JP2009284651A - Closed insulating device and method of operating the same - Google Patents

Closed insulating device and method of operating the same Download PDF

Info

Publication number
JP2009284651A
JP2009284651A JP2008134111A JP2008134111A JP2009284651A JP 2009284651 A JP2009284651 A JP 2009284651A JP 2008134111 A JP2008134111 A JP 2008134111A JP 2008134111 A JP2008134111 A JP 2008134111A JP 2009284651 A JP2009284651 A JP 2009284651A
Authority
JP
Japan
Prior art keywords
metal container
electric field
voltage
voltage conductor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008134111A
Other languages
Japanese (ja)
Other versions
JP5065994B2 (en
Inventor
Kenichi Nojima
健一 野嶋
Masayuki Sato
正幸 佐藤
Masafumi Takei
雅文 武井
Yoshihiko Hirano
嘉彦 平野
Hideyasu Ando
秀泰 安藤
Masahiro Hanai
正広 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008134111A priority Critical patent/JP5065994B2/en
Publication of JP2009284651A publication Critical patent/JP2009284651A/en
Application granted granted Critical
Publication of JP5065994B2 publication Critical patent/JP5065994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a closed insulating device which controls the behavior of a foreign matter on the interior surface of a metal container to achieve the compactification and improved insulation reliability of the metal container. <P>SOLUTION: The closed insulating device includes a high-voltage conductor 1 which extends radially and can be divided radially into at least two portions, the metal container 3 which can be divided at least into two portions by an end flange 3a and covers the high-voltage conductor 1 across a gap that is formed between the metal container 3 and the high-voltage conductor 1 and that is filled with an insulating gas, and a spacer 4 having an insulating member 4a which is caught and fixed by the flange 3a at the outer peripheral side while supporting the high-voltage conductor 1 at the inner peripheral side. The interior surface of the metal container 3 is provided with a nonlinear resistance film 13 that is so formed as to show a high electric resistance when the intensity of an electric field acting on the interior surface of the metal container 3 is a given value or less and show a low electric resistance when the intensity is higher than the given value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガス封入形開閉器などの密閉型絶縁装置およびその運転方法に関する。   The present invention relates to a hermetic insulation device such as a gas-filled switch and an operation method thereof.

絶縁物で支持した高電圧導体が絶縁性ガスを封入した容器内部に密閉された、例えばガス封入形開閉器などの密閉型絶縁装置においては、コスト低減や環境負荷低減のために絶縁設計合理化や三相一括化などによる一層の縮小化が課題となっている。   In a sealed insulation device such as a gas-filled switch in which a high-voltage conductor supported by an insulator is sealed inside a container filled with an insulating gas, the insulation design can be streamlined to reduce costs and environmental impact. Further reduction by three-phase integration is an issue.

密閉型絶縁装置の金属容器の大きさは、絶縁および熱的設計等によって決められている。絶縁設計のポイントの1つは、金属容器の内側表面に異物が存在(付着)した場合の絶縁性能への影響度を検討することである。   The size of the metal container of the hermetic insulation device is determined by insulation and thermal design. One of the points of insulation design is to examine the degree of influence on the insulation performance when foreign matter is present (attached) on the inner surface of the metal container.

高電圧導体を絶縁物で支持して絶縁ガスを封入した密閉金属容器の内部に異物が存在すると、異物に対して金属容器等から供給された電荷と運転電圧との相互作用によって生じる力によって、異物が金属容器の内部を動き回る可能性がある。   If foreign matter exists inside the sealed metal container that supports the high-voltage conductor with an insulator and encapsulates the insulating gas, the force generated by the interaction between the operating voltage and the charge supplied from the metal container to the foreign substance Foreign objects may move around inside the metal container.

密閉型絶縁装置を縮小化すると、その金属容器の内側表面の電界が高くなり、金属容器の内部に存在する異物の動きが活発になりやすい。異物が金属容器の内部で過度に動くと、絶縁性能に影響を及ぼす可能性がある。また、異物形状が長尺であるほど、異物の動きが大きくなり絶縁性能への影響が大きくなる可能性が高い。   When the sealed insulating device is reduced in size, the electric field on the inner surface of the metal container is increased, and the movement of foreign substances existing inside the metal container tends to be active. If the foreign object moves excessively inside the metal container, it may affect the insulation performance. In addition, the longer the foreign object shape, the greater the possibility that the movement of the foreign object will increase and the influence on the insulation performance will increase.

運転電圧が印加された状態での異物の動きを抑制させるために、金属容器の内部に長尺の異物が混入しないように、製造工程で、例えば異物管理工程等において異物除去を行い、異物管理を強化している。さらに、管理しきれない小さな異物が、設計上考慮した高さ以上に浮上して動きまわらないように運転電圧印加時の金属容器の内側表面の電界強度を設計する必要がある。ここで、高さとは、金属容器の内側表面と異物との距離を意味している。   In order to suppress the movement of foreign matter when operating voltage is applied, foreign matter is removed in the manufacturing process, for example, in the foreign matter management process, so that no long foreign matter is mixed inside the metal container. Strengthen. Furthermore, it is necessary to design the electric field strength on the inner surface of the metal container when an operating voltage is applied so that a small foreign object that cannot be managed does not float and move above the height considered in the design. Here, the height means the distance between the inner surface of the metal container and the foreign material.

金属容器の内側表面の電界強度は、高電圧導体と金属容器の内側表面との距離に依存するため、異物の浮上高さを小さく抑えるためには金属容器を大きくする必要がある。これは、密閉型絶縁装置の縮小化の制約要因となっていた。   Since the electric field strength on the inner surface of the metal container depends on the distance between the high voltage conductor and the inner surface of the metal container, it is necessary to enlarge the metal container in order to reduce the flying height of the foreign matter. This has been a limiting factor for reducing the size of the sealed insulating device.

この異物による設計への制約条件を緩和させる方法として、異物の動きを抑制することによる絶縁性能への影響の無力化技術が知られている。例えば、特許文献1〜3に開示されているように、絶縁材をコーティングして得られる絶縁膜によって異物挙動の不活性化する技術(絶縁コーティング技術)が知られている。   As a method for relieving the constraint on the design due to the foreign material, a technique for neutralizing the influence on the insulation performance by suppressing the movement of the foreign material is known. For example, as disclosed in Patent Documents 1 to 3, a technique (insulating coating technique) is known in which foreign substance behavior is inactivated by an insulating film obtained by coating an insulating material.

絶縁コーティング技術は、密閉型絶縁装置の金属容器の内側表面に絶縁性の高いエポキシ系レジン等でコーティングを行うことによって、金属容器の内側表面から異物に電荷が供給されるのを抑制して動きにくくしている。異物が動きにくくなると、金属容器の内側表面の電界を高くすることができ、密閉容器をコンパクトにすることができる。   Insulation coating technology works by suppressing the supply of charges from the inner surface of the metal container to the foreign material by coating the inner surface of the metal container of the hermetic insulation device with a highly insulating epoxy resin or the like. It is difficult. When the foreign substance is difficult to move, the electric field on the inner surface of the metal container can be increased, and the sealed container can be made compact.

絶縁性が高く剥離しにくい絶縁膜を形成することが重要でありこれを実現するための方法が提案されている。
特開昭58−111203号公報 特開平2−79711号公報 特許第3028975号公報
It is important to form an insulating film that is highly insulating and difficult to peel off, and a method for realizing this has been proposed.
JP 58-111203 A Japanese Patent Laid-Open No. 2-79711 Japanese Patent No. 3028975

しかしながら、従来上記の絶縁膜に用いる絶縁材(コーティング材)は、以下のような課題を有している。   However, the insulating material (coating material) conventionally used for the above insulating film has the following problems.

従来提案されているコーティング材では、異物、絶縁ガス、およびコーティング材により構成される部位に電界集中を生じやすい。この電界集中が大きくなると異物周辺で部分放電が生じて異物に電荷を供給する可能性がある。   In the conventionally proposed coating material, electric field concentration is likely to occur at a site constituted by the foreign material, the insulating gas, and the coating material. When this electric field concentration becomes large, there is a possibility that partial discharge occurs around the foreign matter and charges are supplied to the foreign matter.

部分放電が生じると、この異物は突然広範囲に動きまわり絶縁性能に影響を与えてしまう。雷サージ等の過電圧が侵入して金属容器の内側表面の電界が大きくなると電界集中部の電界がさらに大きくなる可能性は否定しきれず、確率は非常に低いものの異物が突然大きく動き回る可能性が生じる。この突然に広範囲に動きをまわることを抑制するためには、コーティング材および異物の間の電界集中を緩和して部分放電や電界放射の発生を抑制する必要がある。   When a partial discharge occurs, this foreign substance suddenly moves over a wide area and affects the insulation performance. If an overvoltage such as a lightning surge penetrates and the electric field on the inner surface of the metal container increases, the possibility of further increasing the electric field at the electric field concentration part cannot be denied, and although the probability is very low, there is a possibility that a foreign object suddenly moves around greatly. . In order to suppress this sudden movement in a wide range, it is necessary to alleviate the electric field concentration between the coating material and the foreign material to suppress the occurrence of partial discharge and electric field radiation.

また、従来実用化されているコーティング材では、上記の課題に関連して以下のような課題も有している。従来のコーティング材では、コーティング材の絶縁性が常に高いために、通常の運転電圧において製造上管理される長さより短い異物の動きを抑制する他に、製造上管理されるべき長さ以上の異物に対しても電界による動きを抑制してしまう。   Further, the coating materials that have been put to practical use have the following problems in relation to the above problems. In conventional coating materials, since the insulation of the coating material is always high, in addition to suppressing the movement of foreign materials shorter than the length managed in manufacturing at normal operating voltage, the foreign material longer than the length to be controlled in manufacturing In contrast, the movement due to the electric field is suppressed.

一般に密閉型絶縁装置においては、組立後に運転電圧よりも高い電圧を印加する試験、すなわち健全性確認試験が行われている。その目的には、万一製造上管理すべき長さより長い異物が、異物管理工程で見逃されて金属容器の内部に残存する場合、運転電圧よりも高い電界によって、この異物を見つけて除去できるようにしている。この健全性確認試験によって、異物管理は徹底されている。   In general, in a sealed insulation apparatus, a test for applying a voltage higher than an operation voltage after assembly, that is, a soundness confirmation test is performed. For that purpose, if a foreign object longer than the length that should be managed in production is missed in the foreign object management process and remains inside the metal container, the foreign object can be detected and removed by an electric field higher than the operating voltage. I have to. The soundness confirmation test ensures thorough foreign matter management.

上述のように、長尺の異物、特に管理長さを越える長さを有する異物は、電界の作用によって動きやすい特性を有している。健全性確認試験のときに運転電圧よりも高い電圧を印加することは、運転電圧で動き回る可能性のある長尺の異物を、確実に動かして見つけるのを促す効果を有している。容器内を動き回る異物は、金属容器の内部に衝撃振動を与えたり、部分放電を発生したりするので、これらを検出することにより見つけて除去することができる。   As described above, a long foreign object, particularly a foreign object having a length exceeding the management length, has a characteristic that it is easily moved by the action of an electric field. Applying a voltage higher than the operating voltage during the soundness confirmation test has an effect of promptly moving and finding a long foreign object that may move around at the operating voltage. Foreign substances that move around in the container give impact vibration to the inside of the metal container or generate a partial discharge, and can be detected and removed by detecting them.

しかしながら、絶縁材によりコーティングして形成された絶縁膜の場合には、異物が動きにくくなり、上記の衝撃振動や部分放電が発生しにくくなる。したがって、金属容器の内部に万一異物が存在しても、この異物を見つけることが困難になる場合が生じる。   However, in the case of an insulating film formed by coating with an insulating material, foreign substances are less likely to move, and the above-described shock vibration and partial discharge are less likely to occur. Therefore, even if a foreign object is present inside the metal container, it may be difficult to find the foreign object.

一方、絶縁膜の表層にあって電荷を供給されにくく運転電圧では動きにくい異物であっても、開閉機器の操作などに伴う機械的衝撃振動などによって、異物が動きだす可能性は否定しきれない。また雷インパルスのようなより高い電圧によって部分放電を生じて動きだす可能性も否定しきれない。   On the other hand, even if it is a foreign object that is hard to be supplied with electric charges and does not move at the operating voltage on the surface layer of the insulating film, the possibility that the foreign object will start to move due to mechanical shock vibration associated with the operation of the switching device cannot be denied. In addition, there is no denying the possibility of starting partial discharges due to higher voltages such as lightning impulses.

仮に、管理長さを超える長尺の異物が一旦動きだすと、異物の周辺で部分放電や電界放射が発生して、この異物に電荷が供給され一層異物の動きが活発になる可能性も考えられる。したがって、健全性確認試験時には、製造上管理すべき長さより大きい異物が存在する場合には、この異物を確実に動かして見つけることが望ましい。   If a long foreign object that exceeds the control length starts to move, partial discharge or electric field radiation may occur around the foreign object, and charge may be supplied to the foreign object to further increase the movement of the foreign object. . Therefore, in the soundness confirmation test, if there is a foreign matter larger than the length that should be managed in production, it is desirable to move the foreign matter with certainty.

しかし、従来実用化されている絶縁膜は、絶縁性が安定して高い絶縁材により形成されていることが多く、異物は動きにくい状態を保持し、健全性確認試験時に電界印加だけで異物を見つけるのを困難にしている。このため、健全性確認試験時に、製造上管理すべき長さより大きい異物を確実に見つけるためには、金属容器に振動を加える等の追加作業を必要とし、密閉型絶縁装置のコンパクト化によるコスト低減を進める上での制約条件となっている。   However, insulating films that have been put into practical use are often made of an insulating material that has a stable and high insulation property, and the foreign matter is kept in a state of being difficult to move. Making it difficult to find. For this reason, in order to reliably find foreign objects that are longer than the length that should be managed in manufacturing during the soundness confirmation test, additional work such as applying vibration to the metal container is required, and cost reduction is achieved by making the sealed insulation device compact. It is a restriction condition for proceeding.

この制約を緩和するためには、健全性確認試験時の高い電界に対しては、異物が動きやすく、万一存在する管理長さよりも大きい異物を見つけて除去しやすくする必要がある。一方、運転電圧に対しては、異物が動きにくく、開閉機器の絶縁性能を向上させる技術の開発が課題となっていた。   In order to alleviate this restriction, it is necessary to easily detect and remove foreign matters that are larger than the existing management length for a high electric field during a soundness confirmation test. On the other hand, with respect to the operating voltage, it is difficult for foreign substances to move, and the development of a technique for improving the insulation performance of the switching device has been an issue.

本発明は上記課題を解決するためになされたものであり、その目的は、密閉型絶縁装置の金属容器内の異物の挙動を制御して、密閉型絶縁装置をよりコンパクト化して且つその絶縁信頼性を向上させることにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to control the behavior of foreign matter in a metal container of a hermetic type insulating device, to make the hermetic type insulating device more compact and to provide insulation reliability. It is to improve the performance.

上記目的を達成するための本発明に係る密閉型絶縁装置は、軸方向に延びて、軸方向に少なくとも2つに分割可能な高電圧導体と、端部フランジによって少なくとも2つに分割可能で、前記高電圧導体との間に空隙を保ちながら前記高電圧導体を覆って、この空隙に絶縁ガスが充填された金属容器と、外周側で前記端部フランジに挟み込まれるように固定されて内周側で前記高電圧導体を支持し絶縁部材を備えたスペーサと、前記金属容器の内側表面に形成されて、前記金属容器の内側表面に作用する電界が所定値以下のときには電気抵抗が高く、前記所定値よりも高いときには前記電気抵抗が低くなるように形成された非線形抵抗膜と、を有することを特徴とする。   In order to achieve the above object, a hermetic insulation device according to the present invention can be divided into at least two parts by a high-voltage conductor that extends in the axial direction and can be divided into at least two in the axial direction, and an end flange. Covering the high-voltage conductor while maintaining a gap between the high-voltage conductor and a metal container filled with an insulating gas in the gap, and fixed to be sandwiched between the end flanges on the outer peripheral side A spacer having an insulating member that supports the high-voltage conductor on the side, and an electric field that is formed on the inner surface of the metal container and that acts on the inner surface of the metal container is less than or equal to a predetermined value; And a non-linear resistance film formed so that the electric resistance is low when the electric resistance is higher than a predetermined value.

また、本発明に係る密閉型絶縁装置の運転方法は、軸方向に延びて軸方向に少なくとも2つに分割可能な高電圧導体と、端部フランジによって少なくとも2つに分割可能で前記高電圧導体との間に空隙を保ちながら前記高電圧導体を覆ってこの空隙に絶縁ガスが充填された金属容器と、外周側で前記端部フランジに挟み込まれるように固定されて内周側で前記高電圧導体を支持し絶縁部材を備えたスペーサと、前記金属容器の内側表面に形成されて、前記金属容器の内側表面に作用する電界が所定値以下のときには電気抵抗が高く、前記所定値よりも高いときには前記電気抵抗が低くなるように形成された非線形抵抗膜と、を有する密閉型絶縁装置の運転方法において、前記電界が前記所定値よりも高くなるように前記高電圧導体に電圧を印加させる健全性確認工程と、前記電界が前記所定値以下となるように前記高電圧導体に電圧を印加させる通常運転工程と、を有することを特徴とする。   Also, the operating method of the hermetic insulation device according to the present invention includes a high voltage conductor that extends in the axial direction and can be divided into at least two in the axial direction, and the high voltage conductor that can be divided into at least two by an end flange. A metal container that covers the high-voltage conductor while maintaining a gap between the gap and an insulating gas filled in the gap, and is fixed so as to be sandwiched between the end flanges on the outer peripheral side and the high voltage on the inner peripheral side. A spacer that supports a conductor and includes an insulating member; and an electric field that is formed on the inner surface of the metal container and acts on the inner surface of the metal container is high when the electric field is below a predetermined value, and is higher than the predetermined value. In a method of operating a hermetic insulation device having a non-linear resistance film formed so that the electrical resistance is sometimes reduced, a voltage is applied to the high-voltage conductor so that the electric field is higher than the predetermined value. And integrity confirmation step of the electric field is characterized by having a a normal operation step of applying a voltage to the high voltage conductor to be equal to or less than the predetermined value.

本発明によれば、密閉型絶縁装置の金属容器内の異物の挙動を制御して、密閉型絶縁装置をよりコンパクト化して且つその絶縁信頼性を向上させることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to control the behavior of the foreign material in the metal container of a sealed insulation apparatus, to make a sealed insulation apparatus more compact, and to improve the insulation reliability.

以下、本発明に係る密閉型絶縁装置の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a hermetic insulation device according to the present invention will be described with reference to the drawings.

[第1の実施形態]
本発明の密閉型絶縁装置に係る第1の実施形態について、図1〜図9を用いて説明する。先ず、本実施形態の密閉型絶縁装置の構成について説明する。図1は、本実施形態の密閉型絶縁装置の一部を示す部分切欠概略縦断面図である。
[First Embodiment]
A first embodiment of the hermetic insulation device of the present invention will be described with reference to FIGS. First, the configuration of the hermetic insulation device of this embodiment will be described. FIG. 1 is a partially cutaway schematic longitudinal sectional view showing a part of the hermetic insulation device of the present embodiment.

本実施形態の密閉型絶縁装置は、軸方向に複数に分割可能な金属容器3、高電圧導体1、およびスペーサ4を有する。   The hermetic insulation device of this embodiment includes a metal container 3, a high-voltage conductor 1, and a spacer 4 that can be divided into a plurality of parts in the axial direction.

金属容器3は、略円筒形であって、この円筒の中心軸に垂直な断面で、複数個に分割および接続できるように形成されている。図1に示す金属容器3は、第1金属容器31の両端それぞれに第2金属容器32および第3金属容器33が直列に接続された状態の例であって、これらの第1〜第3金属容器31、32、33は分割可能である。   The metal container 3 has a substantially cylindrical shape, and is formed so as to be divided and connected into a plurality of sections with a cross section perpendicular to the central axis of the cylinder. The metal container 3 shown in FIG. 1 is an example of a state in which a second metal container 32 and a third metal container 33 are connected in series to both ends of the first metal container 31, respectively. The containers 31, 32 and 33 can be divided.

複数に分割可能な金属容器3、すなわち第1金属容器31、第2金属容器32、および第3金属容器33それぞれの連結部の外周には、端部フランジ3aが形成されている。第1〜第3金属容器31、32、33を連結するときには、これらの端部フランジ3a同士が、例えば締結ボルト等の締結手段によって締結されている。   An end flange 3 a is formed on the outer periphery of each connecting portion of the metal container 3 that can be divided into a plurality of parts, that is, the first metal container 31, the second metal container 32, and the third metal container 33. When connecting the first to third metal containers 31, 32, 33, these end flanges 3a are fastened by fastening means such as fastening bolts.

金属容器3のほぼ中心部には、円筒部の中心軸方向に沿って高電圧導体1が挿入されている。さらに、この高電圧導体1の外側で金属容器3内側には、例えばSFガス等の絶縁ガス2が封入されている。 The high voltage conductor 1 is inserted in the substantially central part of the metal container 3 along the central axis direction of the cylindrical part. Further, an insulating gas 2 such as SF 6 gas is sealed outside the high voltage conductor 1 and inside the metal container 3.

スペーサ4は、絶縁部材4aを有し、金属容器3内部を円筒の中心軸に垂直な方向に分割するように配置されている。   The spacer 4 has an insulating member 4a and is arranged so as to divide the inside of the metal container 3 in a direction perpendicular to the central axis of the cylinder.

スペーサ4は、両面側から端部フランジ3aによって挟み込まれるように固定されている。このとき、金属容器3の気密性を保持するように締結されている。スペーサ4の中心側は、金属容器3の内部に挿入された高電圧導体1を支持するように形成されている。   The spacer 4 is fixed so as to be sandwiched by the end flange 3a from both sides. At this time, the metal container 3 is fastened so as to maintain airtightness. The center side of the spacer 4 is formed so as to support the high voltage conductor 1 inserted into the metal container 3.

この金属容器3の内側表面には、非線形な電気抵抗特性を有する非線形抵抗膜13が形成されている。   A non-linear resistance film 13 having non-linear electrical resistance characteristics is formed on the inner surface of the metal container 3.

図2は、図1のII部の拡大断面モデル図である。この非線形抵抗膜13は、例えばZnO等の非線形な電気抵抗特性を有する粉末14が充填された樹脂18が、金属容器3の内側表面に膜状に塗布されることによって形成されている。   FIG. 2 is an enlarged cross-sectional model view of the II part of FIG. The nonlinear resistance film 13 is formed by applying a resin 18 filled with powder 14 having nonlinear electrical resistance characteristics such as ZnO to the inner surface of the metal container 3 in a film shape.

この樹脂18に充填された1種類または複数種類の非線形抵抗材の粉末14は、樹脂18内部で粉末14同士が互いに電気的に直列または並列に接続されている。すなわち、この粉末14同士が接続されて、樹脂18の内部には漏れ電流の主経路15が形成されて、非線形な電気抵抗特性を有する直列および並列の電気回路が形成される。これらの電気回路が形成されることによって、所望の非線形な電気抵抗特性を有する樹脂18が得られる。この粉末14の充填量などの製造条件を調整することによって、この樹脂18は所望の電気抵抗特性を得ることできる。   The powder 14 of one or more types of nonlinear resistance material filled in the resin 18 is electrically connected in series or in parallel with each other within the resin 18. That is, the powders 14 are connected to each other, and a main path 15 of leakage current is formed inside the resin 18 to form series and parallel electric circuits having non-linear electric resistance characteristics. By forming these electric circuits, a resin 18 having desired nonlinear electric resistance characteristics can be obtained. By adjusting the production conditions such as the filling amount of the powder 14, the resin 18 can obtain desired electrical resistance characteristics.

上記のように調整された樹脂18を金属容器3の内側表面に膜状に塗布することによって、非線形抵抗膜13が形成される。   By applying the resin 18 adjusted as described above to the inner surface of the metal container 3 in a film shape, the nonlinear resistance film 13 is formed.

図3(a)は、図1のIII-III矢視横断面図に漂遊静電容量Cgを示した図である。図3(b)は、図2の非線形抵抗膜13を流れる電流の電流成分を示す等価回路図である。   FIG. 3A is a diagram showing the stray capacitance Cg in the cross-sectional view taken along the line III-III in FIG. FIG. 3B is an equivalent circuit diagram showing a current component of a current flowing through the nonlinear resistance film 13 of FIG.

密閉型絶縁装置の例えば高電圧回路(図示せず)に、例えば交流電圧を印加すると、非線形抵抗膜13には、この非線形抵抗膜13と高電圧導体1との漂遊静電容量Cgによってほぼ決まる交流電圧が作用する。これらにより非線形抵抗膜13に流れ込んだ電流、すなわち漂遊容量を通して流れる電流Jは、非線形抵抗膜13の静電容量成分Czと非線形抵抗成分Rzとに分流される。このとき、絶縁ガス2の空隙に作用している電圧をVg、非線形抵抗膜13に作用する電圧をVzとしている。   For example, when an AC voltage is applied to, for example, a high voltage circuit (not shown) of the hermetic insulation device, the nonlinear resistance film 13 is substantially determined by the stray capacitance Cg between the nonlinear resistance film 13 and the high voltage conductor 1. AC voltage acts. As a result, the current flowing into the nonlinear resistance film 13, that is, the current J flowing through the stray capacitance, is divided into the capacitance component Cz and the nonlinear resistance component Rz of the nonlinear resistance film 13. At this time, the voltage acting on the gap of the insulating gas 2 is Vg, and the voltage acting on the nonlinear resistance film 13 is Vz.

予め、この非線形抵抗成分Rzに流れ込む電流密度に応じて、非線形抵抗膜13の電気抵抗特性を上記調整方法などによって調整しておくとよい。   In advance, the electrical resistance characteristics of the nonlinear resistance film 13 may be adjusted by the adjustment method or the like in accordance with the current density flowing into the nonlinear resistance component Rz.

図4は、従来の絶縁膜13aの表層の異物5周辺に発生した電界集中部10を示すモデル図である。図5は、非線形抵抗膜13の表層の異物5の周辺の電界を示すモデル図である。   FIG. 4 is a model diagram showing the electric field concentration portion 10 generated around the foreign matter 5 on the surface layer of the conventional insulating film 13a. FIG. 5 is a model diagram showing an electric field around the foreign material 5 on the surface layer of the nonlinear resistance film 13.

図4に示すように、一般には、密閉された金属容器3の内側表面に形成された膜、例えば従来の絶縁膜13aの表層に異物5が存在すると、異物5の周辺には電界の集中する部分、すなわち等電位線16の間隔が密になる電界集中部10が現れる。この電界集中部10の電界が、例えば絶縁ガス2の電離電界を越えると、部分放電が発生する。異物5の周辺部で部分放電が発生すると、異物5に電荷が供給されて、異物5が金属容器3内を動きやすくなる。なお、この絶縁膜13aの電気抵抗は、無限大として捉えている。   As shown in FIG. 4, generally, when a foreign substance 5 is present on a film formed on the inner surface of a sealed metal container 3, for example, a surface layer of a conventional insulating film 13 a, an electric field concentrates around the foreign substance 5. The electric field concentration part 10 in which the intervals, that is, the equipotential lines 16 are closely spaced, appears. When the electric field of the electric field concentration portion 10 exceeds the ionization electric field of the insulating gas 2, for example, partial discharge occurs. When a partial discharge occurs in the periphery of the foreign material 5, electric charges are supplied to the foreign material 5, and the foreign material 5 easily moves in the metal container 3. Note that the electric resistance of the insulating film 13a is regarded as infinite.

異物5が動きやすい状況は、絶縁性能を低下させる可能性がある。さらに、異物5の材質によっては、電界集中部10の電界の大きさが、異物5の材質の電子放射電界の大きさを越えて異物5が帯電して、さらに動きやすくなる場合もある。   The situation in which the foreign material 5 is easy to move may reduce the insulation performance. Furthermore, depending on the material of the foreign matter 5, the magnitude of the electric field of the electric field concentration part 10 may exceed the magnitude of the electron emission electric field of the material of the foreign matter 5, and the foreign matter 5 may be charged and become easier to move.

金属容器3の内面の膜、例えば絶縁膜13aと異物5との間には、主に異物5とこの絶縁膜13aとの電位差、絶縁ガス2の誘電率、および例えば商用周波数を有する印加電圧(交流電圧)などによって決まる密度の電流が流れる。この絶縁膜13aに流れ込んだ電流は、非線形抵抗膜13の容量成分と抵抗成分とに分かれて膜中を流れる。   Between the film on the inner surface of the metal container 3, for example, between the insulating film 13a and the foreign material 5, the potential difference between the foreign material 5 and the insulating film 13a, the dielectric constant of the insulating gas 2, and an applied voltage having, for example, a commercial frequency ( A current with a density determined by the AC voltage) flows. The current flowing into the insulating film 13a is divided into a capacitance component and a resistance component of the nonlinear resistance film 13 and flows in the film.

このとき例えば、図5に示すように、非線形抵抗膜13を金属容器3の内側表面に形成する。この非線形抵抗膜13は、上記のような調整よって、電気抵抗値を、絶縁ガス2の臨界電界もしくは電子放射電界と誘電率とで決まる電流密度の内の電気抵抗成分よりも、低くなるように形成されている。すなわち、この非線形抵抗膜13における運転電圧を印加したときの電気抵抗は、絶縁膜13aの電気抵抗よりも低くなるように調整されている。   At this time, for example, as shown in FIG. 5, the nonlinear resistance film 13 is formed on the inner surface of the metal container 3. By adjusting the nonlinear resistance film 13 as described above, the electrical resistance value is made lower than the electrical resistance component of the current density determined by the critical electric field or electron emission electric field of the insulating gas 2 and the dielectric constant. Is formed. That is, the electric resistance when the operating voltage is applied to the nonlinear resistance film 13 is adjusted to be lower than the electric resistance of the insulating film 13a.

このときは、異物5の周辺の電界集中を緩和して異物5の周辺で電界緩和部17が形成される。この電界緩和部17によって部分放電の発生を抑制することが可能である。すなわち、電界が集中する異物5の周辺部分の非線形抵抗膜13の抵抗を低下させることによって周辺の膜の電位を異物5の電位に近づけて、異物5の周辺の等電位線16の間隔を広げて電界を緩和して、部分放電や電子放射の発生を抑制している。   At this time, the electric field concentration around the foreign material 5 is relaxed, and the electric field relaxation portion 17 is formed around the foreign material 5. The occurrence of partial discharge can be suppressed by the electric field relaxation portion 17. That is, by reducing the resistance of the non-linear resistance film 13 around the foreign material 5 where the electric field is concentrated, the potential of the peripheral film is brought close to the potential of the foreign material 5 and the interval between the equipotential lines 16 around the foreign material 5 is widened. This relaxes the electric field and suppresses the occurrence of partial discharge and electron emission.

密閉型絶縁装置が運転状態であるときに、異物5の周辺での部分放電の発生を抑制することによって、非線形抵抗膜13の表層に存在する異物5の動きを抑制することが可能となる。このため、従来の絶縁膜13aを用いた場合に比べて金属容器3の設計電界を大きくすることが可能となり、金属容器3をよりコンパクトにすることができる。   When the sealed insulating device is in an operating state, it is possible to suppress the movement of the foreign matter 5 existing on the surface layer of the nonlinear resistance film 13 by suppressing the occurrence of partial discharge around the foreign matter 5. For this reason, compared with the case where the conventional insulating film 13a is used, the design electric field of the metal container 3 can be increased, and the metal container 3 can be made more compact.

図6は、本実施形態の非線形抵抗膜13の特性であって、電流密度と印加電圧との関係を示したグラフである。   FIG. 6 is a graph showing the relationship between the current density and the applied voltage, which is a characteristic of the nonlinear resistance film 13 of the present embodiment.

一般に、非線形抵抗材の粉末14が充填された非線形の抵抗特性を有する樹脂は、印加電圧と流れる電流密度との間には、図6に示すような非直線的な非線形の関係を有している。この粉末14が充填された樹脂の特性は、上記調整を行うことによって、図6中の特性A、B、およびCのように、高抵抗領域と低抵抗領域との境界となる電圧値を、それぞれ異なる値に調整することが可能となる。図6に示す電圧aは、特性Aにおいて電気抵抗特性が高抵抗領域から低抵抗領域に変わる境界電圧を示している。同様に、電圧bおよび電圧cは、特性Bおよび特性Cそれぞれにおける境界電圧を示している。   In general, a resin having a non-linear resistance characteristic filled with a non-linear resistance material powder 14 has a non-linear non-linear relationship between an applied voltage and a flowing current density as shown in FIG. Yes. The characteristics of the resin filled with the powder 14 are obtained by adjusting the voltage value at the boundary between the high resistance region and the low resistance region, as in the characteristics A, B, and C in FIG. Each can be adjusted to a different value. A voltage a illustrated in FIG. 6 indicates a boundary voltage in which the electric resistance characteristic in the characteristic A changes from the high resistance region to the low resistance region. Similarly, voltage b and voltage c indicate boundary voltages in characteristics B and C, respectively.

本実施形態の非線形抵抗膜13は、図6に示す特性Bのように、運転電圧V1では高抵抗で健全性試験時電圧V2では低抵抗となる非線形な抵抗特性を有するように調整されている。なお、上述の通り、高抵抗であっても、従来の絶縁膜13aの電気抵抗よりは低く形成されている。   The non-linear resistance film 13 of this embodiment is adjusted to have non-linear resistance characteristics such that the operating voltage V1 is high resistance and the soundness test voltage V2 is low resistance as shown by characteristic B in FIG. . As described above, even if the resistance is high, it is formed lower than the electrical resistance of the conventional insulating film 13a.

一般に、金属容器3の製造工程において、所定の基準長さ(管理長さ)より大きい異物5を除去する異物管理工程を有している。しかし、従来の絶縁膜13aを金属容器3の内側表面に形成した場合では、健全性確認試験のときに、管理長さより大きい異物5、すなわち本来は異物管理工程で発見し除去されるべき大きさの異物5を、発見することが困難になる場合があった。   In general, the manufacturing process of the metal container 3 includes a foreign matter management step for removing the foreign matter 5 that is larger than a predetermined reference length (management length). However, in the case where the conventional insulating film 13a is formed on the inner surface of the metal container 3, the foreign matter 5 larger than the control length, that is, the size that should be found and removed in the foreign matter management process in the soundness confirmation test. In some cases, it was difficult to find the foreign matter 5.

これに対して、特性Bのような非線形抵抗膜13の表層に異物5が存在する場合には、上記の説明の通り、異物5の周辺の電界集中が緩和されて、非線形抵抗膜13に作用する電界は平均化される。この平均化された電界は、異物5が存在しない場合の金属容器3の内側表面の電界に近い値となる。   On the other hand, when the foreign substance 5 exists on the surface layer of the nonlinear resistive film 13 as in the characteristic B, as described above, the electric field concentration around the foreign substance 5 is relaxed and acts on the nonlinear resistive film 13. The electric field to be averaged. This averaged electric field has a value close to the electric field on the inner surface of the metal container 3 when the foreign material 5 is not present.

したがって、運転電圧V1に対してこの異物5は動きにくい状態が保持されため、運転時の金属容器3の内側表面の設計電界を高くすることが可能となる。   Therefore, since the foreign substance 5 is kept in a state in which it hardly moves with respect to the operating voltage V1, the design electric field on the inner surface of the metal container 3 during operation can be increased.

逆に、健全性確認試験時電圧V2においては非線形抵抗膜13の抵抗は小さくなり、このときの異物5は金属容器3の内側の金属表面に直接付着されているのとほぼ同じ状態となって、電荷を供給されやすくなり動きやすくなる。   On the contrary, the resistance of the non-linear resistance film 13 becomes small at the voltage V2 at the soundness confirmation test, and the foreign matter 5 at this time is in almost the same state as that directly attached to the metal surface inside the metal container 3. , It becomes easier to be supplied with charge and move easily.

すなわち、健全性確認試験時電圧V2に対応した金属容器3の内側表面の設計電界を、管理長さより大きい異物5が動く電界に設定しておくことによって、健全性確認試験時には、管理長さより大きい異物5が動きやすくすることが可能となる。これにより当該異物5を発見して除去することが容易になる。   That is, by setting the design electric field of the inner surface of the metal container 3 corresponding to the voltage V2 at the soundness confirmation test to an electric field in which the foreign substance 5 larger than the management length moves, it is larger than the management length at the time of the soundness confirmation test. The foreign object 5 can be easily moved. This makes it easy to find and remove the foreign material 5.

図7は、印加電圧が交流電圧である場合における非線形抵抗膜13の材料時定数の特性であって、当該材料の時定数と印加電圧との関係を示したグラフである。   FIG. 7 is a graph showing the characteristics of the material time constant of the nonlinear resistance film 13 when the applied voltage is an alternating voltage, and showing the relationship between the time constant of the material and the applied voltage.

図8(a)は、非線形抵抗膜13周辺のモデル図で、絶縁ガス2が封入された金属容器3の内側表面に非線形抵抗膜13が形成されて、この非線形抵抗膜13の表層に異物5が存在した状態を示している。図8(b)は、図8(a)の等価回路図である。図9は、健全性確認試験時の印加交流電圧(健全性確認試験時電圧V2)を時系列の波形によって示したグラフである。境界電圧V3または境界電圧−V3それぞれの絶対値を超えた電圧では、電気抵抗が高抵抗領域から低抵抗領域に変わる。   FIG. 8A is a model diagram of the periphery of the nonlinear resistance film 13, where the nonlinear resistance film 13 is formed on the inner surface of the metal container 3 in which the insulating gas 2 is sealed, and the foreign material 5 is formed on the surface layer of the nonlinear resistance film 13. Indicates the state where. FIG. 8B is an equivalent circuit diagram of FIG. FIG. 9 is a graph showing the applied AC voltage during the soundness confirmation test (the voltage V2 during the soundness confirmation test) as a time-series waveform. At a voltage exceeding the absolute value of the boundary voltage V3 or the boundary voltage −V3, the electrical resistance changes from the high resistance region to the low resistance region.

一般に、非線形抵抗材の粉末14が充填された非線形の抵抗特性を有する樹脂18は、例えば図6に示すように、印加電圧に伴って抵抗が低下する特性を有している。よって、非線形抵抗膜13を形成する材料の誘電率および体積抵抗率の積によって決まる時定数τと、印加電圧との関係は、例えば図7に示すように反比例のような関係を示す。図7中のS、すなわちこのτが印加交流電圧の周波数、例えば商用周波数の周期Tの1/2よりも短く、印加電圧が抵抗特性の境界電圧V3よりも高い領域では、異物5へ電荷が供給されやすい。 In general, the resin 18 having a nonlinear resistance characteristic filled with the powder 14 of the nonlinear resistance material has a characteristic that the resistance decreases with an applied voltage, for example, as shown in FIG. Therefore, the relationship between the time constant τ determined by the product of the dielectric constant and volume resistivity of the material forming the nonlinear resistance film 13 and the applied voltage is, for example, an inversely proportional relationship as shown in FIG. S in FIG. 7, i.e. the frequency of the τ is the applied AC voltage, for example, shorter than 1/2 of the period T 2 of the commercial frequency, the higher the applied voltage is the boundary voltage V3 of the resistance characteristic area, the charge to the foreign matter 5 Is easy to be supplied.

非線形抵抗膜13の電気抵抗の特性は上記の説明の通り調整可能で、さらにアルミナ等の誘電率の異なる粉末状の材料を充填することによって、非線形抵抗膜13の誘電率も調整することが可能となる。   The electric resistance characteristics of the non-linear resistance film 13 can be adjusted as described above, and the dielectric constant of the non-linear resistance film 13 can be adjusted by filling a powdery material having a different dielectric constant such as alumina. It becomes.

運転電圧V1や健全性確認試験時電圧V2が交流電圧である場合には、非線形抵抗膜13は、その誘電率および体積抵抗率から定まる時定数τが、健全性確認試験で作用させる過電圧(健全性確認試験時電圧V2)の印加時には、この交流電圧の周波数(商用周波数)の周期Tの1/2よりも短くなり、運転時においては、この周期Tよりも長くなるように調整されている。 When the operating voltage V1 or the voltage V2 during the soundness confirmation test is an alternating voltage, the nonlinear resistance film 13 has an overvoltage (health) that causes the time constant τ determined from its dielectric constant and volume resistivity to act in the soundness confirmation test. during application of sex confirmation test when a voltage V2), is shorter than 1/2 of the period T 2 of the frequency of the AC voltage (commercial frequency), during operation, it is adjusted to be longer than the period T 2 ing.

図8に示すように、この非線形抵抗膜13の表層に異物5が存在する場合、異物5に電荷が供給されるためには、この異物5と非線形抵抗膜13との間の静電容量Czおよび非線形抵抗膜13の抵抗Rzによって決まる時間を必要とする。この時間は、上記の非線形抵抗膜13を形成する材料の時定数τと同じ時間となる。   As shown in FIG. 8, when the foreign material 5 is present on the surface layer of the nonlinear resistance film 13, the electrostatic capacity Cz between the foreign material 5 and the nonlinear resistance film 13 is used in order to supply charges to the foreign material 5. Further, a time determined by the resistance Rz of the nonlinear resistance film 13 is required. This time is the same as the time constant τ of the material forming the nonlinear resistance film 13 described above.

図9に示すように、印加電圧が交流電圧である場合、その周期Tの1/2の時間で印加電圧の極性が変わるため、非線形抵抗膜13の抵抗が低くなって材料の時定数が小さくなる時間Tは交流電圧の周期Tの1/2よりも小さくなる。異物5への電荷供給はこの時間T内に行われる。すなわち、図7のSに示すように、時定数τが商用周波数の周期Tの1/2よりも短く、印加電圧が抵抗特性の境界電圧V3よりも高い領域Sでは、異物5へ電荷が供給されやすい。 As shown in FIG. 9, when the applied voltage is an AC voltage, the polarity of the applied voltage changes in half the period T 2 , so the resistance of the non-linear resistance film 13 is lowered and the time constant of the material is reduced. The time T 1 during which the time decreases becomes shorter than ½ of the period T 2 of the AC voltage. Charge supply to the foreign body 5 is carried out during this time T 1. That is, as shown in S of FIG. 7, in the region S in which the time constant τ is shorter than ½ of the period T 2 of the commercial frequency and the applied voltage is higher than the boundary voltage V 3 of the resistance characteristic, the charge is applied to the foreign material 5. Easy to be supplied.

したがって、健全性確認試験時電圧V2を作用させた場合には、異物5に電荷を効率的に供給するために材料の時定数τは、少なくとも交流電圧の周期Tの1/2よりも小さくする必要があり、さらに、時間Tよりも短いことが望ましい。一方、運転電圧V1
の印加時には、非線形抵抗膜13の抵抗が高抵抗領域であるため時定数τが長くなり異物5への電荷の供給を効率的に行うことができない。
Accordingly, when allowed to act upon integrity confirmation test voltage V2, the time constant τ of the material in order to efficiently supply charge to the foreign body 5 is smaller than 1/2 of the period T 2 of the least AC voltage must, furthermore, it is desirable that less than time T 1. On the other hand, the operating voltage V1
Since the resistance of the non-linear resistance film 13 is in the high resistance region, the time constant τ becomes long and the charge cannot be efficiently supplied to the foreign material 5.

上記のような特性を有する非線形抵抗膜13の表層に異物5が存在した場合、運転電圧V1に対応する電界に対してこの異物5は動きにくい状態が保持される。よって、運転時の金属容器3の内側表面の設計電界を高くすることが可能となる。   When the foreign substance 5 is present on the surface layer of the nonlinear resistance film 13 having the above characteristics, the foreign substance 5 is kept in a state in which it is difficult to move with respect to the electric field corresponding to the operating voltage V1. Therefore, the design electric field of the inner surface of the metal container 3 during operation can be increased.

逆に、健全性確認試験時電圧V2に対しては非線形抵抗膜13の時定数小さくなって異物5に電荷が供給されやすくなり異物5は動きやすくなる。よって、健全性確認試験時には、この異物5は動きやすくなる。したがって、健全性確認試験時には異物5の発見および除去が容易になる。   On the contrary, the time constant of the nonlinear resistance film 13 becomes smaller with respect to the voltage V2 at the soundness confirmation test, and the foreign matter 5 is easily supplied and charges are easily moved. Therefore, the foreign matter 5 becomes easy to move during the soundness confirmation test. Therefore, the foreign substance 5 can be easily found and removed during the soundness confirmation test.

以上の説明から明らかなように、本実施形態の密閉型絶縁装置は、よりコンパクト化されて且つ絶縁信頼性を向上させることが可能となる。   As is clear from the above description, the hermetic insulation device of this embodiment is more compact and can improve insulation reliability.

[第2の実施形態]
本発明に係る密閉型絶縁装置の第2の実施形態について、図10および図11を用いて説明する。
[Second Embodiment]
A second embodiment of the hermetic insulation device according to the present invention will be described with reference to FIGS. 10 and 11.

図10は、本実施形態の密閉型絶縁装置の金属容器3の内側表面の形成された非線形抵抗膜13の圧力特性であって、電流密度と印加電圧との関係を示したグラフである。図10中の特性P1に比べて、特性P2は非線形抵抗膜13に作用する圧力が高くなった状態を示している。   FIG. 10 is a graph showing the pressure characteristics of the non-linear resistance film 13 formed on the inner surface of the metal container 3 of the hermetic insulation device of the present embodiment, showing the relationship between the current density and the applied voltage. Compared with the characteristic P1 in FIG. 10, the characteristic P2 shows a state in which the pressure acting on the non-linear resistance film 13 is increased.

図11は、非線形抵抗膜13に圧力が作用する前後の状態を示した拡大断面モデル図である。なお図11では、金属容器3の図示を省略している。図11(a)は圧力を作用させる前、すなわち加圧前の状態で、図11(b)は加圧後の状態を示している。圧力を作用させた後の樹脂厚d2は、圧力作用前の樹脂厚d1よりも薄くなった例を示している。   FIG. 11 is an enlarged cross-sectional model diagram illustrating a state before and after pressure is applied to the nonlinear resistance film 13. In addition, illustration of the metal container 3 is abbreviate | omitted in FIG. FIG. 11A shows a state before pressure is applied, that is, before pressurization, and FIG. 11B shows a state after pressurization. The resin thickness d2 after the pressure is applied is an example in which the resin thickness d1 is less than the resin thickness d1 before the pressure action.

なお、本実施形態の金属容器3の構成は、図1に示した第1の実施形態の金属容器3と同様であり、その内側表面には、非線形抵抗膜13が形成されている。   In addition, the structure of the metal container 3 of this embodiment is the same as that of the metal container 3 of 1st Embodiment shown in FIG. 1, and the nonlinear resistance film 13 is formed in the inner surface.

この非線形抵抗膜13は、金属容器3に封入する絶縁ガス2の圧力で歪量を変化できる弾性特性を有し、非線形抵抗膜13の非線形な抵抗特性を絶縁ガス2の圧力によって変化できるように調整されている。例えば、非直線抵抗材料の粉末14が充填される樹脂を、エラストマーなどの弾性特性を備えたものを用いている。   The non-linear resistance film 13 has an elastic characteristic that allows the amount of strain to be changed by the pressure of the insulating gas 2 sealed in the metal container 3 so that the non-linear resistance characteristic of the non-linear resistance film 13 can be changed by the pressure of the insulating gas 2. It has been adjusted. For example, a resin filled with a powder 14 of a non-linear resistance material is used that has elastic properties such as an elastomer.

図11に示すように、金属容器3内の絶縁ガス2のガス圧、例えばガス封入圧力などを高めることによって、加圧後の樹脂厚d2はガス圧を作用させる前の樹脂厚d1よりも薄くなり、非線形抵抗材の粉末14などにより形成される電気的直列の接続数および並列の接続数などを増加させることが可能となる。その結果、同じ印加電圧に対する電流密度が増加して抵抗が小さくなり、非線形抵抗膜13を形成する材料の時定数τが減少する。   As shown in FIG. 11, by increasing the gas pressure of the insulating gas 2 in the metal container 3, for example, the gas filling pressure, the resin thickness d2 after pressurization is thinner than the resin thickness d1 before applying the gas pressure. Thus, it is possible to increase the number of electrical series connections and the number of parallel connections formed by the non-linear resistance material powder 14 and the like. As a result, the current density for the same applied voltage increases, the resistance decreases, and the time constant τ of the material forming the nonlinear resistance film 13 decreases.

密閉型絶縁装置は、通常、絶縁ガス2のガス圧を最大で0.7MPa程度にまで変化させることができる。エラストマーなどの樹脂材の弾性特性は、添加剤や硬化条件等の製造条件によって調整されている。健全性確認試験時電圧V2(交流電圧)に対しては、低抵抗領域での材料の時定数τが小さいほど、非線形抵抗膜13の表層の異物5には電荷が供給されやすくなり、この異物5は動きやすくなり発見されやすくなる。   The hermetic insulation device can usually change the gas pressure of the insulating gas 2 to about 0.7 MPa at the maximum. The elastic properties of resin materials such as elastomers are adjusted by manufacturing conditions such as additives and curing conditions. With respect to the voltage V2 (AC voltage) at the soundness confirmation test, the smaller the time constant τ of the material in the low resistance region, the easier the electric charge is supplied to the foreign material 5 on the surface layer of the non-linear resistance film 13. 5 is easy to move and easy to find.

以上の説明から明らかなように、健全性確認試験時に異物5を発見および除去が容易になり、且つ運転時には異物5を動きにくくすることができるため、運転時の金属容器3の内側表面の設計電界を高くすることが可能となる。これにより、密閉型絶縁装置は、よりコンパクト化されて且つ絶縁信頼性を向上させることが可能となる。   As is clear from the above description, the foreign object 5 can be easily found and removed during the soundness confirmation test, and the foreign object 5 can be made difficult to move during operation. It is possible to increase the electric field. As a result, the hermetic insulation device can be made more compact and the insulation reliability can be improved.

[その他の実施形態]
上記実施形態の説明は、本発明を説明するための例示であって、特許請求の範囲に記載の発明を限定するものではない。また、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
[Other Embodiments]
The description of the above embodiment is an example for explaining the present invention, and does not limit the invention described in the claims. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.

例えば、第1および第2の実施形態では、粉末14はZnOを用いた例を説明したが、これに限らない。印加電圧を高くしたときに、電気抵抗が低下する特性を得られるものであれば、適用することが可能である。   For example, in the first and second embodiments, the example in which ZnO is used as the powder 14 has been described, but the present invention is not limited thereto. The present invention can be applied as long as it can obtain the characteristic that the electric resistance decreases when the applied voltage is increased.

本発明に係る第1の実施形態の密閉型絶縁装置の一部を示す部分切欠概略縦断面図である。It is a partial notch schematic longitudinal cross-sectional view which shows a part of sealed type insulation apparatus of 1st Embodiment which concerns on this invention. 図1のII部の拡大断面モデル図である。FIG. 2 is an enlarged cross-sectional model view of a II part in FIG. 1. (a)は図1のIII-III矢視横断面図に漂遊静電容量を示した図、(b)は図2の非線形抵抗膜を流れる電流の電流成分を示す等価回路図である。(A) is the figure which showed the stray electrostatic capacitance in the III-III arrow cross-sectional view of FIG. 1, (b) is an equivalent circuit diagram which shows the electric current component of the electric current which flows through the nonlinear resistive film of FIG. 従来の絶縁膜の表層の異物周辺に電界集中の状態を示すモデル図である。It is a model figure which shows the state of electric field concentration around the foreign material of the surface layer of the conventional insulating film. 非線形抵抗膜の表層の異物周辺の電界の状態を示すモデル図である。It is a model figure which shows the state of the electric field around the foreign material of the surface layer of a nonlinear resistance film. 本発明に係る第2の実施形態の密閉型絶縁装置の金属容器の内側表面の形成された非線形抵抗膜の特性であって、電流密度と印加電圧との関係を示したグラフである。It is the characteristic of the nonlinear resistive film formed in the inner surface of the metal container of the sealed insulation apparatus of 2nd Embodiment which concerns on this invention, Comprising: It is the graph which showed the relationship between an electric current density and an applied voltage. 図1の実施形態の非線形抵抗膜の材料時定数の特性であって、材料の時定数と印加電圧との関係を示したグラフである。It is the characteristic of the material time constant of the nonlinear resistive film of embodiment of FIG. 1, Comprising: It is the graph which showed the relationship between the time constant of material, and an applied voltage. (a)は図1の実施形態の非線形抵抗膜周辺のモデル図、(b)は(a)の等価回路図である。(A) is a model diagram around the nonlinear resistance film of the embodiment of FIG. 1, and (b) is an equivalent circuit diagram of (a). 図1の実施形態の非線形抵抗膜における印加電圧の時系列の波形を示したグラフである。It is the graph which showed the time-sequential waveform of the applied voltage in the nonlinear resistive film of embodiment of FIG. 本発明に係る第2の実施形態の密閉型絶縁装置の金属容器の内側表面の形成された非線形抵抗膜の圧力特性であって、電流密度と印加電圧との関係を示したグラフである。It is a pressure characteristic of the nonlinear resistive film formed in the inner surface of the metal container of the hermetic insulation device according to the second embodiment of the present invention, and is a graph showing the relationship between the current density and the applied voltage. 図10の実施形態における非線形抵抗膜に圧力が作用する前後の状態を示した拡大断面モデル図である。It is an expanded sectional model figure which showed the state before and behind a pressure acting on the nonlinear resistive film in embodiment of FIG.

符号の説明Explanation of symbols

1…高電圧導体、2…絶縁ガス、3…金属容器、3a…端部フランジ、4…スペーサ、4a…絶縁部材、5…異物、10…電界集中部、13…非線形抵抗膜、14…粉末、15…漏れ電流の主経路、16…等電位線、17…電界緩和部、18…樹脂、31…第1金属容器、32…第2金属容器、33…第3金属容器 DESCRIPTION OF SYMBOLS 1 ... High voltage conductor, 2 ... Insulating gas, 3 ... Metal container, 3a ... End flange, 4 ... Spacer, 4a ... Insulating member, 5 ... Foreign material, 10 ... Electric field concentration part, 13 ... Nonlinear resistance film, 14 ... Powder , 15 ... main path of leakage current, 16 ... equipotential line, 17 ... electric field relaxation part, 18 ... resin, 31 ... first metal container, 32 ... second metal container, 33 ... third metal container

Claims (5)

軸方向に延びて、軸方向に少なくとも2つに分割可能な高電圧導体と、
端部フランジによって少なくとも2つに分割可能で、前記高電圧導体との間に空隙を保ちながら前記高電圧導体を覆って、この空隙に絶縁ガスが充填された金属容器と、
外周側で前記端部フランジに挟み込まれるように固定されて内周側で前記高電圧導体を支持し絶縁部材を備えたスペーサと、
前記金属容器の内側表面に形成されて、前記金属容器の内側表面に作用する電界が所定値以下のときには電気抵抗が高く、前記所定値よりも高いときには前記電気抵抗が低くなるように形成された非線形抵抗膜と、
を有することを特徴とする密閉型絶縁装置。
A high voltage conductor extending in the axial direction and splittable into at least two in the axial direction;
A metal container that can be divided into at least two by an end flange, covers the high-voltage conductor while maintaining a gap between the high-voltage conductor, and the gap is filled with an insulating gas;
A spacer which is fixed so as to be sandwiched between the end flanges on the outer peripheral side and supports the high-voltage conductor on the inner peripheral side and includes an insulating member;
It is formed on the inner surface of the metal container so that the electric resistance is high when the electric field acting on the inner surface of the metal container is below a predetermined value, and the electric resistance is low when the electric field is higher than the predetermined value. A non-linear resistive film;
A hermetic insulating device characterized by comprising:
前記非線形抵抗膜の内部には、電気抵抗が非線形な特性を有する粉末が充填されて、この粉末が互いに電気的に直列および並列に接続されていることを特徴とする請求項1に記載の密閉型絶縁装置。   2. The hermetic seal according to claim 1, wherein the non-linear resistance film is filled with powder having a non-linear characteristic of electric resistance, and the powder is electrically connected in series and in parallel to each other. Mold insulation device. 前記高電圧導体は交流電圧が印加されるものであって、前記非線形抵抗膜は、その体積抵抗率および誘電率の積により定まる時定数が、前記電界が前記所定値のときには前記交流電圧の周期よりも長く、前記電界が前記所定値よりも高いときには少なくとも前記周期の1/2よりも短くなるように形成されていることを特徴とする請求項1または請求項2に記載の密閉型絶縁装置。   An AC voltage is applied to the high-voltage conductor, and the nonlinear resistance film has a time constant determined by a product of its volume resistivity and dielectric constant, and the period of the AC voltage when the electric field is the predetermined value. 3. The hermetic insulation device according to claim 1, wherein when the electric field is higher than the predetermined value, it is formed to be shorter than at least half of the period. . 前記非線形抵抗膜は弾性を有し、前記絶縁ガスの圧力の作用により前記非線形抵抗膜の厚みが薄くなるにしたがい、前記電気抵抗が低くなるように形成されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の密閉型絶縁装置。   2. The non-linear resistance film has elasticity, and is formed such that the electric resistance decreases as the thickness of the non-linear resistance film is reduced by the action of the pressure of the insulating gas. The hermetic insulation device according to any one of claims 3 to 4. 軸方向に延びて軸方向に少なくとも2つに分割可能な高電圧導体と、端部フランジによって少なくとも2つに分割可能で前記高電圧導体との間に空隙を保ちながら前記高電圧導体を覆ってこの空隙に絶縁ガスが充填された金属容器と、外周側で前記端部フランジに挟み込まれるように固定されて内周側で前記高電圧導体を支持し絶縁部材を備えたスペーサと、前記金属容器の内側表面に形成されて、前記金属容器の内側表面に作用する電界が所定値以下のときには電気抵抗が高く、前記所定値よりも高いときには前記電気抵抗が低くなるように形成された非線形抵抗膜と、を有する密閉型絶縁装置の運転方法において、
前記電界が前記所定値よりも高くなるように前記高電圧導体に電圧を印加させる健全性確認工程と、
前記電界が前記所定値以下となるように前記高電圧導体に電圧を印加させる通常運転工程と、
を有することを特徴とする密閉型絶縁装置の運転方法。
A high voltage conductor that extends in the axial direction and can be divided into at least two in the axial direction, and can be divided into at least two by an end flange and covers the high voltage conductor while maintaining a gap between the high voltage conductor and the high voltage conductor. A metal container filled with an insulating gas in the gap, a spacer fixed on the outer peripheral side so as to be sandwiched between the end flanges, supporting the high-voltage conductor on the inner peripheral side, and having an insulating member; and the metal container A non-linear resistance film formed on the inner surface of the metal container so that the electric resistance is high when the electric field acting on the inner surface of the metal container is equal to or less than a predetermined value, and the electric resistance is low when the electric field is higher than the predetermined value. In the operation method of the hermetic insulation device having
A soundness confirmation step of applying a voltage to the high-voltage conductor so that the electric field is higher than the predetermined value;
A normal operation step of applying a voltage to the high-voltage conductor so that the electric field is equal to or less than the predetermined value;
A method for operating a hermetic insulation device, comprising:
JP2008134111A 2008-05-22 2008-05-22 Sealed insulation device and operation method thereof Active JP5065994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134111A JP5065994B2 (en) 2008-05-22 2008-05-22 Sealed insulation device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134111A JP5065994B2 (en) 2008-05-22 2008-05-22 Sealed insulation device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2009284651A true JP2009284651A (en) 2009-12-03
JP5065994B2 JP5065994B2 (en) 2012-11-07

Family

ID=41454499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134111A Active JP5065994B2 (en) 2008-05-22 2008-05-22 Sealed insulation device and operation method thereof

Country Status (1)

Country Link
JP (1) JP5065994B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100818A1 (en) * 2009-03-06 2010-09-10 株式会社 東芝 Hermetically-sealed insulated device
JP2013223366A (en) * 2012-04-18 2013-10-28 Toshiba Corp Gas-insulated switchgear
WO2014097729A1 (en) 2012-12-21 2014-06-26 三菱電機株式会社 Gas insulated electric equipment
WO2014112123A1 (en) * 2013-01-21 2014-07-24 三菱電機株式会社 Gas-insulated switchgear
WO2015111236A1 (en) 2014-01-22 2015-07-30 三菱電機株式会社 Gas-insulated electric apparatus
WO2015136753A1 (en) * 2014-03-12 2015-09-17 三菱電機株式会社 Gas insulated switch device
WO2017098553A1 (en) * 2015-12-07 2017-06-15 三菱電機株式会社 Gas insulation apparatus
JP2018007292A (en) * 2016-06-27 2018-01-11 株式会社東芝 Sealed insulation device and manufacturing method thereof
US10069285B2 (en) 2014-11-20 2018-09-04 Mitsubishi Electric Corporation Gas-insulated switchgear

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012012A1 (en) 2016-07-13 2018-01-18 三菱電機株式会社 Gas-insulated electric apparatus and manufacturing method for gas-insulated electric apparatus
JP6608099B1 (en) * 2019-02-01 2019-11-20 三菱電機株式会社 Gas insulation equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149667A (en) * 1994-11-17 1996-06-07 Hitachi Ltd Gas-insulated bus and gas-insulated switchgear
JPH08237836A (en) * 1995-01-13 1996-09-13 Abb Res Ltd Electric part
JP2004129343A (en) * 2002-09-30 2004-04-22 Toshiba Corp Compound isolating type gas insulated switchgear
WO2010100818A1 (en) * 2009-03-06 2010-09-10 株式会社 東芝 Hermetically-sealed insulated device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149667A (en) * 1994-11-17 1996-06-07 Hitachi Ltd Gas-insulated bus and gas-insulated switchgear
JPH08237836A (en) * 1995-01-13 1996-09-13 Abb Res Ltd Electric part
JP2004129343A (en) * 2002-09-30 2004-04-22 Toshiba Corp Compound isolating type gas insulated switchgear
WO2010100818A1 (en) * 2009-03-06 2010-09-10 株式会社 東芝 Hermetically-sealed insulated device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100818A1 (en) * 2009-03-06 2010-09-10 株式会社 東芝 Hermetically-sealed insulated device
JP2010207047A (en) * 2009-03-06 2010-09-16 Toshiba Corp Closed insulating device
KR101195889B1 (en) 2009-03-06 2012-10-30 가부시끼가이샤 도시바 Hermetically-sealed insulated device
JP2013223366A (en) * 2012-04-18 2013-10-28 Toshiba Corp Gas-insulated switchgear
US9508507B2 (en) 2012-12-21 2016-11-29 Mitsubishi Electric Corporation Gas insulated electrical equipment
WO2014097729A1 (en) 2012-12-21 2014-06-26 三菱電機株式会社 Gas insulated electric equipment
WO2014112123A1 (en) * 2013-01-21 2014-07-24 三菱電機株式会社 Gas-insulated switchgear
JPWO2014112123A1 (en) * 2013-01-21 2017-01-19 三菱電機株式会社 Gas insulated switchgear
WO2015111236A1 (en) 2014-01-22 2015-07-30 三菱電機株式会社 Gas-insulated electric apparatus
US10096979B2 (en) 2014-01-22 2018-10-09 Mitsubishi Electric Corporation Gas-insulated electrical device having an insulation covering film
WO2015136753A1 (en) * 2014-03-12 2015-09-17 三菱電機株式会社 Gas insulated switch device
JP6072353B2 (en) * 2014-03-12 2017-02-01 三菱電機株式会社 Gas insulated switchgear
US10043621B2 (en) 2014-03-12 2018-08-07 Mitsubishi Electric Corporation Gas insulated switchgear
US10069285B2 (en) 2014-11-20 2018-09-04 Mitsubishi Electric Corporation Gas-insulated switchgear
WO2017098553A1 (en) * 2015-12-07 2017-06-15 三菱電機株式会社 Gas insulation apparatus
JPWO2017098553A1 (en) * 2015-12-07 2017-12-07 三菱電機株式会社 Gas insulation equipment
JP2018007292A (en) * 2016-06-27 2018-01-11 株式会社東芝 Sealed insulation device and manufacturing method thereof

Also Published As

Publication number Publication date
JP5065994B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5065994B2 (en) Sealed insulation device and operation method thereof
JP5135263B2 (en) Sealed insulation device
CN104919667B (en) Gas insulated electric equipment
CN102906953B (en) High-voltage direct-current cable terminal equipment
KR101505718B1 (en) Electrical bushing
US7990687B2 (en) Gas-insulated switchgear
JPWO2015198420A1 (en) Gas insulation equipment
JP5710080B2 (en) Gas insulated switchgear
US20200191832A1 (en) Capacitive voltage sensor with hidden sensing electrode
US8456787B2 (en) Gas insulated switchgear
JP6067150B2 (en) Gas insulated electrical equipment
JP4949919B2 (en) Gas insulated electrical equipment
US9614370B2 (en) Surge arrester
Podporkin et al. The development of multichamber arresters
JPH0530626A (en) Composite insulation system bus
US20090323245A1 (en) Device for Reduction of Voltage Derivative
Jia et al. Negative DC flashover of PTFE and PE insulators in SF6
CN103636085B (en) Produce the element triggering electric arc
JP2012110191A (en) Gas-insulated electrical apparatus
JP2002152927A (en) Compound insulation type gas-insulated
JP2013247160A (en) Arrestor
JP2018007292A (en) Sealed insulation device and manufacturing method thereof
Zhao et al. The critical pulse width for surface flashover and bulk breakdown in oil-immersed polymers
JP2002058119A (en) Gas insulated switchgear
JP2007184508A (en) Tank-type lightning arrester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R151 Written notification of patent or utility model registration

Ref document number: 5065994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3