JP2009287023A - Lubricant composition for processing seamless steel pipe - Google Patents

Lubricant composition for processing seamless steel pipe Download PDF

Info

Publication number
JP2009287023A
JP2009287023A JP2009112471A JP2009112471A JP2009287023A JP 2009287023 A JP2009287023 A JP 2009287023A JP 2009112471 A JP2009112471 A JP 2009112471A JP 2009112471 A JP2009112471 A JP 2009112471A JP 2009287023 A JP2009287023 A JP 2009287023A
Authority
JP
Japan
Prior art keywords
viscosity
water
soluble polymer
steel pipe
seamless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009112471A
Other languages
Japanese (ja)
Other versions
JP5292575B2 (en
Inventor
Sumio Iida
純生 飯田
Kazuo Tanaka
和雄 田中
Shizuo Mori
静男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palace Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Palace Chemical Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palace Chemical Co Ltd, Sumitomo Metal Industries Ltd filed Critical Palace Chemical Co Ltd
Priority to JP2009112471A priority Critical patent/JP5292575B2/en
Publication of JP2009287023A publication Critical patent/JP2009287023A/en
Application granted granted Critical
Publication of JP5292575B2 publication Critical patent/JP5292575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B2045/026Lubricating devices using liquid lubricants, e.g. for sections, for tubes for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
    • B21B25/04Cooling or lubricating mandrels during operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • C10M2201/0623Oxides; Hydroxides; Carbonates or bicarbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • C10M2201/1033Clays; Mica; Zeolites used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubricant composition for processing a seamless steel pipe totally satisfying various properties such as storage stability, transferability inside an apparatus piping, sprayability to lubrication sites and property of uniform adhesion to a high-temperature mandrel bar without losing non-carburizability or excellent lubricity to hard-to-work materials such as 13 chromium steel and stainless steel. <P>SOLUTION: There is provided a lubricant composition whose viscosity characteristics are represented by the approximate expression: Y=a×X<SP>b</SP>, wherein Y is viscosity (mPa s); X is shear rate (s<SP>-1</SP>); and during stationary storage, a is 4,000 to 40,000 and b is -1.0 to -0.3; while 90 sec after shear termination, a is 1,000 to 20,000 and b is -1.0 to -0.15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、主としてマンネスマン製管法による継目無鋼管の製造に使用される熱間製管圧延用潤滑剤に関する。   The present invention relates to a lubricant for hot pipe rolling used mainly in the manufacture of seamless steel pipes by the Mannesmann pipe manufacturing method.

マンネスマン製管法による継目無金属管の製造では、周知のとおり、加熱された中実ビレット又はブルームが穿孔機で中空管とされた後、その中空管が延伸圧延機、定径圧延機により製品管に仕上げられる。マンネスマン製管法の延伸圧延工程では、焼き付き防止等のために、管内面が潤滑剤により強制潤滑される。その潤滑剤としては、粒状黒鉛、鱗状黒鉛、土状黒鉛等を主体とする黒鉛系潤滑剤が、固体のまま、若しくはバインダーを混合した液体の状態で使用されている。   As is well known, in the manufacture of seamless metal pipes by the Mannesmann pipe method, a heated solid billet or bloom is made into a hollow pipe by a piercing machine, and then the hollow pipe is drawn or rolled. To finish the product tube. In the stretching process of the Mannesmann tube method, the tube inner surface is forcibly lubricated with a lubricant to prevent seizure. As the lubricant, a graphite-based lubricant mainly composed of granular graphite, scaly graphite, earthy graphite or the like is used in a solid state or in a liquid state in which a binder is mixed.

黒鉛系潤滑剤を使用すると、被圧延材がステンレス鋼、高合金鋼等の難加工性材料の場合も潤滑性能に問題はない。しかし、これらの材料では、その耐食性が浸炭により阻害される。即ち、ステンレス鋼や高合金鋼の延伸圧延において、黒鉛系潤滑剤で管内面を潤滑すると、管内面が浸炭されるために、クロム炭化物の粒界析出による粒界及びその近傍の選択腐食が生じ、その耐食性が低下して製品の性能を損なうのである。   When a graphite-based lubricant is used, there is no problem in lubrication performance even when the material to be rolled is a difficult-to-work material such as stainless steel or high alloy steel. However, in these materials, the corrosion resistance is hindered by carburization. That is, when the inner surface of a pipe is lubricated with a graphite-based lubricant in stainless steel or high alloy steel, the inner surface of the pipe is carburized, resulting in selective corrosion of the grain boundary and its vicinity due to grain boundary precipitation of chromium carbide. The corrosion resistance is reduced, and the performance of the product is impaired.

この点を改善するために、従来の黒鉛系潤滑剤に代わって、特許文献1では酸化物系層状化合物、及び硼酸とアルカリ金属硼酸塩との組み合わせによる組成物が提案されている。また、特許文献2では天然、又は人工マイカ、バーミキュライト、ベントナイトと硼酸Li、Na、K、メタ硼酸塩、ピロ硼酸塩及びその水和物の組み合わせによる組成物が提案されている。これら酸化物系層状化合物と硼酸との組み合わせによる組成物は、潤滑性に優れた非浸炭性潤滑剤として有効である。   In order to improve this point, instead of the conventional graphite-based lubricant, Patent Document 1 proposes a composition comprising an oxide-based layered compound and a combination of boric acid and an alkali metal borate. Patent Document 2 proposes a composition comprising a combination of natural or artificial mica, vermiculite, bentonite and boric acid Li, Na, K, metaborate, pyroborate and hydrates thereof. A composition comprising a combination of these oxide-based layered compound and boric acid is effective as a non-carburizing lubricant having excellent lubricity.

一方、通常の黒鉛系潤滑剤では非浸炭性を必要としない。従って、これら黒鉛系潤滑剤は、通常の有機物増粘剤(例えば、水溶性アクリル系樹脂、ナトリウムカルボキシメチルセルロースのような水溶性セルロース)を充分に添加することにより、上記の諸性質を与えることが可能である。例えば、特許文献3では、水溶性高分子と水分散性高分子との両方を多量に配合することによって、上記の諸性質を満足する潤滑剤が開示されている。   On the other hand, ordinary graphite lubricants do not require non-carburization. Therefore, these graphite-based lubricants can give the above-mentioned properties by sufficiently adding ordinary organic thickeners (for example, water-soluble acrylic resin, water-soluble cellulose such as sodium carboxymethyl cellulose). Is possible. For example, Patent Document 3 discloses a lubricant that satisfies the above properties by blending a large amount of both a water-soluble polymer and a water-dispersible polymer.

特開昭64−16894号公報Japanese Unexamined Patent Publication No. 64-16894 特開平5−171165号公報JP-A-5-171165 特開平2−51592号公報JP-A-2-51592

しかし、上記特許文献1及び2に開示されているこれらの潤滑剤は、固体のまま潤滑面に供給されたり、水に分散し工具(マンドレル)に塗布されて使用されたりする。従って、これらをマンドレルミル実装置に適応させるためには、潤滑剤製造後の貯蔵安定性、装置配管内での移送性、潤滑箇所へのスプレー性、高温マンドレルバーヘの均一付着性等の諸性質が総合的に必要となってくる。しかし、これらの性質を総合的に満足することは容易ではない。   However, these lubricants disclosed in the above-mentioned Patent Documents 1 and 2 are supplied to the lubrication surface as a solid, or dispersed in water and applied to a tool (mandrel) for use. Therefore, in order to adapt these to actual mandrel mill equipment, storage stability after manufacturing the lubricant, transportability in the equipment piping, sprayability to the lubrication site, uniform adhesion to the high temperature mandrel bar, etc. Properties are needed comprehensively. However, it is not easy to comprehensively satisfy these properties.

また、ステンレス鋼や高合金鋼の延伸圧延においては、耐食性の確保のためにはあくまでも非浸炭性が必要であり、上記した高分子を多量に配合することはできない。   Further, in the drawing and rolling of stainless steel and high alloy steel, non-carburization is absolutely necessary for ensuring corrosion resistance, and the above-described polymer cannot be blended in a large amount.

そこで本発明は、非浸炭性や、13クロム鋼やステンレス鋼等の難加工材に対する卓越した潤滑性を損なうことなく、貯蔵安定性、装置配管内での移送性、潤滑箇所へのスプレー性、高温マンドレルバーヘの均一付着性等の諸性質を総合的に満足する、継目無鋼管加工潤滑剤組成物を提供することを課題とする。   Therefore, the present invention is non-carburizing, storage stability, transportability in equipment piping, sprayability to lubrication points, without impairing excellent lubricity for difficult-to-work materials such as 13 chromium steel and stainless steel, It is an object of the present invention to provide a seamless steel pipe working lubricant composition that comprehensively satisfies various properties such as uniform adhesion to a high-temperature mandrel bar.

本発明は、粘度特性が下記の近似式で示される継目無鋼管加工潤滑剤組成物である。
Y=a・X Y:粘度(mPa・s)
X:ずり速度(s−1
静置保管中において a:4000〜40000
b:−1.0〜−0.3
剪断終了時から90秒後においてa:1000〜20000
b:−1.0〜−0.15
ここに、「剪断終了時から90秒後」とは、該組成物を攪拌して剪断を加える操作を行い、その操作終了時から30秒後に、所定のずり速度で測定を開始し、その測定開始からさらに60秒後のことをさす。したがって、「90秒後」は、上記30秒と60秒との合計値に対応するものである。また、「剪断終了時」とは、上記攪拌操作のためのプロペラの回転が停止したときのことをいうものとする。
The present invention is a seamless steel pipe working lubricant composition whose viscosity characteristics are represented by the following approximate formula.
Y = a · X b Y: Viscosity (mPa · s)
X: shear rate (s −1 )
During stationary storage a: 4000 to 40000
b: -1.0 to -0.3
90 seconds after the end of shearing a: 1000-20000
b: -1.0 to -0.15
Here, “after 90 seconds from the end of shearing” means that the composition is stirred and sheared, and measurement is started at a predetermined shear rate 30 seconds after the end of the operation. It means another 60 seconds after the start. Therefore, “after 90 seconds” corresponds to the total value of 30 seconds and 60 seconds. Further, “at the end of shearing” refers to the time when the rotation of the propeller for the stirring operation is stopped.

上記継目無鋼管加工潤滑剤組成物は、酸化物系層状化合物10〜40質量%、硼酸のアルカリ金属塩又はアミン塩の1種以上を5〜30質量%、この硼酸のアルカリ金属塩又はアミン塩の1種以上の水溶液に可溶な水溶性高分子1種以上を0.11〜3.0質量%、残部水からなることが好ましい。   The seamless steel pipe processing lubricant composition comprises 10 to 40% by mass of an oxide-based layered compound, 5 to 30% by mass of one or more alkali metal salts or amine salts of boric acid, and the alkali metal salt or amine salt of boric acid. It is preferable that 0.11 to 3.0 mass% of one or more water-soluble polymers soluble in one or more aqueous solutions of the above, and the balance water.

また、上記継目無鋼管加工潤滑剤組成物は、水溶性高分子として、シュードプラスチック流動性水溶性高分子、又は、シュードプラスチック流動性水溶性高分子とチクソトロピック流動性水溶性高分子とを含むことが好ましい。   The seamless steel pipe processing lubricant composition includes a pseudoplastic fluid water-soluble polymer, or a pseudoplastic fluid water-soluble polymer and a thixotropic fluid water-soluble polymer as the water-soluble polymer. It is preferable.

あるいは、上記継目無鋼管加工潤滑剤組成物は、水溶性高分子として、組成物全量基準でシュードプラスチック流動性水溶性高分子0.01〜1.0質量%、チクソトロピック流動性水溶性高分子0.1〜2.0質量%を含むことが好ましい。   Alternatively, the seamless steel pipe processing lubricant composition is a water-soluble polymer, 0.01 to 1.0% by mass of a pseudoplastic fluid water-soluble polymer based on the total amount of the composition, and a thixotropic fluid water-soluble polymer. It is preferable to contain 0.1-2.0 mass%.

本発明によれば、非浸炭性や、13クロム鋼やステンレス鋼等の難加工材に対する卓越した潤滑性を損なうことなく、貯蔵安定性、装置配管内での移送性、潤滑箇所へのスプレー性、高温マンドレルバーヘの均一付着性等の諸性質を総合的に満足する継目無鋼管加工潤滑剤組成物を提供することが可能となる。   According to the present invention, storage stability, transportability in equipment piping, and sprayability to lubricated parts are not impaired without impairing non-carburization properties and excellent lubricity for difficult-to-work materials such as 13 chromium steel and stainless steel. It is possible to provide a seamless steel pipe working lubricant composition that comprehensively satisfies various properties such as uniform adhesion to a high-temperature mandrel bar.

継目無鋼管加工潤滑剤組成物として、理想的な粘度形態を示す図である。It is a figure which shows an ideal viscosity form as a seamless steel pipe processing lubricant composition. シュードプラスチック流動性水溶性高分子の一例の化学構造モデルを示す図である。It is a figure which shows the chemical structure model of an example of a pseudo plastic fluidity water-soluble polymer. チクソトロピック流動性水溶性高分子の一例としての、グルコースがグルコシド結合した長鎖状ポリマーの化学構造モデルを示す図である。It is a figure which shows the chemical structure model of the long-chain polymer in which glucose was glucoside-bonded as an example of a thixotropic fluidity water-soluble polymer. シュードプラスチック流動性水溶性高分子の静的状態及び動的状態の粘度特性を示す図である。It is a figure which shows the viscosity characteristic of the static state of a pseudoplastic fluid water-soluble polymer, and a dynamic state. チクソトロピック流動性水溶性高分子の静的状態及び動的状態の粘度特性を示す図である。It is a figure which shows the viscosity characteristic of a static state and a dynamic state of a thixotropic fluidity water-soluble polymer.

本発明の継目無鋼管加工潤滑剤組成物に主剤として使用される酸化物系層状化合物は、例えば、天然又は人工のマイカである。マイカとしては
カリウム四珪素マイカ {KMg2.5(Si10)F}
ナトリウム四珪素マイカ (NaMg2.5(Si10)F
天然金マイカ {KMg(AlSi10)(OH)
などがある。本発明の継目無鋼管加工潤滑剤組成物には、これらの一種又は二種以上が使用できる。また、マイカに代えて、あるいはマイカとともに、バーミキュライト、ベントナイト等を使用することもできる。本発明の継目無鋼管加工潤滑剤組成物に最も好ましいのは、ナトリウム四珪素マイカである。
The oxide-based layered compound used as the main component in the seamless steel pipe processing lubricant composition of the present invention is, for example, natural or artificial mica. As mica, potassium tetrasilicon mica {KMg 2.5 (Si 4 O 10 ) F 2 }
Sodium tetrasilicon mica (NaMg 2.5 (Si 4 O 10 ) F 2 )
Natural gold mica {KMg 3 (AlSi 2 O 10 ) (OH) 2 }
and so on. One or more of these can be used in the seamless steel pipe processing lubricant composition of the present invention. Further, vermiculite, bentonite or the like can be used instead of or together with mica. Most preferred for the seamless steel pipe working lubricant composition of the present invention is sodium tetrasilicon mica.

酸化物系層状化合物の平均粒径は1〜40μmで、好ましくは5〜30μmである。平均粒径が小さすぎると層間すべりの効果が少なくなる。一方、平均粒径が大きすぎると、スプレー時のノズル閉塞などの問題が生じる。酸化物系層状化合物の添加量は、本発明の継目無鋼管加工潤滑剤の組成中10〜40質量%で、好ましくは20〜30質量%である。酸化物系層状化合物の添加量が少なすぎると耐焼き付き性が低くなり、潤滑性に問題が出る。一方、酸化物系層状化合物の添加量が多すぎると組成物の粘度が高くなり過ぎて、作業性に問題が出て来る。   The average particle diameter of the oxide-based layered compound is 1 to 40 μm, preferably 5 to 30 μm. If the average particle size is too small, the effect of slipping between layers is reduced. On the other hand, if the average particle size is too large, problems such as nozzle clogging during spraying occur. The addition amount of the oxide-based layered compound is 10 to 40% by mass, preferably 20 to 30% by mass, in the composition of the seamless steel pipe processing lubricant of the present invention. If the added amount of the oxide-based layered compound is too small, the seizure resistance is lowered, which causes a problem in lubricity. On the other hand, when the amount of the oxide-based layered compound added is too large, the viscosity of the composition becomes too high, causing a problem in workability.

組成物中の硼酸アルカリ金属塩、又はアミン塩は、主剤となる酸化物系層状化合物に沿って高温マンドレルバーにおけるその展着性を助け、また自ら補助潤滑剤として働く。硼酸アルカリ金属塩の例としては、硼酸リチウム、硼酸ナトリウム、及び硼酸カリウム等を挙げることができる。また、硼砂(Na・10HO)のように、メタ硼酸塩、若しくは、ピロ硼酸塩及び/又は水和物も使用することができる。 The alkali metal borate salt or amine salt in the composition assists its spreadability in the high-temperature mandrel bar along with the oxide-based layered compound as the main agent, and acts as an auxiliary lubricant by itself. Examples of the alkali metal borate include lithium borate, sodium borate, and potassium borate. Further, metaborates or pyroborates and / or hydrates such as borax (Na 2 B 4 O 7 · 10H 2 O) can also be used.

組成物中における硼酸アルカリ金属塩、又はアミン塩の添加量は、5〜30質量%で、好ましくは10〜20質量%である。これらの塩の添加量が多すぎると、主剤の潤滑性を妨害する。また、これらの塩の添加量が少なすぎると、主目的である主剤のマンドレルバーにおける展着効果に不具合をきたすと共に、流体潤滑の不足から結果として潤滑不足を誘発する。   The addition amount of the alkali metal borate or amine salt in the composition is 5 to 30% by mass, preferably 10 to 20% by mass. When there is too much addition amount of these salts, the lubricity of a main ingredient will be disturbed. Moreover, when the addition amount of these salts is too small, the spreading effect of the main agent, which is the main agent, on the mandrel bar is impaired, and insufficient lubrication is induced as a result of insufficient fluid lubrication.

本発明の継目無鋼管加工潤滑剤組成物に使用される水溶性高分子としては、本願発明の規定する粘度条件を満たす範囲で天然、半天然、あるいは合成の水溶性高分子を単独で、あるいは複数組み合わせて使用することもできる。これら水溶性高分子については後に具体的に説明する。   As the water-soluble polymer used in the seamless steel pipe processing lubricant composition of the present invention, a natural, semi-natural, or synthetic water-soluble polymer alone or in a range that satisfies the viscosity condition defined in the present invention, or Multiple combinations can also be used. These water-soluble polymers will be specifically described later.

次に、本願発明者等が見出した理想的な粘度形態を図1に示す。図1は、縦軸に粘度、横軸に時間をとり、
(i) :静置
(ii) 〜(iii) :定速剪断
(iii)〜(iv) :剪断停止
の各条件下、時間とともに変化する粘度をグラフ化したものである。
Next, an ideal viscosity form found by the present inventors is shown in FIG. Figure 1 shows viscosity on the vertical axis and time on the horizontal axis.
(I): Standing (ii)-(iii): Constant-speed shearing (iii)-(iv): Viscosity changing with time under the respective conditions of shear stop.

本願発明者等は、継目無鋼管加工潤滑剤組成物が、以下の(1)〜(4)に示す粘度特性を有すればマンネスマン製管法による継目無金属管の製造にあたって、良好な潤滑性が得られることを見出した。すなわち
(1)酸化物系層状化合物などの固体粒子が均一安定に貯蔵されるためには、(i)の静置時の粘度が高いことが必要である。粘度が低いと、固体粒子が沈降してしまうからである。
(2)配管内の流動性や、スプレー性を確保するためには、(ii)〜(iii)の剪断中の粘度が低いことが必要である。
(3)潤滑性能に最も影響の深い流体の高温バーへの緻密、かつ均一な付着性は、(ii)の粘度が高いことが必要である。微視的に見ると、潤滑剤は工具表面に連続してスプレー塗布されている。その際、最初に到達し付着した潤滑被膜の上に、次に到達した潤滑剤がスプレー塗布されることになる。すなわち、最初に付着していた潤滑皮膜に剪断がかかることになるので、(ii)の粘度が低いと、スプレー圧力により削ぎ落とされるか、又は、飛散してしまうからである。
(4)工具表面において、固体粒子の均一安定な保持性を確保するためには、(iii)〜(iv)において剪断の終了後、直ちに粘度上昇に転じることが必要である。粘度が回復するまで時間がかかるか、あるいは回復しないままでは、潤滑剤が工具表面から流れ落ちてしまうからである。
The inventors of the present application, when the seamless steel pipe working lubricant composition has the viscosity characteristics shown in the following (1) to (4), in producing a seamless metal pipe by the Mannesmann pipe method, good lubricity It was found that can be obtained. That is, (1) In order to store solid particles such as an oxide-based layered compound uniformly and stably, it is necessary that the viscosity at the time of (i) standing is high. This is because if the viscosity is low, the solid particles will settle.
(2) In order to ensure fluidity and sprayability in the piping, it is necessary that the viscosity during shearing (ii) to (iii) is low.
(3) For the dense and uniform adhesion of the fluid having the greatest influence on the lubricating performance to the high-temperature bar, the viscosity of (ii) needs to be high. When viewed microscopically, the lubricant is continuously sprayed onto the tool surface. At that time, the lubricant that has arrived next is sprayed onto the lubricant film that has arrived and adhered first. That is, since the lubricating film that was first attached is sheared, if the viscosity of (ii) is low, it is scraped off or scattered by the spray pressure.
(4) In order to ensure uniform and stable retention of solid particles on the tool surface, it is necessary to immediately start to increase in viscosity after the end of shearing in (iii) to (iv). This is because it takes time until the viscosity is recovered, or the lubricant flows down from the tool surface if the viscosity does not recover.

高分子を多量に添加することなく、貯蔵安定性、装置配管内での移送性、潤滑箇所へのスプレー性、高温マンドレルバーヘの均一付着性等の諸性質を満足する図1の粘度形態を実現するために、本願発明者等は下記式を満足することが必要であることを見出した。すなわち、上記諸性質を満足する本願発明の潤滑剤組成物の粘度特性を、後述する実施例に記載の粘度測定方法によって測定した結果、得られた粘度特性曲線が下記近似式のa及びbの範囲内であった。
Y=a・X Y:粘度(mPa・s)
X:ずり速度(s−1
静置保管中においてa:4000〜40000
b:−1.0〜−0.3
剪断終了時から90秒後においてa:1000〜20000
b:−1.0〜−0.15
近似式 Y=a・Xにあって、静置保管中において
a:4000〜40000、
b:−1.0〜−0.3
とした。aが4000未満では、潤滑剤組成物の静置時の粘度が低く、酸化物系層状化合物が保管中に沈降してしまうからである。また、aが40000を超えると、潤滑剤組成物の流動性がほとんどなくなり、移送上問題が生ずるからである。
The viscosity form of FIG. 1 satisfying various properties such as storage stability, transportability in equipment piping, sprayability to lubrication, and uniform adhesion to a high temperature mandrel bar without adding a large amount of polymer. In order to realize, the present inventors have found that it is necessary to satisfy the following formula. That is, as a result of measuring the viscosity characteristics of the lubricant composition of the present invention satisfying the above-mentioned properties by the viscosity measuring method described in the examples described later, the obtained viscosity characteristic curves are represented by the following approximate expressions a and b. It was within the range.
Y = a · X b Y: Viscosity (mPa · s)
X: shear rate (s −1 )
During stationary storage, a: 4000 to 40000
b: -1.0 to -0.3
90 seconds after the end of shearing a: 1000-20000
b: -1.0 to -0.15
In the approximate expression Y = a · X b , during stationary storage a: 4000 to 40000,
b: -1.0 to -0.3
It was. This is because if the a is less than 4000, the viscosity of the lubricant composition upon standing is low, and the oxide-based layered compound settles during storage. On the other hand, if a exceeds 40000, the fluidity of the lubricant composition is almost lost, causing a problem in transportation.

さらに、bが−0.3より大きいと、潤滑剤組成物の静置時の粘度と剪断時(移送やスプレー時)の粘度の差が小さく、移送やスプレーに問題が生ずる。また、bが−1.0未満では、潤滑剤組成物のスプレー時に粘度が下がり過ぎて工具に塗布したとき、付着した潤滑剤が潤滑剤自身の圧力により削ぎ落とされるか、又は飛散してしまう。より好ましくは、
a:7000〜30000
b:−0.5〜−0.8
である。
Furthermore, when b is larger than −0.3, the difference between the viscosity of the lubricant composition when it is left stationary and the viscosity when it is sheared (when transporting or spraying) is small, which causes problems in transportation and spraying. On the other hand, if b is less than -1.0, the viscosity of the lubricant composition drops too much when sprayed, and when applied to the tool, the adhered lubricant is scraped off or scattered by the pressure of the lubricant itself. . More preferably,
a: 7000-30000
b: -0.5 to -0.8
It is.

ここで、近似式 Y=a・X を図1により説明すると、静置保管時(すなわちXの値が限りなく0に近い時)のaの値が大きく、bの値が小さい方が図1の(i)の粘度が高く、安定性は良好になる。例えば、
X=0.01、 a=100000、 b=−1
では
Y=10,000,000 mPa・s となる。
Here, the approximate expression Y = a · Xb will be described with reference to FIG. 1. When the stationary storage (that is, when the value of X is close to 0), the value of a is larger and the value of b is smaller. The viscosity of 1 (i) is high and the stability is good. For example,
X = 0.01, a = 100000, b = −1
Then, Y = 10,000,000 mPa · s.

近似式 Y=a・Xにあって、剪断終了時から90秒後において
a:1000〜20000
b:−1.0〜−0.15
とした。aが1000未満、あるいはbが−1.0未満では、水溶性高分子が剪断され、粘度が回復するまで時間がかるか、あるいは剪断され回復しないままで、工具に塗布したとき、潤滑剤が流れ落ちてしまうからである。また、aが20000を超えると、あるいはbが−0.15を超えると、移送時やスプレー時に問題が生じるためである。より好ましくは、
a:3000〜20000
b:−0.3〜−0.8
である。
In the approximate expression Y = a · X b , 90 seconds after the end of shearing a: 1000 to 20000
b: -1.0 to -0.15
It was. When a is less than 1000 or b is less than −1.0, the water-soluble polymer is sheared, and it takes time until the viscosity recovers, or when applied to the tool without being recovered by shearing, the lubricant flows down. Because it will end up. Further, if a exceeds 20000, or b exceeds -0.15, a problem occurs during transfer or spraying. More preferably,
a: 3000-20000
b: -0.3 to -0.8
It is.

剪断時(すなわち攪拌直後のXの値が大きい時)のaの数値が大きく、bの数値が小さい方が、図1の(ii)〜(iii)の粘度が高い。aが大きすぎ、bが小さすぎると、粘度は低くならず、移送性、スプレー性に支障をきたす。例えば、
X=10、 a=100000、 b=−1
では
Y=10,000 mPa・s となる
剪断後(すなわち攪拌直後のXの値が小さい時)は、図1の(iv)であり、a及びbの数値が静置保管時の数値と同程度になれば粘度の回復が早い。この場合には、潤滑剤が工具に付着したとき、流れ落ちにくくなる。従って、以上に説明した、本願発明のような適切な粘度特性が必要となる。
The viscosity of (ii) to (iii) in FIG. 1 is higher when the value of a is larger and the value of b is smaller during shearing (that is, when the value of X immediately after stirring is large). When “a” is too large and “b” is too small, the viscosity is not lowered and the transportability and sprayability are hindered. For example,
X = 10, a = 100000, b = −1
Then, Y = 10,000 mPa · s After shearing (that is, when the value of X immediately after stirring is small), it is (iv) in FIG. 1, and the values of a and b are the same as those at the time of stationary storage. If it becomes about a degree, the viscosity will be recovered quickly. In this case, when the lubricant adheres to the tool, it becomes difficult to flow down. Therefore, an appropriate viscosity characteristic as described above is required.

本願発明者らは、上述の粘度特性を満足する条件を鋭意検討した結果、本願発明の潤滑剤組成物に使用する水溶性高分子として、シュードプラスチック流動性水溶性高分子単独でも満足する場合があるが、シュードプラスチック流動性水溶性高分子とチクソトロピック流動性水溶性高分子の両方を添加すると満足しやすいことを発見した。   As a result of earnestly examining the conditions for satisfying the above-mentioned viscosity characteristics, the inventors of the present application, as a water-soluble polymer used in the lubricant composition of the present invention, may be satisfied even with a pseudo plastic flowable water-soluble polymer alone. However, it has been found that adding both a pseudoplastic fluid water-soluble polymer and a thixotropic fluid water-soluble polymer is satisfactory.

シュードプラスチック流動性水溶性高分子としては、代表的なものにザンサンガム、ウエランガム、ラムザンガムのようなバイオガムがある。ザンサンガムの化学構造はグルコース2個、マンノース2個及びグルクロン酸1個からなる構成成分を単位として、結合ブロックの反復よりなる水溶性高分子多糖類である。その化学構造モデルを図2に示す。   Representative examples of pseudo plastic fluid water-soluble polymers include bio gums such as xanthan gum, welan gum, and lamb gum gum. The chemical structure of xanthan gum is a water-soluble polymeric polysaccharide consisting of repeating binding blocks, with the structural component consisting of 2 glucose, 2 mannose and 1 glucuronic acid as a unit. The chemical structure model is shown in FIG.

チクソトロピック流動性水溶性高分子としては、代表的なものに、カルボキシメチルセルロースの塩(Na塩、K塩、アミン塩)がある。一例としてグルコースがグルコシド結合した長鎖状のポリマーの化学構造モデルを図3に示す。   Typical examples of thixotropic fluidity water-soluble polymers include carboxymethylcellulose salts (Na salt, K salt, amine salt). As an example, FIG. 3 shows a chemical structure model of a long-chain polymer in which glucose is glucoside-bonded.

シュードプラスチック流動性、及び/又は、チクソトロピック流動性は、上記以外にも分子量、他成分(例えば金属(Ca等)イオン)、pHの影響により明確な区別が困難な下記物質、例えば、ジュランガム、サクシノグルカン等のバイオガム、タマリンド、タラガム、ローカストビーンガム、カラギーナン等の天然多糖類、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、その他ポリアクリル酸の塩(Na塩、K塩、アミン塩)、アルギン酸の塩(Na塩、K塩、アミン塩)、等を潤滑剤組成物中に配合することによっても達成することができる。   In addition to the above, pseudo plastic fluidity and / or thixotropic fluidity can be used for the following substances that are difficult to distinguish clearly due to the influence of molecular weight, other components (for example, metal (Ca, etc.) ions) and pH, such as duran gum, Biogum such as succinoglucan, natural polysaccharides such as tamarind, tara gum, locust bean gum, carrageenan, cellulose derivatives such as methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, and other polyacrylic acid It can also be achieved by blending a salt (Na salt, K salt, amine salt), a salt of alginic acid (Na salt, K salt, amine salt) and the like into the lubricant composition.

次に、シュードプラスチック流動性水溶性高分子の静的状態、及び動的状態の粘度特性を図4に、チクソトロピック流動性水溶性高分子のそれを図5に示す。シュードプラスチック流動性水溶性高分子のみでは、静的状態から動的状態への変化が直線的であり、本発明の範疇ではあるが充分に満足するものではない。一方、チクソトロピック流動性水溶性高分子の粘度変化は、シュードプラスチック流動性水溶性高分子の粘度変化に比し、静的状態から動的状態に移行した場合の粘度差が少なくゆるやかである。また、チクソトロピック流動性水溶性高分子は、動的状態が起きてから粘度低下を起こすまでに若干の時間(降伏値)が必要である。また、チクソトロピック流動性水溶性高分子は、動的から静的に移った場合の粘度上昇にも時間が必要である。このような粘度変化に時間がかかると、マンドレルバーにスプレーされた潤滑剤が乾燥迄の造膜過程において、理想的な造膜のための粘度変化ができない。その結果、マンドレルバーヘの均一密着に難をもたらす。従って、チクソトロピック流動性水溶性高分子のみでは、本発明の目的を充分に満足することはできない。   Next, FIG. 4 shows the static and dynamic viscosity characteristics of the pseudoplastic fluid water-soluble polymer, and FIG. 5 shows the thixotropic fluid water-soluble polymer. With only the pseudo plastic flowable water-soluble polymer, the change from the static state to the dynamic state is linear, which is within the scope of the present invention but is not fully satisfactory. On the other hand, the viscosity change of the thixotropic flowable water-soluble polymer is less gradual than the viscosity change of the pseudoplastic flowable water-soluble polymer when the transition from the static state to the dynamic state is small. In addition, the thixotropic fluidity water-soluble polymer requires some time (yield value) from the occurrence of the dynamic state to the decrease in viscosity. In addition, the thixotropic fluidity water-soluble polymer requires time to increase the viscosity when moving from dynamic to static. If it takes a long time to change the viscosity, the lubricant sprayed on the mandrel bar cannot change the viscosity for ideal film formation in the film forming process until drying. As a result, it causes difficulty in uniform adhesion to the mandrel bar. Therefore, only the thixotropic fluidity water-soluble polymer cannot sufficiently satisfy the object of the present invention.

図1に示した理想的な粘度形態の実現には、上述した2種類の高分子の両方を添加することが望ましい。具体的には、シュードプラスチック流動性水溶性高分子の添加割合は、組成物全量基準で0.01〜1.0質量%であり、それに対するチクソトロピック流動性水溶性高分子の添加割合は組成物全量基準で0.1〜2.0質量%である。より好ましくは、シュードプラスチック流動性水溶性高分子の割合は組成物全量基準で0.05〜0.5質量%であり、それに対するチクソトロピック流動性水溶性高分子の割合は組成物全量基準で0.5〜1.5質量%である。   In order to realize the ideal viscosity form shown in FIG. 1, it is desirable to add both of the two types of polymers described above. Specifically, the addition ratio of the pseudoplastic fluid water-soluble polymer is 0.01 to 1.0% by mass based on the total amount of the composition, and the addition ratio of the thixotropic fluid water-soluble polymer is the composition. It is 0.1-2.0 mass% on the basis of the total amount of things. More preferably, the ratio of the pseudoplastic flowable water-soluble polymer is 0.05 to 0.5% by mass based on the total amount of the composition, and the ratio of the thixotropic flowable water-soluble polymer is based on the total amount of the composition. 0.5 to 1.5 mass%.

シュードプラスチック流動性水溶性高分子の添加割合がチクソトロピック流動性水溶性高分子の割合より多くなると、剪断による粘度変化が大きくなり過ぎ、マンドレルバーヘの均一付着性に難をきたす。また、チクソトロピック流動性水溶性高分子の割合が大きくなりすぎると、酸化物系層状化合物の分散安定性と高温マンドレルバーヘの展着性が悪くなり、均一密着性に難をきたす。   If the ratio of the pseudoplastic fluid water-soluble polymer added exceeds the ratio of the thixotropic fluid water-soluble polymer, the change in viscosity due to shearing becomes too large, resulting in difficulty in uniform adhesion to the mandrel bar. On the other hand, when the ratio of the thixotropic fluidity water-soluble polymer becomes too large, the dispersion stability of the oxide-based layered compound and the spreadability to the high-temperature mandrel bar are deteriorated, resulting in difficulty in uniform adhesion.

この2種類の混合系の粘度形態は図4と図5とに示す粘度特性の合成形を持つ。その、定性的な粘度特性は以下のとおりである。すなわち、図1において、(i)の箇所ではシュードプラスチック流体の性質により静置時の粘度は高い。その後、剪断がかかるとシュードプラスチック流動とチクソトロピック流動状態の合成形をもった、(i)〜(iii)の粘度低下を示す。最後に、剪断が終了するや直ちに(iv)に示す粘度上昇に転じる。   The viscosity forms of these two types of mixed systems have a composite form of viscosity characteristics shown in FIGS. The qualitative viscosity characteristics are as follows. That is, in FIG. 1, the viscosity at the time of stationary is high in the location of (i) by the property of a pseudo plastic fluid. Thereafter, when shearing is applied, the viscosity decreases of (i) to (iii) having a composite form of a pseudo plastic flow state and a thixotropic flow state are shown. Finally, as soon as the shearing is finished, the viscosity increases as shown in (iv).

なお、両高分子の合計が組成物全量基準で3.0質量%を超えると浸炭の問題が生じ好ましくない。また両高分子の割合が組成物全量基準で0.11質量%未満では酸化物系層状化合物の分散安定性に難をきたし、本発明の潤滑剤組成物として完成しない。   If the total of both polymers exceeds 3.0% by mass based on the total amount of the composition, a problem of carburization occurs, which is not preferable. Further, when the ratio of both polymers is less than 0.11% by mass based on the total amount of the composition, the dispersion stability of the oxide-based layered compound becomes difficult, and the lubricant composition of the present invention is not completed.

その他、一般的な消泡剤、分散剤の添加も有機物系の化合物は浸炭の危険性があるので少量(組成物全量基準で0.5質量%以下)の添加のみ許される。炭素を含まない、無機系のものにあっては本願発明の基本的性能に影響を与えなければ添加は許される。   In addition, the addition of general antifoaming agents and dispersants is only allowed to be added in a small amount (0.5% by mass or less based on the total amount of the composition) since organic compounds have a risk of carburization. For inorganic materials that do not contain carbon, addition is permitted as long as the basic performance of the present invention is not affected.

(1)評価用試料の作成
表1〜2に示す実施例18種、及び表3に示す10種の比較例、合計28種類の試料を作成した。これらの試料の近似式における静置保管時、及び剪断終了時から90秒後の固有の定数「a」、「b」の値もこれらの表1〜3に示す。
(1) Preparation of Evaluation Samples Eighteen types of Examples shown in Tables 1 and 2 and 10 comparative examples shown in Table 3 were prepared in a total of 28 types. Tables 1 to 3 also show the values of the intrinsic constants “a” and “b” 90 seconds after the stationary storage and the end of shearing in the approximate expression of these samples.

(2)性能評価試験
1)粘度
(i) 測定条件
測定器:B型回転粘度計を使用した。
測定温度:25℃に設定した。
剪断条件:500mlビーカーに試料500mlを入れ、φ50mmのプロペラに
て3000rpmの条件の下、1分間攪拌を行った。
回転数:低回転(1.5rpm)[ずり速度:0.323〜0.366(s−1)]
高回転(60rpm)[ずり速度:12.9〜14.6(s−1)]
なお、上記ずり速度に数値の幅があるのは、プレート上にコーンを回転させて粘度を測定する回転粘度計において、各試料ごとに実際に使用したコーンが異なることに起因するものである。
(ii)測定方法
静置粘度:試料を攪拌後24時間静値したものを、低ずり速度で測定開始し、その測定開始から60秒後の粘度計の目盛りを読み取り係数を乗じた粘度と、引き続き高ずり速度で測定開始し、その測定開始から60秒後の目盛りを読み取り係数を乗じた粘度を静置粘度として記録した。
剪断粘度:試料をプロペラにより攪拌して剪断を与える操作を行い、その操作終了から30秒後に、低ずり速度で測定開始し、その測定開始から60秒後の粘度計の目盛りを読み取り係数を乗じた粘度と、再度試料を攪拌してから30秒後に、高ずり速度で測定開始し、その測定開始から60秒後の目盛りを読み取り係数を乗じた粘度を剪断粘度として記録した。
上記測定において、「剪断終了時から90秒後」とは、試料組成物を攪拌して剪断を加える操作を行い、その操作終了時から30秒後に、所定のずり速度で測定を開始し、その測定開始から60秒後のことをさす。すなわち、「90秒後」は、上記30秒と60秒との合計値に対応するものである。また、「剪断終了時」とは、上記攪拌操作のためのプロペラの回転が停止したときのことをいう。
(iii)固有の定数「a」、「b」の値の決定
近似式 Y=a・X において、両辺の対数をとると、
log(Y)=blog(X)+log(a)
一方、上記測定により得られたX、及びYについて、log(X)、及びlog(Y)を求め、これらをグラフのそれぞれ縦軸及び横軸に対応させてプロットすると、ほぼ直線関係(一次関数の関係)が得られる。プロットしたデータから最小自乗法により、一次関数の傾きである「b」と、縦軸切片である「a」を求めることができる。
(2) Performance evaluation test 1) Viscosity (i) Measurement conditions Measuring instrument: B-type rotational viscometer was used.
Measurement temperature: set to 25 ° C.
Shearing conditions: Put 500 ml of sample in a 500 ml beaker and put it on a propeller of φ50 mm
The mixture was stirred for 1 minute under the condition of 3000 rpm.
Rotation speed: Low rotation (1.5 rpm) [Shear speed: 0.323 to 0.366 (s −1 )]
High rotation (60 rpm) [Shear speed: 12.9 to 14.6 (s −1 )]
Note that the above-mentioned shear rate has a range of numerical values because the cone actually used is different for each sample in the rotational viscometer that measures the viscosity by rotating the cone on the plate.
(Ii) Measurement method static viscosity: a sample that has been allowed to stand for 24 hours after stirring, starts measurement at a low shear rate, and the viscosity obtained by multiplying the scale of the viscometer 60 seconds after the start of measurement by a coefficient, Subsequently, the measurement was started at a high shear rate, and the viscosity obtained by reading the scale after 60 seconds from the start of the measurement and multiplying by the coefficient was recorded as the static viscosity.
Shear viscosity: The sample was stirred with a propeller to give shear, 30 seconds after the end of the operation, the measurement was started at a low shear rate, and the scale of the viscometer 60 seconds after the start of the measurement was read and multiplied by the coefficient. 30 seconds after the sample was stirred again, the measurement was started at a high shear rate, and the scale obtained by reading the scale 60 seconds after the start of the measurement and multiplying by the coefficient was recorded as the shear viscosity.
In the above measurement, “after 90 seconds from the end of shearing” means an operation of stirring the sample composition and applying shear, and after 30 seconds from the end of the operation, measurement is started at a predetermined shear rate. This means 60 seconds after the start of measurement. That is, “after 90 seconds” corresponds to the total value of 30 seconds and 60 seconds. In addition, “at the end of shearing” means when the rotation of the propeller for the stirring operation is stopped.
(Iii) Determination of the values of the intrinsic constants “a” and “b” In the approximate expression Y = a · X b , when the logarithm of both sides is taken,
log (Y) = blog (X) + log (a)
On the other hand, for X and Y obtained by the above measurement, log (X) and log (Y) are obtained and plotted in correspondence with the vertical and horizontal axes of the graph, respectively. Relationship) is obtained. From the plotted data, the slope of the linear function “b” and the vertical axis intercept “a” can be obtained by the method of least squares.

2)貯蔵安定性
(i) 試験方法
試料500mlをガラス容器に貯蔵し、7日間静置後の分離状況を観察した。
(ii) 評価方法:下記評価基準により評価を行った。
◎:上澄み発生無し、底部沈降無し。
○:上澄み5%未満発生、底部沈降無し。
△:上澄み5%以上発生、底部沈降無し。
×:上澄み発生に関係なく、底部沈降あり。
但し、「上澄み」とは固形物を含まないほぼ透明な液体部分をいう。その検出は、500mlビーカーの側面より観察し、試料液面から上澄みの高さを測定することにより行った。また、その上澄み高さを全液面高さの百分率で評価した。
また、「底部沈降」とは固体潤滑剤が底部に沈降し、流動性のないハードな層が確認できる状態をいう。
2) Storage stability (i) Test method 500 ml of a sample was stored in a glass container, and the state of separation after standing for 7 days was observed.
(Ii) Evaluation method: Evaluation was performed according to the following evaluation criteria.
A: No generation of supernatant and no sedimentation at the bottom.
○: Occurrence of less than 5% of supernatant and no sedimentation at the bottom.
Δ: Supernatant 5% or more generated, no bottom sedimentation.
X: There is sedimentation at the bottom regardless of the occurrence of supernatant.
However, “supernatant” refers to a substantially transparent liquid portion that does not contain solid matter. The detection was performed by observing from the side surface of a 500 ml beaker and measuring the height of the supernatant from the sample liquid surface. The supernatant height was evaluated as a percentage of the total liquid level.
Further, “bottom sedimentation” means a state where a solid lubricant settles on the bottom and a hard layer having no fluidity can be confirmed.

3)浸炭性
(i) 試験方法
材質がSKD61で外径が140.5mm、有効部長さが18mのマンドレルバーに、実施例4、11、13と比較例6の4種類の潤滑剤をスプレー塗布し乾燥固化させ、マンドレルバー表面に膜厚100μmのほぼ均一な潤滑被膜を形成させた。潤滑剤を塗布したマンドレルバーを、下記詳細を有する素管に挿入し、7スタンドからなるマンドレルミルを用いて仕上げ圧延用素管に延伸圧延した。
延伸圧延前素管仕様
素材:オーステナイト系ステンレス鋼(SUS304L)
原加工:傾斜ロール穿孔圧延機で穿孔圧延
形状:外径181.0mm、肉厚16.0mm、長さ7000mm
延伸圧延後素管形状:外径151.0mm、肉厚5.0mm、長さ25300mm
マンドレルミルにより圧延した後、引き続き26スタンドからなるストレッチレデューサーで仕上げ圧延し、外径63.5mm、肉厚7.0mm、長さ40000mmの鋼管に仕上げた。この鋼管から、肉厚5mm、幅25mm、長さ50mmの円弧状の試験片を採取した。この試験片を用いて、JIS G0575に規定された硫酸−硫酸銅腐食試験を行い、内表面に発生した粒界腐食割れ状態を観察した。
(ii) 評価方法:下記評価基準により評価を行った。
◎:割れ無し。
×:割れあり。
3) Carburizing property (i) Test method Four types of lubricants of Examples 4, 11, 13 and Comparative Example 6 are spray-coated on a mandrel bar having a material of SKD61, an outer diameter of 140.5 mm, and an effective portion length of 18 m. Then, it was dried and solidified to form a substantially uniform lubricating film having a thickness of 100 μm on the surface of the mandrel bar. The mandrel bar coated with the lubricant was inserted into a blank having the following details, and stretched and rolled into a blank for final rolling using a mandrel mill consisting of 7 stands.
Specifications for raw tube before drawing and rolling Material: Austenitic stainless steel (SUS304L)
Original processing: piercing and rolling with inclined roll piercing and rolling machine Shape: outer diameter 181.0mm, wall thickness 16.0mm, length 7000mm
Shape of tube after drawing and rolling: outer diameter 151.0mm, wall thickness 5.0mm, length 25300mm
After rolling with a mandrel mill, it was subsequently finish-rolled with a stretch reducer comprising 26 stands, and finished into a steel pipe having an outer diameter of 63.5 mm, a wall thickness of 7.0 mm, and a length of 40000 mm. An arc-shaped test piece having a thickness of 5 mm, a width of 25 mm, and a length of 50 mm was collected from this steel pipe. Using this test piece, the sulfuric acid-copper sulfate corrosion test specified in JIS G0575 was performed, and the intergranular corrosion cracking state generated on the inner surface was observed.
(Ii) Evaluation method: Evaluation was performed according to the following evaluation criteria.
(Double-circle): There is no crack.
X: There is a crack.

4)スプレー性
(i) 試験条件
スプレー方式:エアレススプレーにて行った。
吐出圧力:3.0MPaに設定した。
ノズル:1/4MVVP5010((株)池内製)
スプレーパターン:扇型
スプレー角度:50度(水をスプレーした時の、扇型に広がる角度)
試料温度:25℃に設定して評価した。
(ii) 評価:広がり性を、スプレー角度を測定して評価した。なお下記評価基準により評価結果を記録した。
◎:ほぼ所定角度にスプレーされる(50度)。
○:所定角度より若干狭い(40〜45度)。
△:所定角度よりかなり狭い(20〜39度)。
×:ほとんど広がらない(20度未満)又はスプレー粒子大。
4) Sprayability (i) Test conditions Spray method: An airless spray was used.
Discharge pressure: set to 3.0 MPa.
Nozzle: 1 / 4MVVP5010 (manufactured by Ikeuchi Co., Ltd.)
Spray pattern: Fan type Spray angle: 50 degrees (An angle that spreads in a fan shape when water is sprayed)
Sample temperature: set to 25 ° C. for evaluation.
(Ii) Evaluation: Spreadability was evaluated by measuring the spray angle. The evaluation results were recorded according to the following evaluation criteria.
A: Sprayed almost at a predetermined angle (50 degrees).
A: Slightly narrower than a predetermined angle (40 to 45 degrees).
(Triangle | delta): It is considerably narrower than a predetermined angle (20-39 degree | times).
X: Almost no spread (less than 20 degrees) or large spray particles.

5)付着性(付着量)
(i) 試験条件
スプレー方式:エアレススプレーにて行った。
吐出圧力:3.0MPaに設定した。
ノズル:1/4MVVP5010((株)池内製)
スプレー角度:50度
試片温度:60、80、100、120℃に設定した。
ノズル−試片距離:250mmに設定して試験を行った。
試片速度:2m/秒とした。
(ii) 評価方法:試片(65mm×120mm×30mmの鋼板)に試験条件にてスプレーを行い、塗布後試片を120℃まで加熱し潤滑剤を乾燥させた後、20〜40℃に放冷し、潤滑剤皮膜をナイフにて剥ぎ取り重量測定し、付着面積(0.0078m)にて除した値を付着量とし、下記評価基準により評価を行った。
◎:均一に付着し、付着量50g/m以上。
○:ほぼ均一に付着し、付着量50g/m以上。
△:若干流れ落ち、付着量40g/m以上。
×:激しく流れ落ち、付着量30g/m以下。
××:ハジキにより付着性悪い、付着量30g/m以下。
5) Adhesiveness (attachment amount)
(I) Test conditions Spray method: An airless spray was used.
Discharge pressure: set to 3.0 MPa.
Nozzle: 1 / 4MVVP5010 (manufactured by Ikeuchi Co., Ltd.)
Spray angle: 50 degrees Sample temperature: 60, 80, 100, 120 ° C.
Nozzle-specimen distance: The test was performed with the distance set to 250 mm.
Specimen speed: 2 m / sec.
(Ii) Evaluation method: A specimen (65 mm × 120 mm × 30 mm steel plate) is sprayed under test conditions, and after application, the specimen is heated to 120 ° C. to dry the lubricant, and then released to 20-40 ° C. After cooling, the lubricant film was peeled off with a knife, the weight was measured, and the value divided by the adhesion area (0.0078 m 2 ) was defined as the adhesion amount, and evaluation was performed according to the following evaluation criteria.
(Double-circle): It adheres uniformly and the adhesion amount is 50 g / m 2 or more.
○: Adhering almost uniformly, and an adhesion amount of 50 g / m 2 or more.
(Triangle | delta): It flows down a little and the adhesion amount is 40 g / m < 2 > or more.
X: Flowed down violently and the adhesion amount was 30 g / m 2 or less.
Xx: Adhesiveness is poor due to repelling, and the adhesion amount is 30 g / m 2 or less.

(3)試験結果
上記試験1)〜5)の結果を表1〜3に示す。
(3) Test results The results of the above tests 1) to 5) are shown in Tables 1 to 3.

Figure 2009287023
Figure 2009287023

Figure 2009287023
Figure 2009287023

Figure 2009287023
CMC(A):分子量(100,000) 粘度(800/2%**
CMC(B):分子量(250,000) 粘度(1600/1%)
CMC(C):分子量(175,000) 粘度(2500/2%)
CMC(D):分子量(195,000) 粘度(3500/2%)
CMC(E):分子量(30,000) 粘度(15/2%)
ポリアクリル酸Na(A):分子量(500,000) 粘度(75/1%)
ポリアクリル酸Na(B):分子量(1,650,000) 粘度(300/0.2%)
*CMC=カルボキシメチルセルロースのNa塩
**:2%水溶液にした時の、25℃における粘度が800m
Pa・sであることを表す。
Figure 2009287023
CMC * (A): Molecular weight (100,000) Viscosity (800/2% ** )
CMC * (B): Molecular weight (250,000) Viscosity (1600/1%)
CMC * (C): Molecular weight (175,000) Viscosity (2500/2%)
CMC * (D): Molecular weight (195,000) Viscosity (3500/2%)
CMC * (E): Molecular weight (30,000) Viscosity (15/2%)
Polyacrylic acid Na (A): Molecular weight (500,000) Viscosity (75/1%)
Polyacrylic acid Na (B): Molecular weight (1,650,000) Viscosity (300 / 0.2%)
* CMC = Carboxymethylcellulose Na salt
**: 800m viscosity at 25 ° C when 2% aqueous solution
Represents Pa · s.

(4)結論
以上の試験結果から、本発明例の潤滑油組成物は、貯蔵安定性、スプレー性、付着性のいずれの面においても良好な性能が確認された。これに対して、比較例に示した組成物群は、これらの点において満足すべき性能を得ることができなかった。
(4) Conclusion From the above test results, it was confirmed that the lubricating oil compositions of the examples of the present invention had good performance in all aspects of storage stability, sprayability, and adhesion. On the other hand, the composition group shown in the comparative example could not obtain satisfactory performance in these respects.

以上、現時点において、最も、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う継目無鋼管加工潤滑剤組成物もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   Although the present invention has been described with reference to the most practical and preferred embodiments at the present time, the invention is limited to the embodiments disclosed herein. However, the present invention can be changed as appropriate without departing from the scope or spirit of the invention that can be read from the claims and the entire specification, and a seamless steel pipe working lubricant composition with such changes is also within the technical scope of the present invention. Must be understood as encompassed by.

本発明の継目無鋼管加工潤滑剤組成物は、主としてマンネスマン製管法による継目無鋼管の製造に使用することができる。   The seamless steel pipe processing lubricant composition of the present invention can be used mainly for the production of seamless steel pipes by the Mannesmann pipe manufacturing method.

Claims (4)

粘度特性が下記の近似式で示される継目無鋼管加工潤滑剤組成物。
Y=a・X Y:粘度(mPa・s)
X:ずり速度(s−1
静置保管中において a:4000〜40000
b:−1.0〜−0.3
剪断終了時から90秒後においてa:1000〜20000
b:−1.0〜−0.15
A seamless steel pipe processing lubricant composition having a viscosity characteristic represented by the following approximate formula:
Y = a · X b Y: Viscosity (mPa · s)
X: shear rate (s −1 )
During stationary storage a: 4000 to 40000
b: -1.0 to -0.3
90 seconds after the end of shearing a: 1000-20000
b: -1.0 to -0.15
酸化物系層状化合物10〜40質量%、硼酸のアルカリ金属塩又はアミン塩の1種以上を5〜30質量%、この硼酸のアルカリ金属塩又はアミン塩の1種以上の水溶液に可溶な水溶性高分子1種以上を0.11〜3.0質量%、残部水からなる請求項1に記載の継目無鋼管加工潤滑剤組成物。 Oxide-based layered compound 10-40% by mass, boric acid alkali metal salt or amine salt 5-30% by mass, boric acid alkali metal salt or amine salt one or more aqueous solutions soluble in water The seamless steel pipe working lubricant composition according to claim 1, comprising 0.11 to 3.0% by mass of at least one functional polymer and the balance water. 前記水溶性高分子として、シュードプラスチック流動性水溶性高分子、又は、シュードプラスチック流動性水溶性高分子とチクソトロピック流動性水溶性高分子とを含む請求項2に記載の継目無鋼管加工潤滑剤組成物。 The seamless steel pipe processing lubricant according to claim 2, wherein the water-soluble polymer includes a pseudoplastic fluid water-soluble polymer, or a pseudoplastic fluid water-soluble polymer and a thixotropic fluid water-soluble polymer. Composition. 前記水溶性高分子として、組成物全量基準でシュードプラスチック流動性水溶性高分子0.01〜1.0質量%、チクソトロピック流動性水溶性高分子0.1〜2.0質量%を含む請求項2に記載の継目無鋼管加工潤滑剤組成物。 The water-soluble polymer includes 0.01 to 1.0 mass% pseudoplastic fluid water-soluble polymer and 0.1 to 2.0 mass% thixotropic fluid water-soluble polymer based on the total amount of the composition. Item 3. The seamless steel pipe processing lubricant composition according to Item 2.
JP2009112471A 2003-09-04 2009-05-07 Seamless steel pipe processing lubricant composition Active JP5292575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112471A JP5292575B2 (en) 2003-09-04 2009-05-07 Seamless steel pipe processing lubricant composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003312232 2003-09-04
JP2003312232 2003-09-04
JP2009112471A JP5292575B2 (en) 2003-09-04 2009-05-07 Seamless steel pipe processing lubricant composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004256411A Division JP2005097605A (en) 2003-09-04 2004-09-03 Seamless steel tube processing lubricant composition

Publications (2)

Publication Number Publication Date
JP2009287023A true JP2009287023A (en) 2009-12-10
JP5292575B2 JP5292575B2 (en) 2013-09-18

Family

ID=34269732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112471A Active JP5292575B2 (en) 2003-09-04 2009-05-07 Seamless steel pipe processing lubricant composition

Country Status (4)

Country Link
EP (1) EP1666576B1 (en)
JP (1) JP5292575B2 (en)
CN (1) CN100575468C (en)
WO (1) WO2005023966A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910693B2 (en) * 2006-12-28 2012-04-04 住友金属工業株式会社 A method for applying a lubricant to a mandrel bar, a method for controlling the film thickness of the lubricant on a mandrel bar, and a method for producing a seamless steel pipe.
JP5392134B2 (en) 2010-02-15 2014-01-22 新日鐵住金株式会社 Lubricant for hot rolling tool and surface treatment method for mandrel bar for hot seamless pipe manufacturing
JP5142232B2 (en) * 2010-12-22 2013-02-13 新日鐵住金株式会社 Seamless steel pipe manufacturing method
CN102703193A (en) * 2012-05-25 2012-10-03 衡阳市金化科技有限公司 High-temperature water-based core rod lubricant and preparation method
CN104450136A (en) * 2014-11-05 2015-03-25 衡阳市金化科技有限公司 Bentonite lubricant
CN106334713A (en) * 2016-09-26 2017-01-18 天津钢管集团股份有限公司 Hot rolling lubrication process method for titanium alloy seamless tube

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312498A (en) * 1989-06-09 1991-01-21 Sumitomo Metal Ind Ltd Hot lubricant
JPH05271682A (en) * 1992-02-06 1993-10-19 Lonza Ag Mandrel lubricant for production of seamless tube
JPH08165489A (en) * 1994-12-13 1996-06-25 Sumitomo Metal Ind Ltd Lubricant composition for warm processing
JPH0978080A (en) * 1995-09-12 1997-03-25 Sumitomo Metal Ind Ltd Lubricant composition for high-temperature working and its usage
JPH10121088A (en) * 1996-10-15 1998-05-12 Sumitomo Metal Ind Ltd Lubricant composition for high-temperature processing of metal and method for using the same
JPH10130687A (en) * 1996-10-30 1998-05-19 Kawasaki Steel Corp Lubricant composition for hot working
JPH1135967A (en) * 1997-07-16 1999-02-09 Sumitomo Metal Ind Ltd Lubricant for hot working and lubricating method
JP2001234189A (en) * 2000-02-21 2001-08-28 Sumitomo Metal Ind Ltd Lubricant for piercing rolling plug and method for piercing rolling seamless steel pipe
JP2002028705A (en) * 2000-07-14 2002-01-29 Sumitomo Metal Ind Ltd Method of rolling and rolling equipment using mandrel mill
JP2005097605A (en) * 2003-09-04 2005-04-14 Sumitomo Metal Ind Ltd Seamless steel tube processing lubricant composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100750A (en) * 1993-09-21 1995-03-29 宝山钢铁(集团)公司 Lubricating powder used for thermoplastic processing of metals

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312498A (en) * 1989-06-09 1991-01-21 Sumitomo Metal Ind Ltd Hot lubricant
JPH05271682A (en) * 1992-02-06 1993-10-19 Lonza Ag Mandrel lubricant for production of seamless tube
JPH08165489A (en) * 1994-12-13 1996-06-25 Sumitomo Metal Ind Ltd Lubricant composition for warm processing
JPH0978080A (en) * 1995-09-12 1997-03-25 Sumitomo Metal Ind Ltd Lubricant composition for high-temperature working and its usage
JPH10121088A (en) * 1996-10-15 1998-05-12 Sumitomo Metal Ind Ltd Lubricant composition for high-temperature processing of metal and method for using the same
JPH10130687A (en) * 1996-10-30 1998-05-19 Kawasaki Steel Corp Lubricant composition for hot working
JPH1135967A (en) * 1997-07-16 1999-02-09 Sumitomo Metal Ind Ltd Lubricant for hot working and lubricating method
JP2001234189A (en) * 2000-02-21 2001-08-28 Sumitomo Metal Ind Ltd Lubricant for piercing rolling plug and method for piercing rolling seamless steel pipe
JP2002028705A (en) * 2000-07-14 2002-01-29 Sumitomo Metal Ind Ltd Method of rolling and rolling equipment using mandrel mill
JP2005097605A (en) * 2003-09-04 2005-04-14 Sumitomo Metal Ind Ltd Seamless steel tube processing lubricant composition

Also Published As

Publication number Publication date
JP5292575B2 (en) 2013-09-18
CN1845982A (en) 2006-10-11
EP1666576A4 (en) 2009-05-20
CN100575468C (en) 2009-12-30
WO2005023966A1 (en) 2005-03-17
EP1666576A1 (en) 2006-06-07
EP1666576B1 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5292575B2 (en) Seamless steel pipe processing lubricant composition
JP6039075B2 (en) Water-based lubricant for plastic working of metal materials with excellent workability after moisture absorption and clogging resistance
JP2001516386A (en) Reticulated bacterial cellulose as a flow modifier for polyol fluid compositions
JP2005097605A (en) Seamless steel tube processing lubricant composition
JP4910693B2 (en) A method for applying a lubricant to a mandrel bar, a method for controlling the film thickness of the lubricant on a mandrel bar, and a method for producing a seamless steel pipe.
CN101910388B (en) Lubricant for hot working and process for manufacturing seamless steel pipe
JP2692474B2 (en) Lubricants for hot rolling of seamless metal tubes
JP4597695B2 (en) Anti-seizure agent for two-component hot plastic working and method for producing seamless pipe using the same
CN102977714B (en) Composite nano anti-gluing industrial coating and industrial production method and application thereof
JP5392134B2 (en) Lubricant for hot rolling tool and surface treatment method for mandrel bar for hot seamless pipe manufacturing
JP4567599B2 (en) Lubricant composition for hot plastic working
JPH04519B2 (en)
CN101386805A (en) Core rod graphite lubricant
JPS5819395A (en) Lubricant for hot molding of steel stock
JPS5849800A (en) Lubricant composition for high temperature
JPS6234360B2 (en)
JPH0523318B2 (en)
JP3231454B2 (en) High temperature lubricant composition
JPH05117684A (en) Liquid lubricant for plug rolling mill
JPH0637632B2 (en) Lubricant composition for high temperature
JP2591558B2 (en) High temperature lubricant composition
JP2551247B2 (en) Lubrication method in hot rolling
CN1105058A (en) Double lubricate layer compound for cold drawing stainless steel pipe with core rod
JP2002338984A (en) Hot-working powder lubricant composition
JPH10183160A (en) Lubricant composition for high-temperature metal working and tube punching using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Ref document number: 5292575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250