JP2009286840A - Manufacturing method of polyelectrolyte membrane, and solid polymer fuel cell - Google Patents

Manufacturing method of polyelectrolyte membrane, and solid polymer fuel cell Download PDF

Info

Publication number
JP2009286840A
JP2009286840A JP2008138298A JP2008138298A JP2009286840A JP 2009286840 A JP2009286840 A JP 2009286840A JP 2008138298 A JP2008138298 A JP 2008138298A JP 2008138298 A JP2008138298 A JP 2008138298A JP 2009286840 A JP2009286840 A JP 2009286840A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
precursor
radical
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008138298A
Other languages
Japanese (ja)
Other versions
JP5119046B2 (en
Inventor
Shinya Takeshita
慎也 竹下
Tsutomu Obayashi
努 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Kanto Denka Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd, Toyota Motor Corp filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2008138298A priority Critical patent/JP5119046B2/en
Publication of JP2009286840A publication Critical patent/JP2009286840A/en
Application granted granted Critical
Publication of JP5119046B2 publication Critical patent/JP5119046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a polyelectrolyte membrane exhibiting excellent radical resistance in a simplified process and to enhance thereby durability of a solid polymer fuel cell. <P>SOLUTION: The manufacturing method of the polyelectrolyte membrane comprises synthesizing a polyelectrolyte precursor exhibiting proton conductivity by alkali hydrolysis and an acid treatment, forming the polyelectrolyte precursor into a film and subjecting the film to alkali hydrolysis and an acid treatment for the polyelectrolyte precursor, where an anti-radical agent is made to exist in any one of polymerization steps of charge of polymerizable raw materials, polymerization and isolation of a synthesized polyelectrolyte precursor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐ラジカル性に優れた高分子電解質膜を簡素化した工程で製造する方法に関する。また、製造された高分子電解質膜を有する固体高分子型燃料電池に関する。   The present invention relates to a method for producing a polymer electrolyte membrane having excellent radical resistance in a simplified process. The present invention also relates to a polymer electrolyte fuel cell having the manufactured polymer electrolyte membrane.

固体高分子電解質型燃料電池は、電解質として固体高分子電解質膜を用い、この膜の両面に触媒電極層を接合した構造を有する。このような固体高分子電解質型燃料電池を構成する固体電解質膜や触媒電極層は、プロトン伝導性を有する高分子電解質材料を用いて形成されるのが一般的である。このような電解質材料としては、ナフィオン(商品名:Nafion、デュポン株式会社製)等のパーフルオロスルホン酸系樹脂が広く用いられてきた。   A solid polymer electrolyte fuel cell has a structure in which a solid polymer electrolyte membrane is used as an electrolyte and a catalyst electrode layer is bonded to both surfaces of the membrane. The solid electrolyte membrane and the catalyst electrode layer constituting such a solid polymer electrolyte fuel cell are generally formed using a polymer electrolyte material having proton conductivity. As such an electrolyte material, perfluorosulfonic acid resins such as Nafion (trade name: Nafion, manufactured by DuPont Co., Ltd.) have been widely used.

しかしながら、燃料電池のカソード側で起こる水を生成する反応の際に発生するラジカル等の影響により、高分子電解質膜及び電極触媒は劣化しやすく、従来から用いられている比較的耐ラジカル性に優れるパーフルオロスルホン酸系樹脂を用いて形成された高分子電解質膜及び電極触媒でも劣化等の問題があった。特に、上記ラジカル等の影響により上記電解質膜および触媒電極層から溶出したフッ素イオンが、燃料電池のガスの配管等の他部材に対して悪影響を及ぼす可能性があるため、燃料電池としての耐久性が低下するおそれが生じた。   However, the polymer electrolyte membrane and the electrode catalyst are likely to deteriorate due to the influence of radicals and the like generated during the reaction that generates water that occurs on the cathode side of the fuel cell, and are relatively excellent in radical resistance that has been conventionally used. Even polymer electrolyte membranes and electrode catalysts formed using perfluorosulfonic acid resins have problems such as deterioration. In particular, since the fluorine ions eluted from the electrolyte membrane and the catalyst electrode layer due to the influence of the radicals and the like may adversely affect other members such as gas piping of the fuel cell, durability as a fuel cell There was a risk that it would decrease.

そこで、高分子電解質膜の耐ラジカル性を向上させる方法として、
(1)難溶性セリウム化合物を−SOH型電解質ポリマ分散液に分散させてキャスト製膜する方法
(2)−SOH型電解質膜の−SOHの一部をセリウムカチオンで置換したものを、試薬処理にて膜内に難溶性セリウム化合物を発生させる方法
が考えられている。
Therefore, as a method of improving the radical resistance of the polymer electrolyte membrane,
(1) and the part of the -SO 3 H of a poorly soluble cerium compound dispersed in -SO 3 H type electrolyte polymer dispersions to cast film production method (2) -SO 3 H type electrolyte membrane was replaced with cerium cations A method is considered in which a hardly soluble cerium compound is generated in a film by reagent treatment.

例えば、下記特許文献1には、スルホン酸基を有する高分子化合物と難溶性セリウム化合物とからなる高分子電解質膜が開示されている。そこで開示された製造方法は、スルホン酸基を有する高分子化合物からなる陽イオン交換膜を、セリウムイオンを含む溶液中に浸漬してスルホン酸基の一部をセリウムイオンによりイオン交換した後、セリウムイオンと反応することにより難溶性セリウム化合物を形成する物質を含む溶液に浸漬して、膜中に難溶性セリウム化合物を形成するものである。   For example, Patent Document 1 below discloses a polymer electrolyte membrane comprising a polymer compound having a sulfonic acid group and a hardly soluble cerium compound. In the production method disclosed therein, a cation exchange membrane made of a polymer compound having a sulfonic acid group is immersed in a solution containing cerium ions, and a portion of the sulfonic acid groups are ion-exchanged with cerium ions. It is immersed in a solution containing a substance that forms a hardly soluble cerium compound by reacting with ions to form a hardly soluble cerium compound in the film.

しかし、イオン交換による添加では、電解質膜表面に添加物が局在し、触媒層の定着に不利である。   However, in the addition by ion exchange, the additive is localized on the surface of the electrolyte membrane, which is disadvantageous for fixing the catalyst layer.

一方、電解質分散液への添加は溶液キャスト製膜に限定されるので、溶融製膜も含めた汎用性のある工程としてはふさわしくない。   On the other hand, the addition to the electrolyte dispersion is limited to solution cast film formation, so it is not suitable as a versatile process including melt film formation.

又、高分子電解質前駆体との分散混合/溶融製膜と言う方法も考えられるが、(1)乾式混合の場合、高分子電解質前駆体の粘着性が高く微細化が困難であるので均一分散が困難である
(2)湿式混合の場合、高分子電解質前駆体が微分散した分散液に添加剤を混ぜることで可能である。湿式混合に適した分散系として乳化重合ディスバージョンがあげられるが、これは水系重合を経るために、微量の−SOHが生成して溶融成形不良の原因となる懸念がある。また、乳化剤に起因するPFOA問題、重合前乳化や乳化剤洗浄除去などの煩雑なプロセスが必要となり課題が多い。
Although a method of dispersion mixing / melt film formation with a polymer electrolyte precursor is also conceivable, (1) in the case of dry mixing, since the polymer electrolyte precursor is highly adhesive and difficult to refine, uniform dispersion is possible. (2) In the case of wet mixing, it is possible to mix an additive with a dispersion in which the polymer electrolyte precursor is finely dispersed. As a dispersion system suitable for wet mixing, there is an emulsion polymerization dispersion. However, since it undergoes aqueous polymerization, there is a concern that a trace amount of —SO 3 H is generated and causes melt molding failure. Moreover, complicated processes such as PFOA problems caused by emulsifiers, pre-polymerization emulsification and emulsifier washing removal are necessary, and there are many problems.

更に、一般的な手法として高分子電解質前駆体を溶媒に分散させて添加物を混合することが考えられるが、高分子電解質前駆体を単離してから行うと、粉砕や溶媒分散などの余分な工程が必要となる。
特開2006−107914号公報
Furthermore, as a general method, it is conceivable to disperse the polymer electrolyte precursor in a solvent and mix the additives. However, when the polymer electrolyte precursor is isolated, it is necessary to carry out extra steps such as grinding and solvent dispersion. A process is required.
JP 2006-107914 A

本発明は、上記従来技術の問題点に鑑みて発明されたものであり、耐ラジカル性に優れた高分子電解質膜を簡素化した工程で製造する方法を提供することを目的とする。また、これにより、固体高分子型燃料電池の耐久性の向上を図ることを目的とする。   The present invention has been invented in view of the above-described problems of the prior art, and an object thereof is to provide a method for producing a polymer electrolyte membrane excellent in radical resistance in a simplified process. Another object of the present invention is to improve the durability of the polymer electrolyte fuel cell.

本発明者は、特定の手段により、高分子電解質前駆体に耐ラジカル剤を添加・分散させる方法を見出し、本発明に到達した。   The present inventor has found a method of adding and dispersing a radical-resistant agent to the polymer electrolyte precursor by specific means, and has reached the present invention.

即ち、第1に、本発明は、アルカリ加水分解及び酸処理によりプロトン伝導性を発揮する高分子電解質前駆体を合成し、該高分子電解質前駆体を製膜し、該高分子電解質前駆体膜に対するアルカリ加水分解及び酸処理する高分子電解質膜の製造方法の発明であって、重合性原料仕込み時から重合し合成した該高分子電解質前駆体を単離するに至る重合工程中のいずれかに耐ラジカル剤を存在させることを特徴とする。   That is, first, the present invention synthesizes a polymer electrolyte precursor exhibiting proton conductivity by alkali hydrolysis and acid treatment, forms the polymer electrolyte precursor, and forms the polymer electrolyte precursor film. An invention of a method for producing a polymer electrolyte membrane subjected to alkali hydrolysis and acid treatment with respect to the polymer electrolyte membrane, and any one of the polymerization steps leading to isolation of the polymer electrolyte precursor polymerized and synthesized from the preparation of the polymerizable raw material It is characterized by the presence of a radical-proofing agent.

重合工程中のいずれかに耐ラジカル剤を存在させることによって、耐ラジカル剤の分散性が向上するとともに、高分子電解質前駆体中に耐ラジカル剤を添加・混合する工程が不要となる。   The presence of the radical-resistant agent in any of the polymerization steps improves the dispersibility of the radical-resistant agent and eliminates the need for adding and mixing the radical-resistant agent into the polymer electrolyte precursor.

本発明でいう『重合性原料仕込み時から重合し合成した該高分子電解質前駆体を単離するに至る重合工程中のいずれか』の中で、合成する原料仕込み時、重合反応中、及び重合反応直後が好ましく例示される。   In the present invention, “any one of the polymerization steps leading to isolation of the polymer electrolyte precursor polymerized and synthesized from the time when the polymerizable raw material is charged”, the raw material to be synthesized, the polymerization reaction, and the polymerization An example immediately after the reaction is preferred.

前記耐ラジカル剤量が、高分子電解質膜全量に対して、0.1〜20wt%であることが好ましい。耐ラジカル剤量が0.1wt%未満であると耐ラジカル性が十分に発揮されず、耐ラジカル剤の量が20wt%を越えると本来の高分子電解質膜の物性に悪影響をもたらす。   The amount of the radical-resistant agent is preferably 0.1 to 20 wt% with respect to the total amount of the polymer electrolyte membrane. When the amount of the radical-resistant agent is less than 0.1 wt%, the radical resistance is not sufficiently exhibited, and when the amount of the radical-resistant agent exceeds 20 wt%, the physical properties of the original polymer electrolyte membrane are adversely affected.

本発明で用いられる耐ラジカル剤としては特に限定されないが、具体的には、酸化セリウム、酸化ジルコニウムから選択される1種以上が好ましく例示される。   Although it does not specifically limit as a radical-proof agent used by this invention, Specifically, 1 or more types selected from a cerium oxide and a zirconium oxide are illustrated preferably.

本発明で合成される該高分子電解質前駆体としては、後工程で加水分解されプロトン伝導性を発揮する官能基を有する公知の高分子化合物が用いられる。これらの高分子電解質前駆体の中で官能基としてSOFを有するフッ素系高分子化合物が好ましく例示される。該高分子電解質前駆体は、270℃、荷重2.16kgにおけるメルトフローレート(MRF)=5〜100g/10分、イオン化後EW=500〜1000g/eq、−SOX基濃度=15〜40mol%(X:ハロゲン)であることが好ましい。 As the polymer electrolyte precursor synthesized in the present invention, a known polymer compound having a functional group that is hydrolyzed in a later step and exhibits proton conductivity is used. Of these polymer electrolyte precursors, preferred are fluorine-based polymer compounds having SO 2 F as a functional group. The polymer electrolyte precursor has a melt flow rate (MRF) at 270 ° C. and a load of 2.16 kg = 5 to 100 g / 10 minutes, EW after ionization = 500 to 1000 g / eq, —SO 2 X group concentration = 15 to 40 mol % (X: halogen) is preferred.

第2に、本発明は、上記の方法で製造された高分子電解質膜を有する固体高分子型燃料電池である。   Second, the present invention is a polymer electrolyte fuel cell having a polymer electrolyte membrane produced by the above method.

本発明では、重合性原料仕込み時から重合し合成した該高分子電解質前駆体を単離するに至る重合工程中のいずれかに耐ラジカル剤を存在させることによって、耐ラジカル剤の分散性が向上するとともに、高分子電解質前駆体中に耐ラジカル剤を添加・混合する工程が不要となる。又、重合工程中に耐ラジカル剤を存在させて製膜するので、膜表面に耐ラジカル剤が局在せず、MEA化の段階で触媒層の定着を良好に維持することが可能である。   In the present invention, the dispersibility of the radical-resistant agent is improved by the presence of the radical-resistant agent in any of the polymerization steps leading to the isolation of the polymer electrolyte precursor that has been polymerized and synthesized from when the polymerizable raw material is charged. In addition, the step of adding and mixing the radical-resistant agent to the polymer electrolyte precursor is not necessary. In addition, since the film is formed in the presence of a radical-resistant agent during the polymerization process, the radical-resistant agent is not localized on the film surface, and the catalyst layer can be well fixed at the stage of MEA conversion.

図1に、従来の電解質膜製造プロセスを示す。高分子電解質合成後に耐ラジカル剤を添加し、その後に、製膜している。   FIG. 1 shows a conventional electrolyte membrane manufacturing process. A radical-resistant agent is added after the polymer electrolyte synthesis, and then a film is formed.

図2に、本発明の電解質膜製造プロセスを示す。重合工程で耐ラジカル剤を添加し、その後の工程で製膜している。   FIG. 2 shows an electrolyte membrane manufacturing process of the present invention. A radical-proofing agent is added in the polymerization process, and a film is formed in the subsequent process.

プロトン伝導性を有する高分子電解質(以下、H型高分子電解質という)とはスルホン酸基等有し、特に後工程で変性させなくてもそれ自体がプロトン伝導性を有するものであるのに対し、本発明で用いる、アルカリ加水分解及び酸処理によりプロトン伝導性を発揮する高分子電解質前駆体(以下、単に高分子電解質前駆体やF型高分子電解質という)とは、後工程で加水分解処理や酸型化処理を行うことによってスルホン酸基等のプロトン伝導性基に変性される前駆体基、例えば−SOF基、−SOCl基など、を有するものである。 A polymer electrolyte having proton conductivity (hereinafter referred to as “H-type polymer electrolyte”) has a sulfonic acid group and the like, and in particular has proton conductivity even if it is not modified in a subsequent process. The polymer electrolyte precursor used in the present invention and exhibiting proton conductivity by alkali hydrolysis and acid treatment (hereinafter simply referred to as polymer electrolyte precursor or F-type polymer electrolyte) is a hydrolysis treatment in a later step. Or a precursor group that is modified to a proton conductive group such as a sulfonic acid group by performing an acidification treatment, such as a —SO 2 F group or a —SO 2 Cl group.

本発明で合成される高分子電解質前駆体の重合方法としては、例えば非水溶媒系の溶液重合や懸濁重合が上げられる。生成ポリマー構造としては、MFR=5〜100、EW=500〜1000、−SOF基濃度=15〜40mol%が好ましい。耐ラジカル剤としては、CeO、ZrOなどが好ましく例示され、その粒径は10nm〜1μm程度が好ましい。耐ラジカル剤の混合比としては、0.1〜20wt%が好ましい。耐ラジカル剤を添加するタイミングとしては、(1)重合原料仕込み時、(2)重合反応終了後〜溶媒洗浄開始の間が好ましい。目的物の単離方法としては、例えば、液成分を減圧除去後、適宜別溶媒にて洗浄する方法が採用される。 Examples of the polymerization method of the polymer electrolyte precursor synthesized in the present invention include non-aqueous solvent type solution polymerization and suspension polymerization. The resulting polymer structure, MFR = 5~100, EW = 500~1000 , -SO 2 F group concentration = 15~40mol% is preferred. Preferred examples of the radical-proofing agent include CeO 2 and ZrO 2 , and the particle size is preferably about 10 nm to 1 μm. The mixing ratio of the anti-radical agent is preferably 0.1 to 20 wt%. The timing of adding the radical-proofing agent is preferably (1) when the polymerization raw material is charged, and (2) after the completion of the polymerization reaction to the start of solvent washing. As a method for isolating the target product, for example, a method in which the liquid component is removed under reduced pressure and then appropriately washed with another solvent is employed.

本発明では、CF=CFOCFCF(CF)O(CFCF)SOFと重合生成ポリマーが共存することで分散性が良好である。特に、−SOF濃度を18mol%以上とすることで分散性が良好となる。又、ポリマーの単離(=モノマー及び溶媒、副生成物除去)を耐ラジカル剤分散より後回しにすることで余分な工程を増やす必要がない。 In the present invention, CF 2 ═CFOCF 2 CF (CF 3 ) O (CF 2 CF 2 ) SO 2 F and a polymerization product polymer coexist so that the dispersibility is good. In particular, the dispersibility is improved by setting the —SO 2 F concentration to 18 mol% or more. Moreover, it is not necessary to increase the number of extra steps by postponing the isolation of the polymer (= removal of monomer, solvent and by-products) after the dispersion of the radical-resistant agent.

本発明では、前記高分子電解質前駆体は単膜として用いても良く、強度と耐久性の観点から、多孔性膜と高分子電解質前駆体とを複合させた複合高分子電解質膜前駆体として用いても良い。多孔性膜と高分子電解質前駆体とを複合させて複合高分子電解質膜前駆体とする方法については特に限定されず、各種公知の方法を採用することができる。この複合高分子電解質膜前駆体をアルカリ加水分解及び酸処理することで複合高分子電解質膜が得られる。   In the present invention, the polymer electrolyte precursor may be used as a single membrane, and from the viewpoint of strength and durability, it is used as a composite polymer electrolyte membrane precursor in which a porous membrane and a polymer electrolyte precursor are combined. May be. The method of combining the porous membrane and the polymer electrolyte precursor to form the composite polymer electrolyte membrane precursor is not particularly limited, and various known methods can be employed. The composite polymer electrolyte membrane is obtained by subjecting the composite polymer electrolyte membrane precursor to alkaline hydrolysis and acid treatment.

複合高分子電解質膜を用いることにより、固体高分子電解質膜の厚さを薄くすることが可能であり、また、高分子フィルム又は高分子シート基材を電解質膜の支持体として用いるため、電解質膜の強度を補強することができるので、複合高分子電解質膜を備えた燃料電池は、高耐久性であるとともに、燃料ガスのクロスリーク量が少なく、電流−電圧特性を向上することができる。
以下、本発明の実施例を示す。
By using the composite polymer electrolyte membrane, it is possible to reduce the thickness of the solid polymer electrolyte membrane, and since the polymer film or the polymer sheet substrate is used as a support for the electrolyte membrane, the electrolyte membrane Therefore, the fuel cell provided with the composite polymer electrolyte membrane is highly durable, has a small amount of fuel gas cross-leakage, and can improve current-voltage characteristics.
Examples of the present invention will be described below.

[実施例1:重合生成物へのCe化合物添加]
(高分子電解質前駆体合成)
3LのSUS製耐圧容器内を真空置換後減圧し、ついで重合溶媒C14を1080g、CF=CFOCFCF(CF)O(CFCF)SOF液1320gを吸引した後、TFEガス140gで加圧し、さらに温度25℃に調整・攪拌した。重合開始剤((CCOO))を対SOFモノマー比0.03mol%投入して反応開始し、常に圧力一定(0.30MPa)となるようにTFEガスを追加供給した。テトラフルオロエチレンガス43gを追加した段階で圧力を開放し、反応を終了させた。
(生成ポリマー洗浄/Ce化合物添加)
反応終了後の容器内に酸化セリウム(粒径約1μm)1gを投入し、所定時間攪拌した。これを取り出してエバポレータで濃縮し、さらにアセトンで数回洗浄して残モノマー液をのぞいた。これを乾燥機で120℃、8時間乾燥し、目的物である高分子電解質膜前駆体を得た。得られた目的物は105g、MFR=76g/10分、EW=885であった。
(製膜/イオン化)
上記生成物をポリイミドフィルムにはさんで230℃でプレスし約100μm厚の高分子電解質膜前駆体膜を得た。
[Example 1: Addition of Ce compound to polymerization product]
(Polymer electrolyte precursor synthesis)
After the inside of the 3 L pressure vessel made of SUS was vacuum-reduced, the pressure was reduced, and then 1080 g of the polymerization solvent C 6 F 14 and 1320 g of CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 CF 2 ) SO 2 F solution were sucked. The mixture was pressurized with 140 g of TFE gas, and further adjusted and stirred at a temperature of 25 ° C. A polymerization initiator ((C 3 F 7 COO) 2 ) was added to the SO 2 F monomer ratio of 0.03 mol% to start the reaction, and TFE gas was additionally supplied so that the pressure was always constant (0.30 MPa). The pressure was released when 43 g of tetrafluoroethylene gas was added, and the reaction was terminated.
(Production polymer washing / Ce compound addition)
1 g of cerium oxide (particle size: about 1 μm) was put into the container after completion of the reaction and stirred for a predetermined time. This was taken out, concentrated with an evaporator, and further washed several times with acetone to remove the residual monomer solution. This was dried with a drier at 120 ° C. for 8 hours to obtain a target polymer electrolyte membrane precursor. The obtained object was 105g, MFR = 76g / 10min, EW = 885.
(Film / Ionization)
The product was pressed at 230 ° C. between polyimide films to obtain a polymer electrolyte membrane precursor membrane having a thickness of about 100 μm.

これを□5cmにカットし、1N‐NaOH/DMSO=6:4混合液中80℃、2時間処理後、水洗して0.5N‐HSO中80℃、1時間処理し、さらにイオン交換水中90℃、2時間処理後120℃乾燥して高分子電解質膜とした。
(フェントン試験)
下記条件でフェントン試験を行った結果、溶出Fイオンは4.4ppmであった。
Fe2+:10ppm/H:1%/100℃、8時間
This is cut to 5 cm, treated in a 1N-NaOH / DMSO = 6: 4 mixture at 80 ° C. for 2 hours, washed with water, treated in 0.5N—H 2 SO 4 at 80 ° C. for 1 hour, and further ionized. The polymer electrolyte membrane was obtained by treating at 90 ° C. in exchanged water for 2 hours and then drying at 120 ° C.
(Fenton test)
As a result of conducting a Fenton test under the following conditions, the eluted F ion was 4.4 ppm.
Fe 2+ : 10 ppm / H 2 O 2 : 1% / 100 ° C., 8 hours

[実施例2:重合仕込み段階でのCe化合物添加]
(高分子電解質前駆体合成/Ce化合物添加)
3LのSUS製耐圧容器内に酸化セリウム(粒径約1μm)1gを入れておき、真空置換後減圧し、ついで重合溶媒C14を1080g、SOFモノマー液1320gを吸引した後、TFEガス140gで加圧し、さらに温度25℃に調整・攪拌した。重合開始剤((C3FCOO))を対SOFモノマー比0.03mol%投入して反応開始し、常に圧力一定(0.30MPa)となるようにTFEガスを追加供給した。TFEガス42gを追加した段階で圧力を開放し、反応を終了させた。
(生成ポリマー洗浄)
内容物を容器から取り出し、エバポレータで濃縮し、さらにアセトンで数回洗浄して残モノマー液を除いた。これを乾燥機で120℃、8時間乾燥し、目的物をえた。得られた目的物は105g、MFR=82、EW=883であった。
(製膜/イオン化)
上記生成物をポリイミドフィルムに挟んで230℃でプレスし約100μm厚の高分子電解質膜前駆体膜(F型高分子電解質膜)を得た。
[Example 2: Ce compound addition at the stage of polymerization preparation]
(Polymer electrolyte precursor synthesis / Ce compound addition)
Previously put SUS steel pressure cerium oxide into the container (particle size about 1 [mu] m) 1 g of 3L, vacuum and after vacuum-substituted, then 1080g of polymerization solvent C 6 F 14, after sucking the SO 2 F monomer liquid 1320 g, TFE The gas was pressurized with 140 g, and further adjusted and stirred at a temperature of 25 ° C. A polymerization initiator ((C3F 7 COO) 2 ) was added to the SO 2 F monomer ratio of 0.03 mol% to start the reaction, and TFE gas was additionally supplied so that the pressure was always constant (0.30 MPa). When 42 g of TFE gas was added, the pressure was released and the reaction was terminated.
(Production polymer washing)
The contents were taken out from the container, concentrated with an evaporator, and further washed with acetone several times to remove the residual monomer solution. This was dried with a dryer at 120 ° C. for 8 hours to obtain the desired product. The obtained object was 105 g, MFR = 82, EW = 883.
(Film / Ionization)
The product was sandwiched between polyimide films and pressed at 230 ° C. to obtain a polymer electrolyte membrane precursor membrane (F type polymer electrolyte membrane) having a thickness of about 100 μm.

これを□5cmにカットし、1N−NaOH/DMSO=6:4混合液中、80℃、2時間処理後、水洗して0.5N‐HSO中、80℃、1時間処理し、さらにイオン交換水中90℃、2時間処理後、120℃で乾燥して高分子電解質膜(H型高分子電解質膜)とした。
(フェントン試験)
上記と同様の条件でフェントン試験を行った結果、溶出Fイオンは4.8ppmであった。
This was cut into 5 cm, treated in 1N-NaOH / DMSO = 6: 4 mixture at 80 ° C. for 2 hours, washed with water and treated in 0.5N—H 2 SO 4 at 80 ° C. for 1 hour. Further, after treatment at 90 ° C. for 2 hours in ion-exchanged water, the polymer electrolyte membrane (H-type polymer electrolyte membrane) was obtained by drying at 120 ° C.
(Fenton test)
As a result of conducting a Fenton test under the same conditions as described above, the eluted F ion was 4.8 ppm.

[比較例]
酸化セリウムを重合工程で添加しないこと以外は、実施例2と同様の手順で高分子電解質膜を調製した。フェントン試験の結果、溶出Fイオンは60ppmであった。
[Comparative example]
A polymer electrolyte membrane was prepared in the same procedure as in Example 2 except that cerium oxide was not added in the polymerization step. As a result of the Fenton test, the eluted F ion was 60 ppm.

実施例1及び2の結果より、重合性原料仕込み時から重合し合成した高分子電解質前駆体を単離するに至る重合工程中のいずれかに耐ラジカル剤である酸化セリウムを存在させることによって、耐ラジカル剤の分散性が向上する。これにより、製造された高分子電解質膜の耐久性が向上することが分かる。   From the results of Examples 1 and 2, the presence of cerium oxide, which is a radical-resistant agent, in any of the polymerization steps leading to isolation of the polymer electrolyte precursor polymerized and synthesized from when the polymerizable raw material was charged, Dispersibility of the radical resistant agent is improved. Thereby, it turns out that durability of the manufactured polymer electrolyte membrane improves.

本発明により、高分子電解質膜中の耐ラジカル剤の分散性が向上するとともに、高分子電解質前駆体(F型高分子電解質)中に耐ラジカル剤を添加・混合する工程が不要となる。又、重合工程中に耐ラジカル剤を存在させて製膜するので、膜表面に耐ラジカル剤が局在せず、MEA化の段階で触媒層の定着を良好に維持することが可能である。これにより、燃料電池の耐久性の向上に貢献する。   According to the present invention, the dispersibility of the radical-resistant agent in the polymer electrolyte membrane is improved, and the step of adding and mixing the radical-resistant agent into the polymer electrolyte precursor (F-type polymer electrolyte) becomes unnecessary. In addition, since the film is formed in the presence of a radical-resistant agent during the polymerization process, the radical-resistant agent is not localized on the film surface, and the catalyst layer can be well fixed at the stage of MEA conversion. This contributes to improving the durability of the fuel cell.

高分子電解質合成後に耐ラジカル剤を添加し、その後に、製膜する従来の電解質膜製造プロセスを示す。A conventional electrolyte membrane manufacturing process in which a radical-proofing agent is added after polymer electrolyte synthesis and then a film is formed will be described. 重合工程中に耐ラジカル剤を存在させて製膜する本発明の電解質膜製造プロセスを示す。The electrolyte membrane manufacturing process of this invention which forms a film in the presence of a radical-resistant agent during the polymerization step is shown.

Claims (6)

アルカリ加水分解及び酸処理によりプロトン伝導性を発揮する高分子電解質前駆体を合成し、該高分子電解質前駆体を製膜し、該高分子電解質前駆体膜に対するアルカリ加水分解及び酸処理する高分子電解質膜の製造方法であって、重合性原料仕込み時から重合し合成した該高分子電解質前駆体を単離するに至る重合工程中のいずれかに耐ラジカル剤を存在させることを特徴とする高分子電解質膜の製造方法。   A polymer electrolyte precursor exhibiting proton conductivity is synthesized by alkali hydrolysis and acid treatment, the polymer electrolyte precursor is formed into a film, and the polymer subjected to alkali hydrolysis and acid treatment on the polymer electrolyte precursor membrane A method for producing an electrolyte membrane, characterized in that a radical-resistant agent is present in any of the polymerization steps leading to isolation of the polymer electrolyte precursor polymerized and synthesized from when the polymerizable raw material is charged. A method for producing a molecular electrolyte membrane. 前記重合性原料仕込み時から重合し合成した該高分子電解質前駆体を単離するに至る重合工程中のいずれかが、合成する原料仕込み時及び/又は重合反応中及び/又は重合反応直後であることを特徴とする請求項1に記載の高分子電解質膜の製造方法。   Any of the polymerization steps leading to isolation of the polymer electrolyte precursor polymerized and synthesized from the time when the polymerizable raw material is charged is during the raw material charging and / or during the polymerization reaction and / or immediately after the polymerization reaction The method for producing a polymer electrolyte membrane according to claim 1. 前記耐ラジカル剤量が、高分子電解質膜全量に対して、0.1〜20wt%であることを特徴とする請求項1又は2に記載の高分子電解質膜の製造方法。   The method for producing a polymer electrolyte membrane according to claim 1 or 2, wherein the amount of the radical-resistant agent is 0.1 to 20 wt% with respect to the total amount of the polymer electrolyte membrane. 前記耐ラジカル剤が、酸化セリウム、酸化ジルコニウムから選択される1種以上であることを特徴とする請求項1乃至3のいずれかに記載の高分子電解質膜の製造方法。   The method for producing a polymer electrolyte membrane according to any one of claims 1 to 3, wherein the radical-resistant agent is at least one selected from cerium oxide and zirconium oxide. 合成する該高分子電解質前駆体が、270℃、荷重2.16kgにおけるメルトフローレート(MRF)=5〜100g/10分、イオン化後EW=500〜1000g/eq、−SOX基濃度=15〜40mol%(X:ハロゲン)であることを特徴とする請求項1乃至4のいずれかに記載の高分子電解質膜の製造方法。 The polymer electrolyte precursor to be synthesized has a melt flow rate (MRF) at 270 ° C. and a load of 2.16 kg = 5 to 100 g / 10 minutes, EW after ionization = 500 to 1000 g / eq, —SO 2 X group concentration = 15 The method for producing a polymer electrolyte membrane according to any one of claims 1 to 4, wherein it is -40 mol% (X: halogen). 請求項1乃至5のいずれかに記載の方法で製造された高分子電解質膜を有する固体高分子型燃料電池。   A solid polymer fuel cell having a polymer electrolyte membrane produced by the method according to claim 1.
JP2008138298A 2008-05-27 2008-05-27 POLYMER ELECTROLYTE MEMBRANE MANUFACTURING METHOD AND SOLID POLYMER TYPE FUEL CELL Active JP5119046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138298A JP5119046B2 (en) 2008-05-27 2008-05-27 POLYMER ELECTROLYTE MEMBRANE MANUFACTURING METHOD AND SOLID POLYMER TYPE FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138298A JP5119046B2 (en) 2008-05-27 2008-05-27 POLYMER ELECTROLYTE MEMBRANE MANUFACTURING METHOD AND SOLID POLYMER TYPE FUEL CELL

Publications (2)

Publication Number Publication Date
JP2009286840A true JP2009286840A (en) 2009-12-10
JP5119046B2 JP5119046B2 (en) 2013-01-16

Family

ID=41456387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138298A Active JP5119046B2 (en) 2008-05-27 2008-05-27 POLYMER ELECTROLYTE MEMBRANE MANUFACTURING METHOD AND SOLID POLYMER TYPE FUEL CELL

Country Status (1)

Country Link
JP (1) JP5119046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121522A1 (en) 2017-09-13 2019-03-14 Toyota Jidosha Kabushiki Kaisha Method of making a membrane electrode assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842626A (en) * 1981-09-09 1983-03-12 Asahi Glass Co Ltd Production of fluorine-containing ion exchange resin membrane
JPS61192739A (en) * 1985-02-22 1986-08-27 Asahi Glass Co Ltd Fluorine ion exchange membrane for electrolysis
WO2005029624A1 (en) * 2003-09-17 2005-03-31 Asahi Kasei Kabushiki Kaisha Membrane-electrode assembly for solid polymer fuel cell
JP2007115415A (en) * 2005-10-18 2007-05-10 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using it
WO2007120190A2 (en) * 2005-10-28 2007-10-25 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842626A (en) * 1981-09-09 1983-03-12 Asahi Glass Co Ltd Production of fluorine-containing ion exchange resin membrane
JPS61192739A (en) * 1985-02-22 1986-08-27 Asahi Glass Co Ltd Fluorine ion exchange membrane for electrolysis
WO2005029624A1 (en) * 2003-09-17 2005-03-31 Asahi Kasei Kabushiki Kaisha Membrane-electrode assembly for solid polymer fuel cell
JP2007115415A (en) * 2005-10-18 2007-05-10 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using it
WO2007120190A2 (en) * 2005-10-28 2007-10-25 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121522A1 (en) 2017-09-13 2019-03-14 Toyota Jidosha Kabushiki Kaisha Method of making a membrane electrode assembly

Also Published As

Publication number Publication date
JP5119046B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR100608199B1 (en) Fluoropolymer Dispersion and Process for Producing Fluoropolymer Dispersion
JP6005065B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
JP4979188B2 (en) Resin containing ions or ionizable groups with small grain boundary size and improved conductivity
CN106750051B (en) The modified Nano material and preparation method thereof of heteropoly acid stability in a kind of raising proton exchange membrane
EP2739682B1 (en) Low equivalent weight polymers
KR20180134869A (en) Bipolar membrane
WO2005029624A1 (en) Membrane-electrode assembly for solid polymer fuel cell
EP2062933A1 (en) Fluoroionomer liquid composition
EP2440586B1 (en) Fluoroionomers dispersions having low surface tension, low liquid viscosity and high solid content
JP6593346B2 (en) Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
JP2014500392A (en) Ionomer and ion conductive composition
JP5119854B2 (en) Fluoropolymer dispersion and method for producing fluoropolymer dispersion
JP2014507753A (en) Ionomer and ion conductive composition for use as one or more electrodes in a fuel cell
JP5755346B2 (en) An electrode catalyst layer for a fuel cell, a membrane electrode assembly, and a polymer electrolyte fuel cell.
CN114651352A (en) Fluorosyl group-containing fluorine-containing polymer and method for producing the same, sulfonyl group-containing fluorine-containing polymer and method for producing the same, solid polymer electrolyte membrane, membrane/electrode assembly, and solid polymer fuel cell
US20160293987A1 (en) Liquid composition, method for its production, and method for producing membrane/electrode assembly for polymer electrolyte fuel cell
JP5978762B2 (en) Method for producing fluoropolymer aqueous dispersion and purified fluoropolymer aqueous dispersion
KR20150060510A (en) Ion Exchange Membrane and Method for Manufacturing the Same
JP2001029800A (en) Ion exchange film, ion exchange film/electrode conjugate and production of them
JP2014070213A (en) Method of producing polyelectrolyte-containing solution and solid polyelectrolyte film
EP3342799B1 (en) Liquid composition, coating liquid for forming catalyst layer, and method for producing membrane electrode assembly
JP5119046B2 (en) POLYMER ELECTROLYTE MEMBRANE MANUFACTURING METHOD AND SOLID POLYMER TYPE FUEL CELL
EP2853548B1 (en) Method for producing aqueous fluorine-containing polymer dispersing element, and purified aqueous fluorine-containing polymer dispersing element
JP2013149462A (en) Membrane-electrode assembly
KR20150060394A (en) Polymer electrolyte composite membrane with enhanced ionic conductivity and permeability, method for fabricating the same and redox flow battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R151 Written notification of patent or utility model registration

Ref document number: 5119046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250