JP2009284451A - Method of designing filter, and filter - Google Patents

Method of designing filter, and filter Download PDF

Info

Publication number
JP2009284451A
JP2009284451A JP2008155955A JP2008155955A JP2009284451A JP 2009284451 A JP2009284451 A JP 2009284451A JP 2008155955 A JP2008155955 A JP 2008155955A JP 2008155955 A JP2008155955 A JP 2008155955A JP 2009284451 A JP2009284451 A JP 2009284451A
Authority
JP
Japan
Prior art keywords
filter
frequency
function
value
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008155955A
Other languages
Japanese (ja)
Inventor
Yukio Koyanagi
裕喜生 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOYANAGI YASUE
Original Assignee
KOYANAGI YASUE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOYANAGI YASUE filed Critical KOYANAGI YASUE
Priority to JP2008155955A priority Critical patent/JP2009284451A/en
Publication of JP2009284451A publication Critical patent/JP2009284451A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filters And Equalizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an easy-to-design digital filter, having a linear passband and few ripples, and a small change in impulse response. <P>SOLUTION: A method of designing a filter is provided, in which data symmetric in a frequency axis direction is added to frequency characteristic data of a target filter and then the data are inversely Fourier-transformed, to obtain basic data of a target filter coefficient. The method is configured so that the characteristic of a generated filter does not deviate from the target specifications even when the number of taps is changed by applying a function or a plurality of piecewise functions to the transition portion of the frequency characteristic to be input, specifying the amplitude and frequency at two points in the function part in accordance with the specifications, adjusting the constants constituting the function without fixing the frequency coordinates of the connection part between the function part and the straight line data. There are also provided software and a filter generated by the method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はフィルタ設計法及びフィルタに関し、特に、デジタル通信分野で使用するフィルタに用いて好適なものである。  The present invention relates to a filter design method and a filter, and is particularly suitable for a filter used in the digital communication field.

従来、FIRフィルタの設計を行う方法として、目的のフィルタの周波数特性を直線近似し、これにサンプリング周波数の2分の1で折り返した対称特性を付加したデータを入力として逆フーリエ変換してフィルタ係数の基礎値を得る方法が一般的であった。
しかしこの方法では係数の数が非常に多くなり、係数を途中で打切ると打切り誤差を生じ目的の周波数特性と一致しなくなる問題があった。
これを改善するために特定の関数を乗算するいわゆる窓掛けを行い、打切り部の値を滑らかに減少させる手法が知られている。しかしこの結果係数値が複雑になりフィルタの構成に多くの演算が必要となり規模が大きくなった。
Conventionally, as a method of designing an FIR filter, a filter coefficient is obtained by performing inverse Fourier transform using data obtained by linearly approximating a frequency characteristic of a target filter and adding a symmetrical characteristic that is turned back at half the sampling frequency. The method of obtaining the basic value of was common.
However, this method has a problem that the number of coefficients becomes very large, and if the coefficients are cut off halfway, a truncation error occurs and does not match the target frequency characteristic.
In order to improve this, there is known a technique of performing so-called windowing that multiplies a specific function to smoothly reduce the value of the truncation part. However, as a result, the coefficient value becomes complicated, and many operations are required for the configuration of the filter, which increases the scale.

このほか周波数特性を直線近似せず、遷移部に三角関数、区分多項式を適用する方法も提案されているが、通過域リップルの低減特に通過域端部で主ずるオーバーシュートを完全に除去することは困難であった。
また設計に際しては必要な特性を得るために計算を繰り返し最適化する手順が必要であり。又前述の窓掛けを行なう必要があり、専用の設計装置を用いるのが通例であった。
In addition to this, there is also proposed a method that uses trigonometric functions and piecewise polynomials in the transition part without approximating the frequency characteristics linearly, but it reduces the passband ripple, especially removing the main overshoot at the end of the passband. Was difficult.
In designing, it is necessary to repeatedly optimize the calculation to obtain the required characteristics. In addition, it is necessary to perform the above-mentioned windowing, and it is usual to use a dedicated design device.

デジタル通信技術が高度化するにつれて、そこに使用するフィルタの特性にも厳しい要求がされるようになり、従来の設計手法では対処が次第に困難となってきている。特に通過域の直線性とリップルの減少が重要であり、これらの改善により機器の符号間干渉及び信号対雑音比等の性能を向上が期待される。  As digital communication technology has become more sophisticated, the characteristics of the filters used therein have become severely demanded, and it has become increasingly difficult to cope with conventional design techniques. In particular, the linearity of the passband and the reduction of the ripple are important, and these improvements are expected to improve the performance of the equipment such as intersymbol interference and signal-to-noise ratio.

本発明のフィルタは、設計に際しては特別な設計装置は必要なく、通常のパーソナルコンピュータと付属ソフトウェアにより、定められたフィルタの所定の目標仕様値および初期n値を入力すれば、演算により周波数特性を得ることができ、これを更に対称化し、逆フーリエ変換してフィルタ係数の基礎データを得てこれを並べ替え及び丸め処理により必要なフィルタ係数を得ることが出来る。
得られたフィルタ係数による周波数特性は通過域リップルが極めて少なく、通過域端の振幅の跳ね返りも少なく、10ビットの演算ビット数でプラスマイナス0.1デシベル内に余裕を持って収まる。また位相特性は直線で、フィルタを複数個縦続接続してもインパルス応答は殆んど変化しない。
更にn値を変えて再計算すれば特性の仕様値内でタップ数が変化するので、n値をn値をタップ数が減少する方向に動かして最適化にする事により、容易にタップ数の最小化することが出来る。
The filter of the present invention does not require a special design device in designing. If a predetermined target specification value and initial n value of a predetermined filter are input by a normal personal computer and attached software, the frequency characteristics can be obtained by calculation. This can be further symmetrized and subjected to inverse Fourier transform to obtain basic data of filter coefficients, which can be rearranged and rounded to obtain the necessary filter coefficients.
The obtained frequency characteristic of the filter coefficient has very little passband ripple, little bounce of the amplitude at the end of the passband, and 10 bits of calculation bits, and it fits within plus or minus 0.1 dB. The phase characteristic is a straight line, and the impulse response hardly changes even when a plurality of filters are cascaded.
Furthermore, if the n value is changed and recalculated, the number of taps changes within the specification value of the characteristic. Therefore, by optimizing the n value by moving the n value in the direction of decreasing the number of taps, It can be minimized.

上記のように構成した本発明によれば、設計過程で必要な周波数特性データは目標仕様値及びnを入力めることで簡単に作成できる。
次にこの周波数特性データに対称データを付加し逆フーリエ変換することによりフィルタの基礎係数が得られる。
この基礎係数を2の処理ビット乗で丸め処理をし、係数の最大値を中心として再配列し、目的のフィルタ係数を得ることが出来る。
このフィルタ係数をフーリエ変換して得られる周波数特性及び位相特性は殆んど修正の必要がないが、処理ビット数を増やせばタップ数は増えるが遷移域の勾配が同じままで通過域リップルを更に改善し減衰域の減衰量を増大させることが可能である。
特性が仕様内であれば、n値を最適化することにより目標規格を満足しタップ数を最小化したフィルタ係数を得ることが出来る。
According to the present invention configured as described above, frequency characteristic data necessary in the design process can be easily created by inputting a target specification value and n.
Next, symmetric data is added to the frequency characteristic data and inverse Fourier transform is performed to obtain a basic coefficient of the filter.
The basic coefficient is rounded by a power of 2 and rearranged around the maximum value of the coefficient to obtain a target filter coefficient.
The frequency characteristics and phase characteristics obtained by Fourier transform of the filter coefficients need not be modified, but if the number of processing bits is increased, the number of taps will increase, but the transition band gradient will remain the same and the passband ripple will be further increased. It is possible to improve and increase the attenuation in the attenuation region.
If the characteristic is within the specification, a filter coefficient satisfying the target standard and minimizing the number of taps can be obtained by optimizing the n value.

以下本発明のフィルタ設計の実施形態及び生成したくフィルタの特性を図面に基づいて説明する。
図1は、第1の実施形態によるローパスフィルタ(1)の遷移域部分の2つの関数及びこれらより作成した周波数特性を表示した図である。
1,2は関数1,関数2の中心軸、3はフィルタの遷移域の中心周波数で関数1,2が切替わる点である。3より左は関数1、右は関数2である。4は関数1上の通過域の減衰量y1と通過域端周波数x1の交点、5は関数2上の阻止域の減衰量y2と阻止域端周波数x2の交点である。
4,5の数値は目標仕様により与えられる。
Embodiments of filter design according to the present invention and characteristics of a filter to be generated will be described below with reference to the drawings.
FIG. 1 is a diagram showing two functions of the transition region portion of the low-pass filter (1) according to the first embodiment and the frequency characteristics created therefrom.
1 and 2 are the central axes of the functions 1 and 2, and 3 is the point at which the functions 1 and 2 are switched at the center frequency of the transition region of the filter. The function 1 is on the left of 3 and the function 2 is on the right. 4 is an intersection of the passband attenuation y1 and the passband end frequency x1 on the function 1, and 5 is an intersection of the stopband attenuation y2 and the stopband end frequency x2 on the function 2.
The numbers 4 and 5 are given by the target specification.

図2はローパスフィルタ(1)の周波数特性を作成するための演算式をxの区分範囲ごとに記した表である。xは区分周波数の範囲、yはその区間に適用する周波数特性を現す式である。f(x)、g(x)は、yの式中のf(x)およびg(x)の式である。  FIG. 2 is a table in which an arithmetic expression for creating the frequency characteristic of the low-pass filter (1) is described for each of the x divisional ranges. x is a range of the divided frequency, and y is an expression representing a frequency characteristic applied to the section. f (x) and g (x) are the expressions of f (x) and g (x) in the expression of y.

図3はローパスフィルタ(1)の定数m、d、aの計算式を表にしたもので。この式にしたがってm、d、aを計算しそれを図2の式中のm、d、aに代入し周波数特性を計算することにより計算式よりaを消去出来る。  FIG. 3 is a table showing the calculation formulas for the constants m, d, and a of the low-pass filter (1). According to this equation, m, d, a can be calculated and substituted for m, d, a in the equation of FIG.

図4は、第1の実施形態のハイパスフィルタ(1)で2つの関数及びこれらより作成した周波数特性を表示した図である。
6、7は関数1、関数2の中心軸、8はフィルタの遷移域の中心周波数上で関数1、関数2が同一勾配で切替わる点で、周波数はaである。8より左は関数2、右は関数1で9は関数1上の通過域の減衰量y1と通過域端周波数x1の交点、10は関数2上の阻止域の減衰量y2と阻止域端周波数x2の交点である。
9,10の数値は目標仕様により与えられる。
FIG. 4 is a diagram displaying the two functions and the frequency characteristics created from these using the high-pass filter (1) of the first embodiment.
6 and 7 are center axes of the function 1 and the function 2, and 8 is a point where the function 1 and the function 2 are switched with the same gradient on the center frequency of the transition region of the filter, and the frequency is a. 8 is the function 2 on the left, the function 1 on the right, 9 is the intersection of the passband attenuation y1 and the passband end frequency x1 on the function 1, and 10 is the stopband attenuation y2 and the stopband end frequency on the function 2 This is the intersection of x2.
The numbers 9 and 10 are given by the target specification.

図5はハイパスフィルタ(1)の周波数特性を作成するための演算式をxの区分範囲ごとに記した表である。  FIG. 5 is a table in which an arithmetic expression for creating the frequency characteristic of the high-pass filter (1) is described for each of the x divisional ranges.

図6はハイパスフィルタ(1)の定数m、d、aの計算式を表にしたもので。この式にしたがってm、d、aを計算しその結果を図5の式に代入し周波数特性を得ることが出来る。  FIG. 6 is a table showing the calculation formulas for the constants m, d, and a of the high-pass filter (1). The frequency characteristics can be obtained by calculating m, d, and a according to this equation and substituting the results into the equation of FIG.

図7は第2の実施形態のローパスフィルタ(2)の遷移域部分の関数及びこれらより作成した周波数特性を表示した図である。
11は関数1の中心軸、12は関数1である。11より左側は直線1、右側は周波数1まで関数1である。13は関数1上の通過域の減衰量y1と通過域端周波数x1の交点、14は関数1上の阻止域の減衰量y2と阻止域端周波数x2の交点である。
13、14の値は目標仕様により与えられる。
FIG. 7 is a diagram displaying the functions of the transition region of the low-pass filter (2) of the second embodiment and the frequency characteristics created from these functions.
11 is the central axis of function 1, and 12 is function 1. 11 is a straight line 1 on the left side and a function 1 up to a frequency 1 on the right side. 13 is an intersection of the passband attenuation y1 and the passband end frequency x1 on the function 1, and 14 is an intersection of the stopband attenuation y2 and the stopband end frequency x2 on the function 1.
The values 13 and 14 are given by the target specification.

図8はローパスフィルタ(2)の周波数区分ごとの周波数特性計算式である。
図9は計算に必要なm、aの計算式を示す。
FIG. 8 is a frequency characteristic calculation formula for each frequency section of the low-pass filter (2).
FIG. 9 shows formulas for calculating m and a necessary for the calculation.

図10は第2の実施形態のハイパスフィルタ(2)の遷移域部分の関数及びこれらより作成した周波数特性を表示した図である。
15は関数1の中心軸、16は関数1である。15より右側は直線1、左側は関数1である。17は関数1上の通過域の減衰量y1と通過域端周波数x1の交点、18は関数1上の阻止域の減衰量y2と阻止域端周波数x2の交点である。
17、18の数値は目標仕様により与えられる。
FIG. 10 is a diagram displaying the function of the transition region portion of the high-pass filter (2) of the second embodiment and the frequency characteristics created therefrom.
15 is the central axis of the function 1, and 16 is the function 1. The right side from 15 is a straight line 1, and the left side is a function 1. 17 is an intersection of the passband attenuation y1 and the passband end frequency x1 on the function 1, and 18 is an intersection of the stopband attenuation y2 and the stopband end frequency x2 on the function 1.
The numbers 17 and 18 are given by the target specification.

図11はハイパスフィルタ(2)の周波数区分毎の周波数特性計算式である。図12はハイパスフィルタ(2)の計算に必要なm、aの計算式を示す。  FIG. 11 is a frequency characteristic calculation formula for each frequency section of the high-pass filter (2). FIG. 12 shows equations for calculating m and a necessary for the calculation of the high-pass filter (2).

図13は実施例のローパスフィルタ(1)の目標仕様、図14は実施例のローパスフィルタ(1)の設計に必要な計算値である。
図15は実施例のローパスフィルタ(1)の係数値と係数番号を表としたものである。このフィルタはFIRフィルタで、タップ数は37である。
係数を2の10乗倍すると図の最右列のように整数となるので、これらの係数値を回路で実現するに乗算器を必要としない。又最後の2の10乗分の1の除算もビットシフトで可能である。
FIG. 13 shows target specifications of the low-pass filter (1) of the embodiment, and FIG. 14 shows calculated values necessary for designing the low-pass filter (1) of the embodiment.
FIG. 15 is a table showing the coefficient values and coefficient numbers of the low-pass filter (1) of the embodiment. This filter is an FIR filter and has 37 taps.
If the coefficients are multiplied by 2 to the 10th power, they become integers as shown in the rightmost column of the figure, so that a multiplier is not required to realize these coefficient values in a circuit. The last division of 2 to the power of 10 is also possible by bit shift.

図16は上記結果として得られた37タップのローパスフィルタの周波数特性である。これより通過域は平坦で阻止域の減衰は−45デシベルの仕様を満足している。FIG. 16 shows the frequency characteristics of the 37-tap low-pass filter obtained as a result. As a result, the passband is flat and the attenuation in the stopband satisfies the specification of -45 dB.

図17はこのフィルタの通過域部分を拡大したもので通過域のリップルはプラスマイナス0.1デシベル内に入っている。又通過域端のオーバーシュートもない。  FIG. 17 is an enlarged view of the passband portion of this filter, and the ripple in the passband is within plus or minus 0.1 dB. There is no overshoot at the end of the passband.

図18はこのフィルタ単独と2個及び3個を縦続接続したもののインパルス応答を、時間軸をずらして重ね合わせたものである。これより何れのインパルス応答も重なり合い、位相特性が良好であることがわかる。  FIG. 18 shows the impulse responses of this filter alone and two and three connected in cascade, with the time axis shifted and superimposed. From this, it can be seen that the impulse responses overlap and the phase characteristics are good.

図19はこのフィルタの遷移部の勾配を変えずにn値及び処理ビット数を変えた時のタップ数を示す。白抜きの部分が同一処理ビットでのタップ数最小の値であり、最終的にこの部分を選択すればよい。  FIG. 19 shows the number of taps when the n value and the number of processing bits are changed without changing the gradient of the transition portion of this filter. The white portion is the minimum number of taps in the same processing bit, and this portion may be selected finally.

図20はこのフィルタのn値を変えた時のm値及びa値の変化を示す。このようにn値が増加するとa値はこれに比例してわずかに変化し、m値は対数的に変化し関数値を仕様内にたもつ。
図21はn値を変えた時の遷移部特性の変化を示し、図22はn値を変えた時のビット数対タップ数の変化を示す。n=3.4とn=2.6はビット数10付近で交差している。これより、ビット数を大きくする時はn値を増加方向に動かしたほうがよいことがわかる。
FIG. 20 shows changes in the m value and the a value when the n value of the filter is changed. When the n value increases in this way, the a value slightly changes in proportion to this, and the m value changes logarithmically and has a function value within the specification.
FIG. 21 shows changes in the transition characteristics when the n value is changed, and FIG. 22 shows changes in the number of bits versus the number of taps when the n value is changed. n = 3.4 and n = 2.6 intersect each other around 10 bits. From this, it can be seen that when increasing the number of bits, it is better to move the n value in the increasing direction.

図23は第2の実施形態のローパスフィルタ(2)の係数値と係数番号を表としたものである。このフィルタはFIRフィルタで、タップ数は47である。
係数を2の10乗倍すると図の最右列のように整数となるので、これらの係数値を回路で実現するに乗算器を必要としない。又最後の2の10乗分の1の除算もビットシフトで可能である。
FIG. 23 is a table showing the coefficient values and coefficient numbers of the low-pass filter (2) of the second embodiment. This filter is an FIR filter and has 47 taps.
If the coefficients are multiplied by 2 to the 10th power, they become integers as shown in the rightmost column of the figure, so that a multiplier is not required to realize these coefficient values in a circuit. The last division of 2 to the power of 10 is also possible by bit shift.

図24は上記結果として得られた47タップのローパスフィルタの周波数特性である。通過域は平坦で阻止域の減衰は−45デシベルの仕様を満足している。FIG. 24 shows the frequency characteristics of the 47-tap low-pass filter obtained as a result. The passband is flat and the stopband attenuation meets the -45 dB specification.

図25はこのフィルタの通過域部分を拡大したもので通過域のリップルはプラスマイナス0.1デシベル内に入っている。又通過域端のオーバーシュートもない。  FIG. 25 is an enlarged view of the passband portion of this filter, and the ripple in the passband is within plus or minus 0.1 dB. There is no overshoot at the end of the passband.

図26はこのフィルタ単独と2個及び3個を縦続接続したもののインパルス応答を、時間軸をずらして重ね合わせたものである。これより何れのインパルス応答も重なり合い、位相特性が良好であることがわかる。  FIG. 26 shows the impulse responses of this filter alone and two and three connected in cascade, with the time axis shifted and superimposed. From this, it can be seen that the impulse responses overlap and the phase characteristics are good.

図27はこのフィルタの遷移部の勾配を変えずにn値及び処理ビット数を変えた時のタップ数を示す。白抜きの部分が同一処理ビットでのタップ数最小の値であり、最終的にこの部分を選択すればよい。  FIG. 27 shows the number of taps when the n value and the number of processing bits are changed without changing the gradient of the transition portion of this filter. The white portion is the minimum number of taps in the same processing bit, and this portion may be selected finally.

図28はこのフィルタのn値を変えた時のm値及びa値の変化を示す。このようにn値が増加するとa値はこれに比例してわずかに変化し、m値は対数的に変化し関数値を仕様内に収める。
図29はn値を変えた時の遷移部特性の変化を示し、図30はn値を変えた時のビット数対タップ数の変化を示す。n=4.1とn=2.8はビット数13付近で交差している。これより、ビット数を大きくする時はn値を増加方向に動かしたほうがよいことがわかる。
FIG. 28 shows changes in the m value and the a value when the n value of this filter is changed. When the n value increases in this way, the a value slightly changes in proportion to this, and the m value changes logarithmically to keep the function value within the specification.
FIG. 29 shows changes in the transition characteristics when the n value is changed, and FIG. 30 shows changes in the number of bits versus the number of taps when the n value is changed. n = 4.1 and n = 2.8 intersect each other in the vicinity of 13 bits. From this, it can be seen that when increasing the number of bits, it is better to move the n value in the increasing direction.

以上は2種類のローパスフィルタについて述べたが、ハイパスフィルタ、バンドパスフィルタ等についても、遷移域に同様に関数を適用できる。  Although two types of low-pass filters have been described above, functions can be similarly applied to the transition region for high-pass filters, band-pass filters, and the like.

本発明のフィルタは、乗算器を使わずにゲートとフリップフロップの組み合わせで構成可能であり、高周波において電力消費に制限がある用途に適し、その優れた特性と共に、デジタル変調信号の送受信を行う装置およびデジタル通信機器に有用である。  The filter according to the present invention can be configured by a combination of a gate and a flip-flop without using a multiplier, and is suitable for applications where power consumption is limited at high frequencies. And useful for digital communication equipment.

本発明のローパスフィルタ(1)の周波数特性の生成方法を説明する図である。  It is a figure explaining the production | generation method of the frequency characteristic of the low-pass filter (1) of this invention. 本発明のローパスフィルタ(1)の区分周波数範囲ごとの周波数特性を作成するための計算式を示す図である。  It is a figure which shows the calculation formula for creating the frequency characteristic for every division frequency range of the low-pass filter (1) of this invention. 本発明のローパスフィルタ(1)の周波数特性を作成するための計算式の定数の計算式を示す図である。  It is a figure which shows the calculation formula of the constant of the calculation formula for creating the frequency characteristic of the low-pass filter (1) of this invention. 本発明のハイパスフィルタ(1)の周波数特性の生成方法を説明する図である。  It is a figure explaining the production | generation method of the frequency characteristic of the high pass filter (1) of this invention. 本発明のハイパスフィルタ(1)の区分周波数範囲ごとの周波数特性を作成するための計算式を示す図である。  It is a figure which shows the calculation formula for creating the frequency characteristic for every division | segmentation frequency range of the high pass filter (1) of this invention. 本発明のハイパスフィルタ(1)の周波数特性を作成するための計算式の定数の計算式を示す図である。  It is a figure which shows the calculation formula of the constant of the calculation formula for creating the frequency characteristic of the high pass filter (1) of this invention. 本発明のローパスフィルタ(2)の周波数特性の生成方法を説明する図である。  It is a figure explaining the production | generation method of the frequency characteristic of the low-pass filter (2) of this invention. 本発明のローパスフィルタ(2)の区分周波数範囲ごとの周波数特性を作成するための計算式を示す図である。  It is a figure which shows the calculation formula for creating the frequency characteristic for every division | segmentation frequency range of the low-pass filter (2) of this invention. 本発明のローパスフィルタ(2)の周波数特性を作成するための計算式の定数の計算式を示す図である。  It is a figure which shows the calculation formula of the constant of the calculation formula for creating the frequency characteristic of the low-pass filter (2) of this invention. 本発明のハイパスフィルタ(2)の周波数特性の生成方法を説明する図である。  It is a figure explaining the production | generation method of the frequency characteristic of the high pass filter (2) of this invention. 本発明のハイパスフィルタ(2)の区分周波数範囲ごとの周波数特性を作成するための計算式を示す図である。  It is a figure which shows the calculation formula for creating the frequency characteristic for every division | segmentation frequency range of the high pass filter (2) of this invention. 本発明のハイパスフィルタ(2)の周波数特性を作成するための計算式の定数の計算式を示す図である。  It is a figure which shows the calculation formula of the constant of the calculation formula for producing the frequency characteristic of the high pass filter (2) of this invention. 本発明の実施例に用いるローパスフィルタ(1)の目標仕様の一例を示す図である。  It is a figure which shows an example of the target specification of the low-pass filter (1) used for the Example of this invention. 本発明の実施例に用いるローパスフィルタ(1)の周波数特性式の定数項の計算結果の一例を示す図である。  It is a figure which shows an example of the calculation result of the constant term of the frequency characteristic type | formula of the low-pass filter (1) used for the Example of this invention. 方式1の実施例で計算したローパスフィルタ(1)の一例の全係数および全係数の2の10乗値を示す図である  It is a figure which shows the 10th power value of the 2nd of all the coefficients of an example of the low-pass filter (1) calculated in the Example of the system 1, and all the coefficients. 図15の係数で計算したローパスフィルタ(1)の周波数特性を示す図である。  It is a figure which shows the frequency characteristic of the low-pass filter (1) calculated with the coefficient of FIG. 図15の係数で計算したローパスフィルタ(1)の通過域付近の周波数特性を拡大した図である。  It is the figure which expanded the frequency characteristic near the pass band of the low-pass filter (1) calculated with the coefficient of FIG. 図9の係数で計算したローパスフィルタ(1)を単独及び2個及び3個縦列接続し、夫々のインパルス応答の時間軸をずらして重ねて表示した図である。  FIG. 10 is a diagram in which low-pass filters (1) calculated with the coefficients of FIG. 9 are connected individually and in two and three in cascade, and the time axis of each impulse response is shifted and superimposed. 図9の係数で計算したローパスフィルタ(1)で遷移部の勾配を変えずにn値と処理ビット数を変えた時のタップ数である。  This is the number of taps when the n value and the number of processing bits are changed without changing the gradient of the transition part in the low-pass filter (1) calculated with the coefficients of FIG. 図9の係数で計算したローパスフィルタ(1)でn値を変えた時のm値とa値の変化を示す図である。  It is a figure which shows the change of m value and a value when n value is changed with the low-pass filter (1) calculated with the coefficient of FIG. 図9の係数で計算したローパスフィルタ(1)でn値を変えた時の遷移域の周波数特性の変化を示す図である。  It is a figure which shows the change of the frequency characteristic of a transition region when n value is changed with the low-pass filter (1) calculated with the coefficient of FIG. 図9の係数で計算したローパスフィルタ(1)でn値を変えた時の処理ビット数とタップ数の関係を示す図である。  FIG. 10 is a diagram illustrating the relationship between the number of processing bits and the number of taps when the n value is changed by the low-pass filter (1) calculated using the coefficients of FIG. 9. 方式2で計算したローパスフィルタ(2)の一例の全係数および全係数の2の10乗値を示す図である  It is a figure which shows the 10th power value of all the coefficients of an example of the low-pass filter (2) calculated by the system 2, and all the coefficients. 図23の係数で計算したローパスフィルタ(2)の周波数特性を示す図である。  It is a figure which shows the frequency characteristic of the low-pass filter (2) calculated with the coefficient of FIG. 図23の係数で計算したローパスフィルタ(2)の通過域付近の周波数特性を拡大した図である。  It is the figure which expanded the frequency characteristic near the pass band of the low-pass filter (2) calculated with the coefficient of FIG. 図23の係数で計算したローパスフィルタ(2)を単独及び2個及び3個縦列接続し、夫々のインパルス応答の時間軸をずらして重ねて表示した図である。  It is the figure which displayed the low-pass filter (2) calculated with the coefficient of FIG. 23 individually, two, and three in cascade, and shifted and superimposed the time axis | shaft of each impulse response. 図23の係数で計算したローパスフィルタ(2)で遷移部の勾配を変えずにn値と処理ビット数を変えた時のタップ数である。  This is the number of taps when the n value and the number of processing bits are changed without changing the gradient of the transition part in the low-pass filter (2) calculated with the coefficients of FIG. 図23の係数で計算したローパスフィルタ(2)でn値を変えた時のm値とa値の変化を示す図である。  It is a figure which shows the change of m value and a value when n value is changed with the low-pass filter (2) calculated with the coefficient of FIG. 図23の係数で計算したローパスフィルタ(2)でn値を変えた時の遷移域の周波数特性の変化を示す図である。  It is a figure which shows the change of the frequency characteristic of a transition region when n value is changed with the low-pass filter (2) calculated with the coefficient of FIG. 図9の係数で計算したローパスフィルタ(2)でn値を変えた時の処理ビット数とタップ数の関係を示す図である。  FIG. 10 is a diagram showing the relationship between the number of processing bits and the number of taps when the n value is changed by the low-pass filter (2) calculated using the coefficients of FIG. 9.

符号の説明Explanation of symbols

1,6,11,15 関数1の中心周波数
2,7 関数2の中心周波数
3,8, 周波数特性の遷移域の中心
4,9,13,17 目標仕様のフィルタの通過域端位置
5,10,14,18 目標仕様のフィルタの減衰域端位置
12,16 関数1
1,6,11,15 Function 1 center frequency 2,7 Function 2 center frequency 3,8, Center of frequency characteristic transition region 4,9,13,17 Passband end position of target specification filter 5,10 , 14, 18 Attenuation band edge position of target specification filter 12, 16 Function 1

Claims (5)

目的とするフィルタの周波数特性データに、周波数軸方向に対称なデータを付加し、これを逆フーリエ変換することにより目的とするフィルタ係数の基礎データを得るフィルタ設計法において、入力する周波数特性の遷移部に関数または複数の区分関数を適用し、関数部の2点の振幅と周波数を仕様により固定し、関数部と直線データとのつなぎ目の周波数座標を固定せず、関数を構成する定数を調整してタップ数を変更しても生成フィルタ特性が目標仕様から外れないように構成したフィルタ設計法及びソフトウェア及びこれにより生成したフィルタ。In the filter design method to obtain the basic data of the target filter coefficient by adding symmetric data in the frequency axis direction to the frequency characteristic data of the target filter and performing inverse Fourier transform on this data, the transition of the input frequency characteristics Apply a function or multiple piecewise functions to the part, fix the amplitude and frequency of the two points of the function part according to the specifications, and adjust the constants that make up the function without fixing the frequency coordinates of the joint between the function part and the linear data Then, a filter design method and software configured so that the generated filter characteristics do not deviate from the target specification even if the number of taps is changed, and a filter generated thereby. 請求項1において、振幅の値を1で基準化した時、振幅の1及び0に頂部で接する2つの指数関数をフィルタの仕様に基づいてフィルタの遷移域で互い違いに接合し、遷移域の両端において夫々の指数関数の頂部と直線1又は0を接合し所定の周波数特性のデータを形成するフィルタ設計法及びソフトウェア及びこれにより生成したフィルタ。In claim 1, when the amplitude value is normalized by 1, two exponential functions that are in contact with the amplitudes 1 and 0 at the top are alternately joined in the transition region of the filter based on the specification of the filter. And a filter design method and software generated by joining the top of each exponential function and a straight line 1 or 0 to form data of a predetermined frequency characteristic. 請求項2の指数関数として、遷移域の中心周波数をa、その前後の周波数仕様に従って斜めに連結した2つの指数関数の中心周波数をa−d,a+dとし、mを各指数関数の定数、bを対数の底(e,2,10など)、nを処理ビット数と関連する小数または整数、yを振幅とした時、mを
m=−log(0.5)/d
とし、フィルタの周波数特性を
0≦x<a−dの時 y=1 (遷移域の向きがマイナス)
y=0 (遷移域の向きがプラス)
a−d<x<aの時 y=bf(x) (遷移域の向きがマイナス)
y=1−bg(x) (遷移域の向きがプラス)
この時 f(x)=−m|x−(a−d)|
g(x)=−m|x−(a+d)|
a<x<a+dの時 y=1−bg(x) (遷移域の向きがマイナス)
y=bf(x) (遷移域の向きがプラス)
とし
a+d<x≦1の時 y=0 (遷移域の向きがマイナス)
y=1 (遷移域の向きがプラス)
とし、更に演算式よりaを消去するため仕様値の通過域端周波数x1の振幅値がy1であるとき
a=−log(y1)(1/n)/m(1/n)+x1+
(−log(0.5))(1/n)/m(1/n)
を計算式に代入し、nの変化に対し関数部が仕様値を保ったまま変化する様に演算式を構成する。 これで、当初n値として処理ビット数に応じた実数(例えば2より4の間の小数または整数)を当て嵌めて周波数特性データを求め、次いでこれを対称化し逆フーリエ変換及び丸め処理を行い、更にその結果の係数列のタップ数をn値の最適化により最小化することにより、仕様を満たす最小タップ数のフィルタを得るようにした請求項1のフィルタ設計法及びソフトウェア及びこれにより生成したフィルタ。
As the exponential function of claim 2, the central frequency of the transition region is a, the central frequencies of two exponential functions connected obliquely according to the frequency specifications before and after that are a−d, a + d, m is a constant of each exponential function, b the logarithm base (e, 2,10, etc.), fractional or integer associated with the number of processing bits n, when the amplitude of y, a m m = -log b (0.5) / d n
And the frequency characteristic of the filter is 0 ≦ x <ad when y = 1 (the direction of the transition region is negative)
y = 0 (the direction of the transition zone is positive)
When a−d <x <a, y = b f (x) (the direction of the transition region is negative)
y = 1−b g (x) (the direction of the transition region is positive)
At this time, f (x) = − m | x− (ad) | n
g (x) = − m | x− (a + d) | n
When a <x <a + d, y = 1−b g (x) (transition zone direction is negative)
y = b f (x) (direction of transition region is positive)
When a + d <x ≦ 1, y = 0 (the direction of the transition zone is negative)
y = 1 (the direction of the transition zone is positive)
Further, when the amplitude value of the passband end frequency x1 of the specification value is y1 in order to eliminate a from the arithmetic expression, a = −log b (y1) (1 / n) / m (1 / n) + x1 +
(-Log b (0.5)) (1 / n) / m (1 / n)
Is substituted into the calculation formula, and the calculation formula is configured so that the function portion changes while maintaining the specification value with respect to the change of n. Thus, a frequency characteristic data is obtained by fitting a real number (for example, a decimal number or an integer between 2 and 4) according to the number of processing bits as an initial n value, and then symmetrized to perform inverse Fourier transform and rounding processing, 2. The filter design method and software according to claim 1, wherein the number of taps of the resulting coefficient sequence is minimized by optimizing n values to obtain a filter with the minimum number of taps satisfying the specifications, and the filter generated thereby .
請求項1において、振幅の値を1で基準化した時、振幅の1に接する指数関数の頂部を遷移域の一端で直線1と接合し、n値および仕様より指数関数の定数を演算しタップ数を最小化して所定の周波数特性を持つ係数列を得る、フィルタ設計法及びソフトウェア及びこれにより生成したフィルタ。In claim 1, when the amplitude value is normalized by 1, the top of the exponential function that is in contact with the amplitude 1 is joined to the straight line 1 at one end of the transition region, and a constant of the exponential function is calculated from the n value and specification to tap. A filter design method and software for obtaining a coefficient sequence having a predetermined frequency characteristic by minimizing the number, and a filter generated thereby. 請求項4の指数関数として、aを遷移域開始周波数、mを指数関数の定数、bを対数の底(e ,2,10など)、nをタップ数調整のための実数、yを振幅とした時、周波数特性を
0≦x<aの時 y=1 (遷移域の向きがマイナス)
y=bf(x) (遷移域の向きがプラス)
ここで f(x)=−m|x−a|
a<x≦1の時 y=bf(x) (遷移域の向きがマイナス)
ここで f(x)=−m|x−a|
y=1 (遷移域の向きがプラス)
とし、演算よりaを消去するために仕様の通過域端周波数をx1、x1の振幅をy1として
a=−logb(y1)(1/n)/m(1/n)+x1
を計算式に代入し、nの変化に対し関数部が仕様値を保ったまま変化するように構成し、これで当初nに処理ビット数に応じた実数(例えば2より4の間の小数または整数)を当て嵌め、周波数特性を算出、対称化し逆フーリエ変換を行い、得られたフィルタ係数のタップ数をnの最適化により最小化する、フィルタ設計法及びソフトウェア及びこれにより生成したフィルタ。
As an exponential function of claim 4, a is a transition band start frequency, m is a constant of the exponential function, b is a logarithmic base (e, 2, 10, etc.), n is a real number for adjusting the number of taps, and y is an amplitude. When the frequency characteristic is 0 ≦ x <a, y = 1 (the direction of the transition region is negative)
y = b f (x) (direction of transition region is positive)
Where f (x) = − m | x−a | n
When a <x ≦ 1, y = b f (x) (transition zone direction is negative)
Where f (x) = − m | x−a | n
y = 1 (the direction of the transition zone is positive)
In order to eliminate a from the calculation, the specified passband edge frequency is x1, and the amplitude of x1 is y1. A = −logb (y1) (1 / n) / m (1 / n) + x1
Is substituted into the calculation formula, and the function part is configured to change while maintaining the specification value with respect to the change of n, so that initially n is a real number (for example, a decimal number between 2 and 4 or 2 A filter design method and software, and a filter generated thereby, in which an integer) is applied, frequency characteristics are calculated, symmetrized, inverse Fourier transform is performed, and the number of taps of the obtained filter coefficient is minimized by optimization of n.
JP2008155955A 2008-05-20 2008-05-20 Method of designing filter, and filter Pending JP2009284451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155955A JP2009284451A (en) 2008-05-20 2008-05-20 Method of designing filter, and filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155955A JP2009284451A (en) 2008-05-20 2008-05-20 Method of designing filter, and filter

Publications (1)

Publication Number Publication Date
JP2009284451A true JP2009284451A (en) 2009-12-03

Family

ID=41454384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155955A Pending JP2009284451A (en) 2008-05-20 2008-05-20 Method of designing filter, and filter

Country Status (1)

Country Link
JP (1) JP2009284451A (en)

Similar Documents

Publication Publication Date Title
US7764802B2 (en) Frequency-warped audio equalizer
US20050171989A1 (en) Digital filter design method and device, digital filter design program, and digital filter
CN106465033A (en) Apparatus and method for processing a signal in the frequency domain
JPWO2006048958A1 (en) DIGITAL FILTER, ITS DESIGNING METHOD, DESIGN DEVICE, DIGITAL FILTER DESIGN PROGRAM
JP5908168B2 (en) Low latency and low complexity phase shift network
JP4300272B2 (en) Digital filter and design method thereof
JPWO2005078925A1 (en) Digital filter design method and device, digital filter design program, digital filter
EP1557947A1 (en) Digital filter design method and device, digital filter design program, and digital filter
US8949303B2 (en) Filter
US7590675B2 (en) Digital filter, design method thereof, design device, and digital filter design program
US20090070395A1 (en) Interpolation function generation circuit
JP2009284451A (en) Method of designing filter, and filter
JPWO2004008637A1 (en) Digital filter design method, digital filter design program, digital filter
Mehrnia et al. Further desensitized FIR halfband filters
WO2003047097A1 (en) Digital filter designing method, designing apparatus, digital filter designing program, digital filter
JPWO2004079905A1 (en) Digital filter design method and apparatus, digital filter design program, and digital filter
JPWO2004036746A1 (en) Digital filter design method and apparatus, digital filter design program, and digital filter
US7400676B2 (en) Tone quality adjustment device designing method and designing device, tone quality adjustment device designing program, and tone quality adjustment device
JPWO2005104365A1 (en) DIGITAL FILTER DESIGN METHOD AND DESIGN DEVICE, DIGITAL FILTER DESIGN PROGRAM, DIGITAL FILTER, METHOD FOR GENERATING NUMERICAL CHARACTER CHARACTERISTICS FOR D desired frequency characteristics
US20050171988A1 (en) Digital filter design method and device, digital filter design program, and digital filter
CN100391102C (en) Sound quality adjusting device and filter device used therefor, sound quality adjusting method, and filter designing method
JP6935912B2 (en) Data interpolation device and data interpolation method
US20050120067A1 (en) Digital filter designing method, digital filter designing program, digital filter
JPH0346813A (en) Digital filter circuit
JP2005020554A (en) Digital filter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110