JP2009285653A - Filtration and purification system - Google Patents

Filtration and purification system Download PDF

Info

Publication number
JP2009285653A
JP2009285653A JP2009164352A JP2009164352A JP2009285653A JP 2009285653 A JP2009285653 A JP 2009285653A JP 2009164352 A JP2009164352 A JP 2009164352A JP 2009164352 A JP2009164352 A JP 2009164352A JP 2009285653 A JP2009285653 A JP 2009285653A
Authority
JP
Japan
Prior art keywords
water
magnetic
filtration
filtering
filtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009164352A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Hisashi Isokami
尚志 磯上
Takashi Mizumori
隆司 水守
Shigesaburo Komatsu
茂三郎 小松
Susumu Harada
進 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2009164352A priority Critical patent/JP2009285653A/en
Publication of JP2009285653A publication Critical patent/JP2009285653A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filtration and separation/purification system for water purification, solid-liquid separation, and the like, having a structure by which particularly separation by filtration of a substance to be separated using a filter can be performed so that the substance can be successfully separated in terms of leakage of the substance because of the filter trouble. <P>SOLUTION: Process water filtered through a filtrating separator (hereinafter, referred to as the former filtrating separator) is filtered again through a latter filtrating separator. The clogging state of the filter of the latter filtrating separator is monitored, so as to detect a substance to be separated that has leaked from the former filtrating separator, issue alerts, and thus enables collection by the former filtrating separator. During this process, the substance to be separated is separated and removed by the latter filtrating separator, so that the leakage problem of the substance to be separated into purified water that is discharged from the latter filtrating separator can be addressed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水質浄化や固液分離等を目的とした濾過分離浄化装置に関し、特にフィルタによる被分離物質の濾過による分離を、フィルタの不具合による被分離物質の漏洩に対して、良好に被分離物質を分離可能な濾過浄化装置に関するものである。   The present invention relates to a filtration separation and purification device for the purpose of water purification, solid-liquid separation, and the like, and in particular, separation by separation of a substance to be separated by a filter is excellently separated against leakage of the substance to be separated due to a filter failure. The present invention relates to a filtration and purification device capable of separating substances.

固液分離等を目的として、細めの金網や高分子繊維で編んだ網を通水分離膜として使用し、被分離物質である汚濁粒子を有する原水に凝集剤と磁性粉を添加して磁性フロックを生成し、前記で磁性フロックを膜で分離し、膜で捕集した磁性フロックを磁場発生手段で磁気分離、除去して高濃度スラッジを回収する磁気分離浄化装置がある。   For the purpose of solid-liquid separation, a flocculant and magnetic powder are added to raw water with contaminated particles that are substances to be separated. There is a magnetic separation and purification device that collects high-concentration sludge by separating the magnetic flocs with a membrane and magnetically separating and removing the magnetic flocs collected with the membrane by a magnetic field generating means.

特許文献1の濾過分離浄化装置では、ステンレス鋼の細線やポリエステル繊維等で網を構成し、例えばその数十ミクロンメートルの目開きの開口部を有した膜分子部を有する。開口部の投影面積や投影直径よりも小さい微細な汚濁物質を分離するため、予め原水に例えば凝集剤の硫酸バン土やポリ塩化アルミニウムやポリ硫酸鉄と磁性粉を加えて撹絆し、原水中の微細な固形浮遊物や藻類、菌類、微生物を、凝縮剤によって数百ミクロンメートル程度の大きさに結合させた磁性フロックを形成させる。   The filtration separation and purification apparatus of Patent Document 1 includes a membrane molecular part having an opening with a mesh size of, for example, several tens of microns, which is formed of a stainless steel fine wire, polyester fiber, or the like. In order to separate fine pollutants smaller than the projected area and projected diameter of the opening, the raw water is mixed with, for example, coagulant vanous acid sulfate, polyaluminum chloride, polyiron sulfate and magnetic powder, A magnetic floc is formed by binding a small solid suspension of algae, algae, fungi, and microorganisms to a size of about several hundred microns with a condensing agent.

この磁性フロックは数十ミクロンメートルの目開きを有した開口部を通過できず高い除去率で捕捉分離され、膜を透過した水はさらに水質が高い浄化水となる。膜上に捕集された磁性フロックは、洗浄水で膜から洗い流された後、水面近傍に停留する磁性フロックは、前記水面近傍に静止配置された磁石の磁気力で吸引して磁気分離され、スラッジ移送手段でスラッジ回収槽に移送され排除される。スラッジは最終的には、通常トラックで処分場や焼却場に運搬してコンポスト化する。   This magnetic floc cannot pass through an opening having an opening of several tens of micrometers, and is captured and separated at a high removal rate. Water that has permeated the membrane becomes purified water with higher water quality. After the magnetic flocs collected on the membrane are washed away from the membrane with washing water, the magnetic flocs that remain in the vicinity of the water surface are magnetically separated by being attracted by the magnetic force of a magnet that is stationaryly placed near the water surface, It is transferred to the sludge collection tank by the sludge transfer means and eliminated. Ultimately, sludge is usually transported to a disposal site or incinerator by a truck for composting.

特開2002−273261号公報JP 2002-273261 A

上記従来例では、濾過フィルタの一部に腐食や機械的破損によるフィルタの本来の膜目以上の大きな破れ等が生じた場合、濾過フィルタを通過した浄化水中に磁性フロックが漏洩し、被分離物資や凝集、磁気分離のために添加した磁性粉や凝集剤等の添加薬剤が漏洩し、浄化水を排出する水域を汚染する問題が生じる。   In the above conventional example, when a part of the filter filter is severely broken beyond the original film size due to corrosion or mechanical damage, the magnetic floc leaks into the purified water that has passed through the filter and the material to be separated is separated. As a result, leakage of added chemicals such as magnetic powder and coagulant added for coagulation and magnetic separation causes a problem of contaminating the water area from which purified water is discharged.

本発明の目的は、フィルタによる被分離物質の濾過機能に関して、フィルタの破れ等の不具合による被分離物質の漏洩が生じても良好に被分離物質を分離し除去することが可能な濾過浄化装置を提供することにある。   It is an object of the present invention to provide a filtration and purification device that can separate and remove a substance to be separated well even if the substance to be separated leaks due to a problem such as a filter breakage with respect to a filtering function of the substance to be separated by a filter. It is to provide.

上記目的は、被除去物を含む被処理流体を濾過するための、被除去物の大半が通過できない目開きを有する第1濾過手段と、前記第1濾過手段に濾過された第1被除去物を前記第1濾過手段から剥離させる第1剥離手段と、前記第1濾過手段を通過した被除去物を検知する被除去物検知手段と、前記被除去物検知手段から検知情報を発信する被除去物検知情報発信手段と、前記第1濾過手段で濾過された第1被除去物を前記第1濾過手段から剥離させる第1剥離手段と、前記第1濾過手段で濾過された被処理流体を再度濾過するための第2濾過手段と、前記第2濾過手段に濾過された第2被除去物を前記第2濾過手段から剥離させる第2剥離手段を有することにより達成される。   The object is to filter the fluid to be processed including the object to be removed, the first filtering means having an opening through which most of the object to be removed cannot pass, and the first object to be removed filtered by the first filtering means. The first separation means for separating the first filtration means, the removal object detection means for detecting the removal object that has passed through the first filtration means, and the removal object that transmits detection information from the removal object detection means An object detection information transmitting means, a first peeling means for peeling the first object to be removed filtered by the first filtering means from the first filtering means, and the fluid to be treated filtered by the first filtering means again. This is achieved by having second filtering means for filtering and second peeling means for peeling the second object to be removed filtered by the second filtering means from the second filtering means.

また、上記目的は、被除去物を含む被処理流体を濾過するための、被除去物の大半が通過できない目開きを有する第1濾過手段と、前記第1濾過手段に濾過された第1被除去物を前記第1濾過手段から剥離させる第1剥離手段と、前記第1濾過手段を通過した被除去物を検知する被除去物検知手段と、前記被除去物検知手段から検知情報を発信する被除去物検知情報発信手段と、前記第1濾過手段で濾過された第1被除去物を前記第1濾過手段から剥離させる第1剥離手段と、前記第1濾過手段から排水する第1排水手段と、前記第1濾過手段で濾過された被処理流体を再度濾過するための第2濾過手段と、前記第1排水手段の下流が前記第2濾過手段をバイパスする第2排水手段と、前記被除去物検知情報発信手段の情報で第2排水手段への導通の実施を制御する導通制御手段と、前記第2濾過手段に濾過された第2被除去物を前記第2濾過手段から剥離させる第2剥離手段を有することにより達成される。   Further, the object is to filter the fluid to be processed including the object to be removed, the first filtering means having an opening through which most of the object to be removed cannot pass, and the first object filtered by the first filtering means. Detection information is transmitted from the first peeling means for peeling the removed substance from the first filtration means, the removal object detection means for detecting the removal object that has passed through the first filtration means, and the removal object detection means. To-be-removed object detection information transmitting means, first separating means for separating the first object to be removed filtered by the first filtering means from the first filtering means, and first draining means for draining from the first filtering means. A second filtering means for re-filtering the fluid to be treated filtered by the first filtering means, a second draining means for the downstream of the first draining means to bypass the second filtering means, To the second drainage means by the information of the removed matter detection information sending means A conduction control means for controlling the implementation of conduction is achieved by having a second peeling means for peeling the second-be-removed substance is filtered in the second filtering means from said second filtering means.

本発明によれば、フィルタによる被分離物質の濾過機能に関して、フィルタの破れ等の不具合による被分離物質の漏洩が生じても、良好に被分離物質を分離、除去可能な、濾過浄化装置を提供できる。   According to the present invention, there is provided a filtration and purification device capable of separating and removing a substance to be separated satisfactorily even if the substance to be separated leaks due to a filter breakage or the like regarding the filtration function of the substance to be separated by the filter. it can.

本発明の一実施例を備えた磁気分離浄化装置のフロ−図である。It is a flow figure of the magnetic separation purification apparatus provided with one example of the present invention. 本発明の一実施例を備えた磁気分離部の断面図である。It is sectional drawing of the magnetic separation part provided with one Example of this invention. 図2のA−A断面図である。It is AA sectional drawing of FIG. 本発明の他の実施例を備えた磁気分離部の断面図である。It is sectional drawing of the magnetic separation part provided with the other Example of this invention. 図4のB−B断面図である。It is BB sectional drawing of FIG.

以下、本発明の一実施例を図1、図2および図3により説明する。   An embodiment of the present invention will be described below with reference to FIGS.

図2は図1の濾過分離装置14の拡大断面図である。
図3は図2のA−A断面図である。
図において、原水貯槽1内に数ミリメートルの大きなゴミを取り除き、細かい被分離物質、例えば油粒子や有機物や微生物等を有する被処理水である原水2を貯留し、ポンプ3でこの原水2を、配管4に所定の量を送水する。シーディング剤調整装置5から四酸酸化鉄等の磁性粉とpH調整剤、ポリ塩化アルミニウムや塩化鉄や硫酸第二鉄等の水溶液等のアルミニウムイオンや鉄イオンを提供する凝集剤や高分子補強剤等を、導管6を通じて配管4内に加え、撹絆槽7において、モータ8で回転駆動される攪拌翼9により高速度で撹絆し、数百ミクロンメートルの磁性マイクロフロックを生成する。その後、高分子剤調整装置11から高分子補強剤等を、導管12を通じて配管10内に加え、撹絆槽13のモータ14で回転駆動される攪拌翼15で低速度でゆっくりと撹絆し、数ミリメートル程度の大きさの磁性フロック16(図1には示さず)を含む前処理水17を生成する。
FIG. 2 is an enlarged cross-sectional view of the filtration separation device 14 of FIG.
3 is a cross-sectional view taken along the line AA in FIG.
In the figure, large millimeters of several millimeters are removed from the raw water storage tank 1, raw water 2 which is a water to be treated having fine substances to be separated, such as oil particles, organic matter, and microorganisms, is stored. A predetermined amount of water is sent to the pipe 4. Coagulant and polymer reinforcement that provide aluminum ions and iron ions such as magnetic powder such as iron tetroxide and pH adjuster, aqueous solution such as polyaluminum chloride, iron chloride and ferric sulfate from seeding agent adjusting device 5 An agent or the like is added into the pipe 4 through the conduit 6 and stirred at a high speed by a stirring blade 9 that is rotationally driven by a motor 8 in a stirring tank 7 to generate a magnetic micro floc of several hundreds of micrometers. Thereafter, a polymer reinforcing agent or the like is added from the polymer agent adjusting device 11 into the pipe 10 through the conduit 12, and is slowly agitated at a low speed with the stirring blade 15 rotated by the motor 14 of the agitation tank 13, A pretreated water 17 containing a magnetic floc 16 (not shown in FIG. 1) having a size of several millimeters is generated.

このように生成した前処理水17を、導管18を通じて濾過分離装置19に通水する。図2、図3により膜磁気分離装置19の構造を説明する。回転ドラム20の外周面にステンレス鋼の細線や銅の細線やポリエステル繊維等で数ミクロンメートルから数十ミクロンメートルの目開きを有した開口部を有する濾過フィルタとなる網21を設ける。   The pretreated water 17 thus generated is passed through a conduit 18 to a filtration / separation device 19. The structure of the magnetic membrane separator 19 will be described with reference to FIGS. On the outer peripheral surface of the rotary drum 20 is provided a net 21 serving as a filtration filter having an opening having openings of several micrometers to several tens of micrometers made of stainless steel fine wires, copper fine wires, polyester fibers, or the like.

水槽22に流入した前処理水17は、網21を通過しドラム121内に流入する。この時、前処理水中の磁性フロック16は網21内面に捕捉され、網21を通過し磁性フロック16を分離された水は浄化水となって開口部23から排出され、配管24を通り浄化水槽25に溜り、系外に放流される。前処理水17が網21を通過する動力は、前処理水17とドラム20内の浄化水との液面位差である。   The pretreated water 17 flowing into the water tank 22 passes through the net 21 and flows into the drum 121. At this time, the magnetic floc 16 in the pretreated water is captured by the inner surface of the net 21, and the water that has passed through the net 21 and separated from the magnetic floc 16 becomes purified water that is discharged from the opening 23, passes through the pipe 24, and is purified water tank. It collects in 25 and is discharged out of the system. The power that the pretreated water 17 passes through the net 21 is a liquid level difference between the pretreated water 17 and the purified water in the drum 20.

一方、磁性フロック16は図2で反時計回りに回転する網21の外面に濾過されて付着し、堆積物となって液面上の大気部に露出する。
浄化水槽25内の浄化水をポンプ26で加圧され導管27からシャワー管28に送り、孔からシャワー水を、網21内表面から外面側に吹き付ける。網21の外表面に蓄積した磁性フロック16はシャワー水で剥がれ網21面は再生される。洗い流された磁性フロック16は、水槽22内の前処理水17の水面上に停留する。
On the other hand, the magnetic floc 16 is filtered and attached to the outer surface of the mesh 21 rotating counterclockwise in FIG. 2, and becomes a deposit and exposed to the atmosphere on the liquid surface.
The purified water in the purified water tank 25 is pressurized by the pump 26 and sent from the conduit 27 to the shower pipe 28, and shower water is blown from the inner surface of the net 21 to the outer surface side through the hole. The magnetic floc 16 accumulated on the outer surface of the net 21 is peeled off by shower water, and the surface of the net 21 is regenerated. The washed-out magnetic floc 16 stays on the surface of the pretreated water 17 in the water tank 22.

磁気分離の磁場発生手段として使用する回転式の磁石29は、非磁性体の材料で製作した回転体30の外面に複数条の溝に永久磁石体31を接着剤等で固定し、前記回転体30は、モータ32で回転数を制御されて回転する構造となっている。   A rotary magnet 29 used as a magnetic field generating means for magnetic separation has a permanent magnet body 31 fixed to a plurality of grooves on an outer surface of a rotating body 30 made of a non-magnetic material with an adhesive or the like. 30 has a structure in which the number of rotations is controlled by a motor 32 to rotate.

一方、磁気分離した磁性フロックを移送するために使用する非磁性体の材料で製作した汚泥移送用の回転体33は、軸34を介してモータ35で回転数を制御されて回転する。端部では、軸34を水密性を有した回転支持体36により水槽22の壁で支持し、他端部では、回転体33外周部を、水密性を有した回転支持体37を介して水槽22の壁で支持し、回転体33の内部は大気に開放されている。   On the other hand, the sludge transfer rotating body 33 made of a non-magnetic material used for transferring the magnetically separated magnetic floc is rotated by a motor 35 via a shaft 34 and rotated. At the end, the shaft 34 is supported by the wall of the water tank 22 by the water-tight rotating support 36, and at the other end, the outer periphery of the rotating body 33 is connected to the water tank through the water-tight rotating support 37. 22, and the inside of the rotating body 33 is open to the atmosphere.

前記磁石29は、前記回転体33の大気開放面から回転体33の内部に挿入され、洗浄水で洗い流された磁性フロック16群が停留する、すなわち回転ドラム側の位置に接近するように設置される。ここで本実施例では、回転体33の軸心と回転体30の軸心とは、ずれて配置されている。図に示していないが、磁石29は所定の場所に位置するように、水槽22の一部にボルト等で固定される。回転体33と回転体30の回転方向は、同一方向で、磁気吸引した磁性フロック16群を大気側に移動させる方向に回転する。両者の回転数は、同一でも、異なっても良い。本実施例の場合は、磁石側の回転体30側の回転数が回転体33の回転数より多い。すなわち回転速度が速い。   The magnets 29 are inserted from the air release surface of the rotator 33 into the rotator 33, and are installed so that the magnetic flocs 16 group washed away with washing water stops, that is, approaches the position on the rotating drum side. The Here, in this embodiment, the axis of the rotator 33 and the axis of the rotator 30 are shifted from each other. Although not shown in the drawing, the magnet 29 is fixed to a part of the water tank 22 with a bolt or the like so as to be located at a predetermined place. The rotation direction of the rotator 33 and the rotator 30 is the same direction and rotates in the direction in which the magnetically attracted magnetic flocks 16 group are moved to the atmosphere side. Both rotation speeds may be the same or different. In the case of the present embodiment, the rotational speed of the rotating body 30 on the magnet side is larger than the rotational speed of the rotating body 33. That is, the rotation speed is fast.

洗い落ちて水面近傍に停留する磁性フロック16群は、磁石29の磁場により磁石側に吸引されて移動し、磁場29の外側を回転する回転体33の外表面に付着したのち、回転体33の回転にともなって、大気中に露出する。大気中において、磁性フロック16群中の余分な水分は重力により回転体33面上を流下し、磁性フロック16群は更に濃縮される。ここで、磁性フロックの含水率は97%程度まで低下する。   The magnetic flocs 16 group that is washed off and stays in the vicinity of the water surface is attracted and moved to the magnet side by the magnetic field of the magnet 29 and adheres to the outer surface of the rotating body 33 that rotates outside the magnetic field 29. As it rotates, it is exposed to the atmosphere. In the atmosphere, excess water in the magnetic floc 16 group flows down on the surface of the rotating body 33 due to gravity, and the magnetic floc 16 group is further concentrated. Here, the moisture content of the magnetic floc decreases to about 97%.

回転体33面上の濃縮された磁性フロック16群は、回転体33の回転により移動する。このとき、回転体33の軸心と回転体30の軸心とは、ずれて配置されているため、磁石29から次第に遠ざかり、これによって、磁気吸引力は磁石から離れるに従って急激に低減する。磁性フロック16群は、掻き取りように水槽22に一部に支持されたへら38によって、回転体33面上でから剥離され、スラッジ回収槽39に重力で落下し、スラッジとして分離捕集される。   The concentrated magnetic flock 16 group on the surface of the rotator 33 is moved by the rotation of the rotator 33. At this time, since the axis of the rotator 33 and the axis of the rotator 30 are arranged so as to deviate from each other, they gradually move away from the magnet 29, whereby the magnetic attractive force is rapidly reduced as the distance from the magnet increases. The group of magnetic flocs 16 is peeled off from the surface of the rotating body 33 by a spatula 38 partially supported by the water tank 22 so as to be scraped off, dropped into the sludge recovery tank 39 by gravity, and separated and collected as sludge. .

排出されたスラッジは、配管40を通じて遠心分離機やベルトプレス等の脱水装置41に導入され、運搬時にスラッジから水が漏れないように含水率を約85%以下に、またコンポスト時の有機物を分解する微生物の活性化を図れる含水率を約75%に濃縮された高濃度スラッジは、配管42を通じてスラッジ槽地43に貯められる。スラッジはトラックで処分場や焼却場や堆肥処理場に運搬される。   The discharged sludge is introduced into a dewatering device 41 such as a centrifuge or a belt press through a pipe 40, the water content is reduced to about 85% or less so that water does not leak from the sludge during transportation, and organic substances during composting are decomposed. The high-concentration sludge concentrated to about 75% of the moisture content capable of activating the microorganisms to be activated is stored in the sludge tank 43 through the pipe 42. The sludge is transported by truck to a disposal site, incineration plant or composting plant.

脱水装置で脱水された処理汚水は、配管44を通じて処理汚水槽45に入り、ポンプ46で加圧された後、配管47を通って原水槽1に戻り、再び前処理工程に導入される。運転制御装置48では、原水の
・液面
・濁度
・温度
・pH値
等をセンサー49で計測し、その情報を運転制御装置48に信号線50で送信する。その情報を基に、良好な磁性フロックを生成するに最適な
・薬剤(pH調整剤、磁性粉、凝集剤)の添加量、
を、前もって入力した最適量算出プログラムで計算し、その制御情報を薬剤槽5に信号線51を経由して送信し、最適量を添加する。また、同時に、
・攪拌モータの回転数
・攪拌槽での停留時間
を運転制御装置48内で算出し、その制御情報をモータ8に信号線52を経由して送信し、最適回転数で攪拌翼9を回転させ、信号線53を経由して送信し、攪拌槽での停留時間を確定するポンプ3の吐出量を制御する。
The treated sewage dewatered by the dehydrator enters the treated sewage tank 45 through the pipe 44, is pressurized by the pump 46, returns to the raw water tank 1 through the pipe 47, and is again introduced into the pretreatment process. In the operation control device 48, raw water, liquid level, turbidity, temperature, pH value and the like are measured by the sensor 49, and the information is transmitted to the operation control device 48 through the signal line 50. Based on the information, it is the best for producing good magnetic floc. ・ Addition amount of chemicals (pH adjusting agent, magnetic powder, flocculant),
Is calculated by the optimum amount calculation program inputted in advance, and the control information is transmitted to the medicine tank 5 via the signal line 51 to add the optimum amount. At the same time,
The rotation speed of the stirring motor and the stop time in the stirring tank are calculated in the operation control device 48, and the control information is transmitted to the motor 8 via the signal line 52, and the stirring blade 9 is rotated at the optimum rotation speed. , And transmitted via the signal line 53 to control the discharge amount of the pump 3 for determining the stopping time in the stirring tank.

また、良好な磁性フロックを生成するに最適な
・薬剤(高分子ポリマー)の添加量、
を、前もって入力した最適量算出プログラムで計算し、その制御情報を薬剤槽11に信号線54を経由して送信し、最適量を添加する。また、同時に、
・攪拌モータの回転数
を運転制御装置48内で算出し、その制御情報をモータ14に信号線55を経由して送信し、最適回転数で攪拌翼15を回転させる。
In addition, it is optimal for producing good magnetic floc.
Is calculated by the optimum amount calculation program inputted in advance, and the control information is transmitted to the medicine tank 11 via the signal line 54 to add the optimum amount. At the same time,
The rotation speed of the stirring motor is calculated in the operation control device 48, and the control information is transmitted to the motor 14 via the signal line 55 to rotate the stirring blade 15 at the optimal rotation speed.

一方、濾過分離装置19では、水槽22内の前処理水17の液面をセンサー56で計測し、その情報を運転制御装置48に信号線57で送信する。その情報を基に、前処理水の液面位置が、磁石29の設置位置のほぼ中央部、すなわち磁石29が発生する磁場の平均値が最大の位置に来るように、回転ドラム20の最適な回転数および磁性フロック16群の回収速度の適正速度を、前もって入力した最適量算出プログラムで計算し、その制御信号を回転ドラムの回転モータ(図示せず)に信号線58を経由して送信し、また、信号線59を経由してモータ35に送信し、それぞれ最適の回転数に制御する。   On the other hand, in the filtration / separation device 19, the liquid level of the pretreated water 17 in the water tank 22 is measured by the sensor 56, and the information is transmitted to the operation control device 48 through the signal line 57. Based on the information, the optimal position of the rotary drum 20 is set so that the liquid surface position of the pretreatment water is substantially in the center of the installation position of the magnet 29, that is, the average value of the magnetic field generated by the magnet 29 is at the maximum position. The rotation speed and the appropriate recovery speed of the magnetic flock 16 group are calculated by the optimum amount calculation program inputted in advance, and the control signal is transmitted to the rotation motor (not shown) of the rotary drum via the signal line 58. In addition, the signal is transmitted to the motor 35 via the signal line 59, and each is controlled to an optimum rotational speed.

磁石29の磁界で、洗浄した磁性フロック16群を磁気吸引するためには、水槽22内の前処理水の水面がほぼ磁石29の磁界の中央部、すなわち図2におけるA―A断面の位置にあることが望ましい。前記水面が記A―A断面の位置よりも低い場合には、前記水面より低い位置でしか磁性フロック16群を、回転体33の表面に付着できない。ここで、磁石29が静止している場合、磁石29が発生する磁場分布は、並べたそれぞれの永久磁石が、有する磁場分布が磁石面上で不均一であるため、取り付けられた磁石群が発生する磁場分布も不均一となり、磁気吸引力の不均一が生じる。   In order to magnetically attract the cleaned magnetic flocs 16 group by the magnetic field of the magnet 29, the surface of the pretreated water in the water tank 22 is substantially at the center of the magnetic field of the magnet 29, that is, at the position of the AA cross section in FIG. It is desirable to be. When the water surface is lower than the position of the AA cross section, the magnetic flock 16 group can be attached to the surface of the rotating body 33 only at a position lower than the water surface. Here, when the magnets 29 are stationary, the magnetic field distribution generated by the magnets 29 is not uniform on the magnet surface because each of the arranged permanent magnets has a non-uniform magnetic field distribution. The magnetic field distribution is also non-uniform and the magnetic attractive force is non-uniform.

したがって、洗浄された磁性フロック16群が多数停留する前記水面が、磁気吸引力の弱い部位にある場合には、磁性フロック16群を磁気分離して回収する処理性能が低下する。しかし、磁石29が回転する本実施例では、前記水面部に、必ず磁場分布の強い磁場部分が短い周期で通過させられるので、前記水面部の多数の磁性フロック16群を磁気吸引して回転体33の外表面に付着させ、その磁場を回転体33の移動速度とほぼ同じにすることにより、移動方法に磁気吸引力を保持しながら磁性フロック16群を回転体30で移送できるので、磁性フロックの回収処理性能が低下することを防止できる。   Accordingly, when the water surface where a large number of the washed magnetic flocs 16 stays is in a portion where the magnetic attractive force is weak, the processing performance of magnetically separating and recovering the magnetic flocs 16 is deteriorated. However, in the present embodiment in which the magnet 29 rotates, a magnetic field portion having a strong magnetic field distribution is always passed through the water surface portion with a short period. Therefore, a large number of magnetic flocks 16 on the water surface portion are magnetically attracted to rotate the rotating body. By adhering to the outer surface of 33 and making the magnetic field substantially the same as the moving speed of the rotating body 33, the magnetic flocs 16 group can be transferred by the rotating body 30 while maintaining the magnetic attraction force in the moving method. It is possible to prevent the recovery processing performance from deteriorating.

また反対に、前記水面が、A―A断面の位置よりも高い場合には、前記水面より高い位置に多数の磁性フロック16群が停留するが、磁場が弱いために回転体33の表面に付着しにくい。ここで、磁石29が静止している場合、前記した場合と同様に、磁石29が発生する磁場分布は不均一となり、磁気吸引力の不均一が生じる。したがって、水面が磁気吸引力の弱い部位にある場合には、磁性フロック16群の回収性能が低下する。しかし、磁石29が回転する本実施例では、前記水面部に、必ず磁場分布の強い磁場部分が短い周期で通過させられるので、高い水面部分の磁性フロック16群を磁気吸引して回転体33の外表面に付着させ、その磁場を回転体33の移動速度とほぼ同じにすることにより、移動方法に磁気吸引力を保持しながら磁性フロック16群を回転体30で移送できるので、磁性フロックの回収処理性能が低下することを防止できる。   On the other hand, when the water surface is higher than the position of the AA cross section, a large number of magnetic flocs 16 groups stay at a position higher than the water surface, but adhere to the surface of the rotator 33 because the magnetic field is weak. Hard to do. Here, when the magnet 29 is stationary, the magnetic field distribution generated by the magnet 29 becomes non-uniform and the magnetic attraction force becomes non-uniform as in the case described above. Therefore, when the water surface is at a site where the magnetic attractive force is weak, the collection performance of the magnetic flock 16 group is lowered. However, in the present embodiment in which the magnet 29 rotates, a magnetic field portion having a strong magnetic field distribution is always passed through the water surface portion with a short period, so that the magnetic flocs 16 group on the high water surface portion are magnetically attracted to the rotating body 33. By attaching the magnetic field to the outer surface and making the magnetic field substantially the same as the moving speed of the rotating body 33, the magnetic flocs 16 group can be transferred by the rotating body 30 while maintaining the magnetic attraction force in the moving method. It can prevent that processing performance falls.

また、水槽22内の前処理水の液面が、網21の回転数の不足等により網21での濾過量が流入量より低下した場合等に生じる、水槽22内の前処理水の液面が上昇した場合、水槽22内の前処理水側からスラッジ回収槽39内に前処理水が壁60を越えて越流しないように、越流水回収槽61を設け、越流水は配管62を通り、処理汚水槽45に入り、ポンプ46で加圧された後、配管47を通って原水槽1に戻る。   Further, the liquid level of the pretreatment water in the water tank 22 is generated when the amount of filtration in the net 21 is lower than the inflow due to insufficient rotation of the net 21 or the like. When the water rises, an overflow water recovery tank 61 is provided in the sludge recovery tank 39 from the pretreatment water side in the water tank 22 so that the pretreatment water does not overflow the wall 60, and the overflow water passes through the pipe 62. Then, after entering the treated wastewater tank 45 and being pressurized by the pump 46, it returns to the raw water tank 1 through the pipe 47.

ここで、前記網21に腐食や機械的や応力疲労等で亀裂や剥離が生じ、従来の網の目開きサイズを超えるサイズの隙間が生じた場合、磁性フロックは網21の内部に通過し、浄化水中に漏洩する。浄化水は、配管24を通り光学的な汚濁物検出装置63に流入する。ここで、浄化水中の磁性フロックが検知され、その検出信号は配線64を経由して運転制御機能を有する装置48に送信される。運転制御装置48では、網21に異常があることを認知し、警報を運転者側に通報するとともに、配線65を経由して弁切り替え装置66に制御信号を送り、磁性フロックが漏洩した浄化水を、弁切り替え装置66の中の制御弁67を経由して配管68に導き、後段濾過装置69に送水する。   Here, when the mesh 21 is cracked or peeled off due to corrosion, mechanical or stress fatigue, and a gap exceeding the mesh size of the conventional mesh is generated, the magnetic flock passes inside the mesh 21, Leak into purified water. The purified water flows into the optical contaminant detection device 63 through the pipe 24. Here, the magnetic floc in the purified water is detected, and the detection signal is transmitted to the device 48 having the operation control function via the wiring 64. The operation control device 48 recognizes that there is an abnormality in the network 21, notifies the driver of an alarm, sends a control signal to the valve switching device 66 via the wiring 65, and purified water leaked by the magnetic floc. Is guided to the pipe 68 via the control valve 67 in the valve switching device 66 and is sent to the subsequent filtration device 69.

ここで、磁性フロックが漏洩しない場合には、浄化水中の磁性フロックが検知されず、その信号は配線64を経由して運転制御装置48に送信される。運転制御装置48では、網21に異常がないことを認知し、配線65を経由して弁切り替え装置66に制御信号を送り、磁性フロックの漏洩がない浄化水を、弁切り替え装置66の中の制御弁70を経由して配管71に導き、系外に放水する。   Here, when the magnetic floc does not leak, the magnetic floc in the purified water is not detected, and the signal is transmitted to the operation control device 48 via the wiring 64. The operation control device 48 recognizes that there is no abnormality in the net 21, sends a control signal to the valve switching device 66 via the wiring 65, and supplies purified water without leakage of magnetic flocs in the valve switching device 66. The water is guided to the pipe 71 via the control valve 70 and discharged outside the system.

後段濾過装置69は、主に、回転するドラムの外面に網を配置した回転フィルタ72と、回転ドラム内部の液面検知器73と、前記液面検知器73の計測信号を液面制御機能を有する運転制御装置48に送信する配線74と、網で濾過された浄化水を一時蓄える浄化水槽75と、この浄化水の一部の水を加圧する加圧ポンプ76と、加圧された浄化水を配管77を通じて、供給場所を制御する洗浄水供給の弁切り替え装置78と、洗浄水を網の外側から噴射する洗浄ノズル79と、洗浄水を捕集する樋80と、捕集された回収洗浄水を配管81を通じて捕集する回収洗浄水槽82と、回収洗浄水を配管83で原水槽に送水するポンプ84で構成される。   The latter-stage filtration device 69 mainly has a rotary filter 72 in which a net is arranged on the outer surface of the rotating drum, a liquid level detector 73 inside the rotary drum, and a liquid level control function for measuring signals from the liquid level detector 73. Wiring 74 to be transmitted to the operation control device 48, a purified water tank 75 for temporarily storing purified water filtered through a net, a pressurizing pump 76 for pressurizing a part of the purified water, and pressurized purified water Through the piping 77, a cleaning water supply valve switching device 78 for controlling the supply location, a cleaning nozzle 79 for injecting the cleaning water from the outside of the net, a scissor 80 for collecting the cleaning water, and the collected recovery cleaning A recovery washing water tank 82 for collecting water through a pipe 81 and a pump 84 for feeding the recovered washing water to the raw water tank through a pipe 83 are configured.

磁性フロックが混入した浄化水は、配管68を通じて回転フィルタ72の内側に流入する。ここで、浄化水は回転フィルタ72で濾過され、浄化水中の磁性フロックは濾過される。濾過された浄化水は水槽86に溜まり、浄化水槽75に蓄えられ、その後配管87を通じて系外に放出される。   The purified water mixed with the magnetic floc flows into the rotary filter 72 through the pipe 68. Here, the purified water is filtered by the rotary filter 72, and the magnetic floc in the purified water is filtered. The filtered purified water is accumulated in the water tank 86, stored in the purified water tank 75, and then discharged out of the system through the pipe 87.

回転フィルタ72の網面に磁性フロックが溜まると通水抵抗が増加し、回転ドラム内部の濾過前の浄化水88の液面が増加する。浄化水88液面の増加を運転制御装置48で検知し、所定の水位を超えると回転フィルタ72のモータ(図示せず)を動かし、ポンプ76を作動させ、信号線90からの制御信号により洗浄水供給の弁切り替え装置78の弁89が開き、ノズル79から洗浄水が放水される。   When magnetic flocs accumulate on the mesh surface of the rotary filter 72, the water flow resistance increases, and the level of the purified water 88 before filtration inside the rotary drum increases. An increase in the level of the purified water 88 is detected by the operation control device 48. When the water level exceeds a predetermined level, the motor (not shown) of the rotary filter 72 is moved, the pump 76 is operated, and cleaning is performed by a control signal from the signal line 90. The valve 89 of the water supply valve switching device 78 is opened, and the wash water is discharged from the nozzle 79.

また、磁性フロックが漏洩した場合は、運転制御装置48の制御により弁91が開かれ配管92を通じて、濾過分離装置19のシャワー管28に供給される。これは、磁性フロックが混在した浄化水を洗浄水に使用すると磁性フロックがシャワー管28の目詰まりの原因となるためである。この場合、ポンプ26は運転制御装置48からの制御信号により運転が自動的に停止する。洗浄水の逆流を防止するため、ポンプ26の交流側に逆止装置93が設けられる。   When the magnetic floc leaks, the valve 91 is opened under the control of the operation control device 48 and supplied to the shower pipe 28 of the filtration / separation device 19 through the pipe 92. This is because when the purified water mixed with magnetic flocs is used as the washing water, the magnetic flocs cause clogging of the shower tube 28. In this case, the operation of the pump 26 is automatically stopped by a control signal from the operation control device 48. A check device 93 is provided on the AC side of the pump 26 in order to prevent backflow of the washing water.

回転フィルタ72が回転し、内側に蓄積した磁性フロックはノズル79からの洗浄水で洗い流され、洗浄水は樋80に捕集される。洗浄水は配管81を通じて回収洗浄水槽82に一時溜まり、回収された洗浄水は配管83を通り、ポンプ84で原水槽に送水するように構成され、再度浄化系に戻る。   The rotary filter 72 rotates, and the magnetic floc accumulated inside is washed away with the washing water from the nozzle 79, and the washing water is collected in the basket 80. The cleaning water is temporarily stored in the recovered cleaning water tank 82 through the pipe 81, and the recovered cleaning water passes through the pipe 83 and is sent to the raw water tank by the pump 84, and returns to the purification system again.

回転フィルタ72が洗浄され再生されると、回転フィルタ72の通水抵抗が小さくなり、回転ドラム内部の濾過前の浄化水88の液面が低下し、所定の水位以下になると運転制御装置48からの制御信号により回転フィルタ72の回転が自動的に停止する。   When the rotary filter 72 is washed and regenerated, the water flow resistance of the rotary filter 72 is reduced, the level of the purified water 88 before filtration inside the rotary drum is lowered, and when the level is below a predetermined level, the operation control device 48 The rotation of the rotary filter 72 is automatically stopped by this control signal.

浄化システムを一旦停止させ、前記網21に腐食や機械的や応力疲労等で亀裂や剥離が生じ、従来の網の目開きサイズを超えるサイズの隙間が生じた部分を捕集もしくは新しい網に交換し、磁性フロックの漏洩原因の対策が終了し、正規の浄化運転が開始されると、磁性フロックは浄化水中に漏洩しなくなる。浄化水は、配管24を通り光学的な汚濁物検出装置63に流入する。ここで、浄化水中の磁性フロックは検知されず、その検出信号は配線64を経由して運転制御機能を有する装置48に送信される。運転制御装置48では、網21に異常が無いことを認識し、配線65を経由して弁切り替え装置66に制御信号を送り、磁性フロックの漏洩がない浄化水を、弁切り替え装置66の中の制御弁70を経由して配管71に導き、浄化システム外に排出され、後段濾過装置69の運転は停止される。   The purification system is temporarily stopped, and the mesh 21 is cracked or peeled off due to corrosion, mechanical or stress fatigue, etc., and a portion having a gap exceeding the mesh opening size of the conventional mesh is collected or replaced with a new mesh. When the countermeasure for the cause of leakage of the magnetic floc is completed and the normal purification operation is started, the magnetic floc does not leak into the purified water. The purified water flows into the optical contaminant detection device 63 through the pipe 24. Here, the magnetic floc in the purified water is not detected, and the detection signal is transmitted to the device 48 having the operation control function via the wiring 64. The operation control device 48 recognizes that there is no abnormality in the net 21, sends a control signal to the valve switching device 66 via the wiring 65, and supplies purified water free from leakage of magnetic flocs in the valve switching device 66. It is guided to the pipe 71 via the control valve 70 and discharged out of the purification system, and the operation of the post-stage filtration device 69 is stopped.

本実施例によれば、前記網21に腐食や機械的や応力疲労等で亀裂や剥離が生じ、従来の網の目開きサイズを超えるサイズの隙間が生じ、磁性フロックが網21を通過し、浄化水中に漏洩し、浄化水の水質が所定の値を達成できない場合が発生しても、磁性フロックの漏洩を検知し、浄化水の後段部に配置した正常な運転が可能な磁性フロック捕捉手段である、例えば濾過装置に処理水を導き、前記濾過装置にて磁性フロックを再度除去できるので、磁性フロックが浄化システム外に漏洩することを防止できる効果が生じる。   According to this embodiment, the mesh 21 is cracked or peeled off due to corrosion, mechanical or stress fatigue, a gap exceeding the mesh size of the conventional mesh is created, and the magnetic floc passes through the mesh 21. Magnetic floc trapping means that detects leakage of magnetic flocs and allows normal operation even after leakage into the purified water and the purified water quality does not reach the specified value. For example, since the treated water is guided to the filtering device and the magnetic floc can be removed again by the filtering device, the magnetic floc can be prevented from leaking out of the purification system.

図4および図5に本発明になる他の実施例を示す。図5は図4のB-B断面である。これらの図が図2および図3と異なる点は、網21で濾過された浄化水の流出口となる回転ドラム20の開口部23に、後段のフィルタとしてノズル96を設け、ノズル96の外周部に浄化水を濾過する網94を設けた構造にある。   4 and 5 show another embodiment according to the present invention. FIG. 5 is a BB cross section of FIG. 2 and 3 is different from FIGS. 2 and 3 in that a nozzle 96 is provided as a subsequent filter in the opening 23 of the rotary drum 20 serving as an outlet of the purified water filtered by the mesh 21, and the outer periphery of the nozzle 96. The structure is provided with a net 94 for filtering the purified water.

ここで、前記網21に腐食や機械的や応力疲労等で亀裂や剥離が生じ、従来の網の目開きサイズを超えるサイズの隙間が生じて浄化水中に磁性フロックが漏洩した場合において、磁性フロックを含む浄化水は、開口部23からノズル96に流入する。磁性フロックは網94で濾過され、再度浄化された浄化水は、磁性フロックが除去された高い水質になり、磁性フロックが浄化水の排水先である環境を汚染することがない。網94の内側に濾過された磁性フロックは網94に蓄積する。ノズル96は、回転ドラム20と一体で回転し、ノズル96の外部に配置された洗浄ノズル97から噴射される洗浄水で洗い流され、磁性フロックを洗浄した洗浄水はノズル96の内側に配置した樋98に流れ落ち、捕集される。洗浄ノズル97から噴射される洗浄水は、磁性フロックが漏洩して網94の濾過抵抗が大きくなった場合に、供給される。   Here, when the mesh 21 is cracked or peeled off due to corrosion, mechanical or stress fatigue, a gap larger than the mesh opening size of the conventional mesh is generated, and the magnetic floc leaks into the purified water. Purified water containing water flows into the nozzle 96 from the opening 23. The magnetic floc is filtered through the net 94 and the purified water purified again has a high water quality from which the magnetic floc has been removed, and the magnetic floc does not contaminate the environment where the purified water is discharged. The magnetic floc filtered inside the mesh 94 accumulates in the mesh 94. The nozzle 96 rotates integrally with the rotary drum 20 and is washed away with washing water sprayed from a washing nozzle 97 disposed outside the nozzle 96. The washing water that has washed the magnetic floc is disposed inside the nozzle 96. It flows down to 98 and is collected. The cleaning water sprayed from the cleaning nozzle 97 is supplied when the magnetic floc leaks and the filtration resistance of the net 94 increases.

網94で濾過された浄化水は、浄化水捕集槽100に落下して貯留され、配管99から系外に排出される。樋98で捕集した洗浄水は、図に示さないが配管101を通じて原水槽1に戻される。
ノズル97に供給する洗浄水は、浄化水捕集槽100内の浄化水を、図に示さないがポンプで加圧して供給される。前記洗浄水は、ノズル28にも供給される。
The purified water filtered by the net 94 is dropped and stored in the purified water collection tank 100 and discharged from the piping 99 to the outside of the system. Although not shown in the figure, the cleaning water collected by the tub 98 is returned to the raw water tank 1 through the pipe 101.
The cleaning water supplied to the nozzle 97 is supplied by pressurizing the purified water in the purified water collecting tank 100 with a pump (not shown). The washing water is also supplied to the nozzle 28.

ノズル96内には、水位センサ102を配置する。磁性フロックが網94に捕捉されると線浄水の通水抵抗が増加し、ノズル96内の水位が上昇する、水位が所定の値を超えると、図示しないが、制御装置により洗浄ノズル97への洗浄水の供給が自動的に開始され、洗浄ノズル97から洗浄水が噴射され、網94の内側の磁性フロックが洗浄され、通水抵抗が小さくなって、水位が低下する。所定の水位以下になると、洗浄ノズル97への洗浄水の供給が自動的に停止する。洗浄ノズル97への洗浄水の供給が遅れ、ノズル96内の水位がさらに上昇すると、ノズル96の開口部95からノズル96外に流失し、磁性フロックを含む浄化水の越流水は、ノズル96の開口部95下部に配置した越流水保留槽103に流下し、配管104を通じて配管101に合流し、原水層1に戻される。   A water level sensor 102 is disposed in the nozzle 96. When the magnetic floc is captured by the net 94, the resistance of the line clean water increases, and the water level in the nozzle 96 rises. If the water level exceeds a predetermined value, the controller supplies the cleaning nozzle 97 to the cleaning nozzle 97, although not shown. The supply of the cleaning water is automatically started, the cleaning water is jetted from the cleaning nozzle 97, the magnetic floc inside the net 94 is cleaned, the water flow resistance is reduced, and the water level is lowered. When the water level falls below a predetermined level, the supply of cleaning water to the cleaning nozzle 97 is automatically stopped. When the supply of the washing water to the washing nozzle 97 is delayed and the water level in the nozzle 96 further rises, it flows out of the nozzle 96 from the opening 95 of the nozzle 96, and the overflow water of the purified water containing magnetic flocs The water flows down to the overflow water storage tank 103 disposed at the lower part of the opening 95, joins the pipe 101 through the pipe 104, and returns to the raw water layer 1.

本実施例によれば、実施例1と同様に、前記網21に腐食や機械的や応力疲労等で亀裂や剥離が生じ、従来の網の目開きサイズを超えるサイズの隙間が生じ、磁性フロックが網21を通過し、浄化水中に漏洩し、浄化水の水質が所定の値を達成できない場合が発生しても、磁性フロックは、前記浄化水の装置排出部に設け、前記網21と同体で回転する網94で濾過されるるので磁性フロックを再度除去でき、磁性フロックが浄化システム外に漏洩することを防止できる効果が生じる。   According to the present embodiment, as in the first embodiment, the mesh 21 is cracked or peeled off due to corrosion, mechanical or stress fatigue, and a gap larger than the mesh opening size of the conventional mesh is generated. Passes through the net 21, leaks into the purified water, and even if the quality of the purified water cannot reach a predetermined value, the magnetic floc is provided in the apparatus discharge part of the purified water and is integrated with the net 21. Therefore, the magnetic flocs can be removed again and the magnetic flocs can be prevented from leaking out of the purification system.

また、前記網21で大半の磁性フロックが濾過、除去されているので、網94での浄化水の通水抵抗は網21の通水抵抗に比べて極めて小さく、したがって、浄化水を濾過する網21の必要面積は、網21よりきわめて小さくよく、網21と94の一体化により装置の小型化が達成できる効果がある。   Further, since most of the magnetic floc is filtered and removed by the net 21, the resistance of the purified water through the net 94 is extremely smaller than the resistance of the net 21. Therefore, the net for filtering the purified water is used. The required area of 21 may be much smaller than that of the net 21, and the integration of the nets 21 and 94 has the effect of achieving downsizing of the apparatus.

また、網94の網目の開口サイズを網21の開口サイズ小さくすることにより、網21よりさらに小さなサイズの磁性フロックや被除去物を濾過できるので、磁性フロックの漏洩がない場合においても、浄化水の水質をさらに向上させることができる効果がある。   Further, by reducing the opening size of the mesh 94 of the mesh 94, it is possible to filter magnetic flocs and objects to be removed that are smaller than the mesh 21, so that even if there is no leakage of the magnetic floc, purified water This has the effect of further improving the water quality.

20…回転ドラム、21…網、22…水槽、30…回転体、31…永久磁石、94…網、96…ノズル、98…樋、100…浄化水捕集槽、102…水位センサ、103…越流水保留槽。   DESCRIPTION OF SYMBOLS 20 ... Rotary drum, 21 ... Net, 22 ... Water tank, 30 ... Rotating body, 31 ... Permanent magnet, 94 ... Net, 96 ... Nozzle, 98 ... Spear, 100 ... Purified water collection tank, 102 ... Water level sensor, 103 ... Overflow water storage tank.

Claims (2)

被除去物を含む被処理流体を濾過するための、被除去物の大半が通過できない目開きを有する第1濾過手段と、前記第1濾過手段に濾過された第1被除去物を前記第1濾過手段から剥離させる第1剥離手段と、前記第1濾過手段を通過した被除去物を検知する被除去物検知手段と、前記被除去物検知手段から検知情報を発信する被除去物検知情報発信手段と、前記第1濾過手段で濾過された第1被除去物を前記第1濾過手段から剥離させる第1剥離手段と、前記第1濾過手段で濾過された被処理流体を再度濾過するための第2濾過手段と、前記第2濾過手段に濾過された第2被除去物を前記第2濾過手段から剥離させる第2剥離手段を有することを特徴とする濾過浄化装置。   A first filtering means for filtering a fluid to be treated containing a material to be removed and having an opening through which most of the material to be removed cannot pass, and a first material to be removed that has been filtered by the first filtering means. A first peeling means for peeling from the filtering means; a removal object detecting means for detecting a removal object that has passed through the first filtering means; and a removal object detection information transmission for transmitting detection information from the removal object detection means. Means for separating the first object to be removed filtered by the first filtering means from the first filtering means, and for filtering again the fluid to be treated filtered by the first filtering means. 2. A filtration and purification apparatus, comprising: a second filtration means; and a second peeling means for peeling the second object to be removed filtered by the second filtration means from the second filtration means. 被除去物を含む被処理流体を濾過するための、被除去物の大半が通過できない目開きを有する第1濾過手段と、前記第1濾過手段に濾過された第1被除去物を前記第1濾過手段から剥離させる第1剥離手段と、前記第1濾過手段を通過した被除去物を検知する被除去物検知手段と、
前記被除去物検知手段から検知情報を発信する被除去物検知情報発信手段と、前記第1濾過手段で濾過された第1被除去物を前記第1濾過手段から剥離させる第1剥離手段と、前記第1濾過手段から排水する第1排水手段と、前記第1濾過手段で濾過された被処理流体を再度濾過するための第2濾過手段と、前記第1排水手段の下流が前記第2濾過手段をバイパスする第2排水手段と、前記被除去物検知情報発信手段の情報で第2排水手段への導通の実施を制御する導通制御手段と、前記第2濾過手段に濾過された第2被除去物を前記第2濾過手段から剥離させる第2剥離手段を有することを特徴とする濾過浄化装置。
A first filtering means for filtering a fluid to be treated containing a material to be removed and having an opening through which most of the material to be removed cannot pass, and a first material to be removed that has been filtered by the first filtering means. A first peeling means for peeling from the filtering means; an object detecting means for detecting an object that has passed through the first filtering means;
To-be-removed object detection information transmitting means for transmitting detection information from the to-be-removed object detecting means, a first peeling means for peeling the first to-be-removed object filtered by the first filtering means from the first filtering means, First drainage means for draining from the first filtration means, second filtration means for filtering again the fluid to be treated filtered by the first filtration means, and downstream of the first drainage means is the second filtration A second drainage means for bypassing the means, a conduction control means for controlling the conduction to the second drainage means based on the information of the removal object detection information transmitting means, and a second object filtered by the second filtration means. A filtration and purification apparatus comprising a second peeling means for peeling the removed substance from the second filtration means.
JP2009164352A 2009-07-13 2009-07-13 Filtration and purification system Pending JP2009285653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164352A JP2009285653A (en) 2009-07-13 2009-07-13 Filtration and purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164352A JP2009285653A (en) 2009-07-13 2009-07-13 Filtration and purification system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003350200A Division JP4655466B2 (en) 2003-10-09 2003-10-09 Filtration purification device

Publications (1)

Publication Number Publication Date
JP2009285653A true JP2009285653A (en) 2009-12-10

Family

ID=41455399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164352A Pending JP2009285653A (en) 2009-07-13 2009-07-13 Filtration and purification system

Country Status (1)

Country Link
JP (1) JP2009285653A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115770A (en) * 2010-12-01 2012-06-21 Maeda Corp Turbid water treatment apparatus
JP2012148205A (en) * 2011-01-15 2012-08-09 Maeda Corp Rotary drum filter
CN105126434A (en) * 2015-09-02 2015-12-09 杰瑞石油天然气工程有限公司 Filtering and defoaming combined treatment device for amine liquid
CN110102097A (en) * 2019-04-27 2019-08-09 洛阳爱可德环保工程有限公司 A kind of novel honing waste oil automatic fitration separation and recovery reutilization system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107716A (en) * 1986-10-27 1988-05-12 Toshiba Corp Filter flow rate control device
JPH01281116A (en) * 1988-05-06 1989-11-13 Kurita Water Ind Ltd Apparatus for filtration
JPH0218469Y2 (en) * 1985-04-09 1990-05-23
JP2003200007A (en) * 2002-01-11 2003-07-15 Hitachi Plant Eng & Constr Co Ltd Water treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218469Y2 (en) * 1985-04-09 1990-05-23
JPS63107716A (en) * 1986-10-27 1988-05-12 Toshiba Corp Filter flow rate control device
JPH01281116A (en) * 1988-05-06 1989-11-13 Kurita Water Ind Ltd Apparatus for filtration
JP2003200007A (en) * 2002-01-11 2003-07-15 Hitachi Plant Eng & Constr Co Ltd Water treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115770A (en) * 2010-12-01 2012-06-21 Maeda Corp Turbid water treatment apparatus
JP2012148205A (en) * 2011-01-15 2012-08-09 Maeda Corp Rotary drum filter
CN105126434A (en) * 2015-09-02 2015-12-09 杰瑞石油天然气工程有限公司 Filtering and defoaming combined treatment device for amine liquid
CN105126434B (en) * 2015-09-02 2017-01-18 杰瑞石油天然气工程有限公司 Filtering and defoaming combined treatment device for amine liquid
CN110102097A (en) * 2019-04-27 2019-08-09 洛阳爱可德环保工程有限公司 A kind of novel honing waste oil automatic fitration separation and recovery reutilization system

Similar Documents

Publication Publication Date Title
JP4648917B2 (en) Magnetic separation filtration purification device
WO2006117880A1 (en) Magnetic separation cleaning apparatus and magnetic separation cleaning method
KR20090032965A (en) Filter separation device
JP4317668B2 (en) Membrane magnetic separator
KR20090126423A (en) Treatment apparatus for suspended solids using filter membrane
JP4466216B2 (en) Magnetic separation and purification method and apparatus
US8992073B2 (en) Device for automatic elimination of fibers on the impeller of a mixer in wastewater treatment process
JP2009285653A (en) Filtration and purification system
WO2006112007A1 (en) Apparatus for water filtration/purification and method thereof
JP5687034B2 (en) Activated sludge treatment system
JP2005111424A (en) Method and apparatus for removing substance to be removed from fluid and sludge separation and recovery apparatus
JP4655466B2 (en) Filtration purification device
KR20080092612A (en) Apparatus for filtering wastewater
KR100852312B1 (en) Magnetic separating purification apparatus and magnetic separating purification method
JP2005262046A (en) Magnetic separation device and water-cleaning device using it
KR100452432B1 (en) Matter seperation device of water purification system
JP2004113940A (en) Moving bed type filtration equipment and its operation method
KR100988641B1 (en) Apparatus for synthetically pretreating sewage
JP2005111391A (en) Washing type filtration purification system
JP4821085B2 (en) Magnetic separation and purification apparatus and magnetic separation and purification method
JP4142504B2 (en) High speed levitation separation method and apparatus
CN208471735U (en) A kind of municipal wastewater processing unit
JP2798633B2 (en) Wastewater treatment apparatus and method
KR200279798Y1 (en) Matter seperation device of water purification system
JP5832750B2 (en) Precoat type solid-liquid separator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218