JP2009283678A - Superconducting device and method of operating the same - Google Patents

Superconducting device and method of operating the same Download PDF

Info

Publication number
JP2009283678A
JP2009283678A JP2008134201A JP2008134201A JP2009283678A JP 2009283678 A JP2009283678 A JP 2009283678A JP 2008134201 A JP2008134201 A JP 2008134201A JP 2008134201 A JP2008134201 A JP 2008134201A JP 2009283678 A JP2009283678 A JP 2009283678A
Authority
JP
Japan
Prior art keywords
current lead
cryocontainer
superconducting
cryogenic
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008134201A
Other languages
Japanese (ja)
Other versions
JP5253880B2 (en
Inventor
Takashi Yazawa
孝 矢澤
Masahiko Takahashi
政彦 高橋
Koichi Osemochi
光一 大勢持
Toru Kuriyama
透 栗山
Masahiro Sakai
正弘 酒井
Masami Urata
昌身 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
International Superconductivity Technology Center
Original Assignee
Toshiba Corp
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, International Superconductivity Technology Center filed Critical Toshiba Corp
Priority to JP2008134201A priority Critical patent/JP5253880B2/en
Publication of JP2009283678A publication Critical patent/JP2009283678A/en
Application granted granted Critical
Publication of JP5253880B2 publication Critical patent/JP5253880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve long-time reliability of a superconducting device by preventing droplets or frost from adhering to the surface of current leads of the superconducting device. <P>SOLUTION: The superconducting device has: a superconducting element (coil) 11 to be cooled to an extreme low temperature environment; a low-temperature container 40 for housing the superconducting element 11; a freezer 16 for cooling the interior of the low-temperature container 40; current leads 18a, 18b connected to the superconducting element 11 through the wall of the low-temperature container 40; and an insulating terminal 19 disposed so as to intervene between the wall of the low-temperature container 40 and the current leads 18a, 18b. The freezer 16 has an air cooling heat sink 22 arranged outside the low-temperature container 40, and is arranged so that the air heated by the air cooling heat sink 22 can heat the current lead room temperature ends 118a, 118b of the current leads 18a, 18b which are provided outside the low-temperature container 40. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、極低温環境に冷却される超電導素子(超電導コイルを含む。以下、同様)を有する超電導装置であって、室温側の電源あるいは電力系統から超電導素子に対して電流を供給するための電流リードを具備する超電導装置に関する。   The present invention is a superconducting device having a superconducting element (including a superconducting coil; hereinafter the same) that is cooled to a cryogenic environment for supplying a current to the superconducting element from a power supply or power system on the room temperature side. The present invention relates to a superconducting device having a current lead.

超電導は、抵抗ゼロで大電流を流せるという特長を有するため、産業応用、医療応用、電力応用などさまざまな応用に向けた開発が進められている。従来の典型的な超電導装置において、超電導素子は、液体窒素、液体ヘリウムなどの冷媒に浸漬して冷却される(たとえば特許文献1参照)。また、冷媒を使用せずに冷凍機の冷却ステージへの熱伝導により冷却する方式もありうる。冷媒容器は、室温に置かれる断熱容器中に真空などの断熱空間を介して配置している。超電導素子を、常温側に置かれる電源あるいは電力系統と接続するために、電流リードが配置されている。   Since superconductivity has the feature of allowing a large current to flow with zero resistance, development for various applications such as industrial applications, medical applications, and power applications is underway. In a conventional typical superconducting device, a superconducting element is cooled by being immersed in a refrigerant such as liquid nitrogen or liquid helium (see, for example, Patent Document 1). There may also be a method of cooling by using heat conduction to the cooling stage of the refrigerator without using a refrigerant. The refrigerant container is disposed in a heat insulating container placed at room temperature via a heat insulating space such as a vacuum. Current leads are arranged to connect the superconducting element to a power source or power system placed on the room temperature side.

このような超電導装置を設計する上で、電流リードは重要な部品である。その理由は、熱設計の見地と絶縁設計の見地の両方にある。前者の熱設計での重要性は、電流リードが低温側、すなわち冷媒容器内部への熱侵入源となるからである。電流リードは室温側と低温側を結ぶため、通常銅などの金属が使用される。オーミック発熱(電気抵抗による発熱)を抑制するために電流リードの断面積を大きくし電気抵抗を小さくすると、オーミック発熱は減少するが、室温からの熱伝導による熱侵入が増加する。逆に、電流リードの断面積を小さくすると、室温からの熱伝導による熱侵入は低減するが、オーミック発熱が増加する。したがって、電流リードの断面積には最適値がある。   In designing such a superconducting device, the current lead is an important component. The reason is both in terms of thermal design and insulation design. The importance in the former thermal design is that the current lead becomes a heat penetration source into the low temperature side, that is, the inside of the refrigerant container. Since the current lead connects the room temperature side and the low temperature side, a metal such as copper is usually used. Increasing the cross-sectional area of the current lead and reducing the electrical resistance to suppress ohmic heat generation (heat generation due to electric resistance) reduces ohmic heat generation, but increases heat penetration due to heat conduction from room temperature. On the contrary, when the cross-sectional area of the current lead is reduced, heat intrusion due to heat conduction from room temperature is reduced, but ohmic heat generation is increased. Therefore, there is an optimum value for the cross-sectional area of the current lead.

厳密には、定格電流値、電流リードの室温端から低温端までの長さ、断面積について、(電流値)×(長さ)/(断面積)を最適化する考え方が良く知られている。(電流値)×(長さ)/(断面積)を最適化した場合、室温端から低温端への電流リードによる熱侵入は、定格電流値1Aの電流リードで、1本当たり0.045Wであり、この値は定格電流値に比例する。
特開平7−312309号公報
Strictly speaking, the concept of optimizing (current value) x (length) / (cross-sectional area) for the rated current value, the length from the room temperature end to the low-temperature end of the current lead, and the cross-sectional area is well known. . When (current value) x (length) / (cross-sectional area) is optimized, the heat intrusion by the current lead from the room temperature end to the low temperature end is 0.045W per one current lead with a rated current value of 1A. Yes, this value is proportional to the rated current value.
JP 7-312309 A

さて、このように設計された電流リードは、超電導機器に良く使われているが、以下に示す問題がある。   Now, current leads designed in this way are often used in superconducting equipment, but have the following problems.

ここで取り上げる問題を一言で集約すると、電流リードの室温端が着霜しやすい、ということである。確かに、電流リードは、室温端は設計上文字通り室温付近の温度と考えて良いのだが、現実の運用では温度が低下してしまい、大気中の水分を凝縮させ、電流リード表面に水滴が付着することがある。特にこの現象は、電流リードに流れる電流が定格電流値よりも小さくなった場合に生じやすい。一般に、定格電流値は、想定される最大電流値を考えるが、実際の超電導装置の運用では、定格電流値よりも小さい電流が流れる状況が多いからである。   To sum up the issues taken up here, the room temperature end of the current lead tends to frost. Certainly, the current lead can be considered to be literally near room temperature by design, but the temperature drops in actual operation, condensing moisture in the atmosphere, and water droplets adhere to the surface of the current lead There are things to do. In particular, this phenomenon is likely to occur when the current flowing through the current lead is smaller than the rated current value. In general, the rated current value is assumed to be the maximum current value assumed, but in actual operation of the superconducting device, there are many situations in which a current smaller than the rated current value flows.

極端なケースでは、超電導コイルを極低温環境に冷却保持しておきながら、通電していない場合である。この状態でも、電流リードは室温端と低温端をつないでいるため、熱伝導により低温端に入熱がある。この熱侵入は、定格電流値1Aの電流リードで、1本当たり約0.03Wである。定格通電時と、定格未満の電流値の通電(最も極端なケースは非通電)時の違いは、前者の場合は電流リードのオーミック発熱が低温端への熱源になるのに対し、後者の場合には室温端から低温端へ熱伝導が熱源になることである(極端なケースである非通電時は、すべて熱伝導による入熱)。室温端から常時入熱するということは、電流リードの室温端表面で、大気より入熱していることになる。この状態は次のような式(1)で表わされる。   In an extreme case, the superconducting coil is cooled and held in a cryogenic environment and is not energized. Even in this state, since the current lead connects the room temperature end and the low temperature end, there is heat input at the low temperature end due to heat conduction. This heat penetration is about 0.03 W per current lead with a rated current value of 1A. The difference between the rated energization and the energization with a current value less than the rating (the most extreme case is de-energization) is that in the former case the ohmic heating of the current lead is the heat source to the low temperature end, whereas in the latter case Is that heat conduction becomes a heat source from the room temperature end to the low temperature end (when heat is not applied, which is an extreme case, all heat input by heat conduction). The constant heat input from the room temperature end means that heat is input from the atmosphere at the room temperature end surface of the current lead. This state is expressed by the following equation (1).

Q = hA(Tair − Tlead) (1)
ここで、Qは入熱量[W]であり、非通電時では定格電流値1Aの電流リードで、1本当たり約0.03Wである。hは電流リード表面での対流熱伝達率[W/m・K]を表す。Aは伝熱面積[m]、Tairは大気温度(室温)[K]、Tleadは電流リードの室温端の温度[K]である。
Q = hA (T air - T lead) (1)
Here, Q is the amount of heat input [W], and is about 0.03 W per wire with a current lead having a rated current value of 1 A when not energized. h represents the convective heat transfer coefficient [W / m 2 · K] on the current lead surface. A is the heat transfer area [m 2 ], T air is the atmospheric temperature (room temperature) [K], and T lead is the temperature [K] at the room temperature end of the current lead.

上述した電流リード表面に水滴または霜が付着する現象は、式(1)で示す伝熱が充分でない場合、Tleadで示される電流リードの室温端の温度が低下することで起きると考えられる。 The phenomenon of water droplets or frost adhering to the surface of the current lead described above is considered to be caused by a decrease in the temperature at the room temperature end of the current lead indicated by T lead when the heat transfer represented by the equation (1) is not sufficient.

電流リード表面に水滴または霜が付着すると、次のような問題を生ずる。   When water droplets or frost adheres to the surface of the current lead, the following problems occur.

第一は、電流リード絶縁の低下の問題である。一般に電流リードの課電部は、対地電位にある容器室温部と何らかの絶縁物を介して繋がっている。その絶縁物表面を絶縁沿面とし、必要な距離を確保する必要がある。ところが、電流リード表面に水滴が着き、その水滴が絶縁沿面にまで滴ると、絶縁強度が低下する。乾燥状態よりも湿った状態の方が、絶縁耐力が低下するからである。   The first is the problem of current lead insulation degradation. In general, the current lead charging section is connected to the room temperature of the container at ground potential via some kind of insulator. It is necessary to secure the necessary distance by making the insulator surface creeping. However, when water droplets adhere to the surface of the current lead and the water droplets also drop on the insulation creepage surface, the insulation strength decreases. This is because the dielectric strength decreases in a wet state than in a dry state.

第二は、電流リード材料の腐食の問題である。電流リードの通電部は、銅などの金属を材料としている。電流リード表面に水滴または霜が付着する状態が長時間続くと、リード材料が錆を帯びるなどの問題を生ずる。   The second is the problem of current lead material corrosion. The energization part of the current lead is made of a metal such as copper. If a state where water droplets or frost adheres to the surface of the current lead continues for a long time, problems such as rusting of the lead material occur.

第三に、電流リード以外の材料の腐食の問題である。電流リード表面の水滴が、超電導装置の容器の表面に滴った場合、上記と同じく、金属材料が錆を帯びる問題を生ずる。さらには、容器表面から滴り落ち、床等に水滴が回った時、床材量が金属であれば、同様の問題を生ずる。   Third, there is a problem of corrosion of materials other than current leads. When water droplets on the surface of the current lead drop on the surface of the container of the superconducting device, the problem arises that the metal material becomes rusted as described above. Furthermore, if the amount of the flooring material is metal when dripping from the surface of the container and water droplets turn around the floor or the like, the same problem occurs.

以上述べたように電流リード表面に水滴または霜が付着することは、超電導装置の長期信頼性を著しく欠く問題である。   As described above, water droplets or frost adhering to the surface of the current lead is a problem that remarkably lacks the long-term reliability of the superconducting device.

本発明は、このようなに課題に鑑みてなされたものであり、超電導装置の電流リード表面に水滴または霜が付着することを抑制し、超電導装置の長期信頼性を向上することを目的とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to prevent water droplets or frost from adhering to the surface of the current lead of the superconducting device and to improve the long-term reliability of the superconducting device. .

上記目的を達成するために、本発明に係る超電導装置は、極低温環境に冷却される超電導素子と、この超電導素子を収容する低温容器と、この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、を有し、前記冷凍機は、前記低温容器外に配置された空冷放熱器を有し、前記空冷放熱器で加熱された空気が、前記電流リードのうちの前記低温容器外の部分である電流リード室温端を加熱するように配置されていること、を特徴とする。   In order to achieve the above object, a superconducting device according to the present invention includes a superconducting element cooled to a cryogenic environment, a cryocontainer that accommodates the superconducting element, and an inside of the cryocontainer attached to the cryocontainer. A refrigerator for cooling, a current lead for supplying a current supplied from outside the cryocontainer to the superconducting element, electrically connected to the superconducting element through the wall of the cryocontainer, An insulating terminal that is disposed so as to be interposed between the wall of the cryogenic vessel and the current lead and electrically insulates between the wall of the cryogenic vessel and the current lead. An air-cooled heat radiator disposed outside the container, and the air heated by the air-cooled heat radiator is disposed so as to heat a current lead room temperature end that is a portion of the current lead outside the low-temperature container. That, with the features That.

また、本発明に係る超電導装置は、極低温環境に冷却される超電導素子と、この超電導素子を収容する低温容器と、この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、前記電流リードのうちの前記低温容器の外側部分である電流リード室温端の周囲に配置された加熱器と、を有することを特徴とする。   The superconducting device according to the present invention includes a superconducting element cooled to a cryogenic environment, a cryocontainer that accommodates the superconducting element, and a refrigerator that is attached to the cryocontainer and cools the inside of the cryocontainer. A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element, and supplying a current supplied from outside the cryocontainer to the superconducting element, and a wall of the cryocontainer, An insulation terminal disposed between the current lead and electrically insulating between the wall of the cryogenic vessel and the current lead; and a current lead that is an outer portion of the cryogenic vessel of the current lead at room temperature And a heater disposed around the end.

また、本発明に係る超電導装置は、極低温環境に冷却される超電導素子と、この超電導素子を収容する低温容器と、この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、前記電流リードのうちの前記低温容器の外側部分である電流リード室温端の周囲を覆うように配置された電気絶縁体と、を有することを特徴とする。   The superconducting device according to the present invention includes a superconducting element cooled to a cryogenic environment, a cryocontainer that accommodates the superconducting element, and a refrigerator that is attached to the cryocontainer and cools the inside of the cryocontainer. A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element, and supplying a current supplied from outside the cryocontainer to the superconducting element, and a wall of the cryocontainer, An insulation terminal disposed between the current lead and electrically insulating between the wall of the cryogenic vessel and the current lead; and a current lead that is an outer portion of the cryogenic vessel of the current lead at room temperature And an electrical insulator arranged to cover the periphery of the end.

また、本発明に係る超電導装置は、極低温環境に冷却される超電導素子と、この超電導素子を収容する低温容器と、この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、前記電流リードのうちの前記低温容器の外側部分である電流リード室温端の周囲に配置されたフィンと、を有することを特徴とする。   The superconducting device according to the present invention includes a superconducting element cooled to a cryogenic environment, a cryocontainer that accommodates the superconducting element, and a refrigerator that is attached to the cryocontainer and cools the inside of the cryocontainer A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element, and supplying a current supplied from outside the cryocontainer to the superconducting element, and a wall of the cryocontainer, An insulation terminal disposed between the current lead and electrically insulating between the wall of the cryogenic vessel and the current lead; and a current lead that is an outer portion of the cryogenic vessel of the current lead at room temperature And fins arranged around the ends.

また、本発明に係る超電導装置は、極低温環境に冷却される超電導素子と、この超電導素子を収容する低温容器と、この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、を有し、前記絶縁端子の外表面が水平に対して傾斜していることを特徴とする。   The superconducting device according to the present invention includes a superconducting element cooled to a cryogenic environment, a cryocontainer that accommodates the superconducting element, and a refrigerator that is attached to the cryocontainer and cools the inside of the cryocontainer. A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element, and supplying a current supplied from outside the cryocontainer to the superconducting element, and a wall of the cryocontainer, An insulating terminal disposed between the current lead and electrically insulating between the wall of the cryogenic vessel and the current lead, and an outer surface of the insulating terminal is inclined with respect to the horizontal. It is characterized by.

また、本発明に係る超電導装置運転方法は、低温容器内に超電導素子を収容し、前記低温容器内部を冷凍機によって冷却し、電流リードを、前記低温容器の壁を貫通させて、この電流リードを通じて前記超電導素子に電流を供給し、前記低温容器の壁と電流リードとの間に、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子を介在させ、前記冷凍機の空冷放熱器で加熱された空気によって、前記電流リードのうちの前記低温容器外の部分である電流リード室温端を加熱すること、を特徴とする。   Also, the superconducting device operating method according to the present invention includes a superconducting element housed in a cryogenic vessel, the inside of the cryogenic vessel is cooled by a refrigerator, and a current lead is passed through the wall of the cryogenic vessel, and the current lead An electric current is supplied to the superconducting element through an insulation terminal interposed between the wall of the cryogenic vessel and the current lead to electrically insulate between the wall of the cryogenic vessel and the current lead. The room temperature end of the current lead, which is a portion of the current lead outside the cryogenic vessel, is heated by air heated by a radiator.

この発明によれば、超電導装置の電流リード表面に水滴または霜が付着することが抑制され、超電導装置の長期信頼性を向上することができる。   According to the present invention, water droplets or frost is prevented from adhering to the surface of the current lead of the superconducting device, and the long-term reliability of the superconducting device can be improved.

以下、本発明に係る超電導装置の種々の実施形態に関して図面を参照して説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複説明は省略する。   Hereinafter, various embodiments of a superconducting device according to the present invention will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は、本発明に係る超電導装置の第1の実施形態の模式的立断面図である。低温容器40は断熱容器12とその内側の冷媒容器14を有している。断熱容器12と冷媒容器14の間は真空13になっていて、冷媒容器14内に、液体ヘリウムなどの冷媒15が収容されている。
[First Embodiment]
FIG. 1 is a schematic vertical sectional view of a first embodiment of a superconducting device according to the present invention. The cryogenic container 40 includes a heat insulating container 12 and a refrigerant container 14 inside thereof. A vacuum 13 is formed between the heat insulating container 12 and the refrigerant container 14, and a refrigerant 15 such as liquid helium is accommodated in the refrigerant container 14.

冷媒15内に浸漬されるように冷却ステージ17が配置され、この冷却ステージ17を冷却する冷凍機16の冷却部41が低温容器40に取り付けられている。冷凍機16は、低温容器40の外側に配置された圧縮機21および、冷却部41と圧縮機21とを連絡する配管23a、23bを含む。冷凍機16はさらに、圧縮機21で発生した熱を大気に排出するための空冷放熱器22を有する。空冷放熱器22は、好ましくは冷却ファン(図示せず)を有するが、自然対流による空冷であってもよい。   The cooling stage 17 is disposed so as to be immersed in the refrigerant 15, and the cooling unit 41 of the refrigerator 16 that cools the cooling stage 17 is attached to the low temperature container 40. The refrigerator 16 includes a compressor 21 disposed outside the cryogenic container 40, and pipes 23 a and 23 b that connect the cooling unit 41 and the compressor 21. The refrigerator 16 further includes an air cooling radiator 22 for discharging heat generated in the compressor 21 to the atmosphere. The air cooling radiator 22 preferably has a cooling fan (not shown), but may be air cooling by natural convection.

冷媒15内に浸漬されるように超電導コイルなどの超電導素子11が配置され、超電導素子11に電流を供給するための電流リード18a、18bが冷媒容器14および断熱容器12の壁を貫通して低温容器40の外側の電流リード室温端118a、118bに延びている。電流リード18a、18bが断熱容器12の壁を貫通する部分には絶縁端子19が配置され、電流リード18a、18bと断熱容器12の間の電気的絶縁を保持するとともに断熱容器12の気密を保持する構造になっている。   A superconducting element 11 such as a superconducting coil is disposed so as to be immersed in the refrigerant 15, and current leads 18 a and 18 b for supplying a current to the superconducting element 11 penetrate the walls of the refrigerant container 14 and the heat insulating container 12 at a low temperature. The current leads on the outside of the container 40 extend to the room temperature ends 118a and 118b. An insulating terminal 19 is disposed at a portion where the current leads 18a and 18b pass through the wall of the heat insulating container 12, and the electric insulation between the current leads 18a and 18b and the heat insulating container 12 is maintained and the airtightness of the heat insulating container 12 is maintained. It has a structure to do.

この実施形態では、電流リード室温端118a、118bの近傍に空冷放熱器22が配置され、空冷放熱器22で加熱された空気が電流リード室温端118a、118bを加熱するように構成されている。空冷放熱器22がファン(図示せず)を有する場合は、このファンによる空気の流れを考慮して空冷放熱器22の下流側に電流リード室温端118a、118bが位置するようにすればよい。   In this embodiment, the air cooling radiator 22 is disposed in the vicinity of the current lead room temperature ends 118a and 118b, and the air heated by the air cooling radiator 22 is configured to heat the current lead room temperature ends 118a and 118b. When the air cooling radiator 22 has a fan (not shown), the current lead room temperature ends 118a and 118b may be positioned on the downstream side of the air cooling radiator 22 in consideration of the air flow by the fan.

この実施形態によれば、電流リード室温端118a、118bの周囲の空気温度が大気温度よりも高くなるので、電流リード室温端118a、118b表面の着霜を防止または抑制することができる。   According to this embodiment, since the air temperature around the current lead room temperature ends 118a and 118b is higher than the atmospheric temperature, frost formation on the surface of the current lead room temperature ends 118a and 118b can be prevented or suppressed.

[第2の実施形態]
図2は、本発明に係る超電導装置の第2の実施形態の模式的立断面図である。この第2の実施形態は第1の実施形態に比べて、電流リード室温端118a、118b表面にフィン43を取り付けた点が異なる。フィン43は、表面積を大きくするものであって、多数の板状や多数の針金状突起など種々のものがありうる。板状の場合は、空気の流れに沿って延びるものが好ましく、図2の例では、空気の流れがほぼ水平になるので、フィン43は水平方向に延びる板状が好ましい。板状のフィン43の形状は、たとえば電流リード室温端118a、118bの軸心を中心とする円板状である。電流リード室温端118a、118b同士が近接している場合は、フィン43同士の干渉を避けるために非軸対称形状としてもよい。
[Second Embodiment]
FIG. 2 is a schematic vertical sectional view of a second embodiment of the superconducting device according to the present invention. The second embodiment differs from the first embodiment in that fins 43 are attached to the surfaces of the current lead room temperature ends 118a and 118b. The fins 43 have a large surface area, and may have various shapes such as a large number of plate shapes and a large number of wire-like protrusions. In the case of a plate shape, it is preferable to extend along the air flow. In the example of FIG. 2, the air flow is substantially horizontal, so the fin 43 is preferably a plate shape extending in the horizontal direction. The shape of the plate-shaped fin 43 is, for example, a disk shape centering on the axis of the current lead room temperature end 118a, 118b. When the current lead room temperature ends 118a and 118b are close to each other, a non-axisymmetric shape may be used to avoid interference between the fins 43.

この実施形態によれば、第1の実施形態に比べて電流リード室温端118a、118bの表面積が増大するので空気から電流リード室温端118a、118bへの入熱がさらに増えて電流リード室温端118a、118bの温度を高めることができるので、電流リード室温端118a、118b表面の着霜を防止または抑制する効果をさらに高めることができる。   According to this embodiment, since the surface area of the current lead room temperature ends 118a and 118b is increased as compared with the first embodiment, heat input from the air to the current lead room temperature ends 118a and 118b further increases, and the current lead room temperature ends 118a. , 118b can be raised, and the effect of preventing or suppressing frost formation on the surface of the current lead room temperature ends 118a, 118b can be further enhanced.

[第3の実施形態]
図3は、本発明に係る超電導装置の第3の実施形態の模式的立断面図である。この第3の実施形態は、第1の実施形態(図1)における冷媒容器14および冷媒15を用いず、超電導素子11と冷却ステージ17とを伝熱板26によって熱的に直接接続するものである。このような例であっても、第1の実施形態と同様に、電流リード室温端118a、118bの近傍に空冷放熱器22を配置し、空冷放熱器22で加熱された空気が電流リード室温端118a、118bを加熱するように構成することができる。
[Third Embodiment]
FIG. 3 is a schematic vertical sectional view of a third embodiment of the superconducting device according to the present invention. In the third embodiment, the superconducting element 11 and the cooling stage 17 are thermally connected directly by the heat transfer plate 26 without using the refrigerant container 14 and the refrigerant 15 in the first embodiment (FIG. 1). is there. Even in such an example, as in the first embodiment, the air-cooling radiator 22 is disposed in the vicinity of the current lead room temperature ends 118a and 118b, and the air heated by the air-cooling radiator 22 is the current lead room temperature end. 118a, 118b can be configured to be heated.

これにより、第1の実施形態と同様に、電流リード室温端118a、118bの周囲の空気温度が高くなるので、電流リード室温端118a、118b表面の着霜を防止または抑制することができる。   As a result, as in the first embodiment, the air temperature around the current lead room temperature ends 118a and 118b increases, so that frost formation on the surface of the current lead room temperature ends 118a and 118b can be prevented or suppressed.

[第4の実施形態]
図4は、本発明に係る超電導装置の第4の実施形態の模式的立断面図である。この第4の実施形態では、低温容器40、冷凍機16、電流リード18a、18bおよび絶縁端子19を含む全体が収納容器24内に収容されている。収納容器24には空気出入り口25が設けられている。この実施形態では、圧縮機21および空冷放熱器22の位置は、収納容器24内であればどこでもよく、図4の例では、低温容器40と並列して床面上に配置されている。その他の構成は第1の実施形態と同様である。
[Fourth Embodiment]
FIG. 4 is a schematic vertical sectional view of a fourth embodiment of the superconducting device according to the present invention. In the fourth embodiment, the entirety including the cryogenic container 40, the refrigerator 16, the current leads 18 a and 18 b and the insulating terminal 19 is accommodated in the storage container 24. The storage container 24 is provided with an air inlet / outlet port 25. In this embodiment, the position of the compressor 21 and the air cooling radiator 22 may be anywhere within the storage container 24, and in the example of FIG. 4, the compressor 21 and the air cooling radiator 22 are arranged on the floor in parallel with the low temperature container 40. Other configurations are the same as those of the first embodiment.

この実施形態によれば、圧縮機21の運転により収納容器24内の環境温度が、大気温度に比べて高くなるので、これによって、電流リード室温端118a、118b表面の着霜を防止または抑制することができる。   According to this embodiment, the environmental temperature in the storage container 24 becomes higher than the atmospheric temperature due to the operation of the compressor 21, thereby preventing or suppressing frost formation on the surfaces of the current lead room temperature ends 118 a and 118 b. be able to.

[第5の実施形態]
図5は、本発明に係る超電導装置の第5の実施形態の模式的立断面図である。この第5の実施形態では、電流リード室温端118a、118bおよび絶縁端子19が箱27に覆われている。空冷放熱器22で加熱された空気が、吹き込み口28を通じて箱27に導入され、その後、排出口29を通じて排出されるように構成されている。その他の構成は第1の実施形態と同様である。
[Fifth Embodiment]
FIG. 5 is a schematic vertical sectional view of a fifth embodiment of the superconducting device according to the present invention. In the fifth embodiment, the current lead room temperature ends 118 a and 118 b and the insulated terminal 19 are covered with the box 27. The air heated by the air-cooling radiator 22 is introduced into the box 27 through the blow-in port 28 and then discharged through the discharge port 29. Other configurations are the same as those of the first embodiment.

この実施形態によれば、空冷放熱器22によって加熱された空気が確実に電流リード室温端118a、118b周辺に供給されるので、第1の実施形態に比べて、より確実に電流リード室温端118a、118b周辺の空気温度を高めることができる。これによって、電流リード室温端118a、118b表面の着霜を、より確実に防止または抑制することができる。   According to this embodiment, since the air heated by the air-cooling radiator 22 is reliably supplied to the periphery of the current lead room temperature ends 118a and 118b, the current lead room temperature end 118a is more reliably compared to the first embodiment. 118b, the air temperature around 118b can be increased. As a result, frost formation on the surface of the current lead room temperature ends 118a and 118b can be more reliably prevented or suppressed.

[第6の実施形態]
図6は、本発明に係る超電導装置の第6の実施形態の模式的立断面図である。この第6の実施形態では、電流リード室温端118a、118bの周囲に加熱器30a、30bが配置されている。加熱器30a、30bは、たとえば電気ヒーターである。電気ヒーターは、電流リード室温端118a、118bに対して電気絶縁する必要があり、たとえば絶縁被覆されたシーズヒーターを用いることができる。図6に示す例では加熱器30a、30bは電気ヒーターであって、加熱器電源50に接続されている。加熱器電源50は加熱器制御装置51によって制御される。
[Sixth Embodiment]
FIG. 6 is a schematic vertical sectional view of a sixth embodiment of the superconducting device according to the present invention. In the sixth embodiment, heaters 30a and 30b are arranged around the current lead room temperature ends 118a and 118b. The heaters 30a and 30b are, for example, electric heaters. The electric heater needs to be electrically insulated from the current lead room temperature ends 118a and 118b. For example, a sheathed heater coated with insulation can be used. In the example shown in FIG. 6, the heaters 30 a and 30 b are electric heaters and are connected to a heater power supply 50. The heater power supply 50 is controlled by a heater controller 51.

この実施形態によれば、加熱器30a、30bにより、電流リード室温端118a、118bの温度を高めることができる。これによって、電流リード室温端118a、118b表面の着霜を防止または抑制することができる。   According to this embodiment, the temperature of the current lead room temperature ends 118a and 118b can be increased by the heaters 30a and 30b. As a result, frost formation on the surface of the current lead room temperature ends 118a and 118b can be prevented or suppressed.

特に本構成では、加熱器制御装置51によって、電流リード18a、18bの通電電流の増減に従い、加熱器30a、30bの発熱量を変化させることができる。すなわち、定格電流値通電時に比べて通電電流が小さいとき、熱侵入量が減少した分を加熱器30a、30bの発熱で補えばよい。これにより、加熱器30a、30bによる電力消費および、電流リード18a、18bを通じて低温容器40内に流入する熱量を必要最小限に抑制することができる。   In particular, in this configuration, the heater controller 51 can change the amount of heat generated by the heaters 30a and 30b in accordance with the increase and decrease of the energization current of the current leads 18a and 18b. That is, when the energization current is smaller than when the rated current value is energized, the amount of heat penetration may be reduced by the heat generated by the heaters 30a and 30b. Thereby, the power consumption by the heaters 30a and 30b and the amount of heat flowing into the cryogenic container 40 through the current leads 18a and 18b can be suppressed to the minimum necessary.

[第7の実施形態]
図7は、本発明に係る超電導装置の第7の実施形態の模式的立断面図である。この第7の実施形態では、電流リード室温端118a、118bの表面が絶縁体31a、31bでコーティングされている。絶縁体31a、31bは、電気絶縁材であるとともに熱伝導率の低い材料であって、たとえばエポキシ樹脂、繊維強化プラスチック(FRP)などである。
[Seventh Embodiment]
FIG. 7 is a schematic vertical sectional view of a seventh embodiment of the superconducting device according to the present invention. In the seventh embodiment, the surfaces of the current lead room temperature ends 118a and 118b are coated with insulators 31a and 31b. The insulators 31a and 31b are electrical insulating materials and materials having low thermal conductivity, and are, for example, epoxy resin, fiber reinforced plastic (FRP), or the like.

この実施形態によれば、電流リード室温端118a、118bの表面が絶縁体31a、31bで覆われているので、ここでの着霜は回避できる。しかも、熱伝導率の低い絶縁体31a、31b内部で温度勾配ができるため、絶縁体31a、31b表面の温度は比較的高くなり、絶縁体31a、31b表面および絶縁端子19表面への着霜を抑制することができる。   According to this embodiment, since the surfaces of the current lead room temperature ends 118a and 118b are covered with the insulators 31a and 31b, frost formation can be avoided here. In addition, since the temperature gradient is generated inside the insulators 31a and 31b having low thermal conductivity, the surface temperature of the insulators 31a and 31b becomes relatively high, and frost formation on the surfaces of the insulators 31a and 31b and the insulating terminal 19 is prevented. Can be suppressed.

[第8の実施形態]
図8は、本発明に係る超電導装置の第8の実施形態の模式的立断面図である。また、図9は、図8のIX−IX線矢視拡大平断面図である。
[Eighth Embodiment]
FIG. 8 is a schematic vertical sectional view of an eighth embodiment of the superconducting device according to the present invention. 9 is an enlarged cross-sectional view taken along line IX-IX in FIG.

この第8の実施形態では、電流リード室温端118a、118bの外側にフィン53が取り付けられている。フィン53は、表面積を大きくするものであって、多数の板状や多数の針金状突起など種々のものがありうる。板状の場合は、一般に空気の流れに沿って延びるものが好ましい。この実施形態では、フィン53は周囲の空気よりも低温になるのでフィン53周辺では下方へ向かう空気の自然対流が生じる。したがって、フィン53は、電流リード室温端118a、118bの外側に向かって放射状に鉛直方向に延びる形状が好ましい。通常は、複数のフィン53が周方向に等間隔で軸対称に配列されるのが好ましい。しかし、電流リード室温端118a、118b同士が近接している場合は、フィン53同士の干渉を避けるために非軸対称の配置としてもよい。   In the eighth embodiment, fins 53 are attached to the outside of the current lead room temperature ends 118a and 118b. The fins 53 have a large surface area, and can be various types such as a large number of plate shapes and a large number of wire-like protrusions. In the case of a plate shape, it is generally preferable to extend along the air flow. In this embodiment, since the fins 53 have a lower temperature than the surrounding air, natural convection of the air going downward occurs around the fins 53. Therefore, the fin 53 preferably has a shape extending radially in the vertical direction toward the outside of the current lead room temperature ends 118a and 118b. Usually, it is preferable that the plurality of fins 53 be arranged in an axially symmetrical manner at equal intervals in the circumferential direction. However, when the current lead room temperature ends 118a and 118b are close to each other, a non-axisymmetric arrangement may be employed in order to avoid interference between the fins 53.

この実施形態によれば、フィン53がない場合に比べて、電流リード室温端118a、118bの実効的表面積が増大するので空気から電流リード室温端118a、118bへの入熱が増え、電流リード室温端118a、118bの温度を高めることができる。これにより、電流リード室温端118a、118b表面の着霜を防止または抑制することができる。   According to this embodiment, since the effective surface area of the current lead room temperature ends 118a and 118b is increased as compared with the case without the fins 53, the heat input from the air to the current lead room temperature ends 118a and 118b is increased. The temperature of the ends 118a and 118b can be increased. Thereby, frost formation on the surface of the current lead room temperature ends 118a and 118b can be prevented or suppressed.

式(1)において、たとえば、電流リード18a、18bの通電定格値1Aあたり0.001平方メートルとし、自然対流の熱伝達率hの代表的な値として約3W/m.Kとすると、通電定格値1Aあたり、非通電時の熱侵入量が0.03Wなので、電流リード室温端118a、118bの表面積(フィン53の表面積を含む)を通電定格値1Aあたり0.001平方メートル以上確保すれば、大気と電流リード室温端118a、118bとの温度差を10K以下にすることができる。この結果、電流リード室温端118a、118bの表面温度低下を抑制でき、電流リード室温端118a、118bの表面が着霜することを抑制することができる。 In the formula (1), for example, the current rating of the current leads 18a and 18b is 0.001 square meter per 1A, and a typical value of the natural convection heat transfer coefficient h is about 3 W / m 2 . Assuming K, the amount of heat penetration during non-energization is 0.03 W per energization rating value 1 A, so the surface area of the current leads at the room temperature ends 118 a and 118 b (including the surface area of the fin 53) is 0.001 square meter per energization rating value 1 A. If the above is ensured, the temperature difference between the atmosphere and the current lead room temperature ends 118a and 118b can be made 10K or less. As a result, a decrease in the surface temperature of the current lead room temperature ends 118a and 118b can be suppressed, and frost formation on the surface of the current lead room temperature ends 118a and 118b can be suppressed.

[第9の実施形態]
図10は、本発明に係る超電導装置の第9の実施形態の模式的立断面図である。この第9の実施形態では、電流リード18a、18bが断熱容器12の壁を貫通する部分に、絶縁端子33a、33bが配置され、電流リード18a、18bと断熱容器12の間の電気的絶縁を保持するとともに断熱容器12の気密を保持する構造になっている。絶縁端子33a、33bの室温部すなわち断熱容器12の上面から突出した部分は、全体が円錐面状に傾斜している。
[Ninth Embodiment]
FIG. 10 is a schematic vertical sectional view of a ninth embodiment of the superconducting device according to the present invention. In the ninth embodiment, the insulation terminals 33a and 33b are disposed at the portions where the current leads 18a and 18b penetrate the wall of the heat insulating container 12, and the electric insulation between the current leads 18a and 18b and the heat insulating container 12 is performed. It has a structure that holds the airtightness of the heat insulating container 12 while holding it. The room temperature portions of the insulating terminals 33a and 33b, that is, the portions protruding from the upper surface of the heat insulating container 12 are entirely inclined in a conical shape.

この実施形態によれば、電流リード室温端118a、118bの表面に水滴が付き、その水滴が絶縁端子33a、33bに滴り落ちても、傾斜により断熱容器12側に落とすことができ、これにより、絶縁端子33a、33b表面に水が付着することによる沿面絶縁の低下を抑制できる。   According to this embodiment, even if water droplets are attached to the surfaces of the current lead room temperature ends 118a and 118b, and the water droplets drip onto the insulating terminals 33a and 33b, they can be dropped toward the heat insulating container 12 due to the inclination. It is possible to suppress degradation of creeping insulation due to water adhering to the surfaces of the insulating terminals 33a and 33b.

[他の実施形態]
以上、本発明に係る超電導装置の種々の実施形態について説明したが、これらは単なる例示であって、本発明はこれらの実施形態に限定されるものではない。
[Other Embodiments]
Although various embodiments of the superconducting device according to the present invention have been described above, these are merely examples, and the present invention is not limited to these embodiments.

また、上述の実施形態の特徴を種々に組み合わせることも可能である。   In addition, the features of the above-described embodiments can be combined in various ways.

たとえば、第2の実施形態(図2)のフィン43を第3〜第5の実施形態に適用することも可能である。また、第2および第4〜第8の実施形態はいずれも第1の実施形態と同様の冷媒容器14と冷媒15とを用いる場合についての例であるが、第2および第4〜第8の実施形態の特徴を第3の実施形態と同様の伝熱板26を用いる場合に適用することも可能である。   For example, the fins 43 of the second embodiment (FIG. 2) can be applied to the third to fifth embodiments. The second and fourth to eighth embodiments are examples of the case where the refrigerant container 14 and the refrigerant 15 similar to those of the first embodiment are used, but the second and fourth to eighth embodiments are used. The characteristics of the embodiment can also be applied to the case where the heat transfer plate 26 similar to that of the third embodiment is used.

本発明に係る超電導装置の第1の実施形態の模式的立断面図。1 is a schematic sectional elevation view of a first embodiment of a superconducting device according to the present invention. 本発明に係る超電導装置の第2の実施形態の模式的立断面図。The typical elevation sectional view of a 2nd embodiment of the superconducting device concerning the present invention. 本発明に係る超電導装置の第3の実施形態の模式的立断面図。The typical elevation sectional view of a 3rd embodiment of the superconducting device concerning the present invention. 本発明に係る超電導装置の第4の実施形態の模式的立断面図。The typical elevation sectional view of the 4th embodiment of the superconducting device concerning the present invention. 本発明に係る超電導装置の第5の実施形態の模式的立断面図。The typical elevation sectional view of the 5th embodiment of the superconducting device concerning the present invention. 本発明に係る超電導装置の第6の実施形態の模式的立断面図。The typical elevation sectional view of the 6th embodiment of the superconducting device concerning the present invention. 本発明に係る超電導装置の第7の実施形態の模式的立断面図。The typical elevation sectional view of the 7th embodiment of the superconducting device concerning the present invention. 本発明に係る超電導装置の第8の実施形態の模式的立断面図。The typical elevation sectional view of the 8th embodiment of the superconducting device concerning the present invention. 図8のIX-IX線矢視拡大平断面図。The IX-IX line arrow expanded plane sectional view of FIG. 本発明に係る超電導装置の第9の実施形態の模式的立断面図。The typical elevation sectional view of the 9th embodiment of the superconducting device concerning the present invention.

符号の説明Explanation of symbols

11…超電導素子(超電導コイル)
12…断熱容器
13…真空
14…冷媒容器
15…冷媒
16…冷凍機
17…冷却ステージ
18a,18b…電流リード
19…絶縁端子
21…圧縮機
22…空冷放熱器
23a,23b…配管
24…収納容器
25…空気出入り口
26…伝熱板
27…箱
28…ガス吹き込み口
29…ガス排出口
30a,30b…加熱器
31a,31b…絶縁体
33a,33b…絶縁端子
40…低温容器
41…冷却部
43…フィン
50…加熱器電源
51…加熱器制御装置
53…フィン
118a,118b…電流リード室温端
11 ... Superconducting element (superconducting coil)
DESCRIPTION OF SYMBOLS 12 ... Thermal insulation container 13 ... Vacuum 14 ... Refrigerant container 15 ... Refrigerant 16 ... Refrigerator 17 ... Cooling stage 18a, 18b ... Current lead 19 ... Insulation terminal 21 ... Compressor 22 ... Air-cooling radiator 23a, 23b ... Piping 24 ... Storage container 25 ... Air inlet / outlet 26 ... Heat transfer plate 27 ... Box 28 ... Gas inlet 29 ... Gas outlet 30a, 30b ... Heater 31a, 31b ... Insulator 33a, 33b ... Insulated terminal 40 ... Low temperature vessel 41 ... Cooling part 43 ... Fin 50 ... Heater power supply 51 ... Heater controller 53 ... Fin 118a, 118b ... Current lead room temperature end

Claims (13)

極低温環境に冷却される超電導素子と、
この超電導素子を収容する低温容器と、
この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、
前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、
前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、
を有し、
前記冷凍機は、前記低温容器外に配置された空冷放熱器を有し、
前記空冷放熱器で加熱された空気が、前記電流リードのうちの前記低温容器外の部分である電流リード室温端を加熱するように配置されていること、を特徴とする超電導装置。
A superconducting element cooled to a cryogenic environment;
A cryogenic container that houses this superconducting element;
A refrigerator attached to the cryocontainer to cool the inside of the cryocontainer,
A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element and supplying a current supplied from outside the cryocontainer to the superconducting element;
An insulating terminal disposed so as to be interposed between the wall of the cryogenic vessel and the current lead, and electrically insulating between the wall of the cryogenic vessel and the current lead;
Have
The refrigerator has an air cooling radiator disposed outside the cryocontainer,
The superconducting device is characterized in that the air heated by the air-cooling radiator is arranged so as to heat a current lead room temperature end which is a portion of the current lead outside the cryogenic vessel.
前記冷凍機は、圧縮機を含み、
前記空冷放熱器は、前記圧縮機の周辺に配置されて、その空冷放熱器に冷却空気が流れるように構成され、
前記空冷放熱器を通った冷却空気が前記電流リードの周辺を通るように構成されていること、を特徴とする請求項1に記載の超電導装置。
The refrigerator includes a compressor,
The air cooling radiator is arranged around the compressor, and is configured such that cooling air flows through the air cooling radiator,
The superconducting device according to claim 1, wherein cooling air that has passed through the air-cooling radiator is configured to pass around the current lead.
前記低温容器、冷凍機、電流リードおよび絶縁端子のすべてを収容して空気出入り口を具備する収納容器をさらに有し、
前記収納容器の内側の温度が外側の温度よりも高くなるように構成されていること、
を特徴とする請求項1または請求項2に記載の超電導装置。
A storage container that accommodates all of the cryogenic container, refrigerator, current lead and insulated terminal and has an air inlet / outlet;
The inner temperature of the storage container is configured to be higher than the outer temperature,
The superconducting device according to claim 1 or 2, wherein
前記電流リード室温端および前記絶縁端子を収容する箱をさらに有し、
前記空冷放熱器で加熱された空気が前記箱の内部に導入されるように構成されていること、
を特徴とする請求項1または請求項2に記載の超電導装置。
Further comprising a box for accommodating the current lead room temperature end and the insulated terminal;
The air heated by the air-cooling radiator is configured to be introduced into the box,
The superconducting device according to claim 1 or 2, wherein
前記電流リード室温端にフィンが配置されていること、を特徴とする請求項1ないし請求項4のいずれか一項に記載の超電導装置。   The superconducting device according to any one of claims 1 to 4, wherein a fin is disposed at a room temperature end of the current lead. 前記フィンは少なくとも1枚の板状であって、前記空冷放熱器を通った冷却空気が流れる方向に延びていること、を特徴とする請求項5に記載の超電導装置。   The superconducting device according to claim 5, wherein the fin is at least one plate-like shape and extends in a direction in which cooling air passing through the air-cooling radiator flows. 極低温環境に冷却される超電導素子と、
この超電導素子を収容する低温容器と、
この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、
前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、
前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、
前記電流リードのうちの前記低温容器の外側部分である電流リード室温端の周囲に配置された加熱器と、
を有することを特徴とする超電導装置。
A superconducting element cooled to a cryogenic environment;
A cryogenic container that houses this superconducting element;
A refrigerator attached to the cryocontainer to cool the inside of the cryocontainer,
A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element and supplying a current supplied from outside the cryocontainer to the superconducting element;
An insulating terminal disposed so as to be interposed between the wall of the cryogenic vessel and the current lead, and electrically insulating between the wall of the cryogenic vessel and the current lead;
A heater disposed around a current lead room temperature end that is an outer portion of the cryogenic vessel of the current lead;
A superconducting device characterized by comprising:
前記加熱器は電気ヒーターであって、
前記超伝導素子へ供給される電流が小さいときに前記電気ヒーターの発熱量が増大するように電気ヒーターを制御する制御装置をさらに有すること、
を特徴とする請求項7に記載の超電導装置。
The heater is an electric heater,
Further comprising a control device for controlling the electric heater so that the amount of heat generated by the electric heater increases when the current supplied to the superconducting element is small;
The superconducting device according to claim 7.
極低温環境に冷却される超電導素子と、
この超電導素子を収容する低温容器と、
この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、
前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、
前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、
前記電流リードのうちの前記低温容器の外側部分である電流リード室温端の周囲を覆うように配置された電気絶縁体と、
を有することを特徴とする超電導装置。
A superconducting element cooled to a cryogenic environment;
A cryogenic container that houses this superconducting element;
A refrigerator attached to the cryocontainer to cool the inside of the cryocontainer,
A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element and supplying a current supplied from outside the cryocontainer to the superconducting element;
An insulating terminal disposed so as to be interposed between the wall of the cryogenic vessel and the current lead, and electrically insulating between the wall of the cryogenic vessel and the current lead;
An electrical insulator disposed to cover the periphery of the current lead room temperature end that is the outer portion of the cryogenic vessel of the current leads;
A superconducting device characterized by comprising:
極低温環境に冷却される超電導素子と、
この超電導素子を収容する低温容器と、
この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、
前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、
前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、
前記電流リードのうちの前記低温容器の外側部分である電流リード室温端の周囲に配置されたフィンと、
を有することを特徴とする超電導装置。
A superconducting element cooled to a cryogenic environment;
A cryogenic container that houses this superconducting element;
A refrigerator attached to the cryocontainer to cool the inside of the cryocontainer,
A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element and supplying a current supplied from outside the cryocontainer to the superconducting element;
An insulating terminal disposed so as to be interposed between the wall of the cryogenic vessel and the current lead, and electrically insulating between the wall of the cryogenic vessel and the current lead;
A fin disposed around a room temperature end of the current lead that is an outer portion of the cryogenic vessel of the current lead;
A superconducting device characterized by comprising:
前記フィンは少なくとも1枚の板状であって鉛直方向に延びていること、を特徴とする請求項10に記載の超電導装置。   The superconducting device according to claim 10, wherein the fin is at least one plate-like shape and extends in a vertical direction. 極低温環境に冷却される超電導素子と、
この超電導素子を収容する低温容器と、
この低温容器に取り付けられてその低温容器の内部を冷却するための冷凍機と、
前記低温容器の壁を貫通して前記超電導素子に電気的に接続され、前記低温容器の外から供給される電流を前記超電導素子に供給するための電流リードと、
前記低温容器の壁と電流リードとの間に介在するように配置され、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子と、
を有し、
前記絶縁端子の外表面が水平に対して傾斜していることを特徴とする超電導装置。
A superconducting element cooled to a cryogenic environment;
A cryogenic container that houses this superconducting element;
A refrigerator attached to the cryocontainer to cool the inside of the cryocontainer,
A current lead for passing through the wall of the cryocontainer and being electrically connected to the superconducting element and supplying a current supplied from outside the cryocontainer to the superconducting element;
An insulating terminal disposed so as to be interposed between the wall of the cryogenic vessel and the current lead, and electrically insulating between the wall of the cryogenic vessel and the current lead;
Have
A superconducting device, wherein an outer surface of the insulated terminal is inclined with respect to the horizontal.
低温容器内に超電導素子を収容し、
前記低温容器内部を冷凍機によって冷却し、
電流リードを、前記低温容器の壁を貫通させて、この電流リードを通じて前記超電導素子に電流を供給し、
前記低温容器の壁と電流リードとの間に、前記低温容器の壁と電流リードの間を電気的に絶縁する絶縁端子を介在させ、
前記冷凍機の空冷放熱器で加熱された空気によって、前記電流リードのうちの前記低温容器外の部分である電流リード室温端を加熱すること、を特徴とする超電導装置運転方法。
A superconducting element is housed in a cryogenic container,
The inside of the cryogenic container is cooled by a refrigerator,
A current lead is passed through the wall of the cryogenic vessel, and current is supplied to the superconducting element through the current lead;
Between the wall of the cryogenic vessel and the current lead, an insulating terminal for electrically insulating the wall of the cryogenic vessel and the current lead is interposed,
A method of operating a superconducting device, comprising: heating a room temperature end of a current lead, which is a portion of the current lead outside the cryogenic vessel, with air heated by an air-cooling radiator of the refrigerator.
JP2008134201A 2008-05-22 2008-05-22 Superconducting device and operation method thereof Expired - Fee Related JP5253880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134201A JP5253880B2 (en) 2008-05-22 2008-05-22 Superconducting device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134201A JP5253880B2 (en) 2008-05-22 2008-05-22 Superconducting device and operation method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013075785A Division JP5649682B2 (en) 2013-04-01 2013-04-01 Superconducting device

Publications (2)

Publication Number Publication Date
JP2009283678A true JP2009283678A (en) 2009-12-03
JP5253880B2 JP5253880B2 (en) 2013-07-31

Family

ID=41453829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134201A Expired - Fee Related JP5253880B2 (en) 2008-05-22 2008-05-22 Superconducting device and operation method thereof

Country Status (1)

Country Link
JP (1) JP5253880B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222959A (en) * 2010-01-05 2011-11-04 General Electric Co <Ge> Current lead assembly for superconductive magnet
EP2711998A1 (en) * 2011-05-18 2014-03-26 Sumitomo Electric Industries, Ltd. Fault current limiter
KR101509395B1 (en) 2014-04-15 2015-04-08 두산중공업 주식회사 Superconductive wire material test apparatus
JP2016201507A (en) * 2015-04-14 2016-12-01 住友電気工業株式会社 Superconducting apparatus
WO2017170265A1 (en) * 2016-03-30 2017-10-05 住友重機械工業株式会社 Superconducting magnet device and cryogenic refrigerator system
CN114974790A (en) * 2021-02-19 2022-08-30 住友重机械工业株式会社 Superconducting magnet device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349265U (en) * 1986-09-17 1988-04-04
JPH04294507A (en) * 1991-03-25 1992-10-19 Mitsubishi Electric Corp Evaporated gas cooling type lead device
JPH04305909A (en) * 1991-04-02 1992-10-28 Sumitomo Electric Ind Ltd Current lead for superconducting magnet
JPH04321205A (en) * 1991-04-22 1992-11-11 Toshiba Corp Current lead of superconducting device
JPH06204575A (en) * 1992-11-11 1994-07-22 Toshiba Corp Cryogenic apparatus
JPH07192912A (en) * 1993-12-27 1995-07-28 Toshiba Corp Superconducting coil and diagnostic method of stability thereof
JP2001143922A (en) * 1999-11-11 2001-05-25 Toshiba Corp Superconducting magnet and circuit for protecting the same
JP2007317884A (en) * 2006-05-25 2007-12-06 Toshiba Corp Superconductive current limiter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349265U (en) * 1986-09-17 1988-04-04
JPH04294507A (en) * 1991-03-25 1992-10-19 Mitsubishi Electric Corp Evaporated gas cooling type lead device
JPH04305909A (en) * 1991-04-02 1992-10-28 Sumitomo Electric Ind Ltd Current lead for superconducting magnet
JPH04321205A (en) * 1991-04-22 1992-11-11 Toshiba Corp Current lead of superconducting device
JPH06204575A (en) * 1992-11-11 1994-07-22 Toshiba Corp Cryogenic apparatus
JPH07192912A (en) * 1993-12-27 1995-07-28 Toshiba Corp Superconducting coil and diagnostic method of stability thereof
JP2001143922A (en) * 1999-11-11 2001-05-25 Toshiba Corp Superconducting magnet and circuit for protecting the same
JP2007317884A (en) * 2006-05-25 2007-12-06 Toshiba Corp Superconductive current limiter

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222959A (en) * 2010-01-05 2011-11-04 General Electric Co <Ge> Current lead assembly for superconductive magnet
EP2711998A1 (en) * 2011-05-18 2014-03-26 Sumitomo Electric Industries, Ltd. Fault current limiter
EP2711998A4 (en) * 2011-05-18 2014-12-31 Sumitomo Electric Industries Fault current limiter
US9190838B2 (en) 2011-05-18 2015-11-17 Sumitomo Electric Industries, Ltd. Fault current limiter
KR101509395B1 (en) 2014-04-15 2015-04-08 두산중공업 주식회사 Superconductive wire material test apparatus
JP2016201507A (en) * 2015-04-14 2016-12-01 住友電気工業株式会社 Superconducting apparatus
WO2017170265A1 (en) * 2016-03-30 2017-10-05 住友重機械工業株式会社 Superconducting magnet device and cryogenic refrigerator system
CN109074932A (en) * 2016-03-30 2018-12-21 住友重机械工业株式会社 Superconducting magnet apparatus and ultra-low temperature refrigerating device system
JPWO2017170265A1 (en) * 2016-03-30 2019-02-07 住友重機械工業株式会社 Superconducting magnet device and cryogenic refrigerator system
CN109074932B (en) * 2016-03-30 2021-07-30 住友重机械工业株式会社 Superconducting magnet device and cryogenic refrigerator system
US11105540B2 (en) 2016-03-30 2021-08-31 Sumitomo Heavy Industries, Ltd. Superconducting magnet device and cryogenic refrigerator system
JP7071255B2 (en) 2016-03-30 2022-05-18 住友重機械工業株式会社 Superconducting magnet device and ultra-low temperature refrigerator system
CN114974790A (en) * 2021-02-19 2022-08-30 住友重机械工业株式会社 Superconducting magnet device

Also Published As

Publication number Publication date
JP5253880B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5253880B2 (en) Superconducting device and operation method thereof
JP5118815B2 (en) Electric bushings for superconducting members
JP5709507B2 (en) COOLING DEVICE AND AIR CONDITIONER HAVING THE SAME
US20080227647A1 (en) Current lead with high temperature superconductor for superconducting magnets in a cryostat
CN203950620U (en) Electrical insulators sleeve pipe and dismountable heat pipe
EP2860781B1 (en) Cooling container
JP2018186272A (en) Cooling structure of high voltage terminal
WO2012081056A1 (en) Cooling device and air conditioner provided therewith
JP2013500546A (en) Electrochemical energy storage device and method for cooling or heating electrochemical energy storage device
KR101423178B1 (en) Inductor with the cooling structure
JP5649682B2 (en) Superconducting device
US20160240899A1 (en) Temperature control device for electrochemical power source
US20100242530A1 (en) Condenser heatsink
JP5191800B2 (en) Cooling vessel and superconducting device
US8669469B2 (en) Cooling of high voltage devices
JP4686429B2 (en) Device for powering superconducting devices under medium or high voltage
JP2012127590A (en) Cooling apparatus and air conditioner including the same
JP6719601B2 (en) Circuit breaker
US12068668B2 (en) Electric machine cooling
WO2012081055A1 (en) Cooling device and air conditioner provided therewith
JP2006108560A (en) Current lead for superconductive apparatus
JP6084490B2 (en) Superconducting device
KR20170049891A (en) Terminal device for superconducting cable
JP4703545B2 (en) Superconducting devices and current leads
JP2007509283A (en) Cryogenic compressor enclosure apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Ref document number: 5253880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees