反射した物体までの距離を演算する距離演算手段と、
前記照射手段が照射する探査波の垂直方向における照射方向を、基準方向と、この基準方向よりも下向きの下向き方向と、の間で切り換える照射方向切替手段と、
前記距離演算手段で演算された距離が予め定めた路面設置物判定距離よりも短く、且つ、反射波の強度が、前記基準方向に照射したときよりも、前記下向き方向に照射したときのほうが大きい物体を、路面設置物と判定する物体判定手段と、を備えた物体検出装置。
In an object detection device that is attached to a vehicle and detects an object located in front of the vehicle,
Irradiating means for irradiating exploration waves in front of the vehicle;
Detecting means for detecting a reflected wave of the exploration wave irradiated by the irradiation means;
Based on the time from when the irradiating means irradiates the exploration wave until the detection means detects the reflected wave, distance calculating means for calculating the distance to the object that reflected the exploration wave irradiated this time;
Irradiation direction switching means for switching the irradiation direction in the vertical direction of the exploration wave emitted by the irradiation means between a reference direction and a downward direction downward from the reference direction;
The distance calculated by the distance calculation means is shorter than the predetermined road surface installation object determination distance, and the intensity of the reflected wave is larger when irradiated in the downward direction than when irradiated in the reference direction. An object detection device comprising: object determination means for determining an object as a road surface installation object.
車両に取り付け、この車両の前方に位置する物体を検出する物体検出装置において、
前記車両の前方に探査波を照射する照射手段と、
前記照射手段が照射した探査波の反射波を検出する検出手段と、
前記照射手段が探査波を照射してから、前記検出手段で反射波を検出するまでの時間に基づいて、今回照射した探査波を反射した物体までの距離を演算する距離演算手段と、
前記照射手段が照射する探査波の垂直方向における照射方向を、基準方向と、この基準方向よりも上向きの上向き方向と、の間で切り換える照射方向切替手段と、
前記距離演算手段で演算された距離が予め定めた上方設置物判定距離よりも長く、且つ、反射波の強度が、前記基準方向に照射したときよりも、前記上向き方向に照射したときのほうが大きい物体を、上方設置物と判定する物体判定手段と、を備えた物体検出装置。
In an object detection device that is attached to a vehicle and detects an object located in front of the vehicle,
Irradiating means for irradiating exploration waves in front of the vehicle;
Detecting means for detecting a reflected wave of the exploration wave irradiated by the irradiation means;
Based on the time from when the irradiating means irradiates the exploration wave until the detection means detects the reflected wave, distance calculating means for calculating the distance to the object that reflected the exploration wave irradiated this time;
An irradiation direction switching means for switching the irradiation direction in the vertical direction of the exploration wave irradiated by the irradiation means between a reference direction and an upward direction upward from the reference direction;
The distance calculated by the distance calculation means is longer than the predetermined upper object determination distance, and the intensity of the reflected wave is larger when irradiated in the upward direction than when irradiated in the reference direction. An object detection device comprising: object determination means for determining an object as an upward installation object.
前記照射方向切替手段は、前記照射手段が照射する探査波の垂直方向における照射方向を、前記基準方向、および前記下向き方向に加えて、前記基準方向よりも上向きの上向き方向にも切り換える手段であり、
前記物体判定手段は、前記距離演算手段で演算された距離が予め定めた上方設置物判定距離よりも長く、且つ、反射波の強度が、前記基準方向に照射したときよりも、前記上向き方向に照射したときのほうが大きい物体を、上方設置物と判定する手段である、請求項1に記載の物体検出装置。
The irradiation direction switching means is a means for switching the irradiation direction in the vertical direction of the exploration wave irradiated by the irradiation means to the upward direction upward from the reference direction in addition to the reference direction and the downward direction. ,
The object determining means is longer in the upward direction than when the distance calculated by the distance calculating means is longer than a predetermined upper object determination distance and the intensity of the reflected wave is irradiated in the reference direction. The object detection apparatus according to claim 1, wherein the object detection apparatus is a unit that determines an object that is larger when irradiated as an upward installation object.
前記路面設置物判定距離は、前記上方設置物判定距離よりも短い、請求項3に記載の物体検出装置。   The object detection apparatus according to claim 3, wherein the road surface installation object determination distance is shorter than the upper installation object determination distance. 検出した物体が停止体であるかどうかを判定する停止体判定手段と、
前記停止体判定手段が停止体であると判定しなかった物体については、前記物体判定手段での処理対象から除外する処理対象制限手段と、を備えた請求項1〜4のいずれかに記載の物体検出装置。
Stop body determination means for determining whether the detected object is a stop body;
The object according to any one of claims 1 to 4, further comprising: a process target restriction unit that excludes the object that has not been determined by the stop object determination unit as a stop object from being processed by the object determination unit. Object detection device.
JP2008141404A 2008-05-29 2008-05-29 Object detection device Expired - Fee Related JP5184973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141404A JP5184973B2 (en) 2008-05-29 2008-05-29 Object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141404A JP5184973B2 (en) 2008-05-29 2008-05-29 Object detection device

Publications (2)

Publication Number Publication Date
JP2009288097A true JP2009288097A (en) 2009-12-10
JP5184973B2 JP5184973B2 (en) 2013-04-17

Family

ID=41457448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141404A Expired - Fee Related JP5184973B2 (en) 2008-05-29 2008-05-29 Object detection device

Country Status (1)

Country Link
JP (1) JP5184973B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232325A (en) * 2010-04-09 2011-11-17 Denso Corp Object recognition device
JP2012202815A (en) * 2011-03-25 2012-10-22 Mitsubishi Electric Corp Onboard radar device
JP2021175955A (en) * 2020-05-01 2021-11-04 株式会社デンソー Upper structure recognition device
WO2021221146A1 (en) * 2020-05-01 2021-11-04 株式会社デンソー Upper structure recognition device
EP3767337A4 (en) * 2018-03-16 2021-11-17 Mitsui E&S Machinery Co., Ltd. Obstacle sensing system and obstacle sensing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098220A (en) * 2004-09-29 2006-04-13 Nissan Motor Co Ltd Obstacle detector
JP2006146372A (en) * 2004-11-16 2006-06-08 Denso Corp Object recognition device for vehicle
JP2007240446A (en) * 2006-03-10 2007-09-20 Omron Corp Range finder for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098220A (en) * 2004-09-29 2006-04-13 Nissan Motor Co Ltd Obstacle detector
JP2006146372A (en) * 2004-11-16 2006-06-08 Denso Corp Object recognition device for vehicle
JP2007240446A (en) * 2006-03-10 2007-09-20 Omron Corp Range finder for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232325A (en) * 2010-04-09 2011-11-17 Denso Corp Object recognition device
JP2012202815A (en) * 2011-03-25 2012-10-22 Mitsubishi Electric Corp Onboard radar device
EP3767337A4 (en) * 2018-03-16 2021-11-17 Mitsui E&S Machinery Co., Ltd. Obstacle sensing system and obstacle sensing method
JP2021175955A (en) * 2020-05-01 2021-11-04 株式会社デンソー Upper structure recognition device
WO2021221147A1 (en) * 2020-05-01 2021-11-04 株式会社デンソー Overhead structure recognition device
WO2021221146A1 (en) * 2020-05-01 2021-11-04 株式会社デンソー Upper structure recognition device

Also Published As

Publication number Publication date
JP5184973B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5570715B2 (en) Object detection device
EP3350620B1 (en) Light detection and ranging (lidar) system with dual beam steering
US20150204977A1 (en) Object detection device and sensing apparatus
JP5184973B2 (en) Object detection device
CN101308214A (en) Object detector
JP2006337295A (en) Range finder for vehicle
US20180252811A1 (en) Laser detection device using line beam, and vehicle information recognition method using same
JP5570708B2 (en) Object detection device
JP2012215521A (en) Laser radar apparatus
JP2011232230A (en) Overhead obstacle detector, collision preventing device, and overhead obstacle detection method
JP2008232887A (en) Object sensing apparatus and irradiation axis adjustment method
JP2006349694A (en) Object detection device and method
JP2007248056A (en) Onboard radar device
JP2010127835A (en) Radar system
JP5979020B2 (en) Object recognition device
JP2007248146A (en) Radar device
JP2004184331A (en) Object recognition apparatus for motor vehicle
JP6186863B2 (en) Ranging device and program
JP4878483B2 (en) Radar equipment
JP4890928B2 (en) Radar equipment
JP4890892B2 (en) Ranging device for vehicles
JP6631228B2 (en) Perimeter monitoring device
JP4887842B2 (en) Radar equipment
JP2004157065A (en) Radar device
WO2020003643A1 (en) Vehicle control device and vehicle control method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5184973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees