JP2009283550A - Electronic apparatus, and wiring method of ultrafine coaxial cable assembly in electronic apparatus - Google Patents

Electronic apparatus, and wiring method of ultrafine coaxial cable assembly in electronic apparatus Download PDF

Info

Publication number
JP2009283550A
JP2009283550A JP2008131877A JP2008131877A JP2009283550A JP 2009283550 A JP2009283550 A JP 2009283550A JP 2008131877 A JP2008131877 A JP 2008131877A JP 2008131877 A JP2008131877 A JP 2008131877A JP 2009283550 A JP2009283550 A JP 2009283550A
Authority
JP
Japan
Prior art keywords
cable
alignment
micro coaxial
cable group
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131877A
Other languages
Japanese (ja)
Other versions
JP4920008B2 (en
Inventor
Manabu Adachi
学 足達
Takashi Matsukawa
隆司 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008131877A priority Critical patent/JP4920008B2/en
Publication of JP2009283550A publication Critical patent/JP2009283550A/en
Application granted granted Critical
Publication of JP4920008B2 publication Critical patent/JP4920008B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insertion, Bundling And Securing Of Wires For Electric Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic apparatus for responding to a housing of a slide structure and using an ultrafine cable assembly excelling in a bending durability characteristic; and a wiring method of an ultrafine coaxial cable assembly. <P>SOLUTION: In a bending slide part between a first alignment part 11 and a second alignment part 12, a plurality of ultrafine coaxial cables C are divided into an even number of cable groups 13 and 14 in the order from one-side ends 11s and 12s of both the alignment parts 11 and 12 to the other-side ends 11t and 12t, and are formed into a wiring structure wherein the ultrafine coaxial cables C of the cable group 13, out of them, located at an odd-numbered position when counted from the one-side ends 11s and 12s of both the alignment parts 11 and 12 are bent in a direction heading the other-side ends 11t and 12t from the one-side ends 11s and 12s; the ultrafine coaxial cables C of the cable group 14 located at the even-numbered position are bent in a direction heading the one-side ends 11s and 12s from the other-side ends 11t and 12t; and the respective cable groups 13, 14 are superposed on the other cable groups 14, 13, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スライド構造の筐体に対応可能な極細同軸ケーブルアセンブリを用いた電子機器および電子機器における極細同軸ケーブルアセンブリの配線方法に関する。   The present invention relates to an electronic device using a micro coaxial cable assembly that can be applied to a slide-structured housing and a wiring method of the micro coaxial cable assembly in the electronic device.

従来、複数の筐体が連結された電子機器内(特に筐体間)の電気信号の伝送に用いられる内部配線材としては、FPC(Flexible Printed Circuit)が用いられている。近年、携帯電話に代表される電子機器の小型化・軽量化・多機能化は急速に進展している。そのため、電子機器内の電気信号の伝送容量が大きく、伝送スピードが高速化し、特に伝送周波数が高周波帯域になってきている。伝送特性や耐ノイズ特性から同軸ケーブルを採用する要求が増加している。   Conventionally, an FPC (Flexible Printed Circuit) has been used as an internal wiring member used for transmission of an electrical signal within an electronic device (particularly between housings) in which a plurality of housings are connected. In recent years, electronic devices typified by mobile phones have been rapidly reduced in size, weight, and functionality. For this reason, the transmission capacity of electric signals in electronic devices is large, the transmission speed is increased, and the transmission frequency is particularly in the high frequency band. The demand for using coaxial cables is increasing due to transmission characteristics and noise resistance.

同軸ケーブルは、中心導体と、その外周を覆う絶縁体と、その外側に中心導体に対して同軸状に配された外部導体と、その外周を覆う外皮とを有して構成されている。外部導体が中心導体の外側を取り囲み、電磁波をシールド(遮蔽)するので、耐ノイズ特性に優れている。極細同軸ケーブルは、同軸ケーブルの中でも径が極めて細い(外径0.2〜0.3mm程度)ため、狭いスペースでの配線に適している。   The coaxial cable is configured to include a center conductor, an insulator covering the outer periphery thereof, an outer conductor disposed coaxially with respect to the center conductor on the outer side, and an outer cover covering the outer periphery thereof. Since the outer conductor surrounds the outer side of the center conductor and shields (shields) electromagnetic waves, it has excellent noise resistance. The ultrafine coaxial cable has a very thin diameter (outside diameter of about 0.2 to 0.3 mm) among the coaxial cables, and is suitable for wiring in a narrow space.

例えば特許文献1には、互いにスライドする2枚の基板間を接続する基板間配線として、複数本の同軸ケーブルが両端部で平面上に束ねられ、同軸ケーブルの中間部の束ねられていない領域が余長として保持された接続構造が記載されている。また、その明細書の段落0018の記載によれば、同軸ケーブルの余長部分が基板間の2〜3mmという極狭い空間にも収容可能で、かつその空間に収容された基板間配線が基板間のスライド動作に追従可能とされている。また、段落0025、0026には、個々の同軸ケーブルが自由に屈曲することができ、基板間配線の屈曲性を阻害することがないとは記載されている。しかしながら、中間部の束ねられていない領域が絡み合う等して損傷するおそれがある。   For example, in Patent Document 1, as an inter-board wiring for connecting two substrates that slide with each other, a plurality of coaxial cables are bundled on a plane at both ends, and an unbundled region of the middle portion of the coaxial cable is provided. A connection structure held as an extra length is described. Further, according to the description in paragraph 0018 of the specification, the extra length portion of the coaxial cable can be accommodated in an extremely narrow space of 2 to 3 mm between the substrates, and the inter-substrate wiring accommodated in the space is between the substrates. It is possible to follow the sliding movement. Further, paragraphs 0025 and 0026 describe that individual coaxial cables can be freely bent and do not hinder the flexibility of inter-substrate wiring. However, there is a possibility that the unbundled region of the middle part may be damaged by being entangled.

また、特許文献2の図1(A)には、複数本の極細同軸ケーブルを2つの接続線群に区画し、接続線群同士を交差させたケーブルアセンブリが記載されている。このケーブルアセンブリは、さらに中央部を捩って図1(C)のように結束させると、2方向の回動(湾曲・捩れ)に対応可能であるとされている。しかしながら、この接続構造が互いにスライドする一対の筐体間に収容することは記載されていない。また、この接続構造を携帯電話に組み込む形態では、中央部を円筒状の結束部材で結束しているので可撓性に乏しく、スライド構造の筐体には対応できないと考えられる。
特開2007−036515号公報 特開2005−184344号公報
Further, FIG. 1A of Patent Document 2 describes a cable assembly in which a plurality of micro coaxial cables are divided into two connection line groups and the connection line groups intersect each other. When the cable assembly is further twisted and bound as shown in FIG. 1C, the cable assembly can cope with two-way rotation (curving / twisting). However, it is not described that the connection structure is housed between a pair of housings that slide with each other. Further, in the form in which this connection structure is incorporated in a mobile phone, the central portion is bound by a cylindrical binding member, so that the flexibility is poor, and it is considered that it cannot be applied to a slide structure housing.
JP 2007-036515 A JP 2005-184344 A

引用文献1に挙げられているようにα形状に配する場合、「α」の重なり部分は極細同軸ケーブルが整列する幅方向となり、広い配線スペースが必要という欠点がある。また、極細同軸ケーブルの整列本数が多いと、α形状に配するのが困難である。また、Ω形状に配する場合、基板間隔が極細同軸ケーブルの外径の4倍以上必要であり、基板間隔を狭くするのには限度がある。また、基板のスライド方向は引用文献1に図示されているように極細同軸ケーブルの長さ方向とする必要がある。したがって、複数本の極細同軸ケーブルが整列する幅方向にスライドするように配線するのは、スライド時に極細同軸ケーブルがねじれてしまうため、困難である。   When arranged in the α shape as listed in the cited document 1, the overlapping portion of “α” is in the width direction in which the micro coaxial cables are aligned, and there is a disadvantage that a wide wiring space is required. Also, if the number of aligned micro coaxial cables is large, it is difficult to arrange them in an α shape. In addition, when arranged in an Ω shape, the substrate interval needs to be four times or more the outer diameter of the micro coaxial cable, and there is a limit to reducing the substrate interval. Further, the sliding direction of the substrate needs to be the length direction of the micro coaxial cable as shown in the cited document 1. Therefore, it is difficult to perform wiring so as to slide in the width direction in which a plurality of micro coaxial cables are aligned because the micro coaxial cables are twisted during sliding.

図6に示すように、複数本の極細同軸ケーブルCを両端末でそれぞれ一列に揃えてなる極細同軸ケーブルアセンブリ3を用いる場合、スライド移動に対応するにはケーブルに余長が必要である。しかしながら、多数の極細同軸ケーブルが同じ方向に湾曲していると、ケーブルの固定端となる端末部分1,2に負荷が集中して断線しやすい。多数の極細同軸ケーブルを一列に整列したとき、整列方向の中央部よりも端部(図6の左側・右側の端部)に負荷が集中する傾向がある。また、ケーブル同士が絡まることによっても断線するおそれがある。   As shown in FIG. 6, when using the micro coaxial cable assembly 3 in which a plurality of micro coaxial cables C are arranged in a line at both ends, an extra length is required for the cable to cope with the sliding movement. However, when a large number of micro coaxial cables are bent in the same direction, the load is concentrated on the terminal portions 1 and 2 that are fixed ends of the cable, and the wire is easily disconnected. When a large number of micro coaxial cables are aligned in a row, the load tends to concentrate at the end (left and right ends in FIG. 6) rather than the central portion in the alignment direction. Moreover, there exists a possibility of disconnection also when cables are entangled.

本発明は、上記事情に鑑みてなされたものであり、スライド構造の筐体に対応可能で、屈曲耐久特性に優れる極細同軸ケーブルアセンブリを用いた電子機器および極細同軸ケーブルの配線方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides an electronic device using a micro coaxial cable assembly that is compatible with a sliding structure housing and has excellent bending durability characteristics, and a wiring method for the micro coaxial cable. Is an issue.

前記課題を解決するため、複数本の極細同軸ケーブルを第1の整列部および第2の整列部でそれぞれ一列に揃えてなる極細同軸ケーブルアセンブリと、前記第1の整列部が連結された第1の筐体と、前記第2の整列部が連結された第2の筐体とを備え、前記第1の筐体と前記第2の筐体とが、その互いに対向する対向面に沿う所定のスライド方向に往復移動可能に取り付けられた電子機器であって、
前記複数本の極細同軸ケーブルは、前記第1の整列部と前記第2の整列部との間の屈曲摺動部分が、前記第1の筐体および前記第2の筐体の互いに対向する対向面の間に収容され、前記屈曲摺動部分において、前記複数本の極細同軸ケーブルが、両整列部の一端から他端まで順に偶数個のケーブル群に区画され、
そのうち両整列部の一端から数えて奇数番目にあたるケーブル群の極細同軸ケーブルが、両整列部の一端から他端へ向かう方向に湾曲するとともに、両整列部の一端から数えて偶数番目にあたるケーブル群の極細同軸ケーブルが、両整列部の他端から一端へ向かう方向に湾曲し、いずれのケーブル群もが、他のいずれかのケーブル群と重なり合っていることを特徴とする電子機器を提供する。
In order to solve the above-described problem, a micro coaxial cable assembly in which a plurality of micro coaxial cables are aligned in a row at each of a first alignment portion and a second alignment portion, and a first that is connected to the first alignment portion. And a second casing to which the second alignment portion is connected, and the first casing and the second casing are arranged along a predetermined facing surface facing each other. An electronic device attached so as to be reciprocally movable in a sliding direction,
In the plurality of micro coaxial cables, the bending sliding portions between the first alignment portion and the second alignment portion are opposed to each other of the first housing and the second housing. In the bent sliding portion, the plurality of micro coaxial cables are partitioned into an even number of cable groups in order from one end to the other end of both alignment portions,
Among them, the micro coaxial cables of the odd-numbered cable group counted from one end of both aligned parts are curved in the direction from one end of both aligned parts to the other end, and the even-numbered cable group counted from one end of both aligned parts. Provided is an electronic device in which a micro coaxial cable is curved in a direction from one end to the other end of both alignment portions, and any of the cable groups overlaps with any of the other cable groups.

この電子機器においては、前記ケーブル群同士の重なり合いは、あるケーブル群と他のケーブル群とが複数箇所で重なり合う場合において、当該あるケーブル群と他のケーブル群との上下関係が前記複数箇所を通じて同じになっており、
前記ケーブル群ごとに、両整列部の一端から他端へ向かう方向に湾曲するか、他端から一端へ向かう方向に湾曲するかが、前記第1の筐体および前記第2の筐体の前記対向面によって保持されている構成とすることができる。
また、前記偶数個のケーブル群の個数を2Nとし、nを1からNまでの各整数とするとき、両整列部の一端から数えて2n−1番目にあたるケーブル群と、両整列部の一端から数えて2n番目にあたるケーブル群とが2箇所で重なり合い、そのうち1箇所では2n−1番目にあたるケーブル群が2n番目にあたるケーブル群よりも上に、別の1箇所では2n−1番目にあたるケーブル群が2n番目にあたるケーブル群よりも下に、重なり合っている構成とすることができる。
In this electronic apparatus, the overlapping of the cable groups is such that when a certain cable group and another cable group overlap at a plurality of locations, the vertical relationship between the certain cable group and the other cable group is the same throughout the plurality of locations. And
Whether each of the cable groups is bent in a direction from one end to the other end of both alignment portions or in a direction from the other end to the one end, the first housing and the second housing are It can be set as the structure currently hold | maintained by the opposing surface.
Further, when the number of the even number of cable groups is 2N and n is an integer from 1 to N, the 2n-1th cable group counted from one end of both alignment parts and one end of both alignment parts The 2n-th cable group that is counted overlaps at two locations, of which the 2n-1st cable group is higher than the 2n-th cable group, and at another one location, the 2n-1th cable group is 2n. It can be set as the structure which overlaps below the cable group which hits the second.

さらに本発明は、複数本の極細同軸ケーブルを第1の整列部および第2の整列部でそれぞれ一列に揃えてなる極細同軸ケーブルアセンブリと、前記第1の整列部が連結された第1の筐体と、前記第2の整列部が連結された第2の筐体とを備え、前記第1の筐体と前記第2の筐体とが、その互いに対向する対向面に沿う所定のスライド方向に往復移動可能に取り付けられた電子機器における極細同軸ケーブルアセンブリの配線方法であって、
前記複数本の極細同軸ケーブルを、前記第1の整列部と前記第2の整列部との間の屈曲摺動部分において、両整列部の一端から他端まで順に偶数個のケーブル群に区画し、そのうち両整列部の一端から数えて奇数番目にあたるケーブル群の極細同軸ケーブルを、両整列部の一端から他端へ向かう方向に湾曲させるとともに、両整列部の一端から数えて偶数番目にあたるケーブル群の極細同軸ケーブルを、両整列部の他端から一端へ向かう方向に湾曲させることにより、いずれのケーブル群もが、他のいずれかのケーブル群と重なり合うようにすることを特徴とする極細同軸ケーブルアセンブリの配線方法を提供する。
Furthermore, the present invention provides a micro coaxial cable assembly in which a plurality of micro coaxial cables are aligned in a row at each of a first alignment portion and a second alignment portion, and a first housing in which the first alignment portion is connected. A predetermined sliding direction along opposite surfaces of the first casing and the second casing, which are opposed to each other. A wiring method of a micro coaxial cable assembly in an electronic device attached to be reciprocally movable,
The plurality of micro coaxial cables are partitioned into an even number of cable groups in order from one end to the other end of both alignment portions at a bending sliding portion between the first alignment portion and the second alignment portion. In addition, the micro coaxial cables of the odd-numbered cable group counted from one end of both alignment portions are bent in the direction from one end to the other end of both alignment portions, and the even-numbered cable group counted from one end of both alignment portions. The micro coaxial cable is curved in a direction from the other end of both alignment portions toward one end, so that any cable group overlaps with any other cable group. An assembly wiring method is provided.

本発明によれば、複数本の極細同軸ケーブルを偶数個のケーブル群に分け相互に重なり合わせているので、極細同軸ケーブルの絡み合いが生じにくく、優れた屈曲耐久特性を発揮するものとなる。   According to the present invention, since a plurality of ultrafine coaxial cables are divided into an even number of cable groups and overlapped with each other, the ultrafine coaxial cables are hardly entangled and exhibit excellent bending durability characteristics.

以下、最良の形態に基づき、図面を参照して本発明を説明する。
図1、図2に、本発明の電子機器における極細同軸ケーブルアセンブリ10の配線構造の一形態例を示し、図3に、この配線構造の断面図を示す。
図3に概略構成を示す本発明の電子機器Mは、極細同軸ケーブルアセンブリ10と第1の筐体Lと第2の筐体Uを備え、第1の筐体Lと第2の筐体Uとは、その互いに対向する対向面P1,P2に沿う所定のスライド方向に往復移動可能に取り付けられている。
The present invention will be described below with reference to the drawings based on the best mode.
1 and 2 show an example of the wiring structure of the micro coaxial cable assembly 10 in the electronic apparatus of the present invention, and FIG. 3 shows a cross-sectional view of the wiring structure.
The electronic apparatus M of the present invention whose schematic configuration is shown in FIG. 3 includes a micro coaxial cable assembly 10, a first casing L, and a second casing U, and the first casing L and the second casing U. Is attached so as to be able to reciprocate in a predetermined sliding direction along the opposing surfaces P1, P2 facing each other.

図1および図2に示すように極細同軸ケーブルアセンブリ10は、複数本の極細同軸ケーブルCが第1の整列部11および第2の整列部12でそれぞれ一列に揃えられ、図3に示す筐体U,Lのスライド移動により、第1の整列部11と第2の整列部12との間の部分(屈曲摺動部分)Fが屈曲摺動する構造を有する。   As shown in FIG. 1 and FIG. 2, the micro coaxial cable assembly 10 includes a plurality of micro coaxial cables C aligned in a row at the first alignment portion 11 and the second alignment portion 12, respectively. A portion (bending sliding portion) F between the first alignment portion 11 and the second alignment portion 12 is bent and slid by the sliding movement of U and L.

ここで、スライド移動の態様は、往復直線移動であることが好ましい。図1は、筐体U,Lのスライド方向Aが極細同軸ケーブルアセンブリ10の整列部11,12における極細同軸ケーブルCの整列方向(図1の左右方向)に直交する場合を示し、図2は、筐体U,Lのスライド方向Aが前記整列方向に平行な場合を示す。なお、極細同軸ケーブルアセンブリ10の前記整列方向が筐体U,Lのスライド方向Aに対して斜め(任意の角度)であっても良い。
第1の整列部11における整列方向と第2の整列部12における整列方向との関係は、図1,図2に示すように互いに平行であることが好ましい。
Here, the slide movement mode is preferably a reciprocating linear movement. FIG. 1 shows a case where the sliding direction A of the casings U and L is orthogonal to the alignment direction (left and right direction in FIG. 1) of the micro coaxial cable C in the alignment portions 11 and 12 of the micro coaxial cable assembly 10. The case where the sliding direction A of the casings U and L is parallel to the alignment direction is shown. The alignment direction of the micro coaxial cable assembly 10 may be oblique (arbitrary angle) with respect to the sliding direction A of the housings U and L.
The relationship between the alignment direction in the first alignment portion 11 and the alignment direction in the second alignment portion 12 is preferably parallel to each other as shown in FIGS.

第1の整列部11は第1の筐体Lに連結され、第2の整列部12は第2の筐体に連結されている。第1の整列部11と第2の整列部12との間の屈曲摺動部分Fが、第1の筐体Lおよび第2の筐体Uの互いに対向する対向面P1,P2の間に収容されている。
具体的には、それぞれの筐体L,Uの内部に回路(図示せず)が収容され、回路に接続された回路側接続部と、極細同軸ケーブルアセンブリ10の端末とを接続することで、第1の筐体L内の回路と第2の筐体U内の回路とが極細同軸ケーブルアセンブリ10を介して接続される。回路側接続部と極細同軸ケーブルアセンブリ10の端末との接続は、コネクタや半田付け等、適宜の手法を用いることができる。
The first alignment unit 11 is connected to the first housing L, and the second alignment unit 12 is connected to the second housing. The bending sliding portion F between the first alignment portion 11 and the second alignment portion 12 is accommodated between the opposing surfaces P1, P2 of the first housing L and the second housing U that face each other. Has been.
Specifically, a circuit (not shown) is accommodated in each of the housings L and U, and a circuit side connection portion connected to the circuit is connected to a terminal of the micro coaxial cable assembly 10. The circuit in the first housing L and the circuit in the second housing U are connected via the micro coaxial cable assembly 10. For the connection between the circuit side connection portion and the terminal of the micro coaxial cable assembly 10, an appropriate method such as a connector or soldering can be used.

整列部11,12は、極細同軸ケーブルアセンブリ10の端末に設けられていても良い。また、図7に示すように、端末11c,12cが整列部11,12の外側にあっても良い。この場合、整列部11と端末11cの間、および整列部12と端末12cの間で、極細同軸ケーブルCは、それぞれの筐体の内部(第1の筐体Lの内部、および第2の筐体Uの内部)に収容することができる。   The alignment portions 11 and 12 may be provided at the end of the micro coaxial cable assembly 10. Further, as shown in FIG. 7, the terminals 11 c and 12 c may be outside the alignment units 11 and 12. In this case, between the alignment unit 11 and the terminal 11c and between the alignment unit 12 and the terminal 12c, the micro coaxial cable C is connected to the inside of each case (the inside of the first case L and the second case). It can be accommodated in the body U).

各極細同軸ケーブルCは、筐体L,Uのスライド移動に追従可能な余長を備えている。つまり、第1の整列部11と第2の整列部12の間において、極細同軸ケーブルCの長さが直線距離よりも長くされている。この余長は、筐体L,Uのスライド移動したときに自由に動くことができるよう、筐体の対向面P1,P2間に収容される必要がある。   Each of the micro coaxial cables C has a surplus length that can follow the sliding movement of the casings L and U. That is, the length of the micro coaxial cable C is longer than the linear distance between the first alignment portion 11 and the second alignment portion 12. This extra length needs to be accommodated between the opposing surfaces P1 and P2 of the casing so that it can move freely when the casings L and U slide.

本形態例では、極細同軸ケーブルアセンブリ10の屈曲摺動部分Fにおいて、複数本の極細同軸ケーブルCが、両整列部11,12の一端11s,12sから他端11t,12tまで順に2個のケーブル群13,14に区画されており、ケーブル群13,14ごとに、余長が湾曲する向きを変えている。   In this embodiment, in the bending sliding portion F of the micro coaxial cable assembly 10, a plurality of micro coaxial cables C are connected in order from one end 11s, 12s of both alignment portions 11, 12 to the other end 11t, 12t. The cable is divided into groups 13 and 14, and the direction in which the extra length curves is changed for each of the cable groups 13 and 14.

両整列部11,12の位置において、一端11s,12sから数えて奇数番目にあたるケーブル群13の極細同軸ケーブルCは、両整列部11,12の一端11s,12sから他端11t,12tへ向かう方向(図1,図2では右方向)に湾曲している。
これと同時に、一端11s,12sから数えて偶数番目にあたるケーブル群14の極細同軸ケーブルCは、両整列部11,12の他端11t,12tから一端11s,12sへ向かう方向(図1,図2では左方向)に湾曲している。
At the position of both alignment portions 11 and 12, the micro coaxial cable C of the cable group 13 corresponding to the odd number from the one end 11s and 12s is in the direction from the one end 11s and 12s to the other end 11t and 12t. It is curved in the right direction in FIGS.
At the same time, the micro coaxial cable C of the even-numbered cable group 14 counted from the one ends 11s and 12s is directed from the other ends 11t and 12t of the alignment portions 11 and 12 to the one ends 11s and 12s (FIGS. 1 and 2). Then it curves to the left).

第1の整列部11の一端11sから他端11tまでの整列順序と、第2の整列部12の一端12sから他端12tまでの整列順序は、すべての極細同軸ケーブルCについて同じである。つまり、第1のケーブル群13は、第1の整列部11の一端11s側の領域11aと第2の整列部12の一端12s側の領域12aとの間に配線され、第2のケーブル群14は、第1の整列部11の他端11t側の領域11bと第2の整列部12の他端12t側の領域12bとの間に配線される。同じケーブル群13,14の中でも、各極細同軸ケーブルCは第1の整列部11と同じ順序で第2の整列部12に整列される。   The alignment order from one end 11s to the other end 11t of the first alignment portion 11 and the alignment order from the one end 12s to the other end 12t of the second alignment portion 12 are the same for all the micro coaxial cables C. That is, the first cable group 13 is wired between the region 11 a on the one end 11 s side of the first alignment unit 11 and the region 12 a on the one end 12 s side of the second alignment unit 12, and the second cable group 14. Is wired between the region 11 b on the other end 11 t side of the first alignment portion 11 and the region 12 b on the other end 12 t side of the second alignment portion 12. Among the same cable groups 13 and 14, each micro coaxial cable C is aligned with the second alignment portion 12 in the same order as the first alignment portion 11.

これにより、整列部11,12においては、すべての極細同軸ケーブルCについて第1のケーブル群13が一端11s,12s側に、第2のケーブル群14が他端11t,12t側に位置するのに対して、極細同軸ケーブルアセンブリ10の長さ方向(図1,図2の上下方向)の中央部では、ケーブル群13,14の幅方向(図1,図2の左右方向)の順序が入れ替わっている。   Thereby, in the alignment parts 11 and 12, although the 1st cable group 13 is located in the one end 11s and 12s side and the 2nd cable group 14 is located in the other end 11t and 12t side about all the micro coaxial cables C. On the other hand, the order of the cable groups 13 and 14 in the width direction (left and right direction in FIGS. 1 and 2) is changed at the center in the length direction of the micro coaxial cable assembly 10 (up and down direction in FIGS. 1 and 2). Yes.

このため、ケーブル群13,14は、中央部と整列部11,12との間の2箇所で、相互に重なり合っている。
また、第1のケーブル群13と第2のケーブル群14との重なり合いは、第1のケーブル群13と第2のケーブル群14との上下関係が、複数の重なり箇所を通じて同じになっている。この例では、図1,図2の正面から見て、第1のケーブル群13が下で、第2のケーブル群14が上となるように重なり合っている。
For this reason, the cable groups 13 and 14 overlap each other at two locations between the central portion and the alignment portions 11 and 12.
In addition, as for the overlap between the first cable group 13 and the second cable group 14, the vertical relationship between the first cable group 13 and the second cable group 14 is the same throughout the plurality of overlapping portions. In this example, as viewed from the front of FIGS. 1 and 2, the first cable group 13 is on the lower side and the second cable group 14 is on the upper side.

本形態例の配線構造においては、図3に示すように、第1の整列部11と第2の整列部12との間の屈曲摺動部分Fが筐体の対向面P1,P2間に収容されており、極細同軸ケーブルCの余長に比べて、筐体の対向面P1,P2までの距離が近い。
このような状態では、極細同軸ケーブルCが湾曲する向きを逆にするような向きに外力が作用しても、凸の湾曲形状によって弾性的な反発力が生じるので、スライド移動の際に生じる力程度では極細同軸ケーブルCが湾曲する向きを反転させることはできない。
In the wiring structure of this embodiment, as shown in FIG. 3, the bending sliding portion F between the first alignment portion 11 and the second alignment portion 12 is accommodated between the opposing surfaces P1 and P2 of the housing. Compared to the extra length of the micro coaxial cable C, the distance to the facing surfaces P1, P2 of the housing is shorter.
In such a state, even if an external force acts in a direction that reverses the direction in which the micro coaxial cable C is bent, an elastic repulsive force is generated by the convex curved shape, so that a force generated during the slide movement is generated. To the extent, the direction in which the micro coaxial cable C curves cannot be reversed.

また、湾曲形状が上向きまたは下向きに(図3の時計回りまたは反時計回りに)回転するのも、筐体の対向面P1,P2までの距離が近いため、スライド移動の際に生じる力程度では困難である。
したがって、第1のケーブル群13が両整列部11,12の一端11s,12sから他端11t,12tへ向かう方向に湾曲し、第2のケーブル群14が両整列部11,12の他端11t,12tから一端11s,12sへ向かう方向に湾曲した状態が、筐体の対向面P1,P2によって保持される。
In addition, the curved shape rotates upward or downward (clockwise or counterclockwise in FIG. 3) because the distance to the facing surfaces P1 and P2 of the housing is short, so that the force generated during the sliding movement is about Have difficulty.
Accordingly, the first cable group 13 is bent in the direction from the one end 11s, 12s of the aligning portions 11, 12 to the other end 11t, 12t, and the second cable group 14 is bent at the other end 11t of the aligning portions 11, 12. , 12t to be bent in the direction toward the one ends 11s, 12s is held by the facing surfaces P1, P2 of the housing.

すなわち、筐体L,Uのスライドに伴う各ケーブルCの動きに対し、ケーブル群13,14の相互の重なり合いによる制限と、近接する筐体の対向面P1,P2による制限とが複合的に作用する結果、第1のケーブル群13が下側で第2のケーブル群14が上側となる位置関係が崩れにくくなる。同時に、それぞれのケーブル群13,14の中での極細同軸ケーブルCの整列順序も、維持される。
その結果、ケーブル群13,14同士の間でも、各ケーブル群13,14内でも、極細同軸ケーブルC同士の絡み合いや曲げ応力の集中が起こりにくく、筐体L,Uのスライド移動を多数回繰り返しても、極細同軸ケーブルCが断線しにくく、屈曲耐久特性に優れる。第1の筐体Lと第2の筐体Uとの対向面P1,P2同士の間隙が3mm以下の場合でも、ケーブルの損傷や断線を抑制し、長寿命化を図ることができる。
That is, for the movement of each cable C accompanying the sliding of the casings L and U, the limitation due to the mutual overlap of the cable groups 13 and 14 and the limitation due to the facing surfaces P1 and P2 of the adjacent casings act in combination. As a result, the positional relationship in which the first cable group 13 is on the lower side and the second cable group 14 is on the upper side is less likely to collapse. At the same time, the alignment order of the micro coaxial cables C in the respective cable groups 13 and 14 is also maintained.
As a result, entanglement and concentration of bending stress between the micro coaxial cables C hardly occur between the cable groups 13 and 14 and within each cable group 13 and 14, and the sliding movement of the housings L and U is repeated many times. However, the micro coaxial cable C is hard to be disconnected and has excellent bending durability. Even when the gap between the opposing surfaces P1 and P2 of the first casing L and the second casing U is 3 mm or less, cable damage and disconnection can be suppressed, and the service life can be extended.

屈曲摺動部分Fで粘着テープや接着剤・紐などの結束部材を要しないので、各極細同軸ケーブルCの曲がる位置は、各ケーブル群13,14の重なり合いが維持される範囲で変動可能である。このため、スライド移動の程度により、極細同軸ケーブルCの整列位置ごとに曲がり量のずれが必要な場合でも、極細同軸ケーブルCごとに異なる曲がり量を取ることができる。
また、複数のケーブル群13,14に区分けしているため、ケーブル群13,14ごとの整列幅が小さく、整列方向の端部にも負荷が集中しにくい。
Since the bending sliding portion F does not require a binding member such as an adhesive tape, adhesive, or string, the bending position of each micro coaxial cable C can be varied within a range in which the overlapping of the cable groups 13 and 14 is maintained. . For this reason, even when a deviation in the bending amount is required for each alignment position of the micro coaxial cable C depending on the degree of slide movement, a different bending amount can be taken for each micro coaxial cable C.
Further, since the cables are divided into a plurality of cable groups 13 and 14, the alignment width for each of the cable groups 13 and 14 is small, and the load is less likely to concentrate on the end portion in the alignment direction.

図1に示すように、筐体U,Lのスライド方向Aが整列部11,12における極細同軸ケーブルCの整列方向(図1の左右方向)に直交する場合、幅方向の配線スペースが狭い方が好ましい。本形態例の配線構造によれば、それぞれのケーブル群13,14を、他のケーブル群14,13に重ね合わせる向きに湾曲させるため、幅方向の配線スペースの広がりは小さい。本形態例での配線スペースの幅は、図6のように極細同軸ケーブルCをまっすぐ伸ばしたときの幅と同程度で済む。   As shown in FIG. 1, when the sliding direction A of the casings U and L is orthogonal to the alignment direction of the micro coaxial cables C in the alignment portions 11 and 12 (left and right direction in FIG. 1), the wiring space in the width direction is narrower Is preferred. According to the wiring structure of the present embodiment, each cable group 13, 14 is bent in a direction to be overlapped with the other cable groups 14, 13, so that the width of the wiring space in the width direction is small. The width of the wiring space in this embodiment can be about the same as the width when the micro coaxial cable C is straightened as shown in FIG.

図2に示すように、筐体U,Lのスライド方向Bが整列部11,12における極細同軸ケーブルCの整列方向(図2の左右方向)に平行な場合も、幅方向の配線スペースが狭い方が好ましい。本形態例の配線構造によれば、図2(b)のようにそれぞれのケーブル群13,14を、他のケーブル群14,13に重ね合わせる向きに湾曲させるため、この配線構造を図2(a)、(c)のように左右にスライド移動させても、本形態例での配線スペースの幅は、整列部11,12が移動する範囲内で十分であり、それ以上に左右に湾曲させて幅を取る必要がない。   As shown in FIG. 2, the wiring space in the width direction is also narrow when the sliding direction B of the housings U and L is parallel to the alignment direction (left and right direction in FIG. 2) of the micro coaxial cables C in the alignment portions 11 and 12. Is preferred. According to the wiring structure of the present embodiment example, as shown in FIG. 2B, the respective cable groups 13 and 14 are bent so as to be superimposed on the other cable groups 14 and 13, so that this wiring structure is shown in FIG. Even if it is slid left and right as in a) and (c), the width of the wiring space in this embodiment is sufficient within the range in which the alignment portions 11 and 12 move, and it is further bent to the left and right. It is not necessary to take the width.

図4に示すように、各ケーブル群13,14が各整列部11,12に接続される部分(屈曲摺動部分Fの根元部分)に樹脂等を塗布し固化させることで、局所的なケーブルの負荷を緩和することができる。このためのケーブル補強部15a,15b,16a,16bを形成する手法としては、例えば、紫外線硬化性樹脂を整列部11,12の縁からケーブルCに沿って1〜1.5mm程度の長さ塗布し、UV照射で硬化させる方法が挙げられる。ケーブル補強部15a,15b,16a,16bは、図4に示すようにケーブル群13,14ごとに別々としても良く、あるいは整列部11,12ごとに、複数のケーブル群13,14にまたがって1つの補強部を形成しても良い。   As shown in FIG. 4, local cables are applied by applying resin or the like to the portions where the cable groups 13 and 14 are connected to the alignment portions 11 and 12 (the base portions of the bent sliding portions F) and solidifying them. Can reduce the load. As a method for forming the cable reinforcing portions 15a, 15b, 16a, and 16b for this purpose, for example, an ultraviolet curable resin is applied from the edge of the alignment portions 11 and 12 to the length of about 1 to 1.5 mm along the cable C. And a method of curing by UV irradiation. The cable reinforcing portions 15a, 15b, 16a, and 16b may be provided separately for each of the cable groups 13 and 14 as shown in FIG. 4, or each of the aligned portions 11 and 12 extends over the plurality of cable groups 13 and 14. Two reinforcing portions may be formed.

図1〜図3に示すような電子機器Mにおける極細同軸ケーブルアセンブリ10の配線構造を構成するには、図6に示すように、複数本の極細同軸ケーブルCを第1の整列部1および第2の整列部2でそれぞれ一列に揃えてなる極細同軸ケーブルアセンブリ3を用意し、電子機器Mの筐体L,Uに組み込んで接続する方法が好ましい。
筐体L,Uとしては、第1の整列部が連結される第1の筐体Lと、第2の整列部が連結される第2の筐体Uとを備え、第1の筐体Lと第2の筐体Uとが、その互いに対向する対向面に沿う所定のスライド方向に往復移動可能に取り付けられたものが好ましい。
In order to configure the wiring structure of the micro coaxial cable assembly 10 in the electronic apparatus M as shown in FIGS. 1 to 3, as shown in FIG. 6, a plurality of micro coaxial cables C are connected to the first alignment section 1 and the first alignment section 1. It is preferable to prepare a micro coaxial cable assembly 3 that is aligned in a line at each of the two alignment portions 2 and to connect them by incorporating them in the casings L and U of the electronic apparatus M.
The casings L and U include a first casing L to which the first alignment unit is connected and a second casing U to which the second alignment unit is connected. And the second housing U are preferably attached so as to be able to reciprocate in a predetermined sliding direction along their opposing surfaces.

組立手順としては、次の手順が挙げられる。
図6の極細同軸ケーブルアセンブリ3の極細同軸ケーブルCを、第1の整列部1と前記第2の整列部2との間の屈曲摺動部分において、図1、図2に示すように両整列部11,12の一端11s,12s側と他端11t,12tとで2個のケーブル群13,14に区画する。
そのうち両整列部11,12の一端11s,12s側のケーブル群13の極細同軸ケーブルCを、両整列部11,12の一端11s,12sから他端11t,12tへ向かう方向に湾曲する。また、両整列部11,12の他端11t,12t側のケーブル群14の極細同軸ケーブルCを、両整列部11,12の他端11t,12tから一端11s,12sへ向かう方向に湾曲する。これにより、ケーブル群13,14が互いに重なり合うようにする。
組立中、特定の方向に湾曲させたケーブルCは、自身の弾性力のため、過度の外力を加えなければ湾曲方向を保つことができる。そして、組立が完了すれば、一対の筐体L,U間に収容されているので、湾曲方向の反転を防ぐことができる。
なお、組立手順は上記に限定されるものではなく、筐体L,Uの構造等に応じて、任意の手順を採用することができる。
As an assembling procedure, the following procedure can be cited.
As shown in FIGS. 1 and 2, the micro coaxial cable C of the micro coaxial cable assembly 3 of FIG. 6 is aligned at the bent sliding portion between the first alignment portion 1 and the second alignment portion 2 as shown in FIGS. The sections 11 and 12 are divided into two cable groups 13 and 14 by the one end 11s and 12s side and the other end 11t and 12t.
Among them, the micro coaxial cable C of the cable group 13 on the one end 11 s and 12 s side of both the alignment portions 11 and 12 is bent in a direction from the one end 11 s and 12 s of the alignment portions 11 and 12 toward the other end 11 t and 12 t. Further, the micro coaxial cable C of the cable group 14 on the other end 11t, 12t side of both the alignment portions 11, 12 is bent in a direction from the other end 11t, 12t of the alignment portions 11, 12 toward the one end 11s, 12s. As a result, the cable groups 13 and 14 overlap each other.
During assembly, the cable C bent in a specific direction can maintain the bending direction without applying excessive external force due to its own elastic force. And if an assembly is completed, since it accommodates between a pair of housing | casing L and U, the inversion of a bending direction can be prevented.
The assembly procedure is not limited to the above, and any procedure can be adopted according to the structure of the housings L and U.

同軸ケーブルは、単心線や撚り線等からなる中心導体と、その外周を覆う絶縁体と、絶縁体の外側に同軸状に配される外部導体と、その外側を被覆する外皮によって構成される。外部導体は、横巻き、螺旋巻き、網組構造などで構成することができる。
極細同軸ケーブルは、同軸ケーブルのうち中心導体のサイズがAWG36以下のケーブルであることが好ましく、AWG42〜50の範囲のケーブルであることがより好ましい。例えば、AWG46からAWG42のもの(外径が0.2〜0.3mm程度のもの)が挙げられる。なお、AWGとは、米国ワイヤーゲージ(American Wire Gauge)の略称であり、同軸ケーブルの業界で広く用いられている規格である。
A coaxial cable is composed of a central conductor made of a single core wire, a stranded wire, etc., an insulator covering the outer periphery thereof, an outer conductor arranged coaxially on the outer side of the insulator, and a sheath covering the outer side. . The outer conductor can be constituted by a horizontal winding, a spiral winding, a mesh structure, or the like.
The ultra-fine coaxial cable is preferably a cable having a central conductor size of AWG 36 or less, more preferably a cable in the range of AWG 42 to 50. For example, AWG 46 to AWG 42 (having an outer diameter of about 0.2 to 0.3 mm) can be used. Note that AWG is an abbreviation for American Wire Gauge, and is a standard widely used in the coaxial cable industry.

本発明の配線構造において、極細同軸ケーブルアセンブリを構成する複数本の極細同軸ケーブルをケーブル群に区画する個数は、偶数(2N)であれば4以上であっても良い。その例として、図5に、2N=4の場合を示す。   In the wiring structure of the present invention, the number of the plurality of micro coaxial cables constituting the micro coaxial cable assembly divided into cable groups may be 4 or more as long as it is an even number (2N). As an example, FIG. 5 shows a case where 2N = 4.

図5に示す配線構造の場合、極細同軸ケーブルアセンブリ20を構成する複数本の極細同軸ケーブルCは、第1の整列部21と第2の整列部22との間の屈曲摺動部分Fにおいて、両整列部21,22の一端21s,22sから他端21t,22tまで順に4個のケーブル群23,24,25,26に区画されている。これらのケーブル群23,24,25,26に対応して、第1の整列部21は4つの領域21a,21b,21c,21dに、第2の整列部22も4つの領域22a,22b,22c,22dに区画されている。   In the case of the wiring structure shown in FIG. 5, the plurality of micro coaxial cables C constituting the micro coaxial cable assembly 20 are arranged at the bending sliding portion F between the first alignment portion 21 and the second alignment portion 22. The alignment sections 21 and 22 are partitioned into four cable groups 23, 24, 25, and 26 in order from one end 21s, 22s to the other end 21t, 22t. Corresponding to these cable groups 23, 24, 25, 26, the first alignment portion 21 is divided into four regions 21 a, 21 b, 21 c, 21 d, and the second alignment portion 22 is also divided into four regions 22 a, 22 b, 22 c. , 22d.

これらのケーブル群23,24,25,26のうち、両整列部21,22の一端21s,22sから数えて奇数番目にあたるケーブル群23,25の極細同軸ケーブルCは、両整列部21,22の一端21s,22sから他端21t,22tへ向かう方向に湾曲するとともに、両整列部21,22の一端21s,22sから数えて偶数番目にあたるケーブル群24,26の極細同軸ケーブルCは、両整列部21,22の他端21t,22tから一端21s,22sへ向かう方向に湾曲している。
そして、いずれのケーブル群23〜26もが、他のいずれかのケーブル群と重なり合っている。例えば図6の場合、第1のケーブル群23は第2のケーブル群24および第4のケーブル群26と重なり合っているが、第3のケーブル群25は第4のケーブル群26のみと重なり合っている。
Among these cable groups 23, 24, 25, 26, the micro coaxial cables C of the cable groups 23, 25 that are odd-numbered from the one ends 21 s, 22 s of both the alignment parts 21, 22 are The micro coaxial cables C of the cable groups 24 and 26 that are curved in the direction from the one end 21 s and 22 s toward the other end 21 t and 22 t and are even-numbered from the one ends 21 s and 22 s of both the alignment sections 21 and 22 21 and 22 are curved in the direction from the other ends 21t and 22t to the one ends 21s and 22s.
Any of the cable groups 23 to 26 overlaps with any of the other cable groups. For example, in the case of FIG. 6, the first cable group 23 overlaps the second cable group 24 and the fourth cable group 26, but the third cable group 25 overlaps only the fourth cable group 26. .

偶数個のケーブル群23〜26の個数を2Nとし、nを1からNまでの各整数とするとき、両整列部21,22の一端21s,22sから数えて2n−1番目のケーブル群と2n番目のケーブル群(具体的には第1のケーブル群23と第2のケーブル群24の対、ならびに第3のケーブル群25と第4のケーブル群26の対)は、互いに図1や図2の極細同軸ケーブルアセンブリ10と同様の関係にあるから、スライド移動の範囲内で極細同軸ケーブルCが少なくとも2箇所で重なり合うことになる。   When the number of the even number of cable groups 23 to 26 is 2N and n is an integer from 1 to N, the 2n-1th cable group and 2n are counted from one end 21s, 22s of both alignment portions 21, 22. The first cable group (specifically, the pair of the first cable group 23 and the second cable group 24, and the pair of the third cable group 25 and the fourth cable group 26) are mutually connected in FIGS. Therefore, the micro coaxial cable C overlaps at least two places within the range of sliding movement.

2n番目のケーブル群と2n+1番目のケーブル群(例えば第2のケーブル群24と第3のケーブル群25)は、隣接していても互いから遠ざかる方向に湾曲しているから、これらのケーブル群24,25同士が重なり合う必要はないが、スライド移動中に重なり合いが生じても構わない。
2n−1番目のケーブル群と2n+2番目のケーブル群(例えば第1のケーブル群23と第4のケーブル群26)は、隣接していなくても互いに近づく方向に湾曲しているから、湾曲の程度によって重なり合う場合があるが、スライド移動中に重なり合いが解消しても構わない。
Even though the 2n-th cable group and the 2n + 1-th cable group (for example, the second cable group 24 and the third cable group 25) are adjacent to each other, they are curved away from each other. , 25 need not overlap, but overlap may occur during slide movement.
Since the 2n-1th cable group and the 2n + 2nd cable group (for example, the first cable group 23 and the fourth cable group 26) are not adjacent to each other but are curved in a direction approaching each other, the degree of curvature May overlap, but the overlap may be eliminated during the slide movement.

いずれにしても、すべてのケーブル群23〜26が、少なくとも他のいずれかのケーブル群と重なり合うことになるので、筐体L,Uのスライドに伴う各ケーブルCの動きに対し、ケーブル群23〜26の相互の重なり合いによる制限と、近接する筐体の対向面P1,P2による制限とが複合的に作用する結果、重なり合った各ケーブル群23〜26の上下関係が崩れにくくなる。同時に、それぞれのケーブル群23〜26の中での極細同軸ケーブルCの整列順序も、維持される。
その結果、ケーブル群23〜26同士の間でも、各ケーブル群23〜26内でも、極細同軸ケーブルC同士の絡み合いや曲げ応力の集中が起こりにくく、筐体L,Uのスライド移動を多数回繰り返しても、極細同軸ケーブルCが断線しにくく、屈曲耐久特性に優れる。第1の筐体Lと第2の筐体Uとの対向面P1,P2同士の間隙が3mm以下の場合でも、ケーブルの損傷や断線を抑制し、長寿命化を図ることができる。
In any case, since all the cable groups 23 to 26 overlap at least one of the other cable groups, the cable groups 23 to 26 correspond to the movement of each cable C accompanying the sliding of the housings L and U. As a result of the combined effect of the limitation due to the overlapping of the 26 and the limitation due to the opposing surfaces P1 and P2 of the adjacent housings, the vertical relationship of the overlapping cable groups 23 to 26 is not easily disrupted. At the same time, the alignment order of the micro coaxial cables C in the respective cable groups 23 to 26 is also maintained.
As a result, entanglement and concentration of bending stress between the micro coaxial cables C hardly occur between the cable groups 23 to 26 and within each cable group 23 to 26, and the sliding movement of the housings L and U is repeated many times. However, the micro coaxial cable C is hard to be disconnected and has excellent bending durability. Even when the gap between the opposing surfaces P1 and P2 of the first casing L and the second casing U is 3 mm or less, cable damage and disconnection can be suppressed, and the service life can be extended.

図5の配線構造の場合、あるケーブル群と他のケーブル群とが複数箇所で重なり合う場合、これら2つのケーブル群の上下関係は、すべての重なり箇所を通じて同じになっている。重なり合いの上下関係は任意であるが、この例では、奇数番目のケーブル群23,25が下側、偶数番目のケーブル群24,26が上側になっている。
また、図3の例と同様に、すべてのケーブル群23,24,25,26が一対の筐体L,U間に収容されているので、湾曲方向の反転を防ぐことができる。
In the case of the wiring structure of FIG. 5, when a certain cable group and another cable group overlap each other at a plurality of locations, the vertical relationship between these two cable groups is the same throughout all the overlapping portions. In this example, the odd-numbered cable groups 23 and 25 are on the lower side, and the even-numbered cable groups 24 and 26 are on the upper side.
Moreover, since all the cable groups 23, 24, 25, and 26 are accommodated between the pair of housings L and U as in the example of FIG. 3, the bending direction can be prevented from being reversed.

ケーブルの湾曲方向の反転を防ぐため、ケーブル群の上下関係が重なり箇所ごとに異なるようにする方法もある。例えば、図8に示す配線構造では、極細同軸ケーブルアセンブリ30を構成する複数本の極細同軸ケーブルCは、第1の整列部31と第2の整列部32との間の屈曲摺動部分Fにおいて2個のケーブル群33,34に区画され、これらのケーブル群33,34は2箇所で重なり合っているが、一方の重なり箇所では第1のケーブル群33が第2のケーブル群34の下側にあり、もう一方の重なり箇所では第1のケーブル群33が第2のケーブル群34の上側にある。   In order to prevent reversal of the bending direction of the cable, there is a method in which the vertical relationship of the cable group is made different for each overlapping portion. For example, in the wiring structure shown in FIG. 8, the plurality of micro coaxial cables C constituting the micro coaxial cable assembly 30 are in the bending sliding portion F between the first alignment portion 31 and the second alignment portion 32. The cable groups 33 and 34 are divided into two cable groups 33 and 34, and the cable groups 33 and 34 are overlapped at two places, but the first cable group 33 is below the second cable group 34 at one overlap part. Yes, the first cable group 33 is on the upper side of the second cable group 34 in the other overlapping portion.

このような配線構造によれば、湾曲方向が互いのケーブル群33,34によって制限されるため、筐体が近接していない状態においても湾曲方向の反転を防ぐことができる。
また、図8に示す配線構造を複数組並列して、ケーブル群の個数が4個以上とすることも可能である。つまり、偶数個のケーブル群の個数を2Nとし、nを1からNまでの各整数とするとき、両整列部の一端から数えて2n−1番目にあたるケーブル群の極細同軸ケーブルと、両整列部の一端から数えて2n番目にあたるケーブル群の極細同軸ケーブルとが2箇所で重なり合い、そのうち1箇所では2n−1番目にあたるケーブル群が2n番目にあたるケーブル群よりも上に、別の1箇所では2n−1番目にあたるケーブル群が2n番目にあたるケーブル群よりも下に、重なり合っている配線構造とすることができる。
According to such a wiring structure, since the bending direction is limited by the mutual cable groups 33 and 34, inversion of the bending direction can be prevented even in a state where the casing is not close.
Further, a plurality of sets of wiring structures shown in FIG. 8 can be arranged in parallel so that the number of cable groups is four or more. That is, when the number of the even number of cable groups is 2N and n is an integer from 1 to N, the ultra-fine coaxial cable of the cable group corresponding to 2n-1th counted from one end of both alignment sections and both alignment sections The 2n-th micro-coaxial cable of the cable group counted from one end of the cable overlaps at two locations, one of which is the 2n-1 cable group above the 2n-th cable group and the other one is 2n- A wiring structure in which the first cable group is overlapped below the 2n-th cable group can be obtained.

本発明は、回路を有する複数の筐体がスライド可能に接合され、これらの筐体内の回路同士を極細同軸ケーブル等の電線によって電気的に接続してなる電子機器、特に、携帯電話、PDA(Personal Digital Assistants)などのモバイル端末機器、および該電子機器の筐体間配線に用いることが可能である。電子機器を構成する筐体の個数は2個に限らず、3個以上であっても良い。
例えば筐体の個数が3個である場合に、第1の筐体と第2の筐体との間の筐体間配線として、本発明の極細同軸ケーブルアセンブリおよび配線構造が用いられても良い。また、第2の筐体と第3の筐体との間の筐体間配線として、本発明の極細同軸ケーブルアセンブリおよび配線構造が用いられても良い。
The present invention relates to an electronic device formed by joining a plurality of casings having circuits in a slidable manner, and electrically connecting the circuits in these casings by an electric wire such as a micro coaxial cable. It can be used for mobile terminal devices such as Personal Digital Assistants) and wiring between housings of the electronic devices. The number of housings constituting the electronic device is not limited to two, and may be three or more.
For example, when the number of casings is three, the micro coaxial cable assembly and wiring structure of the present invention may be used as the inter-casing wiring between the first casing and the second casing. . Further, as the inter-housing wiring between the second housing and the third housing, the micro coaxial cable assembly and the wiring structure of the present invention may be used.

以下、実施例をもって本発明を具体的に説明する。
AWG42(外径:0.29mm)の極細同軸ケーブル(単芯)を40芯用意し、0.4mmのピッチでフラットに整線した後、両端末の外被を除去して中心導体および外部導体を露出し、外部導体はそれぞれの端末ごとに一対のグランドバーで挟み込み、半田付けをして接続部を形成し、本実施例の極細同軸ケーブルアセンブリを得た。両接続部間でケーブルが屈曲可能な部分のケーブル長(グランドバー間)は34mmである。この実施例では接続部に日本航空電子工業株式会社(JAE)のコネクタ(型番:FI−J 40c)を取り付けた。
Hereinafter, the present invention will be specifically described with reference to examples.
Prepare 40 cores of AWG42 (outer diameter: 0.29mm) ultra-coaxial cable (single core), straighten it flat at a pitch of 0.4mm, and then remove the outer sheath of both ends to remove the center conductor and the outer conductor The outer conductor was sandwiched between a pair of ground bars at each end and soldered to form a connection portion, thereby obtaining a micro coaxial cable assembly of this example. The cable length (between the ground bars) of the portion where the cable can be bent between both connecting portions is 34 mm. In this example, a connector (model number: FI-J 40c) of Japan Aviation Electronics Industry (JAE) was attached to the connection part.

屈曲耐久特性の試験装置として、下側の固定板に対して上側のスライド板が水平方向に往復してスライド可能な装置を用いた。グランドバー間のケーブルを20芯ずつ2束に分け、これら2束を図1に示すように湾曲させ、極細同軸ケーブルアセンブリの一方の端末のコネクタを上側のスライド板に、他方の端末のコネクタを下側の固定板に連結した。
スライド長32mm、スライドスピード40mm毎秒、折り返し待機時間0秒、ケーブル配線スペース(高さ)1.5mm、目標停止回数15万回として、スライド板をスライド(ケーブルの湾曲部を屈伸)させた。
As a bending durability test apparatus, an apparatus was used in which the upper slide plate reciprocated in the horizontal direction relative to the lower fixed plate. The cable between the ground bars is divided into two bundles of 20 cores, the two bundles are bent as shown in FIG. 1, and the connector of one end of the micro coaxial cable assembly is placed on the upper slide plate and the connector of the other end is placed. Connected to the lower fixing plate.
The slide plate was slid (the curved portion of the cable was bent and stretched) with a slide length of 32 mm, a slide speed of 40 mm per second, a turn-back waiting time of 0 second, a cable wiring space (height) of 1.5 mm, and a target stop count of 150,000.

上記試験を実施したところ、試験後の極細同軸ケーブルアセンブリには、断線や外面的な損傷は確認されなかった。また、2芯を選んで試験前後の中心導体の電気抵抗を測定したところ、表1に示すように、#1、#2のいずれも電気抵抗値に目立った変化がなく、電気的にも断線や損傷による顕著な抵抗値増大は見出せなかった。   When the above test was conducted, no disconnection or external damage was found in the micro coaxial cable assembly after the test. Moreover, when two cores were selected and the electrical resistance of the center conductor before and after the test was measured, as shown in Table 1, there was no noticeable change in the electrical resistance values of both # 1 and # 2, and the electrical disconnection occurred. No significant increase in resistance due to damage was found.

Figure 2009283550
Figure 2009283550

また、#1、#2の2芯について特性インピーダンスを測定したが、試験前と試験後とで変化がないことを確認できた。   Moreover, although the characteristic impedance was measured for the two cores # 1 and # 2, it was confirmed that there was no change between before and after the test.

本発明は、スライド構造の筐体を備える各種の電子機器の内部配線に利用することができる。   The present invention can be used for internal wiring of various electronic devices having a sliding structure.

(a),(b)は、本発明の電子機器における極細同軸ケーブルアセンブリの配線構造の一形態例を示す平面図である。(A), (b) is a top view which shows one example of the wiring structure of the micro coaxial cable assembly in the electronic device of this invention. (a)〜(c)は、本発明の電子機器における極細同軸ケーブルアセンブリの配線構造の一形態例を示す平面図である。(A)-(c) is a top view which shows an example of the wiring structure of the micro coaxial cable assembly in the electronic device of this invention. 本発明の電子機器における極細同軸ケーブルアセンブリの配線構造の断面図である。It is sectional drawing of the wiring structure of the micro coaxial cable assembly in the electronic device of this invention. 本発明の電子機器における極細同軸ケーブルアセンブリの配線構造の一形態例であって、屈曲摺動部分と整列部との境界部を補強した構造の例を示す平面図である。It is a top view which shows an example of the wiring structure of the micro coaxial cable assembly in the electronic device of this invention, Comprising: The example of the structure which reinforced the boundary part of a bending sliding part and an alignment part. 本発明の電子機器における極細同軸ケーブルアセンブリの配線構造の一形態例であって、ケーブル群を4個とした例を示す平面図である。It is a top view which is an example of the wiring structure of the micro coaxial cable assembly in the electronic device of this invention, Comprising: The example which used four cable groups. 極細同軸ケーブルアセンブリの一例を示すAn example of a micro coaxial cable assembly 極細同軸ケーブルアセンブリの端末が整列部の外側にある例を示す平面図である。It is a top view which shows the example which has the terminal of a micro coaxial cable assembly in the outer side of an alignment part. 本発明の電子機器における極細同軸ケーブルアセンブリの配線構造の一形態例であって、ケーブル群同士の重なり合いの上下関係が異なる例を示す平面図である。It is a top view which shows an example of the wiring structure of the micro coaxial cable assembly in the electronic device of this invention, Comprising: The upper and lower relationship of the overlapping of cable groups differs.

符号の説明Explanation of symbols

A,B…スライド方向、C…極細同軸ケーブル、F…屈曲摺動部分、L…第1の筐体、M…電子機器、P1,P2…筐体の対向面、U…第2の筐体、10,10A,20,30…極細同軸ケーブルアセンブリ、1,11,21,31…第1の整列部、11s,21s,31s…一端、11t,21t,31t…他端、2,12,22,32…第2の整列部、12s,22s,32s…一端、12t,22t,32t…他端、13,23,25,33…一端から数えて奇数番目のケーブル群、14,24,26,34…一端から数えて偶数番目のケーブル群。 A, B ... slide direction, C ... micro coaxial cable, F ... bent sliding part, L ... first housing, M ... electronic device, P1, P2 ... opposite surface of the housing, U ... second housing 10, 10A, 20, 30 ... extra fine coaxial cable assembly, 1, 11, 21, 31 ... first alignment part, 11s, 21s, 31s ... one end, 11t, 21t, 31t ... other end, 2, 12, 22 , 32 ... second alignment section, 12s, 22s, 32s ... one end, 12t, 22t, 32t ... other end, 13, 23, 25, 33 ... odd-numbered cable groups counted from one end, 14, 24, 26, 34: An even-numbered cable group counted from one end.

Claims (4)

複数本の極細同軸ケーブルを第1の整列部および第2の整列部でそれぞれ一列に揃えてなる極細同軸ケーブルアセンブリと、前記第1の整列部が連結された第1の筐体と、前記第2の整列部が連結された第2の筐体とを備え、前記第1の筐体と前記第2の筐体とが、その互いに対向する対向面に沿う所定のスライド方向に往復移動可能に取り付けられた電子機器であって、
前記複数本の極細同軸ケーブルは、前記第1の整列部と前記第2の整列部との間の屈曲摺動部分が、前記第1の筐体および前記第2の筐体の互いに対向する対向面の間に収容され、前記屈曲摺動部分において、前記複数本の極細同軸ケーブルが、両整列部の一端から他端まで順に偶数個のケーブル群に区画され、
そのうち両整列部の一端から数えて奇数番目にあたるケーブル群の極細同軸ケーブルが、両整列部の一端から他端へ向かう方向に湾曲するとともに、両整列部の一端から数えて偶数番目にあたるケーブル群の極細同軸ケーブルが、両整列部の他端から一端へ向かう方向に湾曲し、いずれのケーブル群もが、他のいずれかのケーブル群と重なり合っていることを特徴とする電子機器。
A micro coaxial cable assembly in which a plurality of micro coaxial cables are aligned in a row at each of a first alignment portion and a second alignment portion; a first housing connected to the first alignment portion; And a second casing to which two alignment portions are connected, and the first casing and the second casing can be reciprocated in a predetermined sliding direction along opposing surfaces of the first casing and the second casing. An attached electronic device,
In the plurality of micro coaxial cables, the bending sliding portions between the first alignment portion and the second alignment portion are opposed to each other of the first housing and the second housing. In the bent sliding portion, the plurality of micro coaxial cables are partitioned into an even number of cable groups in order from one end to the other end of both alignment portions,
Among them, the micro coaxial cables of the odd-numbered cable group counted from one end of both aligned parts are curved in the direction from one end of both aligned parts to the other end, and the even-numbered cable group counted from one end of both aligned parts. An electronic device, characterized in that a micro coaxial cable is curved in a direction from the other end of both alignment portions toward one end, and any cable group overlaps with any other cable group.
前記ケーブル群同士の重なり合いは、あるケーブル群と他のケーブル群とが複数箇所で重なり合う場合において、当該あるケーブル群と他のケーブル群との上下関係が前記複数箇所を通じて同じになっており、
前記ケーブル群ごとに、両整列部の一端から他端へ向かう方向に湾曲するか、他端から一端へ向かう方向に湾曲するかが、前記第1の筐体および前記第2の筐体の前記対向面によって保持されていることを特徴とする請求項1に記載の電子機器。
The overlap between the cable groups, when a certain cable group and another cable group overlap at a plurality of locations, the vertical relationship between the certain cable group and the other cable group is the same throughout the plurality of locations,
Whether each of the cable groups is bent in a direction from one end to the other end of both alignment portions or in a direction from the other end to the one end, the first housing and the second housing are The electronic device according to claim 1, wherein the electronic device is held by a facing surface.
前記偶数個のケーブル群の個数を2Nとし、nを1からNまでの各整数とするとき、両整列部の一端から数えて2n−1番目にあたるケーブル群と、両整列部の一端から数えて2n番目にあたるケーブル群とが2箇所で重なり合い、そのうち1箇所では2n−1番目にあたるケーブル群が2n番目にあたるケーブル群よりも上に、別の1箇所では2n−1番目にあたるケーブル群が2n番目にあたるケーブル群よりも下に、重なり合っていることを特徴とする請求項1に記載の電子機器。   When the number of the even number of cable groups is 2N and n is an integer from 1 to N, the cable group corresponding to the (2n-1) -th counted from one end of both alignment sections and the one end of both alignment sections is counted. The 2n-th cable group overlaps at two locations, one of which is the 2n-1th cable group above the 2nth cable group, and the other one is the 2n-1th cable group at the 2nth. The electronic apparatus according to claim 1, wherein the electronic apparatus overlaps below the cable group. 複数本の極細同軸ケーブルを第1の整列部および第2の整列部でそれぞれ一列に揃えてなる極細同軸ケーブルアセンブリと、前記第1の整列部が連結された第1の筐体と、前記第2の整列部が連結された第2の筐体とを備え、前記第1の筐体と前記第2の筐体とが、その互いに対向する対向面に沿う所定のスライド方向に往復移動可能に取り付けられた電子機器における極細同軸ケーブルアセンブリの配線方法であって、
前記複数本の極細同軸ケーブルを、前記第1の整列部と前記第2の整列部との間の屈曲摺動部分において、両整列部の一端から他端まで順に偶数個のケーブル群に区画し、そのうち両整列部の一端から数えて奇数番目にあたるケーブル群の極細同軸ケーブルを、両整列部の一端から他端へ向かう方向に湾曲させるとともに、両整列部の一端から数えて偶数番目にあたるケーブル群の極細同軸ケーブルを、両整列部の他端から一端へ向かう方向に湾曲させることにより、いずれのケーブル群もが、他のいずれかのケーブル群と重なり合うようにすることを特徴とする極細同軸ケーブルアセンブリの配線方法。
A micro coaxial cable assembly in which a plurality of micro coaxial cables are aligned in a row at each of a first alignment portion and a second alignment portion; a first housing connected to the first alignment portion; And a second casing to which two alignment portions are connected, and the first casing and the second casing can be reciprocated in a predetermined sliding direction along opposing surfaces of the first casing and the second casing. A wiring method for a micro coaxial cable assembly in an attached electronic device, comprising:
The plurality of micro coaxial cables are partitioned into an even number of cable groups in order from one end to the other end of both alignment portions at a bending sliding portion between the first alignment portion and the second alignment portion. In addition, the micro coaxial cables of the odd-numbered cable group counted from one end of both alignment portions are bent in the direction from one end to the other end of both alignment portions, and the even-numbered cable group counted from one end of both alignment portions. The micro coaxial cable is curved in a direction from the other end of both alignment portions toward one end, so that any cable group overlaps with any other cable group. Assembly wiring method.
JP2008131877A 2008-05-20 2008-05-20 Electronic device and wiring method of micro coaxial cable assembly in electronic device Expired - Fee Related JP4920008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131877A JP4920008B2 (en) 2008-05-20 2008-05-20 Electronic device and wiring method of micro coaxial cable assembly in electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131877A JP4920008B2 (en) 2008-05-20 2008-05-20 Electronic device and wiring method of micro coaxial cable assembly in electronic device

Publications (2)

Publication Number Publication Date
JP2009283550A true JP2009283550A (en) 2009-12-03
JP4920008B2 JP4920008B2 (en) 2012-04-18

Family

ID=41453736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131877A Expired - Fee Related JP4920008B2 (en) 2008-05-20 2008-05-20 Electronic device and wiring method of micro coaxial cable assembly in electronic device

Country Status (1)

Country Link
JP (1) JP4920008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295339A (en) * 2008-06-03 2009-12-17 Fujikura Ltd Extra-fine coaxial cable assembly, electronic apparatus, and method of wiring extra-fine coaxial cable assembly
KR101171665B1 (en) 2010-12-09 2012-08-06 스미토모 덴키 고교 가부시키가이샤 A small diameter coaxial cable harness, and a small diameter coaxial cable harness with a substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005184344A (en) * 2003-12-18 2005-07-07 Fujikura Ltd Cable assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005184344A (en) * 2003-12-18 2005-07-07 Fujikura Ltd Cable assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295339A (en) * 2008-06-03 2009-12-17 Fujikura Ltd Extra-fine coaxial cable assembly, electronic apparatus, and method of wiring extra-fine coaxial cable assembly
KR101171665B1 (en) 2010-12-09 2012-08-06 스미토모 덴키 고교 가부시키가이샤 A small diameter coaxial cable harness, and a small diameter coaxial cable harness with a substrate

Also Published As

Publication number Publication date
JP4920008B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4661428B2 (en) Coaxial cable connection structure
KR101001804B1 (en) Coaxial cable connection structure, coaxial cable harness used therefor, and portable terminal device
EP2405291A2 (en) Method and apparatus for routing optical fibers in flexible circuits
US8063310B2 (en) Electronic device and harness for wiring electronic devices
US20050183881A1 (en) Multiconductor cable and method of producing the cable
EP2209288A1 (en) Harness-integrated type slide hinge, and slide type electronic device
JP4168080B2 (en) Electronics
EP2369682A1 (en) Connection structure of coaxial harness
JP2008262729A (en) Cable harness
CN101843182B (en) Cable wiring structure of slide-type electronic device and harness for electronic device wiring
TW201131588A (en) Small diameter coaxial cable harness and manufacturing method thereof
JP4920008B2 (en) Electronic device and wiring method of micro coaxial cable assembly in electronic device
JP5128141B2 (en) Electronic equipment and wiring harness for electronic equipment
JP5238364B2 (en) Micro-coaxial cable assembly, electronic device, and wiring method of micro-coaxial cable assembly
CN102262929B (en) Flat cable
KR200466631Y1 (en) Small-diameter coaxial cable harness
JP2008257969A (en) Electronic device and harness for electronic device wiring
JP2009224142A (en) Thin coaxial cable harness, and manufacturing method thereof
JP2010040929A (en) Electronic equipment and flexible printed circuit board
JP5463953B2 (en) Thin coaxial cable harness and manufacturing method thereof
JP2010114003A (en) Cable assembly
JP5229198B2 (en) Thin coaxial cable harness and manufacturing method thereof
WO2024024121A1 (en) Coil
KR101171665B1 (en) A small diameter coaxial cable harness, and a small diameter coaxial cable harness with a substrate
JP2013027265A (en) Flat cable assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees