JP2009286896A - Apparatus for producing polyamide resin - Google Patents
Apparatus for producing polyamide resin Download PDFInfo
- Publication number
- JP2009286896A JP2009286896A JP2008140771A JP2008140771A JP2009286896A JP 2009286896 A JP2009286896 A JP 2009286896A JP 2008140771 A JP2008140771 A JP 2008140771A JP 2008140771 A JP2008140771 A JP 2008140771A JP 2009286896 A JP2009286896 A JP 2009286896A
- Authority
- JP
- Japan
- Prior art keywords
- polyamide resin
- producing
- diamine
- pipe
- dicarboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polyamides (AREA)
Abstract
Description
本発明は、ポリアミド樹脂の製造装置に関する。 The present invention relates to a polyamide resin production apparatus.
一般的なポリアミドの製造方法は、ナイロン塩又はその水溶液を供給原料とし、回分式では一つの反応槽でナイロン塩水溶液を加圧下に加熱し、ジアミンの留出を抑えながら均一相で重合を進め、ジアミンを固定化したのち系内の水蒸気を徐々に放圧し、最終的に常圧もしくは減圧とし重合を完結させる。このとき、供給原料として約50質量%のナイロン塩の水溶液を用いるのが一般的であるが、重合初期において溶媒である水の留出を防ぐため高度の耐圧仕様が求められ、最終的に溶媒である多量の水と縮合水を除去しなければならず、このとき発泡、水の蒸発潜熱によるポリマーの固化、および反応中の大きな液面変動に伴い反応槽壁面にポリアミドが付着し、熱劣化を起こす等様々な不都合を回避するための対策が必要である。また、多量の水を除去するため多くの熱エネルギーを必要とし、更に1回の反応で得られるポリアミド収量が少ない等、技術的にも経済的にも課題が多い。一方、ナイロン塩を供給原料とする場合(特許文献1、特許文献2)、これらの欠点はかなり解決されるが、ナイロン塩の単離、精製工程が必要であり、効率の良い方法とは言い難い。 A general polyamide production method uses nylon salt or an aqueous solution thereof as a feedstock, and in a batch system, the aqueous nylon salt solution is heated under pressure in a single reaction tank, and polymerization is carried out in a uniform phase while suppressing the distillation of diamine. Then, after fixing the diamine, the water vapor in the system is gradually released, and finally the pressure is reduced to normal pressure or reduced pressure to complete the polymerization. At this time, it is common to use an aqueous solution of about 50% by weight nylon salt as a feedstock, but a high pressure resistance specification is required in order to prevent the distillation of water as a solvent in the initial stage of polymerization. A large amount of water and condensed water must be removed. At this time, polyamide adheres to the reaction vessel wall surface due to foaming, solidification of the polymer due to the latent heat of vaporization of water, and large liquid level fluctuation during the reaction, resulting in thermal degradation. It is necessary to take measures to avoid various inconveniences. In addition, a large amount of water is required to remove a large amount of water, and there are many technical and economic problems such as a low yield of polyamide obtained by one reaction. On the other hand, when nylon salt is used as a feedstock (Patent Document 1 and Patent Document 2), these disadvantages are considerably solved, but it is necessary to isolate and purify the nylon salt, which is an efficient method. hard.
ナイロン塩およびナイロン塩の水溶液を供給原料としない重合方法として、溶融状態にあるジカルボン酸に少量の水を含んだジアミンを常圧下220℃以下の温度で滴下して反応を行う方法(特許文献3)、溶融状態にあるジカルボン酸にジアミンを常圧下滴下し直接反応させる方法(特許文献4、特許文献5等)もある。 As a polymerization method in which nylon salt and an aqueous solution of nylon salt are not used as a feedstock, a reaction is carried out by dropping a diamine containing a small amount of water into a dicarboxylic acid in a molten state at a temperature of 220 ° C. or lower under normal pressure (Patent Document 3) There is also a method (Patent Document 4, Patent Document 5, etc.) in which a diamine is dropped into a dicarboxylic acid in a molten state under normal pressure to cause a direct reaction.
これらの方法は技術的にも経済的にも有利であるが、溶融状態にあるジカルボン酸にジアミンを直接添加することに伴う問題点として、溶融状態にあるジカルボン酸には昇華性があり、重合装置の天井部にジカルボン酸の昇華物が付着する。また重合装置上部に接続された各種配管の内壁、例えば添加剤の投入口、ジアミンの添加口、および蒸気管の内壁、および分縮器の内部にも、ジカルボン酸の昇華物が付着する。付着したジカルボン酸の昇華物は、重合反応過程においてはその反応で発生する縮合水の蒸気によってその殆どが溶解洗浄される。ジカルボン酸の昇華物は、溶融ジカルボン酸が重合装置に単独で存在するときに発生するだけでなく、ジカルボン酸の固定化が不十分なジアミンの添加工程で発生する。このため、蒸気管および分縮器には、重合反応によって発生する縮合水の蒸気によって同伴されたジカルボン酸の昇華物のため、重合装置の部位の中で最も多くジカルボン酸の昇華物が付着する。また同伴されるジアミンと反応しナイロン塩もしくはオリゴマーを生成し、縮合水で溶解しないものが、バッチ数を重ねる毎に付着堆積し熱履歴を受ける。 These methods are technically and economically advantageous. However, as a problem with adding a diamine directly to a dicarboxylic acid in a molten state, the dicarboxylic acid in a molten state has sublimation property, and polymerization Dicarboxylic acid sublimate adheres to the ceiling of the apparatus. Further, the sublimate of dicarboxylic acid adheres to the inner walls of various pipes connected to the upper part of the polymerization apparatus, for example, the inlet of the additive, the inlet of the diamine, the inner wall of the steam pipe, and the inside of the condenser. Most of the attached sublimates of dicarboxylic acid are dissolved and washed by the vapor of condensed water generated in the reaction during the polymerization reaction. The dicarboxylic acid sublimate is generated not only when the molten dicarboxylic acid is present alone in the polymerization apparatus, but also during the diamine addition step in which the dicarboxylic acid is not sufficiently fixed. For this reason, since the sublimate of dicarboxylic acid entrained by the vapor of the condensed water generated by the polymerization reaction is attached to the steam pipe and the partial condenser, most of the sublimate of dicarboxylic acid adheres in the part of the polymerization apparatus. . Moreover, it reacts with the entrained diamine to produce a nylon salt or oligomer, which does not dissolve in condensed water, adheres and accumulates every time the number of batches is increased, and receives a thermal history.
この蒸気管および分縮器への堆積に対しては、重縮合反応により発生する縮合水を主体とする、反応槽で発生する蒸気を反応槽から分縮器に導く蒸気管の内部温度、および分縮器の内部温度を制御して、水蒸気の一部を凝縮させ、昇華付着したジカルボン酸および/あるいは付着したナイロン塩、オリゴマーを洗い流し、反応槽に凝縮水と共に循環させる法(特許文献6)がある。この方法は、蒸気管および分縮器の堆積を洗い流すには、有効であったが、還流管は縮合水で満液とするため、蒸気管に比べ細く、分縮器内の堆積物を洗い流す際に、未溶解の堆積物が、還流管に付着、堆積する。これらの所望のジアミンとジカルボン酸のモルバランスと異なるナイロン塩、オリゴマー或いはそれらの溶液が還流管に滞留する事により、反応槽内のモル比率と所望のモル比の間に差異が生まれることとなる。また、堆積を続けることにより、還流管が閉塞し、連続した回分式生産が出来なくなる。また、還流管内に堆積したこれら固形物が、反応中に欠落しポリアミドに混入すると、フィルム、ボトル、モノフィラメント等の最終製品に成形したとき、フィッシュアイ、ゲル等の外観不良を招く危険性がある。
本発明の目的は、分縮器を備えた回分式反応槽を用い溶融状態にあるジカルボン酸にジアミンを添加し、直接重縮合させてなるポリアミド樹脂の回分式製造方法において、閉塞トラブルの無い安定した回分式製造装置を提供することにある。 An object of the present invention is to provide a polyamide resin batch production method in which a diamine is added to a dicarboxylic acid in a molten state using a batch reactor equipped with a partial condenser, and then directly polycondensed. It is in providing a batch type manufacturing apparatus.
本発明者らは、かかる課題を解決するために鋭意検討した結果、蒸気管と還流管を共用する配管を設置し、蒸気と凝縮液を同一配管に流通させることにより、該配管壁にナイロン塩/オリゴマーの堆積を防止しつつ、分縮器に堆積したナイロン塩/オリゴマーによる配管の閉塞も防止することができ、分縮器と反応槽間の閉塞トラブルが解消され、更に固形物の混入を防止し、ポリアミド樹脂の安定した連続の回分式生産が可能となることを見出し、本発明を完成させた。 As a result of intensive studies to solve such problems, the present inventors have installed a pipe that shares a steam pipe and a reflux pipe, and distributes the steam and the condensate through the same pipe so that a nylon salt is formed on the pipe wall. / While preventing oligomer accumulation, blockage of piping due to nylon salt / oligomer accumulated in the pressure reducer can be prevented, eliminating troubles between the pressure reducer and the reaction tank, and mixing in solid matter. And the present invention has been completed by finding that it enables stable and continuous batch production of polyamide resin.
すなわち本発明は、溶融状態にあるジカルボン酸にジアミンを連続的もしくは間欠的に添加し、ジアミンとジカルボン酸を直接重縮合してポリアミド樹脂を製造する装置であって、回分式反応槽、分縮器、および重縮合反応によって発生する縮合水を主体とする蒸気を反応槽から分縮器に導く機能と分縮器内で凝縮した還流液を反応槽に戻す機能を併せ持つ、反応槽と分縮器を接続する配管を有することを特徴とするポリアミド樹脂の製造装置に関する発明である。 That is, the present invention is an apparatus for producing a polyamide resin by continuously or intermittently adding a diamine to a dicarboxylic acid in a molten state and directly polycondensing the diamine and the dicarboxylic acid. A reactor and a decondensing unit that has both the function of introducing steam mainly composed of condensed water generated by the polycondensation reaction from the reaction tank to the deconcentrator and the function of returning the reflux liquid condensed in the decondenser to the reaction tank. It is invention regarding the manufacturing apparatus of the polyamide resin characterized by having piping which connects a container.
本発明に係るポリアミド樹脂の製造方法によって以下の効果が得られる。
(イ)反応槽と分縮機をつなぐ配管の閉塞トラブルが解消され、安定した連続の回分式生産が可能となる。
(ロ)単独の還流管を有せず、固形物が堆積しないため、固形物の反応系内への混入が無くなり、フィッシュアイ、ゲル等の外観不良の少ない成型品を与える高品位なポリアミド樹脂が得られる。
(ハ)単独の還流管を有せず、固形物が堆積しないため、仕込みモル比が精度良く再現され、高度なモル比制御が可能となる。
The following effects can be obtained by the method for producing a polyamide resin according to the present invention.
(B) The trouble of blockage of the piping connecting the reaction tank and the partial reducer is solved, and stable continuous batch production becomes possible.
(B) A high-quality polyamide resin that does not have a single reflux tube and solid matter does not accumulate, eliminates the mixing of solid matter into the reaction system, and provides molded products with little appearance defects such as fish eyes and gels. Is obtained.
(C) Since there is no single reflux pipe and no solid matter is deposited, the charged molar ratio is accurately reproduced, and a high molar ratio control becomes possible.
本発明で用いるジアミンとしては、キシリレンジアミン、ビス(アミノメチル)シクロヘキサン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、パラフェニレンジアミン等が挙げられる。キシリレンジアミンとしてはメタ、パラおよびオルソキシリレンジアミンが例示でき、ビス(アミノメチル)シクロヘキサンとしては1,2−、1,3−、1,4―ビス(アミノメチル)シクロヘキサンが例示できる。これらのジアミンは単独でも2種以上混合しても使用可能である。ここで、ジアミンがキシリレンジアミンおよび/またはビス(アミノメチル)シクロヘキサンを含むジアミンであることが好ましく、ジアミンの80モル%以上がキシリレンジアミンおよび/またはビス(アミノメチル)シクロヘキサンであることが好ましい。また、キシリレンジアミンおよび/またはビス(アミノメチル)シクロヘキサンの50モル%以上がメタキシリレンジアミンおよび/または1,3−ビス(アミノメチル)シクロヘキサンであることが好ましく、より好ましくは70モル%以上である。 Examples of the diamine used in the present invention include xylylenediamine, bis (aminomethyl) cyclohexane, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, nonamethylenediamine, and paraphenylenediamine. Examples of xylylenediamine include meta, para, and orthoxylylenediamine, and examples of bis (aminomethyl) cyclohexane include 1,2-, 1,3-, 1,4-bis (aminomethyl) cyclohexane. These diamines can be used alone or in combination of two or more. Here, the diamine is preferably a diamine containing xylylenediamine and / or bis (aminomethyl) cyclohexane, and 80 mol% or more of the diamine is preferably xylylenediamine and / or bis (aminomethyl) cyclohexane. . Moreover, it is preferable that 50 mol% or more of xylylenediamine and / or bis (aminomethyl) cyclohexane is metaxylylenediamine and / or 1,3-bis (aminomethyl) cyclohexane, more preferably 70 mol% or more. It is.
ジカルボン酸としては、アジピン酸、琥珀酸、セバシン酸、ドデカン二酸、イソフタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸等が挙げられる。これらのジカルボン酸は単独でも2種以上混合しても使用可能である。得られるポリアミドの実用的な物性から考えて、特にジカルボン酸の50モル%以上がアジピン酸であることが好ましい。また、ジアミンおよびジカルボン酸以外のポリアミド構成成分は、カプロラクタム、バレロラクタム、ラウロラクタム、ウンデカラクタム等のラクタム、11−アミノウンデカン酸、12−アミノドデカン酸等のアミノカルボン酸を例示することができ、ジカルボン酸と共に、もしくは添加されるジアミンとともに反応槽に供給される。 Examples of the dicarboxylic acid include adipic acid, succinic acid, sebacic acid, dodecanedioic acid, isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid. These dicarboxylic acids can be used alone or in combination of two or more. Considering the practical properties of the resulting polyamide, it is particularly preferred that 50 mol% or more of the dicarboxylic acid is adipic acid. Examples of polyamide constituents other than diamines and dicarboxylic acids include lactams such as caprolactam, valerolactam, laurolactam, and undecalactam, and aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid. , Together with the dicarboxylic acid or with the added diamine.
本発明では所望のモルバランスを有するポリアミド樹脂(ジアミン過剰、ジカルボン酸過剰および等モル)を得るため、仕込みのモルバランスは任意に選択される。仕込みのモルバランスの調整方法は、例えば溶融状態にあるジカルボン酸を溶融槽ごと質量計量器で計量し、反応槽に供給した後、ジアミン貯槽を質量計量器で計量しつつ、ジアミンを反応系に供給する方法が例示できる。本発明においてジアミンおよびジカルボン酸の質量を計量する場合、ロードセル、天秤等の質量計量器が好適に利用可能である。 In the present invention, in order to obtain a polyamide resin having a desired molar balance (excess of diamine, excess of dicarboxylic acid and equimolar), the molar balance of charging is arbitrarily selected. The method of adjusting the molar balance of charging is, for example, measuring the dicarboxylic acid in a molten state with a mass meter with a mass meter and supplying it to the reaction vessel, then measuring the diamine storage tank with the mass meter, and adding the diamine to the reaction system. The method of supplying can be illustrated. In the present invention, when measuring the mass of diamine and dicarboxylic acid, a mass measuring instrument such as a load cell or a balance can be suitably used.
ジカルボン酸の溶融工程は、酸化着色を避ける目的から窒素等の不活性ガス雰囲気で行われることが望ましい。ジカルボン酸の溶融は反応槽もしくは専用の溶融槽で実施可能であるが、反応槽の利用効率を高める目的から、専用の溶融槽の利用が望ましい。 The melting step of the dicarboxylic acid is desirably performed in an inert gas atmosphere such as nitrogen for the purpose of avoiding oxidative coloring. Although melting of the dicarboxylic acid can be carried out in a reaction tank or a dedicated melting tank, it is desirable to use a dedicated melting tank for the purpose of increasing the utilization efficiency of the reaction tank.
溶融状態にあるジカルボン酸にジアミンを添加する際、実質的にアミド化反応が進行する温度である160℃以上の温度に溶融ジカルボン酸が昇温されることが望ましく、かつ中間体として生成するオリゴマーおよび/または低分子量ポリアミドが溶融状態となって反応系全体が均一な流動状態を保持しうる温度に設定されていることが望ましい。具体的なジアミンの添加操作は、反応槽中で溶融状態にあるジカルボン酸を攪拌し、ジアミンを連続的にもしくは間欠的に添加し、添加の間に反応混合物の温度を逐次昇温させ、所定の温度に保持することによって行われる。昇温速度はアミド化反応熱、縮合水の蒸発潜熱、供給熱等に依存するため、ジアミンの添加速度が適時調整され、添加終了時点で反応混合物の温度はポリアミドの融点以上、(融点+35℃)未満、望ましくは(融点+5℃)以上、(融点+25℃)未満、更に望ましくは(融点+10℃)以上、(融点+15℃)未満に調整される。 When adding a diamine to a dicarboxylic acid in a molten state, it is desirable that the molten dicarboxylic acid be heated to a temperature of 160 ° C. or higher, which is a temperature at which the amidation reaction substantially proceeds, and an oligomer produced as an intermediate It is desirable that the temperature be set to a temperature at which the low molecular weight polyamide is in a molten state and the entire reaction system can maintain a uniform fluid state. Specifically, the diamine is added by stirring the dicarboxylic acid in a molten state in the reaction vessel, continuously or intermittently adding the diamine, and gradually increasing the temperature of the reaction mixture during the addition. By maintaining the temperature at Since the rate of temperature rise depends on the heat of amidation reaction, the latent heat of vaporization of condensed water, the heat of supply, etc., the diamine addition rate is adjusted as appropriate, and the temperature of the reaction mixture at the end of the addition is equal to or higher than the melting point of the polyamide (melting point + 35 ° C. ), Preferably (melting point + 5 ° C.) or more, (melting point + 25 ° C.), more preferably (melting point + 10 ° C.) or more, and (melting point + 15 ° C.).
ジアミンの添加中の圧力は、発生する縮合水を効率よく系外に留去し、重縮合反応を進めるために、常圧が望ましいが、不活性ガスや水蒸気などを用いて加圧した条件下で行うことも可能である。その場合は、縮合水の除去効率を考えると、圧力は0.9MPaG以下より選択されるが、好ましくは、0.7MPaG以下、更に好ましくは、0.5MPaG以下である。 The pressure during the addition of the diamine is preferably normal pressure in order to efficiently distill out the generated condensed water out of the system and proceed with the polycondensation reaction, but under conditions pressurized with an inert gas or water vapor. It is also possible to do this. In that case, considering the removal efficiency of the condensed water, the pressure is selected from 0.9 MPaG or less, preferably 0.7 MPaG or less, more preferably 0.5 MPaG or less.
本発明の直接重合方法においても、公知のナイロン塩水溶液を原料とする加圧法の場合と同様に、ジアミンの反応系外への留出は避けがたく、反応槽は分縮器を備えていることが必要である。また、ジアミンの添加前から添加初期において反応槽からジカルボン酸の昇華物が発生する。分縮器を備えることにより、ジアミンおよびジカルボン酸の系外への留出を効果的に防止することができる。反応の進行と共に生成する縮合水は、縮合水と共に反応槽から留出するジアミンおよび昇華により留出するジカルボン酸と、分縮器で分離され全縮器で凝縮し反応系外に除かれる。ジアミンは分縮器で凝縮し、ジカルボン酸は凝縮したジアミンに洗い流され、反応槽に再度戻される。
分縮器の内部温度(蒸気側内表面の温度)は160℃以下であって、分縮器内部圧力の飽和水蒸気温度−10℃〜該飽和水蒸気温度+10℃に制御されることが好ましく、より好ましくは150℃以下であって、該飽和水蒸気温度−5℃〜該飽和水蒸気温度である。
In the direct polymerization method of the present invention, as in the case of the pressurization method using a known nylon salt aqueous solution as a raw material, it is difficult to distill diamine out of the reaction system, and the reaction vessel is equipped with a partial condenser. It is necessary. Further, a sublimate of dicarboxylic acid is generated from the reaction tank before the addition of diamine and in the initial stage of addition. By providing the partial condenser, it is possible to effectively prevent the diamine and dicarboxylic acid from being distilled out of the system. The condensed water produced as the reaction proceeds is separated from the diamine distilled from the reaction tank together with the condensed water and the dicarboxylic acid distilled by sublimation, and condensed in the total condenser and removed from the reaction system. The diamine is condensed in a partial condenser, and the dicarboxylic acid is washed away by the condensed diamine and returned to the reaction vessel.
It is preferable that the internal temperature of the partial condenser (temperature on the inner surface of the vapor side) is 160 ° C. or lower, and is controlled to the saturated water vapor temperature −10 ° C. to the saturated water vapor temperature + 10 ° C. of the internal pressure of the partial condenser. Preferably it is 150 degrees C or less, Comprising: It is this saturated water vapor temperature-5 degree C-this saturated water vapor temperature.
本発明は、蒸気管の機能、即ち重縮合反応によって発生する縮合水を主体とする蒸気を反応槽から分縮器に導く機能と、還流管の機能、即ち分縮器内で凝縮した還流液を反応槽に戻す機能を併せ持つ、反応槽と分縮器を接続する配管(以後「共用管」と称す)を有することに特徴がある。
共用管は、蒸気管として蒸気線速が0.2〜10m/秒となるような蒸気量に即した充分な配管径とすることが好ましい。この共用管に還流液を流すことにより、共用管内表面にナイロン塩/オリゴマーが堆積することを防止しつつ、分縮器に堆積したナイロン塩/オリゴマーによる閉塞をも防止することができる。共用管内表面はJIS B 0601に規定された十点平均粗さが12.5μm以下であることが好ましく、6.3μm以下であることがより好ましい。また、反応槽の分縮器側開口部付近の内表面も、該十点平均粗さが12.5μm以下であることが好ましく、6.3μm以下であることがより好ましい。
The present invention relates to a function of a steam pipe, that is, a function of guiding steam mainly composed of condensed water generated by a polycondensation reaction from a reaction tank to a partial condenser, and a function of a reflux pipe, that is, a reflux liquid condensed in the partial condenser. It is characterized by having a pipe (hereinafter referred to as “common pipe”) for connecting the reaction tank and the partial condenser, which has a function of returning the water to the reaction tank.
It is preferable that the common pipe has a sufficient pipe diameter corresponding to the amount of steam so that the steam linear velocity is 0.2 to 10 m / sec. By flowing the reflux liquid through the common pipe, it is possible to prevent clogging with the nylon salt / oligomer deposited on the partial condenser while preventing the nylon salt / oligomer from depositing on the inner surface of the common pipe. The common pipe inner surface preferably has a 10-point average roughness specified in JIS B 0601 of 12.5 μm or less, and more preferably 6.3 μm or less. Further, the ten-point average roughness of the inner surface of the reaction tank near the opening on the side of the condenser is preferably 12.5 μm or less, and more preferably 6.3 μm or less.
共用管の上部、即ち分縮器側開口部付近には、分縮器で凝縮した還流液を効率よく、共用管の内表面に誘導するために、分散装置、たとえば、中心部から外周縁に向かって斜め下方に傾斜している陣笠形状の分散板等を設置してもよく、その分散装置は、分縮器内に取り付けられてもよい。また、その表面はJIS B 0601に規定された十点平均粗さが12.5μm以下であることが好ましく、6.3μm以下であることがより好ましい。 In the upper part of the common pipe, that is, near the opening on the side of the partial condenser, in order to efficiently guide the reflux liquid condensed by the partial condenser to the inner surface of the common pipe, a dispersion device, for example, from the central part to the outer peripheral edge. A Jinkasa-shaped dispersion plate or the like that is inclined obliquely downward may be installed, and the dispersion device may be mounted in a partial condenser. Further, the surface preferably has a 10-point average roughness specified in JIS B 0601 of 12.5 μm or less, and more preferably 6.3 μm or less.
共用管の外周部に温度調節手段を備えることもできる。例えば、ジアミンとしてメタキシリレンジアミン、ジカルボン酸としてアジピン酸を使用する場合、共用管の内表面温度は、160℃以下の温度であって、好ましくは(共用管内部の圧力における飽和水蒸気温度−60℃)以上、(該飽和水蒸気温度+30℃)以下に調節、更に好ましくは、(該飽和水蒸気温度−10℃)以上、(該飽和水蒸気温度+10℃)以下に調節される。共用管の内表面温度は、高すぎると還流液中の水分の蒸発によりナイロン塩が析出したり、熱履歴を受けアミド化反応が進行しオリゴマーとなり溶解度が急激に低下することにより生じる固形物が堆積する原因となる。また、共用管の内表面温度が低すぎるとき、重合反応によって発生する縮合水の凝縮が顕著となり、共用管内部で還流状態となり、縮合水を効率的に反応系外に排出することが困難となる。 A temperature adjusting means may be provided on the outer periphery of the common pipe. For example, when using metaxylylenediamine as the diamine and adipic acid as the dicarboxylic acid, the inner surface temperature of the shared pipe is a temperature of 160 ° C. or less, preferably (saturated steam temperature −60 at the pressure inside the shared pipe) C.) to (the saturated water vapor temperature + 30 ° C.) or less, more preferably (the saturated water vapor temperature−10 ° C.) or more and (the saturated water vapor temperature + 10 ° C.) or less. If the inner surface temperature of the common pipe is too high, nylon salts will precipitate due to the evaporation of water in the reflux liquid, or a solid material generated by the thermal history and amidation reaction proceeds to become an oligomer and the solubility rapidly decreases. Causes accumulation. In addition, when the inner surface temperature of the common pipe is too low, condensation of the condensed water generated by the polymerization reaction becomes remarkable, it becomes a reflux state inside the common pipe, and it is difficult to efficiently discharge the condensed water out of the reaction system. Become.
ジカルボン酸の昇華物は、ジカルボン酸が溶融状態で反応槽に単独で存在するときに発生するばかりか、ジアミンの添加工程でも発生し、特にジカルボン酸の固定化が不十分な添加初期に多くの発生が認められる。分縮器の内部温度を制御することによって、昇華付着したジカルボン酸および/あるいは付着したナイロン塩、オリゴマーを洗い流し、反応槽に凝縮水と共に循環することができる。本発明では、上記の分縮器内の堆積物を速やかに反応槽に戻すため、共用管は分縮器から反応槽に向かって下方に傾斜しており、水平部分の無い構造であることが望ましい。水平部分があると、縮合水の凝縮が充分であったとしても、分縮器内の堆積物を完全には反応槽に戻すことができない。このため、縮合水に同伴されるジアミンと反応し、ナイロン塩を生成する。ナイロン塩の水に対する溶解度が低いとき、ナイロン塩は溶解せず、バッチ数を重ねる毎にアミド化反応が進行しオリゴマーとなり、さらに水に対する溶解度は低下する。その結果、共用管に固形物が堆積していき、最終的に共用管は閉塞する。 The dicarboxylic acid sublimate is generated not only when the dicarboxylic acid is present alone in the reaction vessel in a molten state, but also during the diamine addition step, especially in the initial stage of addition when the dicarboxylic acid is not sufficiently fixed. Occurrence is observed. By controlling the internal temperature of the partial condenser, the dicarboxylic acid adhering to the sublimation and / or the adhering nylon salt or oligomer can be washed away and circulated with the condensed water in the reaction vessel. In the present invention, in order to quickly return the deposit in the above-described partial condenser to the reaction tank, the common pipe is inclined downward from the partial condenser toward the reaction tank, and has a structure without a horizontal portion. desirable. If there is a horizontal portion, even if condensation water is sufficiently condensed, the deposits in the partial condenser cannot be completely returned to the reaction vessel. For this reason, it reacts with the diamine accompanying the condensed water to produce a nylon salt. When the solubility of the nylon salt in water is low, the nylon salt is not dissolved, and the amidation reaction proceeds to become an oligomer every time the number of batches is repeated, and further the solubility in water decreases. As a result, solid matter accumulates in the shared pipe, and eventually the shared pipe is blocked.
以下に実施例および比較例を挙げて、本発明を具体的に説明する。ただし、本発明はこれらの実施例および比較例によって何ら限定されるものではない。なお、各分析方法は以下の通りである。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to these examples and comparative examples. Each analysis method is as follows.
(1)アミノ末端基濃度
ポリアミド樹脂0.3〜0.5gを精秤し、フェノール/エタノール混合溶液(混合容積比4:1)30mlに室温で撹拌溶解した。完全に溶解したあと撹拌しつつ0.01モル/l塩酸水溶液で中和滴定して求めた。
(2)カルボキシル末端基濃度
ポリアミド樹脂0.3〜0.5gを精秤し、ベンジルアルコール30mlに窒素気流下、160〜180℃で撹拌溶解した。完全に溶解したあと、窒素気流下で80℃まで冷却し、撹拌しつつメタノールを10ml加え、0.01モル/l水酸化ナトリウム水溶液で中和滴定して求めた。
(3)数平均分子量
アミノ末端基およびカルボキシル末端基の滴定定量値から次式により求めた。
数平均分子量=2/([NH2]+[COOH])
但し、[NH2]はアミノ末端基濃度、[COOH]はカルボキシル末端基濃度を表し、単位はモル/gである。
(1) Amino end group concentration 0.3-0.5 g of polyamide resin was precisely weighed and dissolved in 30 ml of a phenol / ethanol mixed solution (mixing volume ratio 4: 1) with stirring at room temperature. After complete dissolution, it was determined by neutralization titration with 0.01 mol / l aqueous hydrochloric acid while stirring.
(2) Carboxyl end group concentration 0.3-0.5 g of polyamide resin was precisely weighed and dissolved in 30 ml of benzyl alcohol with stirring at 160-180 ° C. in a nitrogen stream. After complete dissolution, the mixture was cooled to 80 ° C. under a nitrogen stream, 10 ml of methanol was added with stirring, and neutralization titration with a 0.01 mol / l sodium hydroxide aqueous solution was performed.
(3) Number average molecular weight It calculated | required by following Formula from the titration quantitative value of the amino terminal group and the carboxyl terminal group.
Number average molecular weight = 2 / ([NH 2 ] + [COOH])
However, [NH 2 ] represents the amino end group concentration, [COOH] represents the carboxyl end group concentration, and the unit is mol / g.
<実施例1>
外筒が呼び径125A、内筒が呼び径40Aの二重管構造を有し、外側に温度調整されたオイルが流通する水平部分の無い共用管、温度調整されたオイルが流通する分縮器、全縮器、攪拌機、窒素ガス導入管およびジアミンの滴下口を備えたジャケット付き50リットルのステンレス製の反応槽にアジピン酸(純度:99.85質量%、水分:0.15質量%)15kgを仕込み、窒素置換し更に少量の窒素を流通させながら250℃の熱媒をジャケットに流し、攪拌しつつ190℃に昇温した。次いで300℃の熱媒をジャケットに流し、溶融したアジピン酸を攪拌しながら、メタキシリレンジアミン(純度:99.93質量%)13.902kgを常圧下に連続的に2時間かけて滴下した。仕込みモル比(ジアミン/ジカルボン酸)は0.9953である。この間内温を250℃まで連続的に昇温した。メタキシリレンジアミンの滴下とともに留出する水は分縮器および全縮器を通して反応系外に除いた。
<Example 1>
A double pipe structure with an outer cylinder having a nominal diameter of 125A and an inner cylinder having a nominal diameter of 40A, a common pipe without a horizontal portion through which temperature-adjusted oil flows, and a contractor through which temperature-adjusted oil flows 15 kg of adipic acid (purity: 99.85% by mass, water content: 0.15% by mass) in a 50 liter stainless steel reactor equipped with a total condenser, stirrer, nitrogen gas inlet tube and diamine dropping port Was added, and the temperature was raised to 190 ° C. with stirring while flowing a 250 ° C. heating medium through the jacket while flowing a small amount of nitrogen. Next, 13.902 kg of metaxylylenediamine (purity: 99.93% by mass) was continuously added dropwise under atmospheric pressure over 2 hours while flowing a 300 ° C. heating medium through the jacket and stirring the molten adipic acid. The charged molar ratio (diamine / dicarboxylic acid) is 0.9953. During this time, the internal temperature was continuously raised to 250 ° C. Water distilled with the addition of metaxylylenediamine was removed out of the reaction system through a partial condenser and a full condenser.
共用管および分縮器に温度調整されたオイルを流し、共用管の内部温度を100℃〜140℃に、分縮器の内部温度を100〜104℃に制御した。メタキシリレンジアミンの滴下終了後、常圧下に攪拌しながら260℃まで昇温し、30分保持した。その後5分かけて80kPa−absまで圧力を低下させ、80kPa−absで20分間保持した。その後常圧とし反応槽下部のノズルからポリアミド樹脂を取り出し、水冷固化した。反応槽が100℃以下まで冷えたところで、同様の操作による次の反応を開始した。この様に連続して合計10バッチ反応を繰り返し行い、得られたポリアミド樹脂の末端基濃度の定量を行った。結果、各バッチのポリアミド樹脂のモル比は、0.994〜0.995であり、数平均分子量は15,000〜15,500と安定していた。また同様に30バッチ連続して反応を行った後、共用管内部の状況を観察したところ、配管内の固形物の付着は一切認められなかった。 The temperature-adjusted oil was supplied to the common pipe and the partial condenser, and the internal temperature of the common pipe was controlled to 100 ° C to 140 ° C, and the internal temperature of the partial condenser was controlled to 100 to 104 ° C. After completion of the dropwise addition of metaxylylenediamine, the temperature was raised to 260 ° C. with stirring under normal pressure and held for 30 minutes. Thereafter, the pressure was reduced to 80 kPa-abs over 5 minutes, and the pressure was maintained at 80 kPa-abs for 20 minutes. Thereafter, the pressure was changed to normal pressure, and the polyamide resin was taken out from the nozzle at the bottom of the reaction vessel and solidified with water. When the reaction vessel was cooled to 100 ° C. or lower, the next reaction by the same operation was started. In this manner, a total of 10 batch reactions were repeated continuously, and the terminal group concentration of the obtained polyamide resin was quantified. As a result, the molar ratio of the polyamide resin in each batch was 0.994 to 0.995, and the number average molecular weight was stable at 15,000 to 15,500. Similarly, after reacting continuously for 30 batches, the inside of the common pipe was observed, and no solid matter was found in the pipe.
<実施例2>
外筒が呼び径125A、内筒が呼び径40Aの二重管構造を有し、外側に温度調整されたオイルが流通する水平部分の無い共用管、温度調整されたオイルが流通する分縮器、全縮器、攪拌機、窒素ガス導入管およびジアミンの滴下口を備えたジャケット付き50リットルのステンレス製の反応槽(耐圧1.0MPaG)にアジピン酸(純度:99.85質量%、水分:0.15質量%)15kgを仕込み、窒素置換し、窒素にて0.4MPaGに加圧後、250℃の熱媒をジャケットに流し、攪拌しつつ190℃に昇温した。次いで300℃の熱媒をジャケットに流し、溶融したアジピン酸を攪拌しながら、メタキシリレンジアミン(純度:99.93質量%)15.902kgを0.4MPaG加圧下に連続的に2時間かけて滴下した。仕込みモル比(ジアミン/ジカルボン酸)は0.9953である。この間内温を250℃まで連続的に昇温した。メタキシリレンジアミンの滴下とともに留出する水は分縮器および全縮器を通して反応系外に除いた。
<Example 2>
A double pipe structure with an outer cylinder having a nominal diameter of 125A and an inner cylinder having a nominal diameter of 40A, a common pipe without a horizontal portion through which temperature-adjusted oil flows, and a contractor through which temperature-adjusted oil flows Adipic acid (purity: 99.85% by mass, moisture: 0) in a 50 liter stainless steel reaction vessel (withstand pressure 1.0 MPaG) equipped with a total condenser, stirrer, nitrogen gas inlet tube and diamine dropping port .15 mass%) 15 kg was charged, and the atmosphere was replaced with nitrogen. After pressurizing to 0.4 MPaG with nitrogen, a heating medium of 250 ° C. was passed through the jacket, and the temperature was raised to 190 ° C. while stirring. Then, a heating medium at 300 ° C. was passed through the jacket, and 15.902 kg of metaxylylenediamine (purity: 99.93% by mass) was continuously stirred for 2 hours under a pressure of 0.4 MPaG while stirring the molten adipic acid. It was dripped. The charged molar ratio (diamine / dicarboxylic acid) is 0.9953. During this time, the internal temperature was continuously raised to 250 ° C. Water distilled with the addition of metaxylylenediamine was removed out of the reaction system through a partial condenser and a full condenser.
共有管および分縮器に温度調整されたオイルを流し、共用管の内部温度を130℃〜170℃に、分縮器の内部温度を140〜150℃に制御した。メタキシリレンジアミンの滴下終了後、0.4MPaG加圧で攪拌しながら260℃まで昇温し、5分間保持した。その後、50分かけて80kPa−absまで圧力を低下させ、80kPa−absで20分間保持した。その後常圧とし反応槽下部のノズルからポリアミド樹脂を取り出し、水冷固化した。反応槽が100℃以下まで冷えたところで、同様の操作による次の反応を開始した。この様に連続して合計10バッチ連続して反応を繰り返し行い、得られたポリアミド樹脂の末端基濃度の定量を行った。結果、各バッチのポリアミド樹脂のモル比は0.994〜0.995であり、数平均分子量は15,500〜16,000と安定していた。また同様に30バッチ連続して反応を行った後、共用管内部の状況を観察したところ、固形物は一切認められなかった。 The temperature-controlled oil was allowed to flow through the common pipe and the partial condenser, and the internal temperature of the common pipe was controlled at 130 to 170 ° C., and the internal temperature of the partial condenser was controlled at 140 to 150 ° C. After completion of the dropwise addition of metaxylylenediamine, the temperature was raised to 260 ° C. while stirring at a pressure of 0.4 MPaG and held for 5 minutes. Thereafter, the pressure was reduced to 80 kPa-abs over 50 minutes, and the pressure was maintained at 80 kPa-abs for 20 minutes. Thereafter, the pressure was changed to normal pressure, and the polyamide resin was taken out from the nozzle at the bottom of the reaction vessel and solidified with water. When the reaction vessel was cooled to 100 ° C. or lower, the next reaction by the same operation was started. The reaction was repeated continuously for a total of 10 batches in this manner, and the terminal group concentration of the obtained polyamide resin was quantified. As a result, the molar ratio of the polyamide resin in each batch was 0.994 to 0.995, and the number average molecular weight was stable at 15,500 to 16,000. Similarly, after the reaction was continuously carried out for 30 batches, the situation inside the common pipe was observed, and no solid matter was observed.
<比較例1>
前記共用管の代わりに、外筒が呼び径125A、内筒が呼び径40Aの二重管構造を有し、外側に温度調整されたオイルが流通する蒸気管と呼び径20Aの還流管を用いた以外は、実施例1と同様にして反応を行った。30バッチ目にモル比が、0.984、数平均分子量は10,000であった。還流管内部の状況を観察したところ、配管内の固形物の付着がおこり、配管が固形物により、閉塞しており、上流部に未反応のメタキシレンジアミンを含有する凝縮液の溜りが見られた。還流管内部より採取された固形物を90℃の温水で溶解させたところ、15〜35質量%が不溶であった。この固形物はアジピン酸,ナイロン塩およびオリゴマーの混合物と考えられ、一部重合が進み温水に不溶となったと考えられる。
<Comparative Example 1>
Instead of the common pipe, a double pipe structure having an outer cylinder having a nominal diameter of 125A and an inner cylinder having a nominal diameter of 40A, a steam pipe through which temperature-controlled oil flows and a reflux pipe having a nominal diameter of 20A are used. The reaction was conducted in the same manner as in Example 1 except that. The 30th batch had a molar ratio of 0.984 and a number average molecular weight of 10,000. When the inside of the reflux pipe was observed, solid matter in the piping was adhered, the piping was blocked by solid matter, and a pool of condensate containing unreacted metaxylenediamine was seen upstream. It was. When the solid substance collected from the inside of the reflux tube was dissolved with hot water at 90 ° C., 15 to 35% by mass was insoluble. This solid substance is considered to be a mixture of adipic acid, nylon salt and oligomer, and it is considered that a part of the polymerization progressed and it became insoluble in hot water.
<比較例2>
前記共用管の代わりに、外筒が呼び径125A、内筒が呼び径40Aの二重管構造を有し、外側に温度調整されたオイルが流通する蒸気管と呼び径20Aの還流管を用いた以外は、実施例2と同様にして反応を行った。30バッチ連続して反応を行ったところ、還流管上流部に未反応のメタキシレンジアミンを含有する凝縮液の溜りは見られなかったものの、還流管内の固形物の付着がおこり、配管が固形物により、還流管断面積の2/3が閉塞していた。
<Comparative Example 2>
Instead of the common pipe, a double pipe structure having an outer cylinder having a nominal diameter of 125A and an inner cylinder having a nominal diameter of 40A, a steam pipe through which temperature-controlled oil flows and a reflux pipe having a nominal diameter of 20A are used. The reaction was conducted in the same manner as in Example 2 except that. When the reaction was carried out continuously for 30 batches, no accumulation of condensate containing unreacted metaxylenediamine was observed in the upstream part of the reflux pipe, but solid matter in the reflux pipe was deposited, and the pipe was solid. As a result, 2/3 of the cross-sectional area of the reflux pipe was blocked.
本発明のポリアミド樹脂の製造装置は、閉塞のない安定した回分製造装置として好適に利用される。 The production apparatus for polyamide resin of the present invention is suitably used as a stable batch production apparatus without clogging.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008140771A JP5195033B2 (en) | 2008-05-29 | 2008-05-29 | Polyamide resin production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008140771A JP5195033B2 (en) | 2008-05-29 | 2008-05-29 | Polyamide resin production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009286896A true JP2009286896A (en) | 2009-12-10 |
JP5195033B2 JP5195033B2 (en) | 2013-05-08 |
Family
ID=41456432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008140771A Active JP5195033B2 (en) | 2008-05-29 | 2008-05-29 | Polyamide resin production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5195033B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013107425A1 (en) * | 2012-01-20 | 2013-07-25 | 北京伊克希德化工技术有限公司 | Nylon 66 etc nylon continuous polymerization method using bi-component monomer as raw material and apparatus thereof |
WO2014073373A1 (en) * | 2012-11-08 | 2014-05-15 | 三菱瓦斯化学株式会社 | Method for producing polyamide |
WO2021118165A1 (en) * | 2019-12-12 | 2021-06-17 | 한화솔루션 주식회사 | Polyamide preparation apparatus and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001329062A (en) * | 2000-05-22 | 2001-11-27 | Mitsubishi Gas Chem Co Inc | Method for producing polyamide |
JP2002060486A (en) * | 2000-08-24 | 2002-02-26 | Mitsubishi Gas Chem Co Inc | Method for manufacturing polyamide |
JP2002212284A (en) * | 2001-01-18 | 2002-07-31 | Mitsubishi Gas Chem Co Inc | Method for producing polyamide |
JP2002220464A (en) * | 2001-01-24 | 2002-08-09 | Mitsubishi Gas Chem Co Inc | Continuous polymerization method for polyamide resin |
JP2002220465A (en) * | 2001-01-24 | 2002-08-09 | Mitsubishi Gas Chem Co Inc | Polymerizing apparatus for polyamide resin and polymerizing method for the same resin |
-
2008
- 2008-05-29 JP JP2008140771A patent/JP5195033B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001329062A (en) * | 2000-05-22 | 2001-11-27 | Mitsubishi Gas Chem Co Inc | Method for producing polyamide |
JP2002060486A (en) * | 2000-08-24 | 2002-02-26 | Mitsubishi Gas Chem Co Inc | Method for manufacturing polyamide |
JP2002212284A (en) * | 2001-01-18 | 2002-07-31 | Mitsubishi Gas Chem Co Inc | Method for producing polyamide |
JP2002220464A (en) * | 2001-01-24 | 2002-08-09 | Mitsubishi Gas Chem Co Inc | Continuous polymerization method for polyamide resin |
JP2002220465A (en) * | 2001-01-24 | 2002-08-09 | Mitsubishi Gas Chem Co Inc | Polymerizing apparatus for polyamide resin and polymerizing method for the same resin |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013107425A1 (en) * | 2012-01-20 | 2013-07-25 | 北京伊克希德化工技术有限公司 | Nylon 66 etc nylon continuous polymerization method using bi-component monomer as raw material and apparatus thereof |
WO2014073373A1 (en) * | 2012-11-08 | 2014-05-15 | 三菱瓦斯化学株式会社 | Method for producing polyamide |
CN104769010A (en) * | 2012-11-08 | 2015-07-08 | 三菱瓦斯化学株式会社 | Method for producing polyamide |
JPWO2014073373A1 (en) * | 2012-11-08 | 2016-09-08 | 三菱瓦斯化学株式会社 | Method for producing polyamide |
WO2021118165A1 (en) * | 2019-12-12 | 2021-06-17 | 한화솔루션 주식회사 | Polyamide preparation apparatus and method |
KR20210074732A (en) * | 2019-12-12 | 2021-06-22 | 한화솔루션 주식회사 | Apparatus and Process for Preparing a Polyamide |
CN114829453A (en) * | 2019-12-12 | 2022-07-29 | 韩华思路信株式会社 | Apparatus and method for producing polyamide |
JP2023504898A (en) * | 2019-12-12 | 2023-02-07 | ハンファ ソリューションズ コーポレーション | Polyamide preparation apparatus and method |
KR102525718B1 (en) | 2019-12-12 | 2023-04-25 | 한화솔루션 주식회사 | Apparatus and Process for Preparing a Polyamide |
JP7487305B2 (en) | 2019-12-12 | 2024-05-20 | ハンファ ソリューションズ コーポレーション | Apparatus and method for preparing polyamides |
Also Published As
Publication number | Publication date |
---|---|
JP5195033B2 (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9359477B2 (en) | Production method for polyamide | |
JP5304437B2 (en) | Method for producing polyamide | |
JP5194978B2 (en) | Method for producing polyamide | |
JP5633519B2 (en) | Method for producing polyamide | |
JP5343704B2 (en) | Method for producing polyamide | |
WO2011065347A1 (en) | Copolymerized polyamide resin, method for producing same, resin composition, and molded article formed from the copolymerized polyamide resin or the resin composition | |
JP4774596B2 (en) | Method for producing polyamide | |
JP5195033B2 (en) | Polyamide resin production equipment | |
JP2001200052A (en) | Continuous preparation method of polyamide | |
JP2001200053A (en) | Preparation method of polyamide | |
JP2002060486A (en) | Method for manufacturing polyamide | |
KR101472071B1 (en) | Production method for polyamide | |
JP2001329062A (en) | Method for producing polyamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110405 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120925 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5195033 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |