JP2009281844A - Gps (global positioning system) receiver - Google Patents

Gps (global positioning system) receiver Download PDF

Info

Publication number
JP2009281844A
JP2009281844A JP2008133794A JP2008133794A JP2009281844A JP 2009281844 A JP2009281844 A JP 2009281844A JP 2008133794 A JP2008133794 A JP 2008133794A JP 2008133794 A JP2008133794 A JP 2008133794A JP 2009281844 A JP2009281844 A JP 2009281844A
Authority
JP
Japan
Prior art keywords
signal
correlation
weak
cross
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133794A
Other languages
Japanese (ja)
Other versions
JP5095499B2 (en
Inventor
Mikio Nakamura
幹男 中村
Taku Yamane
卓 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2008133794A priority Critical patent/JP5095499B2/en
Publication of JP2009281844A publication Critical patent/JP2009281844A/en
Application granted granted Critical
Publication of JP5095499B2 publication Critical patent/JP5095499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove an influence of a strong signal on a weak signal ch by estimating a strong signal mutual correlation value of the weak signal ch without acquiring an amplitude in the strong signal ch, under an environment wherein a synthesized signal of a satellite signal of the strong signal and a satellite signal of the weak signal is received. <P>SOLUTION: The ratio of strong signal mutual correlation included in an output of the weak signal ch is estimated by means of a least-squares method from an output of mutual correlation ch. The output of the mutual correlation ch is multiplied by the estimated ratio, to thereby acquire a mutual correlation component included in the output of the weak signal ch. The mutual correlation component is subtracted from the output of the weak signal ch, to thereby acquire a mutual correlation component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、強信号の衛星信号と弱信号の衛星信号とが合成された信号を受信するGPS(Global Positioning System)受信機に関し、特に弱信号受信チャネルで誤アクイジション、誤トラッキングすることを防止するGPS受信機に関する。   The present invention relates to a GPS (Global Positioning System) receiver that receives a signal obtained by synthesizing a strong satellite signal and a weak satellite signal, and in particular, prevents erroneous acquisition and erroneous tracking in a weak signal reception channel. It relates to a GPS receiver.

GPS衛星(以下、衛星、ということもある)は、衛星毎に異なる拡散コードで情報をスペクトラム拡散し、共通のキャリア周波数で変調して衛星信号として送信する。GPS受信機(以下、受信機、ということもある)では、各衛星から送信された衛星信号が合成されたものを受信する。GPS受信機が受信を開始する場合、地球の裏側に位置する衛星の衛星信号は受信できないため、受信可能な可視衛星をサーチして、その結果見つかった衛星からの信号の受信を安定して継続できるよう、トラッキングを行う。   A GPS satellite (hereinafter also referred to as a satellite) spreads information with a spread code different for each satellite, modulates it with a common carrier frequency, and transmits it as a satellite signal. A GPS receiver (hereinafter sometimes referred to as a receiver) receives a combination of satellite signals transmitted from each satellite. When the GPS receiver starts receiving, it cannot receive the satellite signals of the satellites located behind the earth, so it searches the receivable visible satellites and continues to receive signals from the satellites found as a result. Do tracking so you can.

サーチは、現在打ち上げられているGPS衛星からの受信信号の中から受信可能な衛星信号を探す処理である。衛星毎の拡散コードは既知であるが、衛星信号を受信する為には周波数と拡散コード位相を決定する必要がある。   The search is a process of searching for a receivable satellite signal from the received signals from the currently launched GPS satellites. Although the spread code for each satellite is known, it is necessary to determine the frequency and spread code phase in order to receive the satellite signal.

キャリア周波数は既知である(例:GPS L1では1575.42MHz)が、衛星と受信機の移動によるドップラー効果の影響があるから、正確に受信する為の周波数は衛星毎に異なる。また、衛星毎の拡散コード系列は既知であるが、受信信号に逆拡散を実行する為には、拡散コード位相を決定する必要がある。   The carrier frequency is known (for example, 1575.42 MHz in GPS L1), but because of the influence of the Doppler effect due to the movement of the satellite and the receiver, the frequency for accurate reception varies from satellite to satellite. Further, although the spreading code sequence for each satellite is known, it is necessary to determine the spreading code phase in order to perform despreading on the received signal.

このことから、サーチ処理では、各衛星に対して拡散コード位相を総当りで振って、それぞれの相関値を計算する。その結果得られたピーク相関値があらかじめ規定した閾値を超えた場合、その衛星の衛星信号は受信可能であると判断し、そのピーク相関値が得られる周波数と拡散コード位相を決定する。なお、サーチの結果、その衛星信号が受信可能であると判断し、周波数と拡散コード位相が決定することを、アクイジションと呼ぶ。   For this reason, in the search process, the spread code phase is assigned to each satellite in a round-robin manner, and each correlation value is calculated. If the peak correlation value obtained as a result exceeds a predetermined threshold value, it is determined that the satellite signal of the satellite can be received, and the frequency and spreading code phase at which the peak correlation value is obtained are determined. Note that determining that the satellite signal can be received as a result of the search and determining the frequency and the spread code phase is called acquisition.

サーチ処理で受信可能と判断した衛星信号について、受信を継続する為にトラッキング処理を行う。衛星と受信機の位置関係は時々刻々変化するから、トラッキング処理では、周期的に受信周波数やコード位相等の制御を行い、安定した受信を継続する。   For the satellite signal determined to be receivable by the search process, a tracking process is performed in order to continue reception. Since the positional relationship between the satellite and the receiver changes from moment to moment, in the tracking process, the reception frequency, code phase, and the like are controlled periodically to continue stable reception.

従来から一般に用いられているGPS受信機の概略構成を図6に示す。アンテナ1で、複数の衛星からの衛星信号を受信する。周波数変換部2は、キャリア周波数で変調された衛星信号を中間周波数(IF)に周波数変換する。A/D変換部3は、周波数変換された衛星信号をアナログ信号からディジタル信号に変換して、受信信号とする。   FIG. 6 shows a schematic configuration of a GPS receiver that has been conventionally used. The antenna 1 receives satellite signals from a plurality of satellites. The frequency converter 2 converts the satellite signal modulated at the carrier frequency to an intermediate frequency (IF). The A / D conversion unit 3 converts the frequency-converted satellite signal from an analog signal to a digital signal to obtain a received signal.

信号処理部4は、制御部20からの制御内容に従い、受信信号の信号処理を行う。一般にハードウェアで実装される事が多く、主に、サーチ部と複数のトラッキングチャネルとにより構成される。   The signal processing unit 4 performs signal processing on the received signal according to the control content from the control unit 20. Generally, it is often implemented by hardware, and is mainly composed of a search unit and a plurality of tracking channels.

サーチ部10は、制御部20から指定された衛星番号についてサーチ処理を行い、その衛星が受信可能か否か、及びピーク相関値が得られる周波数と拡散コード位相を決定し、結果を制御部20に通知する。   The search unit 10 performs a search process on the satellite number designated by the control unit 20, determines whether the satellite is receivable, determines the frequency and spreading code phase at which the peak correlation value is obtained, and determines the result as the control unit 20 Notify

トラッキングチャネル11〜1Nは、制御部20から指定される衛星番号、周波数、拡散コード位相に従い、受信信号の相関処理を行う。相関処理の結果得られる相関値を、制御部20に通知する。   The tracking channels 11 to 1N perform correlation processing of received signals according to the satellite number, frequency, and spreading code phase specified by the control unit 20. The control unit 20 is notified of a correlation value obtained as a result of the correlation processing.

1つのトラッキングチャネルは1つの衛星からの衛星信号に対する相関処理を行う。GPS受信機で測位を行う為には最低4衛星からの衛星信号の受信結果が必要なので、一般に、4ch以上のトラッキングチャネルが実装される。   One tracking channel performs correlation processing on satellite signals from one satellite. In order to perform positioning with a GPS receiver, since the reception results of satellite signals from at least four satellites are necessary, generally, a tracking channel of 4 channels or more is mounted.

制御部20は、一般にソフトウェアで実行される。信号処理部4でのハードウェア処理を制御し、そのハードウェア処理結果を取得し、それに基づき次のようなサーチ部の制御及びトラッキングチャネルの制御を行う。このように、制御部20と信号処理部4でのハードウェアは処理のループが組まれている。   The control unit 20 is generally executed by software. The hardware processing in the signal processing unit 4 is controlled, the hardware processing result is acquired, and the following search unit control and tracking channel control are performed based on the hardware processing result. As described above, the hardware in the control unit 20 and the signal processing unit 4 has a processing loop.

サーチ部10へ制御部20から衛星番号を指定してサーチを実行させ、その結果の情報を取得する。そして、サーチの結果得られた情報、すなわち受信可能な衛星番号、周波数、拡散コード位相をトラッキングチャネル11〜1Nに順次設定し、処理を指示する。各トラッキングチャネルから取得した相関値に基づき、最適な受信周波数等を算出し、周期的に当該トラッキングチャネルに再設定する。   The search unit 10 is caused to execute a search by designating a satellite number from the control unit 20, and information on the result is acquired. Then, the information obtained as a result of the search, that is, the receivable satellite number, frequency, and spreading code phase are sequentially set in the tracking channels 11 to 1N, and processing is instructed. Based on the correlation value acquired from each tracking channel, an optimal reception frequency or the like is calculated and periodically reset to the tracking channel.

サーチ部10の具体的な構成例を図7に示す。図7において、入力される受信信号がミキサ101でキャリアNCO102からの周波数とのミキシングにより位相回転され、コード相関器103に供給される。コード相関器103では、ミキサ101からの信号とコードGEN(コード発生器)105からの拡散コードとの相関が取られる。コードGEN105からの拡散コードのコード位相は、コードNCO104からの制御によりスキャンされる。   A specific configuration example of the search unit 10 is shown in FIG. In FIG. 7, an input received signal is phase-shifted by mixing with a frequency from a carrier NCO 102 by a mixer 101 and supplied to a code correlator 103. In the code correlator 103, the correlation between the signal from the mixer 101 and the spread code from the code GEN (code generator) 105 is taken. The code phase of the spread code from the code GEN 105 is scanned by the control from the code NCO 104.

位相回転されてコード相関が採られた信号は、積分器106で所定時間毎に積分され、更に電力化部107でI信号とQ信号とから電力を求めて(I2+Q2)、バッファ及びソート部108へ供給する。バッファ及びソート部108では、コード位相毎の相関電力をソートし、最大相関電力とそのコード位相を探して、制御部20へ供給する。制御部20からは、キャリアNCO102へ周波数を設定し、また、コードGENへコード番号を設定する。 The signal that has undergone phase rotation and has been subjected to code correlation is integrated every predetermined time by the integrator 106, and further, the power generation unit 107 obtains power from the I signal and the Q signal (I 2 + Q 2 ), and the buffer and It supplies to the sort part 108. The buffer and sort unit 108 sorts the correlation power for each code phase, finds the maximum correlation power and its code phase, and supplies the result to the control unit 20. From the control unit 20, the frequency is set to the carrier NCO 102, and the code number is set to the code GEN.

サーチ部10では、制御部20から指定されたコード番号について、コード相関器103でコードの相関演算を行う。コード位相をずらしながら相関演算を行い、全コード位相に対する相関電力をそれぞれ算出する。全コードに対する相関電力が得られたら相関電力でソートを行い、最大相関電力が得られるコード位相とその相関電力を決定し、制御部20へ出力する。この処理をコード位相スキャンと呼ぶ。   In the search unit 10, the code correlator 103 performs code correlation calculation on the code number designated by the control unit 20. Correlation calculation is performed while shifting the code phase, and the correlation power for all code phases is calculated. When correlation powers for all codes are obtained, sorting is performed based on the correlation powers, code phases for obtaining maximum correlation powers and their correlation powers are determined, and output to the control unit 20. This process is called code phase scanning.

サーチ処理では、周波数も決定する。この為に制御部20では、既に受信している衛星信号から取得したアルマナック(概略の衛星軌道情報)を元に、サーチ対象衛星のドップラー(doppler)周波数を予測する。その予測周波数周辺のいくつかの周波数でコード位相のスキャンを行い、最大相関値が得られる周波数を決定する。この処理を周波数スキャンと呼ぶ。   In the search process, the frequency is also determined. For this purpose, the control unit 20 predicts the Doppler frequency of the search target satellite based on the almanac (rough satellite orbit information) acquired from the already received satellite signal. The code phase is scanned at several frequencies around the predicted frequency to determine the frequency at which the maximum correlation value is obtained. This process is called frequency scanning.

すなわち周波数スキャンとコード位相スキャンにより、最大相関値が得られる周波数とコード位相が決定する。   That is, the frequency and code phase at which the maximum correlation value is obtained are determined by frequency scanning and code phase scanning.

トラッキングチャネル#nの具体的な構成例を図8に示す。GPS受信機内には図6に示すように複数のトラッキングチャネルが含まれるが、図8はその1つのみを示すものであり、他の複数個のトラッキングチャネルも同様の構成である。   A specific configuration example of the tracking channel #n is shown in FIG. The GPS receiver includes a plurality of tracking channels as shown in FIG. 6, but FIG. 8 shows only one of them, and the other plurality of tracking channels have the same configuration.

図8において、入力される受信信号がミキサ1n1で、キャリアNCO1n2からの周波数(制御部20から設定された)とのミキシングにより位相回転され、コード相関器1n3に供給される。コード相関器1n3では、ミキサ1n1からの信号とコードGEN(コード発生器)1n5からの拡散コードとの相関が取られる。コードGEN1n5からの拡散コードのコード位相は、コードNCO1n4からのコード位相(制御部20から設定された)により制御されている。   In FIG. 8, an input received signal is phase-rotated by mixing with a frequency from a carrier NCO 1 n 2 (set by the control unit 20) by a mixer 1 n 1 and supplied to a code correlator 1 n 3. In the code correlator 1n3, a correlation between the signal from the mixer 1n1 and the spread code from the code GEN (code generator) 1n5 is taken. The code phase of the spreading code from the code GEN1n5 is controlled by the code phase from the code NCO1n4 (set by the control unit 20).

位相回転されてコード相関が取られた信号は、積分器1n6で所定時間毎に相関値のI成分、Q成分毎に積分され、制御部20へ供給する。制御部20からは、キャリアNCO1n2へ周波数を設定し、また、コードGENへコード番号を設定する。   The signal whose phase correlation has been obtained by phase rotation is integrated by the integrator 1n6 for each I component and Q component of the correlation value every predetermined time and supplied to the control unit 20. From the control unit 20, the frequency is set to the carrier NCO1n2, and the code number is set to the code GEN.

制御部20は、ある衛星に対するサーチ処理の結果得られた周波数、コード番号及びコード位相を、トラッキングチャネル#nに設定する。トラッキングチャネル#nは指定された周波数、コード番号及びコード位相で相関演算を行い、相関結果のI成分、Q成分を制御部20へ出力し、制御部20では安定した受信を継続するように、最適な周波数とコード位相を随時算出し、トラッキングチャネル#nへ設定する。   The control unit 20 sets the frequency, code number, and code phase obtained as a result of the search process for a certain satellite in the tracking channel #n. The tracking channel #n performs a correlation operation with the specified frequency, code number, and code phase, outputs the I component and Q component of the correlation result to the control unit 20, and the control unit 20 continues stable reception. The optimal frequency and code phase are calculated as needed and set to tracking channel #n.

相関演算は、受信信号にIF周波数+ドップラー周波数をかけてベースバンドに変換した信号に対して、拡散コードで畳み込み演算を行う事であり、その演算結果を相関値と呼ぶ。受信対象の衛星信号に対応した周波数、拡散コード系列、拡散コード位相で相関演算を行う事が自己相関である。自己相関値は、周波数スキャン及びコード位相スキャンによって、そのピークが得られる。   The correlation calculation is to perform a convolution calculation with a spreading code on a signal obtained by multiplying the received signal by IF frequency + Doppler frequency to baseband, and the calculation result is called a correlation value. Autocorrelation is a correlation calculation performed at a frequency, a spread code sequence, and a spread code phase corresponding to a satellite signal to be received. The peak of the autocorrelation value is obtained by frequency scanning and code phase scanning.

一方、受信対象の衛星信号に対して、別の拡散コード系列で相関演算を行う事を相互相関と呼ぶ。相互相関による相関値は、(1)入力信号のドップラー周波数と、相関演算で使用するドップラー周波数の差分、(2)入力信号のコード系列、コード位相と、相関演算で使用するコード系列、コード位相、によって変化する。   On the other hand, performing a correlation operation with another spreading code sequence on a satellite signal to be received is called cross-correlation. The correlation value by cross-correlation is (1) the difference between the Doppler frequency of the input signal and the Doppler frequency used in the correlation calculation, (2) the code sequence and code phase of the input signal, and the code sequence and code phase used in the correlation calculation. , Depending on.

GPSでC/Aコードの場合、相互相関の最大相関値は、自己相関値と比較して、−21.6dB程度となる。すなわち、ある衛星SV#1の信号を受信するトラッキングチャネルにおいて自己相関値が−120dBmだった場合、他の衛星信号を受信するトラッキングチャネルでは、衛星SV#1の信号の相互相関値が最大−141dBmの大きさで現れる。   In the case of a C / A code in GPS, the maximum correlation value of cross-correlation is about −21.6 dB compared to the autocorrelation value. That is, when the autocorrelation value is −120 dBm in the tracking channel that receives the signal of a certain satellite SV # 1, the cross-correlation value of the signal of the satellite SV # 1 is a maximum of −141 dBm in the tracking channel that receives another satellite signal. Appears in the size of.

そして、4つ以上の衛星からのGPS信号の受信結果に基づいて、受信機の位置(緯度、経度、高度)を測定する(測位処理)。   Then, based on the reception results of GPS signals from four or more satellites, the position (latitude, longitude, altitude) of the receiver is measured (positioning process).

ところで、GPS受信機を携帯電話に組み込む場合等、屋内利用を想定したGPS受信機では高感度化を図る必要がある。これは、建物の壁を通過することにより大きく減衰した弱信号を受信し、測位を可能とするためである。屋内では多くの衛星からの信号が壁に遮られて弱信号となることが予想されるが、一方、伝搬経路が窓等の開口部である場合は、屋外受信と同等レベルの強信号として受信される可能性がある。すなわちGPS受信機を屋内利用する場合、強信号と弱信号のレベル差が、屋外利用の場合と比較して非常に大きくなる事が考えられる。このような環境で弱信号の受信を行う場合、以下のような理由により誤トラッキングの恐れがある。   By the way, when a GPS receiver is incorporated in a mobile phone, it is necessary to increase the sensitivity of the GPS receiver that is assumed to be used indoors. This is because a weak signal greatly attenuated by passing through a building wall is received, and positioning is possible. It is expected that signals from many satellites will be blocked by walls and become weak signals indoors. On the other hand, if the propagation path is an opening such as a window, it will be received as a strong signal at the same level as outdoor reception. There is a possibility that. That is, when the GPS receiver is used indoors, the level difference between the strong signal and the weak signal may be very large compared to the case of outdoor use. When a weak signal is received in such an environment, there is a risk of erroneous tracking for the following reason.

2つの衛星を受信する環境を仮定し、一方を強信号、もう一方を弱信号とする。すなわち、受信信号=強信号+弱信号である。強信号衛星のサーチは、その信号レベルが高いので、従来の方法で問題なく行われる。   Assuming an environment where two satellites are received, one is a strong signal and the other is a weak signal. That is, received signal = strong signal + weak signal. The search for the strong signal satellite is performed without any problem by the conventional method because the signal level is high.

弱信号衛星のサーチについて考えると、受信信号を弱信号衛星の拡散コードで逆拡散するので、その結果は以下の2つの和である。
・強信号を弱信号コードで逆拡散した、強信号相互相関
・弱信号を弱信号コードで逆拡散した、弱信号自己相関
Considering the weak signal satellite search, the received signal is despread with the spreading code of the weak signal satellite, and the result is the following two sums.
-Strong signal cross-correlation with strong signal despread with weak signal code-Weak signal autocorrelation with weak signal de-spread with weak signal code

強信号と弱信号のレベル差があまり大きくない場合と大きい場合に分けて、弱信号のサーチ結果がどのようになるかを以下に示す。   The following shows how the weak signal search results will be divided into the case where the level difference between the strong signal and the weak signal is not so large.

強信号と弱信号のレベル差があまり大きくない場合は、図9のコード位相−相関レベルの特性図に示すように、強信号相互相関のレベルよりも、弱信号自己相関ピークレベルの方が強くなる。この為、弱信号サーチの結果、弱信号自己相関のピークレベルを捕まえて、弱信号の正常なトラッキングが可能である。なお、強信号相互相関のレベルは、異なるコード位相にて、複数発生する(図9の例では、3つを例示している)。   When the level difference between the strong signal and the weak signal is not so large, the weak signal autocorrelation peak level is stronger than the strong signal cross-correlation level as shown in the code phase-correlation level characteristic diagram of FIG. Become. For this reason, the weak signal auto-correlation peak level is captured as a result of the weak signal search, and the normal tracking of the weak signal is possible. Note that a plurality of levels of strong signal cross-correlation occur at different code phases (three are illustrated in the example of FIG. 9).

強信号と弱信号のレベル差が大きい場合は、図10のコード位相−相関レベルの特性図に示すように、弱信号の自己相関ピークレベル(図10の(A))よりも強信号相互相関ピークレベル(図10の(B))の方が強くなる可能性がある。   When the level difference between the strong signal and the weak signal is large, the strong signal cross-correlation is higher than the autocorrelation peak level of the weak signal ((A) in FIG. 10) as shown in the code phase-correlation level characteristic diagram of FIG. The peak level ((B) in FIG. 10) may become stronger.

この強信号と弱信号のレベル差が大きい場合は、強信号相互相関ピークのコード位相(図10の(B))でアクイジションし、トラッキングを開始してしまう。この状態が誤トラッキングである。   When the level difference between the strong signal and the weak signal is large, acquisition is performed at the code phase of the strong signal cross-correlation peak ((B) in FIG. 10), and tracking is started. This state is incorrect tracking.

誤トラッキングを起こしたチャネルの相関結果は、弱信号の自己相関演算結果とは明らかに異なる為、その情報を測位に使用すると位置飛びの原因となってしまう。   The correlation result of the channel that caused the erroneous tracking is clearly different from the result of the autocorrelation calculation of the weak signal. Therefore, if the information is used for positioning, the position jump may be caused.

そこで、弱信号チャネル(以下、ch、と略称することがある)の出力相関値から、強信号相互相関値を減算することにより、弱信号自己相関値を残すようにする方法が特許文献1,2に提案されている(特許文献1は主にハードウエアによる処理を、特許文献2は主にソフトウエアによる処理を行っている)。   Therefore, a method of leaving a weak signal autocorrelation value by subtracting a strong signal cross-correlation value from an output correlation value of a weak signal channel (hereinafter sometimes abbreviated as “ch”) is disclosed in Patent Document 1. (Patent Document 1 mainly performs processing by hardware, and Patent Document 2 mainly performs processing by software).

特許文献1,2では、先ず、強信号chで入力信号を受信して、入力信号に含まれる強信号の振幅・コード位相・キャリア周波数を測定し、強信号の波形を再生する。この入力信号に含まれる強信号は、弱信号chにおける干渉信号となる。   In Patent Documents 1 and 2, first, an input signal is received by a strong signal ch, the amplitude, code phase, and carrier frequency of the strong signal included in the input signal are measured, and the waveform of the strong signal is reproduced. The strong signal included in this input signal becomes an interference signal in the weak signal ch.

次に、再生された強信号と、弱信号chで設定されるコード位相とキャリア周波数で表現される設定信号との相互相関値を計算する。   Next, the cross-correlation value between the reproduced strong signal, the code phase set by the weak signal ch and the set signal expressed by the carrier frequency is calculated.

そして、弱信号chで、入力信号と、設定されたコード位相とキャリア周波数で表現される設定信号との相関値を得る。この弱信号chでの相関値には、本来欲しい弱信号の自己相関値に加えて強信号と設定信号との相互相関の相関値が含まれているから、弱信号chでの相関値から再生された強信号の波形と設定信号との相互相関値を減算する。このようにして、弱信号chにおける干渉信号成分(強信号相互相関値)を除去している。
US7,064,707B2 US6,282,231B1
Then, a correlation value between the input signal and the set signal expressed by the set code phase and carrier frequency is obtained with the weak signal ch. Since the correlation value in the weak signal ch includes the correlation value of the cross correlation between the strong signal and the setting signal in addition to the autocorrelation value of the weak signal originally desired, the correlation value in the weak signal ch is reproduced. The cross-correlation value between the set strong signal waveform and the set strong signal is subtracted. In this way, the interference signal component (strong signal cross-correlation value) in the weak signal ch is removed.
US7,064,707B2 US6,282,231B1

しかし、この特許文献1,2の方法によって弱信号chの出力相関値から強信号相互相関値を減算して弱信号自己相関値を得るためには、強信号chでの振幅を求める必要があるが、最近の受信機ではデジタル処理を行うために入力信号は量子化されるのが普通である。その量子化ビット数が少ない場合、特に1ビット量子化を行う場合には、強信号chで測定された振幅は比較的大きな誤差を持つから、弱信号chにおける干渉信号成分(強信号相互相関値)の除去を正しく行うことが難しく、抑圧性能が劣化する。   However, in order to obtain the weak signal autocorrelation value by subtracting the strong signal cross-correlation value from the output correlation value of the weak signal ch by the methods of Patent Documents 1 and 2, it is necessary to obtain the amplitude at the strong signal ch. However, in recent receivers, the input signal is usually quantized for digital processing. When the number of quantization bits is small, particularly when 1-bit quantization is performed, the amplitude measured in the strong signal ch has a relatively large error, so that the interference signal component (strong signal cross-correlation value in the weak signal ch). ) Is difficult to remove correctly, and the suppression performance deteriorates.

本発明は、以上の点に鑑みてなされたものであり、強信号の衛星信号と弱信号の衛星信号とが合成された信号を受信する環境下において、強信号chでの振幅を求めること無く、弱信号chの強信号相互相関値を推定し、弱信号chでの強信号の影響を排除できるGPS受信機を提供することを目的とする。   The present invention has been made in view of the above points, and in an environment where a signal obtained by combining a strong satellite signal and a weak satellite signal is received, the amplitude of the strong signal ch is not obtained. An object of the present invention is to provide a GPS receiver capable of estimating the strong signal cross-correlation value of the weak signal ch and eliminating the influence of the strong signal on the weak signal ch.

請求項1に記載のGPS受信機は、受信信号が入力されそれぞれ異なる衛星信号に対応した周波数及び拡散コードの種別・位相でアクイジション及びまたはトラッキングするものであって、強信号の衛星信号を受信する強信号チャネルもしくは弱信号の衛星信号を受信する弱信号チャネルとなる複数の受信チャネルと、
前記複数の受信チャネルのうちの1つの強信号チャネルの周波数及び拡散コードの種別・位相を持つ第1信号が入力され、その第1信号と、前記複数の受信チャネルのうちの1つの弱信号チャネルのドップラー成分を含む周波数及び拡散コードの種別・位相とで、相互相関を行い、第2信号である相互相関チャネル相関成分を出力する、少なくとも1つの相互相関チャネルを有し、
前記1つの弱信号チャネルの出力である第3信号(IPW=x1*IPC+x2)に含まれており、且つ、前記1つの強信号チャネルでアクイジションまたはトラッキングされている強信号と前記1つの弱信号チャネルでアクイジションまたはトラッキングされるべき弱信号との相互相関成分(x1*IPC)に対する前記第2信号(IPC)の相互相関割合(x1)を、前記第2信号と前記第3信号とを用いて推定し、
前記相互相関割合(x1)を前記第2信号(IPC)に乗算して前記第3信号(IPW)に含まれる相互相関成分を決定し、
前記第3信号(IPW)から、前記第3信号に含まれる相互相関成分(x1*IPC)を減算して、前記第3信号(IPW)に含まれる弱信号成分x2を得る、ことを特徴とする。
The GPS receiver according to claim 1, wherein a reception signal is inputted and acquisition and / or tracking is performed with a frequency and a spread code type / phase corresponding to different satellite signals, and receives a strong signal satellite signal. A plurality of reception channels that are weak signal channels for receiving strong signal channels or weak satellite signals;
A first signal having a frequency and a spreading code type / phase of one strong signal channel of the plurality of reception channels is input, and the first signal and one weak signal channel of the plurality of reception channels Having at least one cross-correlation channel that performs cross-correlation with the frequency including the Doppler component and the type / phase of the spreading code and outputs a cross-correlation channel correlation component that is the second signal,
The strong signal and the one weak signal channel included in the third signal (IPW = x1 * IPC + x2) that is the output of the one weak signal channel and acquired or tracked in the one strong signal channel The cross-correlation ratio (x1) of the second signal (IPC) with respect to the cross-correlation component (x1 * IPC) with the weak signal to be acquired or tracked is estimated using the second signal and the third signal. And
Multiplying the second signal (IPC) by the cross-correlation ratio (x1) to determine a cross-correlation component included in the third signal (IPW);
Subtracting the cross-correlation component (x1 * IPC) included in the third signal from the third signal (IPW) to obtain a weak signal component x2 included in the third signal (IPW). To do.

請求項2に記載のGPS受信機は、受信信号が入力されそれぞれ異なる衛星信号に対応した周波数及び拡散コードの種別・位相でアクイジション及びまたはトラッキングするものであって、強信号の衛星信号を受信する強信号チャネルもしくは弱信号の衛星信号を受信する弱信号チャネルとなる複数Nの受信チャネルと、
前記複数の受信チャネルのうちのいずれかの強信号チャネルの周波数及び拡散コードの種別・位相を持つ第1信号が入力され、その第1信号と、前記複数の受信チャネルのうちのいずれかの弱信号チャネルのドップラー成分を含む周波数及び拡散コードの種別・位相とで、相互相関を行い、第2信号である相互相関チャネル相関成分を出力するための、受信チャネル数Nに応じた所定数の相互相関チャネルを有し、
1つもしくは複数N−1以下の強信号チャネルが形成される場合に、
1つの弱信号チャネルの出力である第3信号(IPW=x11*IPC1+x12*IPC2+・・・+x2)に含まれており、且つ1つの強信号チャネルでアクイジションまたはトラッキングされている強信号と当該弱信号チャネルでアクイジションまたはトラッキングされるべき弱信号との相互相関成分(x11*IPC1、または、x12*IPC2、または、・・・)に対して、当該弱信号チャネル及び前記1つの強信号チャネルに係る前記第2信号の相互相関割合(x11、または、x12、または、・・・)を、当該弱信号チャネル及び前記1つの強信号チャネルに係る第2信号(IPC1、または、IPC2、または、・・・)と前記第3信号(IPW)とを用いて、前記第3信号(IPW)に含まれる強信号成分ごとに推定し、
前記第3信号(IPW)に含まれる強信号成分ごとの前記相互相関割合(x11、x12、・・・)を当該弱信号チャネルに係る第2信号(IPC1、IPC2、・・・)に乗算して前記第3信号(IPW)に含まれる相互相関成分(x11*IPC1、x12*IPC2、・・・)を決定し、
前記第3信号(IPW)から、前記第3信号(IPW)に含まれる相互相関成分(x11*IPC1、x12*IPC2、・・・)を減算して、前記第3信号(IPW)に含まれる弱信号成分(x2)を得る、ことを特徴とする。
The GPS receiver according to claim 2, wherein a reception signal is inputted and acquisition and / or tracking is performed at a frequency and a type / phase of a spreading code corresponding to different satellite signals, and receives a strong signal satellite signal. A plurality of N reception channels that are strong signal channels or weak signal channels that receive weak satellite signals;
A first signal having a frequency of a strong signal channel and a type / phase of a spreading code of any one of the plurality of reception channels is input, and the first signal and a weak one of the plurality of reception channels are input. A predetermined number of mutual channels corresponding to the number N of reception channels for performing cross-correlation with the frequency including the Doppler component of the signal channel and the type / phase of the spreading code and outputting the cross-correlation channel correlation component as the second signal A correlation channel,
If one or more N-1 or less strong signal channels are formed,
A strong signal included in the third signal (IPW = x11 * IPC1 + x12 * IPC2 +... + X2) that is the output of one weak signal channel and acquired or tracked in one strong signal channel and the weak signal For the cross-correlation component (x11 * IPC1, or x12 * IPC2, or...) With the weak signal to be acquired or tracked in the channel, the weak signal channel and the one strong signal channel The cross-correlation ratio (x11, x12, or...) Of the second signal is set as the second signal (IPC1, IPC2, or...) Related to the weak signal channel and the one strong signal channel. ) And the third signal (IPW) for each strong signal component included in the third signal (IPW) ,
The cross-correlation ratio (x11, x12,...) For each strong signal component included in the third signal (IPW) is multiplied by the second signal (IPC1, IPC2,...) Related to the weak signal channel. Cross-correlation components (x11 * IPC1, x12 * IPC2,...) Included in the third signal (IPW)
The cross-correlation components (x11 * IPC1, x12 * IPC2,...) Included in the third signal (IPW) are subtracted from the third signal (IPW), and are included in the third signal (IPW). A weak signal component (x2) is obtained.

請求項3に記載のGPS受信機は、請求項1または2に記載のGPS受信機において、前記第2信号は、相互相関チャネルで得られた相互相関チャネル相関成分に、当該チャネルに係る強信号チャネルの出力の符号を乗算して、データ変調の影響を取り除いたものであることを特徴とする。   The GPS receiver according to claim 3 is the GPS receiver according to claim 1 or 2, wherein the second signal is a strong signal related to the channel in a cross-correlation channel correlation component obtained in the cross-correlation channel. It is characterized in that the influence of data modulation is removed by multiplying the output code of the channel.

本発明のGPS受信機によれば、強信号の衛星信号と弱信号の衛星信号とが合成された信号を受信する環境下において、弱信号chの強信号相互相関値を推定し、得られた強信号相互相関値を弱信号chの出力相関値から減算することにより、強信号chでの振幅を求めること無く、弱信号chでの強信号の影響を排除できる。   According to the GPS receiver of the present invention, the strong signal cross-correlation value of the weak signal ch is estimated and obtained in an environment where a signal obtained by combining the strong satellite signal and the weak satellite signal is received. By subtracting the strong signal cross-correlation value from the output correlation value of the weak signal ch, the influence of the strong signal on the weak signal ch can be eliminated without obtaining the amplitude on the strong signal ch.

以下、図面を参照して、本発明のGPS受信機の実施例について説明する。   Embodiments of a GPS receiver according to the present invention will be described below with reference to the drawings.

図1は、本発明のGPS受信機を説明するための図である。GPS受信機で測位を行う為には最低4衛星からの衛星信号の受信結果が必要なので、一般に、4ch以上の受信チャネル(以下、ch)が実装される。衛星信号の受信状況に応じて、例えば、受信chが4chである場合に、強信号chが4で弱信号chが0,強信号chが3で弱信号chが1,強信号chが2で弱信号chが2,強信号chが1で弱信号chが3,及び強信号chが0で弱信号chが4のパターンが考えられる。弱信号chに、強信号chで例えばトラッキングされている強信号が干渉するのは、強信号chと弱信号chがともに存在する場合である。   FIG. 1 is a diagram for explaining a GPS receiver according to the present invention. In order to perform positioning with a GPS receiver, the reception results of satellite signals from at least four satellites are necessary, and therefore, reception channels (hereinafter referred to as “ch”) of 4ch or more are generally mounted. Depending on the satellite signal reception status, for example, when the reception channel is 4 channels, the strong signal channel is 4, the weak signal channel is 0, the strong signal channel is 3, the weak signal channel is 1, and the strong signal channel is 2. A pattern in which the weak signal ch is 2, the strong signal ch is 1, the weak signal ch is 3, and the strong signal ch is 0 and the weak signal ch is 4 is considered. The strong signal that is tracked by the strong signal ch, for example, interferes with the weak signal ch when both the strong signal ch and the weak signal ch exist.

図1では、本発明を説明するために、強信号ch、弱信号chがそれぞれ1つで計2つの受信chを設ける例が示されている。図1において、1つの強信号をサーチもしくはトラッキングする受信chである強信号ch11と、1つの弱信号をサーチもしくはトラッキングする受信chである弱信号ch12とが示されており、更に、強信号と弱信号との相互相関を行うための相互相関ch30が設けられている。   In FIG. 1, in order to explain the present invention, an example is shown in which one strong signal ch and one weak signal ch are provided and a total of two reception channels are provided. In FIG. 1, a strong signal ch11 that is a reception channel for searching or tracking one strong signal and a weak signal ch12 that is a reception channel for searching or tracking one weak signal are shown. A cross-correlation ch30 for performing cross-correlation with the weak signal is provided.

なお、図1において、図示していないが、図6で説明したものと同様に、制御部(処理器)20、アンテナ1、周波数変換部2、A/D変換部3等が、設けられる。   Although not shown in FIG. 1, a control unit (processor) 20, an antenna 1, a frequency conversion unit 2, an A / D conversion unit 3, and the like are provided as described with reference to FIG. 6.

以下、本発明の動作原理について説明する。従来の説明と同様に、2つの衛星からの信号を受信し、一方が強信号、もう一方が弱信号である環境を想定する。ここで、強信号ch11は、サーチにおいて検出された電力が十分に大きいチャネルや、トラッキングチャネルの判定処理において検出された電力が十分に大きいチャネルが充てられる。また、弱信号ch12は、衛星信号が弱いチャネルを指すが、強信号チャネルと判定されていない未判定チャネルを想定することでもよい。   The operation principle of the present invention will be described below. As in the conventional description, assume an environment in which signals from two satellites are received, one being a strong signal and the other being a weak signal. Here, the strong signal ch11 is devoted to a channel having a sufficiently large power detected in the search or a channel having a sufficiently large power detected in the tracking channel determination process. Further, the weak signal ch12 indicates a channel in which the satellite signal is weak, but an undecided channel that is not determined to be a strong signal channel may be assumed.

強信号ch11は、通常の受信chのうちの1つであり、強信号を受信している。強信号chは通常複数あるが、ここでは説明のために1つだけが示されている。強信号ch11は、図8で説明したトラッキングチャネルと同様な構成(111〜116)を有しており、入力されるIF受信信号がミキサ111で、キャリアNCO112からの周波数(制御部20から設定された)とのミキシングにより位相回転され、コード相関器113に供給される。コード相関器113では、ミキサ111からの信号とコードGEN(コード発生器)115からの拡散コードとの相関が取られる。コードGEN115からの拡散コードのコード位相は、コードNCO114からのコード位相(制御部20から設定された)により制御されている。キャリアNCO112からは、IF周波数+その強信号ドップラー周波数がミキサ111に供給され、コードNCO114とコードGEN115からは、その強信号に位相同期が取れている強信号コード位相がコード相関器113に供給されている。   The strong signal ch11 is one of normal reception channels and receives a strong signal. Although there are usually a plurality of strong signals ch, only one is shown here for explanation. The strong signal ch11 has the same configuration (111 to 116) as the tracking channel described in FIG. 8, and the input IF reception signal is the mixer 111, and the frequency from the carrier NCO 112 (set by the control unit 20). The phase is rotated by mixing with the code correlator 113 and supplied to the code correlator 113. In the code correlator 113, the correlation between the signal from the mixer 111 and the spread code from the code GEN (code generator) 115 is taken. The code phase of the spread code from the code GEN 115 is controlled by the code phase from the code NCO 114 (set by the control unit 20). From the carrier NCO 112, the IF frequency + the strong signal Doppler frequency is supplied to the mixer 111, and from the code NCO 114 and the code GEN 115, the strong signal code phase whose phase is synchronized with the strong signal is supplied to the code correlator 113. ing.

位相回転されてコード相関が取られた信号は、積分器116で所定時間毎に相関値のI成分、Q成分毎に積分され、制御部20へ供給する。制御部20からは、キャリアNCO112へ周波数を設定し、また、コードGEN115へコード番号を設定する。   The signal whose code correlation has been obtained after the phase rotation is integrated by the integrator 116 for each I component and Q component of the correlation value every predetermined time and supplied to the control unit 20. From the control unit 20, the frequency is set to the carrier NCO 112, and the code number is set to the code GEN115.

強信号ch11からは、強信号自己相関電力と弱信号相互相関電力が出力されるが、強信号自己相関電力≫弱信号相互相関電力、の関係にあるので、実質的には強信号自己相関電力が出力される。   The strong signal ch11 outputs strong signal autocorrelation power and weak signal crosscorrelation power. However, since the strong signal autocorrelation power >> weak signal crosscorrelation power, the strong signal autocorrelation power is substantially satisfied. Is output.

図2は、図1の強信号chのより具体的な回路構成を示す図である。ミキサでの位相回転を同相成分Iと直交成分Qで別々に行うためにミキサ111I・ミキサ111Qを設け、ミキサ111IにキャリアNCO112からsinテーブル112Iを介して得た周波数信号を供給し、ミキサ111QにキャリアNCO112からcosテーブル112QIを介して得た周波数信号を供給する。   FIG. 2 is a diagram showing a more specific circuit configuration of the strong signal ch of FIG. In order to perform phase rotation in the mixer separately for the in-phase component I and the quadrature component Q, a mixer 111I and a mixer 111Q are provided, and a frequency signal obtained from the carrier NCO 112 via the sin table 112I is supplied to the mixer 111I, and the mixer 111Q is supplied. A frequency signal obtained from the carrier NCO 112 via the cos table 112QI is supplied.

また、トラッキングを行うDLL回路を構成するために、コードNCO114、コード発生器115に基づいてシフトレジスタ115Sにおいて、実際に同期される位相の同期コードP−codeと、同期コードより半チップ位相が進んだ進みコードE−codeと、同期コードより半チップ位相が遅れた遅れコードL−codeとを発生し、コード相関器113IE、113IP、113IL、113QE,113QP,113QLで、ミキサ111IからのI信号、ミキサ111QからのQ信号と乗算して、各々相関値ie,ip,il,qe,qp,qlを得る。これら相関値ie〜qlを、積分器116IE、116IP、116IL,116QE,116QP,116QLでそれぞれ所定時間、例えば1/n[ms]積分し、積分した相関値IE、IP、IL,QE,QP,QLを得る。   Further, in order to configure a DLL circuit that performs tracking, in the shift register 115S based on the code NCO 114 and the code generator 115, the half-chip phase is advanced from the synchronization code P-code of the phase that is actually synchronized and the synchronization code. The leading code E-code and the delayed code L-code whose half chip phase is delayed from the synchronization code are generated, and the code correlator 113IE, 113IP, 113IL, 113QE, 113QP, 113QL, the I signal from the mixer 111I, By multiplying the Q signal from the mixer 111Q, the correlation values ie, ip, il, qe, qp, and ql are obtained. These correlation values ie to ql are integrated by integrators 116IE, 116IP, 116IL, 116QE, 116QP, and 116QL for a predetermined time, for example, 1 / n [ms], and the integrated correlation values IE, IP, IL, QE, QP, Get QL.

バッファ119は、積分した相関値IE〜QLを順次別々に記憶する相関値毎にn個以上(少なくともn個)の記憶領域を持ち、それらの記憶領域に各相関値IE〜QLをn個記憶する。   The buffer 119 has n or more (at least n) storage areas for each correlation value for sequentially storing the integrated correlation values IE to QL, and stores n correlation values IE to QL in those storage areas. To do.

この「n」は、多いほど測定精度は改善するが、制御部の処理負荷が増加するので、精度と処理負荷とのトレードオフで適切な回数に設定する。   As “n” is increased, the measurement accuracy is improved, but the processing load of the control unit is increased.

なお、相関値の処理において、相関値IE、IL,QE,QLに代えて、IE−IL=IEL,QE−QL=QELとした相関値IEL,QELを処理しても良い。   In the correlation value processing, instead of the correlation values IE, IL, QE, QL, the correlation values IEL, QEL with IE-IL = IEL, QE-QL = QEL may be processed.

制御部20は例えば、ある衛星に対するサーチ処理の結果得られた周波数、コード番号及びコード位相を、トラッキングchに設定する。トラッキングchは指定された周波数、コード番号及びコード位相で相関演算を行い、相関結果のI成分、Q成分を制御部20へ出力し、制御部20では安定した受信を継続するように、最適な周波数とコード位相を随時算出し、トラッキングchへ設定する。制御部20はその他、本発明のための制御処理を司る。また、制御部20は全てのchに共通に設けることでも良い。   For example, the control unit 20 sets the frequency, code number, and code phase obtained as a result of the search process for a certain satellite in the tracking ch. The tracking ch performs a correlation operation at a specified frequency, code number, and code phase, outputs the I component and Q component of the correlation result to the control unit 20, and the control unit 20 is optimal so that stable reception is continued. The frequency and code phase are calculated as needed and set to the tracking ch. In addition, the control unit 20 performs control processing for the present invention. The control unit 20 may be provided in common for all the channels.

また、受信chである強信号ch11は、シフトレジスタ115Sの同期コードP−codeとキャリアNCO112からの周波数信号(sinテーブル112Iを介して得た周波数信号でよい)とをミキサ111Sで乗算して、強信号chの周波数及び拡散コードの種別・位相を持つ第1信号として、出力する。この第1信号は、相互相関ch30へ供給される。   Further, the strong signal ch11 that is the reception channel is multiplied by the synchronization code P-code of the shift register 115S and the frequency signal from the carrier NCO 112 (which may be a frequency signal obtained via the sin table 112I) by the mixer 111S, The first signal having the frequency of the strong signal ch and the type / phase of the spreading code is output. This first signal is supplied to the cross-correlation ch30.

弱信号ch12は、通常のトラッキングチャネルのうちの1つであり、弱信号を受信している。弱信号ch12は、強信号ch11と同様な構成(121〜126)を有しており、「弱信号自己相関電力+強信号相互相関電力」の信号を出力している。キャリアNCO122からは、IF周波数+その弱信号ドップラー周波数がミキサ121に供給され、コードNCO124とコードGEN125からは、その弱信号コードがコード相関器123に供給されている。その弱信号コード位相が、その弱信号に正常にトラッキングされているときは位相同期が取れている。弱信号ch12も1つの受信chであるので、強信号chとして使用されることもあるから、図2と同様に、シフトレジスタの同期コードP−codeとキャリアNCOからの周波数信号とをミキサで乗算して出力できる構成となっている。しかし、弱信号chとして使用される場合には、その出力は行われない。また、その受信chが弱信号ch専用である場合には、その出力できる構成は不要である。   The weak signal ch12 is one of normal tracking channels, and receives a weak signal. The weak signal ch12 has the same configuration (121 to 126) as the strong signal ch11, and outputs a signal of “weak signal autocorrelation power + strong signal cross-correlation power”. The IF frequency + the weak signal Doppler frequency is supplied to the mixer 121 from the carrier NCO 122, and the weak signal code is supplied to the code correlator 123 from the code NCO 124 and the code GEN 125. When the weak signal code phase is normally tracked by the weak signal, phase synchronization is achieved. Since the weak signal ch12 is also a single reception channel, it may be used as a strong signal ch. Therefore, as in FIG. 2, the shift register synchronization code P-code and the frequency signal from the carrier NCO are multiplied by a mixer. Can be output. However, when used as a weak signal ch, the output is not performed. Further, when the reception channel is dedicated to the weak signal channel, a configuration capable of outputting the reception channel is not necessary.

相互相関ch30は、強信号相互相関の実測を専門に行うもので、強信号ch11と同様な構成(301〜306)を有しているが、その入力される信号として、IF受信信号ではなく、強信号ch11の周波数及び拡散コードの種別・位相を持つ第1信号が供給されている。また、キャリアNCO302からは、IF周波数に弱信号ドップラー周波数が加算された周波数がミキサ301に供給され、コードNCO304とコードGEN305からは、その弱信号コードがコード相関器303に供給されている。そして、積分器306から強信号相互相関電力である第2信号が出力される。なお、相互相関ch30は、図2とは異なり、シフトレジスタの同期コードP−codeとキャリアNCOからの周波数信号とをミキサで乗算して出力できる構成は、不要である。   The cross-correlation ch30 specializes in actual measurement of the strong signal cross-correlation and has the same configuration (301 to 306) as the strong signal ch11, but the input signal is not an IF reception signal, The first signal having the frequency of the strong signal ch11 and the type / phase of the spreading code is supplied. The carrier NCO 302 supplies a frequency obtained by adding the weak signal Doppler frequency to the IF frequency to the mixer 301, and the code NCO 304 and the code GEN 305 supply the weak signal code to the code correlator 303. The integrator 306 outputs a second signal that is a strong signal cross-correlation power. Unlike FIG. 2, the cross-correlation ch30 does not require a configuration that can output the shift register synchronization code P-code and the frequency signal from the carrier NCO by a mixer.

図1,図2の構成において、処理手順を説明する。先ず、第1段階として、強信号ch11と弱信号ch12と相互相関ch30の出力、即ち積分した相関値IE、IP、IL,QE,QP,QLを得る。これらの相関値IE〜QL、もしくはIEL,QELを、それぞれの相関値毎にN個の記憶領域を持つバッファ117に記憶させる。強信号ch11と弱信号ch12と相互相関ch30の相関値を区別するために、強信号ch11の相関値はSを付して、IPS、IELS,QPS,QELSとし、弱信号ch12の相関値はWを付して、IPW、IELW,QPW,QELWとし、相互相関ch30の相関値はCを付して、IPC、IELC,QPC,QELCと表現する。また、バッファ117に記憶された値は、配列で表現する。例えば、IPSのバッファ117の値は、IPS(1),IPS(2),・・・,IPS(n)、または、IPS(i),i=1,・・・,nと表現する。他の相関値も同様。   A processing procedure in the configuration of FIGS. 1 and 2 will be described. First, as a first stage, outputs of strong signal ch11, weak signal ch12, and cross-correlation ch30, that is, integrated correlation values IE, IP, IL, QE, QP, and QL are obtained. These correlation values IE to QL or IEL and QEL are stored in a buffer 117 having N storage areas for each correlation value. In order to distinguish the correlation values of the strong signal ch11, the weak signal ch12, and the cross-correlation ch30, the correlation value of the strong signal ch11 is denoted by S to be IPS, IELS, QPS, QELS, and the correlation value of the weak signal ch12 is W. Is attached to IPW, IELW, QPW, QELW, and the correlation value of the cross-correlation ch30 is attached with C to represent IPC, IELC, QPC, QELC. The values stored in the buffer 117 are expressed as an array. For example, the value of the IPS buffer 117 is expressed as IPS (1), IPS (2),..., IPS (n), or IPS (i), i = 1,. The same applies to other correlation values.

次に、第2段階として、強信号のデータ変調の影響を取り除くために、相互相関ch30の出力IPC、IELC,QPC,QELCに、強信号chの出力IPSの符号を乗算する。即ち、IPC(i)*SGN(IPS(i)),IELC(i)*SGN(IPS(i)),QPC(i)*SGN(IPS(i)),QELC(i)*SGN(IPS(i)),i=1,・・・,n、を計算する。入力信号に含まれる強信号はデータ変調されているが、再生した強信号である第1信号はデータ変調されていないので、データ変調を表す出力IPSの符号を乗算してデータ変調の影響を取り除くものである。   Next, as a second step, the output IPC, IELC, QPC, and QELC of the cross-correlation ch30 are multiplied by the sign of the output IPS of the strong signal ch in order to remove the influence of the data modulation of the strong signal. That is, IPC (i) * SGN (IPS (i)), IELC (i) * SGN (IPS (i)), QPC (i) * SGN (IPS (i)), QELC (i) * SGN (IPS ( i)), i = 1,..., n are calculated. The strong signal included in the input signal is data-modulated, but the reproduced first signal, which is the strong signal, is not data-modulated, so the influence of the data modulation is removed by multiplying the sign of the output IPS representing the data modulation. Is.

次に、第3段階として、弱信号ch12の出力IPW,QPWの中に含まれている相互相関の割合x1を、相互相関ch30の出力IPC,QPCと弱信号ch12の出力IPW,QPWを用いて推定する。この推定は最小自乗推定が良い。この相互相関割合x1は、出力IPW,QPWから自己相関分を取り除いたもの、即ち弱信号chの出力IPW,QPWに含まれる相互相関成分に、出力IPC,QPCの何倍が含まれているかを表す係数である。x1=「弱信号chの出力に含まれる相互相関成分」/「相互相関chの出力」、である。   Next, as a third stage, the cross-correlation ratio x1 included in the outputs IPW and QPW of the weak signal ch12 is determined using the outputs IPC and QPC of the cross-correlation ch30 and the outputs IPW and QPW of the weak signal ch12. presume. This estimation is preferably a least square estimation. This cross-correlation ratio x1 indicates how many times the output IPC and QPC are included in the cross-correlation component included in the outputs IPW and QPW of the weak signal ch, that is, the auto-correlation portion removed from the outputs IPW and QPW. It is a coefficient to represent. x1 = “cross-correlation component included in output of weak signal ch” / “output of cross-correlation ch”.

入力信号は、データ変調された強信号及び弱信号と、ノイズからなる。よって、弱信号ch12で相関を取ると以下の関係が得られる。
IPW(i)=x1*(IPC(i)*SGN(IPS(i)))+x2+v1
QPW(i)=x1*(QPC(i)*SGN(IPS(i)))+x3+v2
ここで、IPW(i),QPW(i):入力信号とキャリアNCO122及びコードGEN125の周波数・拡散コード(以下、弱信号設定値)との相関で、弱信号ch12の出力、
IPC(i)*SGN(IPS(i)),QPC(i)*SGN(IPS(i)):強信号と弱信号設定値との相互相関成分、
x2,x3:弱信号と弱信号設定値との自己相関成分、
v1,v2:ノイズと弱信号設定値との相関成分で、ノイズ成分、
The input signal consists of a data-modulated strong and weak signal and noise. Therefore, the following relationship is obtained when correlation is obtained with the weak signal ch12.
IPW (i) = x1 * (IPC (i) * SGN (IPS (i))) + x2 + v1
QPW (i) = x1 * (QPC (i) * SGN (IPS (i))) + x3 + v2
Here, IPW (i), QPW (i): the correlation between the input signal and the frequency / spreading code (hereinafter, weak signal setting value) of the carrier NCO 122 and the code GEN 125, the output of the weak signal ch12,
IPC (i) * SGN (IPS (i)), QPC (i) * SGN (IPS (i)): cross-correlation component between strong signal and weak signal set value,
x2, x3: autocorrelation component between weak signal and weak signal set value,
v1, v2: correlation component between noise and weak signal setting value, noise component,

未知数x1,x2,x3を最小自乗推定するために、以下のh1,h2,h3,y1,y2,y3を計算する。Σは、i=1,・・・,n、での合計を表す。この最小自乗推定によって予測誤差の自乗和が最小にされることにより、ノイズ成分v1,v2を含んで未知数が推定される。
h1=Σ(IPC(i)2)+QPC(i)2
h2=Σ(IPC(i)*SGN(IPS(i))
h3=Σ(QPC(i)*SGN(IPS(i))
y1=Σ(IPC(i)*SGN(IPS(i))*IPW(i)
+QPC(i)*SGN(IPS(i))*QPW(i))
y2=ΣIPW(i)
y3=ΣQPW(i)
In order to estimate the least squares of the unknowns x1, x2, and x3, the following h1, h2, h3, y1, y2, and y3 are calculated. Σ represents the sum of i = 1,..., N. By this least square estimation, the square sum of the prediction error is minimized, so that the unknown including the noise components v1 and v2 is estimated.
h1 = Σ (IPC (i) 2 ) + QPC (i) 2 )
h2 = Σ (IPC (i) * SGN (IPS (i))
h3 = Σ (QPC (i) * SGN (IPS (i))
y1 = Σ (IPC (i) * SGN (IPS (i)) * IPW (i)
+ QPC (i) * SGN (IPS (i)) * QPW (i))
y2 = ΣIPW (i)
y3 = ΣQPW (i)

次の数1の行列演算を行う。xe1は、相互相関割合x1を推定した推定相互相関割合であり、同相成分を用いてSGN成分を省略した簡易形式で表現すると、
e1=「IPW−xe2」/「IPC」、である。なお、xe2は、自己相関成分x2を推定した推定自己相関成分であり、またこの後に使用される他の「xe・・」は「x・・」の推定値を表している。
The following matrix operation is performed. x e 1 is an estimated cross-correlation ratio obtained by estimating the cross-correlation ratio x1, and when expressed in a simplified form using the in-phase component and omitting the SGN component
x e 1 = “IPW−x e 2” / “IPC”. X e 2 is an estimated auto-correlation component obtained by estimating the auto-correlation component x 2, and the other “x e ...” Used thereafter represents an estimated value of “x.

Figure 2009281844
Figure 2009281844

次に、第4段階として、推定した相互相関割合xe1を、相互相関ch30の出力IPC、IELC,QPC,QELCに乗算して、弱信号ch12の出力IPW、IELW,QPW,QELWに含まれる相互相関成分を推定する。そして、弱信号ch12の出力IPW、IELW,QPW,QELWから、推定した相互相関成分を減算して、弱信号成分xe2,xe3である補正済の相関値IPWX(i),IELWX(i),QPWX(i),QELWX(i),を得る。
IPWX(i)=IPW(i)−xe1*IPC(i)*SGN(IPS(i))
IELWX(i)=IELW(i)−xe1*IELC(i)*SGN(IPS(i))
QPWX(i)=QPW(i)−xe1*QPC(i)*SGN(IPS(i))
QELWX(i)=QELW(i)−xe1*QELC(i)*SGN(IPS(i))
Next, as a fourth stage, the estimated cross-correlation ratio x e 1 is multiplied by the output IPC, IELC, QPC, QELC of the cross-correlation ch30 and included in the outputs IPW, IELW, QPW, QELW of the weak signal ch12. Estimate the cross-correlation component. The output IPW weak signal ch12, IELW, QPW, from QELW, by subtracting the estimated cross-correlation component, the weak signal component x e 2, x e 3 a is corrected correlation value IPWX (i), IELWX ( i), QPWX (i), QELWX (i).
IPWX (i) = IPW (i) -x e 1 * IPC (i) * SGN (IPS (i))
IELWX (i) = IELW (i) −x e 1 * IELC (i) * SGN (IPS (i))
QPWX (i) = QPW (i) -x e 1 * QPC (i) * SGN (IPS (i))
QELWX (i) = QELW (i) -x e 1 * QELC (i) * SGN (IPS (i))

このようにして、1つの弱信号ch12の出力である第3信号(以下、括弧内は同相成分を用いてSGN成分を省略した簡易形式で表記;IPW=xe1*IPC+xe2)に含まれており、且つ、1つの強信号チャネル11でトラッキングされている強信号と1つの弱信号チャネル12でトラッキングされるべき弱信号との相互相関成分(xe1*IPC)に対する第2信号(IPC)の相互相関割合(xe1)を、第2信号と第3信号とを用いて推定する。そして、相互相関割合(xe1)を第2信号(IPC)に乗算して第3信号(IPW)に含まれる相互相関成分を決定し、第3信号(IPW)から、第3信号に含まれる相互相関成分(xe1*IPC)を減算して、第3信号(IPW)に含まれる弱信号成分(xe2)を得ることができる。 In this way, included in the third signal that is the output of one weak signal ch12 (hereinafter, the parenthesized notation using the in-phase component and omitting the SGN component; IPW = x e 1 * IPC + x e 2) And a second signal (x e 1 * IPC) for a cross-correlation component (x e 1 * IPC) between a strong signal tracked by one strong signal channel 11 and a weak signal to be tracked by one weak signal channel 12 IPC) cross-correlation ratio (x e 1) is estimated using the second signal and the third signal. Then, the cross-correlation ratio (x e 1) is multiplied by the second signal (IPC) to determine a cross-correlation component included in the third signal (IPW), and is included in the third signal from the third signal (IPW). By subtracting the cross-correlation component (x e 1 * IPC), the weak signal component (x e 2) included in the third signal (IPW) can be obtained.

また、サーチモードの場合にはアクイジションを行うことになるが、補正済の相関値IPWX(i),IEWX(i),ILWX(i),QPWX(i),QEWX(i),QLWX(i),を次式により得る。
IPWX(i)=IPW(i)−xe1*IPC(i)*SGN(IPS(i))
IEWX(i)=IEW(i)−xe1*IEC(i)*SGN(IPS(i))
ILWX(i)=ILW(i)−xe1*ILC(i)*SGN(IPS(i))
QPWX(i)=QPW(i)−xe1*QPC(i)*SGN(IPS(i))
QEWX(i)=QEW(i)−xe1*QEC(i)*SGN(IPS(i))
QLWX(i)=QLW(i)−xe1*QLC(i)*SGN(IPS(i))
In the search mode, acquisition is performed, but corrected correlation values IPWX (i), IEWX (i), ILWX (i), QPWX (i), QEWX (i), QLWX (i) Are obtained by the following equation.
IPWX (i) = IPW (i) -x e 1 * IPC (i) * SGN (IPS (i))
IEWX (i) = IEW (i) -x e 1 * IEC (i) * SGN (IPS (i))
ILWX (i) = ILW (i) -x e 1 * ILC (i) * SGN (IPS (i))
QPWX (i) = QPW (i) -x e 1 * QPC (i) * SGN (IPS (i))
QEWX (i) = QEW (i) −x e 1 * QEC (i) * SGN (IPS (i))
QLWX (i) = QLW (i) -x e 1 * QLC (i) * SGN (IPS (i))

図3は、受信chが3つであり、その内の2つが強信号ch、1つが弱信号chとして形成される場合の構成を示す図である。   FIG. 3 is a diagram showing a configuration in which there are three reception channels, two of which are formed as strong signal channels and one as a weak signal channel.

弱信号ch12の出力IPW(i),QPW(i)には、強信号ch11−1でトラッキングされている強信号1による相互相関成分1と、強信号ch11−2でトラッキングされている強信号2による相互相関成分2とが含まれている。したがって、強信号1,2による干渉信号を除去するために、強信号ch11−1の強信号1と弱信号ch12の弱信号設定値との相互相関を行う相互相関ch30−1と、強信号ch11−2の強信号2と弱信号ch12の弱信号設定値との相互相関を行う相互相関ch30−2とを設ける。   The outputs IPW (i) and QPW (i) of the weak signal ch12 include the cross-correlation component 1 due to the strong signal 1 being tracked by the strong signal ch11-1 and the strong signal 2 being tracked by the strong signal ch11-2. And the cross-correlation component 2 is included. Therefore, in order to remove the interference signal due to the strong signals 1 and 2, the cross-correlation ch30-1 that performs the cross-correlation between the strong signal 1 of the strong signal ch11-1 and the weak signal set value of the weak signal ch12, and the strong signal ch11 -2 is provided as a cross-correlation ch30-2 that performs cross-correlation between the strong signal 2 of -2 and the weak signal set value of the weak signal ch12.

そして、以下のような式に基づいて、既に説明した強信号chが1つの場合と同様にして、弱信号ch12の弱信号を求める。なお、以下の式においては、各記号の意味は既に説明した強信号chが1つの場合と同様であるが、添え字1は強信号1に関するものを表し、添え字2は強信号2に関するものを表している。例えば、x11は相互相関割合1であり、x11=「弱信号chの出力に含まれる強信号1による相互相関成分」/「相互相関ch1の出力」、である。また、x12は相互相関割合2であり、x12=「弱信号chの出力に含まれる強信号2による相互相関成分」/「相互相関ch2の出力」、である。   Based on the following equation, the weak signal of the weak signal ch12 is obtained in the same manner as in the case where there is one strong signal ch described above. In the following expression, the meaning of each symbol is the same as in the case of one strong signal ch already described, but the subscript 1 represents the strong signal 1 and the subscript 2 represents the strong signal 2. Represents. For example, x11 is the cross-correlation ratio 1, and x11 = “cross-correlation component due to the strong signal 1 included in the output of the weak signal ch” / “output of the cross-correlation ch1”. Further, x12 is the cross-correlation ratio 2, and x12 = “cross-correlation component due to the strong signal 2 included in the output of the weak signal ch” / “output of the cross-correlation ch2”.

IPW(i)=x11*(IPC1(i)*SGN(IPS1(i))
+x12*(IPC2(i)*SGN(IPS2(i))+x2+v1
QPW(i)=x11*(QPC1(i)*SGN(IPS1(i))
+x12*(QPC2(i)*SGN(IPS2(i))+x3+v2
IPW (i) = x11 * (IPC1 (i) * SGN (IPS1 (i))
+ X12 * (IPC2 (i) * SGN (IPS2 (i)) + x2 + v1
QPW (i) = x11 * (QPC1 (i) * SGN (IPS1 (i))
+ X12 * (QPC2 (i) * SGN (IPS2 (i)) + x3 + v2

未知数x11,x12,x2,x3を最小自乗推定するために、以下のh11,h12,h22,h13,h23,h14,h24,y11,y12,y2,y3を計算する。
h11=Σ(IPC1(i)2+QPC1(i)2
h12=Σ(IPC1(i)*IPC2(i)+QPC1(i)*QPC2(i))
h22=Σ(IPC2(i)2+QPC2(i)2
h13=Σ(IPC1(i)*SGN(IPS1(i))
h23=Σ(IPC2(i)*SGN(IPS2(i))
h14=Σ(QPC1(i)*SGN(IPS1(i))
h24=Σ(QPC2(i)*SGN(IPS2(i))
y11=Σ(IPC1(i)*SGN(IPS1(i))*IPW(i)
+QPC1(i)*SGN(IPS1(i))*QPW(i))
y12=Σ(IPC2(i)*SGN(IPS2(i))*IPW(i)
+QPC2(i)*SGN(IPS2(i))*QPW(i))
y2=ΣIPW(i)
y3=ΣQPW(i)
In order to estimate the least squares of the unknowns x11, x12, x2, and x3, the following h11, h12, h22, h13, h23, h14, h24, y11, y12, y2, and y3 are calculated.
h11 = Σ (IPC1 (i) 2 + QPC1 (i) 2 )
h12 = Σ (IPC1 (i) * IPC2 (i) + QPC1 (i) * QPC2 (i))
h22 = Σ (IPC2 (i) 2 + QPC2 (i) 2 )
h13 = Σ (IPC1 (i) * SGN (IPS1 (i))
h23 = Σ (IPC2 (i) * SGN (IPS2 (i))
h14 = Σ (QPC1 (i) * SGN (IPS1 (i))
h24 = Σ (QPC2 (i) * SGN (IPS2 (i))
y11 = Σ (IPC1 (i) * SGN (IPS1 (i)) * IPW (i)
+ QPC1 (i) * SGN (IPS1 (i)) * QPW (i))
y12 = Σ (IPC2 (i) * SGN (IPS2 (i)) * IPW (i)
+ QPC2 (i) * SGN (IPS2 (i)) * QPW (i))
y2 = ΣIPW (i)
y3 = ΣQPW (i)

次の数2の行列演算を行う。xe11,xe12が各々の推定した相互相関割合である。 The following matrix operation is performed. x e 11 and x e 12 are the estimated cross-correlation ratios.

Figure 2009281844
Figure 2009281844

そして、推定した相互相関割合xe11,xe12を、相互相関ch30ー1、30−2の出力IPC1,IELC1,QPC1,QELC1,IPC2、IELC2,QPC2,QELC2に乗算して、弱信号ch12の出力IPW、IELW,QPW,QELWに含まれる相互相関成分を推定する。そして、弱信号ch12の出力IPW、IELW,QPW,QELWから、推定した相互相関成分を減算して、弱信号成分xe2,xe3である補正済の相関値IPWX(i),IELWX(i),QPWX(i),QELWX(i),を得る。 The estimated cross-correlation ratios x e 11 and x e 12 are multiplied by the outputs IPC1, IELC1, QPC1, QELC1, IPC2, IELC2, QPC2, and QELC2 of the cross-correlation ch30-1 and 30-2, and the weak signal ch12 is obtained. The cross-correlation components included in the output IPW, IELW, QPW, QELW are estimated. The output IPW weak signal ch12, IELW, QPW, from QELW, by subtracting the estimated cross-correlation component, the weak signal component x e 2, x e 3 a is corrected correlation value IPWX (i), IELWX ( i), QPWX (i), QELWX (i).

さて、以上の説明では、受信chが2つで強信号chが1,弱信号chが1の場合と、受信chが3つで強信号chが2,弱信号chが1の場合について本発明を説明した。前述したように、GPS受信機で測位を行う為には最低4衛星からの衛星信号の受信結果が必要なので、一般に、4ch以上の受信chが実装される。   In the above description, the present invention relates to the case where there are two received channels, the strong signal ch is 1, and the weak signal ch is 1, and the case where there are three received channels, the strong signal ch is 2, and the weak signal ch is 1. Explained. As described above, since the reception result of satellite signals from at least four satellites is necessary for positioning with a GPS receiver, generally, reception channels of 4 channels or more are mounted.

図4、図5は、例えば、受信chが4chである場合に、衛星信号の受信状況に応じて、考えられるパターンを示す図である。図4、図5のように、強信号chが4で弱信号chが0のパターン(図4の(a)),強信号chが3で弱信号chが1のパターン(図4の(b)),強信号chが2で弱信号chが2のパターン(図4の(c)),強信号chが1で弱信号chが3のパターン(図5の(a)),及び強信号chが0で弱信号chが4のパターン(図5の(b))が考えられる。   4 and 5 are diagrams illustrating possible patterns according to the reception status of the satellite signal when the reception channel is 4 channels, for example. 4 and 5, a pattern in which the strong signal ch is 4 and the weak signal ch is 0 (FIG. 4A), and a pattern in which the strong signal ch is 3 and the weak signal ch is 1 (FIG. 4B). )), A pattern in which the strong signal ch is 2 and the weak signal ch is 2 (FIG. 4C), a pattern in which the strong signal ch is 1 and the weak signal ch is 3 (FIG. 5A), and a strong signal A pattern in which ch is 0 and weak signal ch is 4 ((b) in FIG. 5) is conceivable.

図4(a)では、各受信chが強信号1〜4にトラッキングし、強信号ch1〜強信号ch4となるので、相互相関chを使用する必要がない。   In FIG. 4A, each received channel tracks strong signals 1 to 4 and becomes strong signal ch1 to strong signal ch4, so there is no need to use a cross-correlation channel.

図4(b)では、3つの受信chが強信号1〜3にトラッキングし、強信号ch1〜強信号ch3となり、1つの受信chが弱信号1にトラッキングすべき弱信号ch1となる。この場合には、弱信号ch1に強信号ch1〜強信号ch3でトラッキングしている強信号1〜3が干渉することになる。したがって、強信号1と弱信号1との相互相関を相互相関ch1で行い、強信号2と弱信号1との相互相関を相互相関ch3で行い、強信号3と弱信号1との相互相関を相互相関ch4で行うことになる。そして、図3を用いて説明したと同様な手法により、各々の相互相関割合を求めて、弱信号ch1の弱信号成分を得る。   In FIG. 4B, the three received channels track the strong signals 1 to 3, become the strong signal ch1 to the strong signal ch3, and one received channel becomes the weak signal ch1 to be tracked to the weak signal 1. In this case, the strong signals 1 to 3 tracked by the strong signal ch1 to the strong signal ch3 interfere with the weak signal ch1. Therefore, the cross-correlation between the strong signal 1 and the weak signal 1 is performed using the cross-correlation ch1, the cross-correlation between the strong signal 2 and the weak signal 1 is performed using the cross-correlation ch3, and the cross-correlation between the strong signal 3 and the weak signal 1 is performed. This is performed with the cross-correlation ch4. Then, each cross-correlation ratio is obtained by the same method as described with reference to FIG. 3, and the weak signal component of the weak signal ch1 is obtained.

図4(c)では、2つの受信chが強信号1,2にトラッキングし、強信号ch1,強信号ch2となり、2つの受信chが弱信号1,2にトラッキングすべき弱信号ch1,弱信号ch2となる。この場合には、弱信号ch1に強信号ch1,強信号ch2でトラッキングしている強信号1,2が干渉することになり、また、弱信号ch2にも強信号ch1,強信号ch2でトラッキングしている強信号1,2が干渉することになる。したがって、強信号1と弱信号1との相互相関を相互相関ch1で行い、強信号2と弱信号1との相互相関を相互相関ch2で行い、さらに、強信号1と弱信号2との相互相関を相互相関ch3で行い、強信号2と弱信号2との相互相関を相互相関ch4で行うことになる。そして、図3を用いて説明したと同様な手法により、各々の相互相関割合を求めて、弱信号ch1の弱信号成分、及び弱信号ch2の弱信号成分を得る。   In FIG. 4C, the two received channels track the strong signals 1 and 2 to become the strong signal ch1 and the strong signal ch2, and the two received channels should track the weak signals 1 and 2, respectively. ch2. In this case, the strong signals 1 and 2 being tracked by the strong signal ch1 and the strong signal ch2 interfere with the weak signal ch1, and the weak signal ch2 is also tracked by the strong signal ch1 and the strong signal ch2. The strong signals 1 and 2 that are present interfere with each other. Therefore, the cross-correlation between the strong signal 1 and the weak signal 1 is performed with the cross-correlation ch1, the cross-correlation between the strong signal 2 and the weak signal 1 is performed with the cross-correlation ch2, and the mutual correlation between the strong signal 1 and the weak signal 2 is performed. The correlation is performed with the cross-correlation ch3, and the cross-correlation between the strong signal 2 and the weak signal 2 is performed with the cross-correlation ch4. Then, by using the same method as described with reference to FIG. 3, the respective cross-correlation ratios are obtained, and the weak signal component of the weak signal ch1 and the weak signal component of the weak signal ch2 are obtained.

図5(a)では、1つの受信chが強信号1にトラッキングし、強信号ch1となり、3つの受信chが弱信号1〜3にトラッキングすべき弱信号ch1〜弱信号ch3となる。この場合には、弱信号ch1、弱信号ch2、弱信号ch3に、強信号ch1でトラッキングしている強信号1が干渉することになる。したがって、強信号1と弱信号1との相互相関を相互相関ch1で行い、強信号1と弱信号2との相互相関を相互相関ch2で行い、強信号1と弱信号3との相互相関を相互相関ch4で行うことになる。そして、図3を用いて説明したと同様な手法により、各々の相互相関割合を求めて、弱信号ch1の弱信号成分を得る。   In FIG. 5A, one received channel tracks the strong signal 1 and becomes the strong signal ch1, and the three received channels become the weak signal ch1 to the weak signal ch3 to be tracked to the weak signals 1 to 3. In this case, the strong signal 1 tracked by the strong signal ch1 interferes with the weak signal ch1, the weak signal ch2, and the weak signal ch3. Therefore, the cross-correlation between the strong signal 1 and the weak signal 1 is performed using the cross-correlation ch1, the cross-correlation between the strong signal 1 and the weak signal 2 is performed using the cross-correlation ch2, and the cross-correlation between the strong signal 1 and the weak signal 3 is performed. This is performed with the cross-correlation ch4. Then, each cross-correlation ratio is obtained by the same method as described with reference to FIG. 3, and the weak signal component of the weak signal ch1 is obtained.

図5(b)では、各受信chが弱信号1〜4にトラッキングし、弱信号ch1〜弱信号ch4となり、これら弱信号ch1〜4に干渉を与える強信号は存在しないから、相互相関chを使用する必要がない。   In FIG. 5B, each reception channel tracks weak signals 1 to 4 and becomes weak signal ch1 to weak signal ch4, and there is no strong signal that interferes with these weak signals ch1 to 4. There is no need to use it.

これら図4,図5において、相互相関ch1〜4への強信号chからの各第1信号の供給は、選択スイッチを設けて、衛星信号の受信状況に応じて選択スイッチを適宜切り換える。これにより、相互相関chの数を4個に制限している。   4 and 5, the supply of each first signal from the strong signal ch to the cross-correlations ch1 to ch4 is provided with a selection switch, and the selection switch is appropriately switched according to the reception status of the satellite signal. As a result, the number of cross-correlation channels is limited to four.

一般的に、相互相関chの数は、受信ch数Nに応じた所定数である。受信chが複数N個である場合に、Nが偶数の場合には、(N/2)2個の相互相関ch、Nが奇数の場合には(N+1)*(N−1)/4個の相互相関chがあれば良い。即ち、相互相関chの所定数は、「(N/2)2個(Nが偶数時)」または「(N+1)*(N−1)/4個(Nが奇数時)」。例えば、N=4では、図4,図5の通り4個の相互相関chを設けることで、本発明を実現することができる。 In general, the number of cross-correlation channels is a predetermined number corresponding to the number N of received channels. When N is a plurality of received channels, (N / 2) 2 cross-correlation channels when N is an even number, and (N + 1) * (N-1) / 4 when N is an odd number. If there is a cross-correlation channel of. That is, the predetermined number of cross-correlation channels is “(N / 2) 2 (when N is an even number)” or “(N + 1) * (N−1) / 4 (when N is an odd number)”. For example, when N = 4, the present invention can be realized by providing four cross-correlation channels as shown in FIGS.

このようにして、受信信号が入力されそれぞれ異なる衛星信号に対応した周波数及び拡散コードの種別・位相でアクイジション及びまたはトラッキングするものであって、強信号の衛星信号を受信する強信号チャネルもしくは弱信号の衛星信号を受信する弱信号チャネルとなる複数Nの受信チャネルと、その複数の受信チャネルのうちのいずれかの強信号チャネルの周波数及び拡散コードの種別・位相を持つ第1信号が入力され、その第1信号と、前記複数の受信チャネルのうちのいずれかの弱信号チャネルのドップラー成分を含む周波数及び拡散コードの種別・位相とで、相互相関を行い、第2信号である相互相関チャネル相関成分を出力するための、受信チャネル数Nに応じた所定数の相互相関チャネルを有するGPS受信機が構成される。   In this way, a strong signal channel or weak signal that receives and receives a strong satellite signal and receives and / or tracks the frequency and type and phase of a spreading code corresponding to different satellite signals when the received signal is input. A plurality of N reception channels, which are weak signal channels for receiving the satellite signal, and a first signal having a frequency and a spreading code type / phase of any strong signal channel among the plurality of reception channels; A cross-correlation channel correlation that is a second signal is performed by cross-correlating the first signal with the frequency and Doppler component type / phase of the weak signal channel of any one of the plurality of reception channels. A GPS receiver having a predetermined number of cross-correlation channels according to the number of reception channels N for outputting components is configured. .

そして、1つもしくは複数N−1以下の強信号チャネルが形成される場合に、
(1)1つの弱信号チャネルの出力である第3信号(以下、括弧内は同相成分を用いてSGN成分を省略した簡易形式で表記;IPW=x11*IPC1+x12*IPC2+・・・+x2)に含まれる、1つの強信号チャネルでアクイジションまたはトラッキングされている強信号と当該弱信号チャネルでアクイジションまたはトラッキングされるべき弱信号との相互相関成分(x11*IPC1、または、x12*IPC2、または、・・・)に対して、当該弱信号チャネル及び前記1つの強信号チャネルに係る前記第2信号の相互相関割合(x11、または、x12、または、・・・)を、当該弱信号チャネル及び前記1つの強信号チャネルに係る第2信号(IPC1、または、IPC2、または、・・・)と前記第3信号(IPW)とを用いて、前記第3信号(IPW)に含まれる強信号成分ごとに推定し、
(2)前記第3信号(IPW)に含まれる強信号成分ごとの前記相互相関割合(x11、x12、・・・)を当該弱信号チャネルに係る第2信号(IPC1、IPC2、・・・)に乗算して前記第3信号(IPW)に含まれる相互相関成分(x11*IPC1、x12*IPC2、・・・)を決定し、
(3)前記第3信号(IPW)から、前記第3信号(IPW)に含まれる相互相関成分(x11*IPC1、x12*IPC2、・・・)を減算して、前記第3信号(IPW)に含まれる弱信号成分(x2)を得る。
And when one or more N-1 or less strong signal channels are formed,
(1) Included in the third signal that is the output of one weak signal channel (hereinafter, parenthesized notation using the in-phase component and omitting the SGN component; IPW = x11 * IPC1 + x12 * IPC2 +... + X2) Cross-correlation component between a strong signal being acquired or tracked in one strong signal channel and a weak signal to be acquired or tracked in the weak signal channel (x11 * IPC1, or x12 * IPC2, or ... )), The cross-correlation ratio (x11, x12,...) Of the second signal related to the weak signal channel and the one strong signal channel is set to the weak signal channel and the one strong signal channel. Second signal (IPC1, or IPC2, or...) Related to the strong signal channel and the third signal (IPW) Was used to estimate for each strong signal component included in the third signal (IPW),
(2) The cross-correlation ratio (x11, x12,...) For each strong signal component included in the third signal (IPW) is used as the second signal (IPC1, IPC2,...) Related to the weak signal channel. To determine cross-correlation components (x11 * IPC1, x12 * IPC2,...) Included in the third signal (IPW),
(3) The third signal (IPW) is obtained by subtracting the cross-correlation components (x11 * IPC1, x12 * IPC2,...) Included in the third signal (IPW) from the third signal (IPW). To obtain a weak signal component (x2).

更に、他の弱信号chが存在する場合には、同様にして、強信号による干渉成分を除去して、他の弱信号chにおける弱信号成分を得ることができる。   Further, when other weak signal ch is present, similarly, the interference component due to the strong signal can be removed to obtain the weak signal component in the other weak signal ch.

なお、本発明は、干渉信号(強信号)がコード変調されていない正弦波である場合にも、同様の手法により、その正弦波による影響を除去可能である。   In the present invention, even when the interference signal (strong signal) is a sine wave that is not code-modulated, the influence of the sine wave can be removed by the same method.

本発明のGPS受信機を説明するための図The figure for demonstrating the GPS receiver of this invention 受信ch(強信号ch、弱信号ch)のより具体的な回路構成を示す図The figure which shows the more concrete circuit structure of receiving ch (strong signal ch, weak signal ch). 受信chが3つ(強信号ch;2つ、弱信号ch;1つ)の場合の構成図Configuration diagram when there are three reception channels (strong signal ch; two, weak signal ch; one) 受信chが4chである場合の、パターン1−3を示す図The figure which shows the pattern 1-3 in case a receiving channel is 4ch 受信chが4chである場合の、パターン4、5を示す図The figure which shows the patterns 4 and 5 when receiving channel is 4ch 従来から一般に用いられているGPS受信機の概略構成を示す図The figure which shows schematic structure of the GPS receiver generally used conventionally サーチ部の具体的な構成例を示す図The figure which shows the specific structural example of a search part トラッキングチャネルの具体的な構成例を示す図Diagram showing a specific configuration example of the tracking channel 強信号と弱信号のレベル差が小さい場合のコード位相−相関レベルの特性図Characteristic diagram of code phase-correlation level when the level difference between strong and weak signals is small 強信号と弱信号のレベル差が大きい場合のコード位相−相関レベルの特性図Characteristic diagram of code phase-correlation level when the level difference between strong and weak signals is large

符号の説明Explanation of symbols

1:アンテナ、2:周波数変換部、3:A/D変換部、4:信号処理部、10:サーチ部
11,12:トラッキングch、101〜1n1:ミキサ
102〜1n2:キャリアNCO、103〜1n3:コード相関器
104〜1n4:コードNCO、105〜1n5:コード発生器
106〜1n6:積分器、107:電力化部、108:バッファ及びソート部、119:バッファ、20:制御部、30:相互相関ch
1: antenna, 2: frequency conversion unit, 3: A / D conversion unit, 4: signal processing unit, 10: search unit 11, 12: tracking ch, 101-1n1: mixer 102-1n2: carrier NCO, 103-1n3 : Code correlator 104-1n4: code NCO, 105-1n5: code generator 106-1n6: integrator, 107: power generation unit, 108: buffer and sorting unit, 119: buffer, 20: control unit, 30: mutual Correlation ch

Claims (3)

受信信号が入力されそれぞれ異なる衛星信号に対応した周波数及び拡散コードの種別・位相でアクイジション及びまたはトラッキングするものであって、強信号の衛星信号を受信する強信号チャネルもしくは弱信号の衛星信号を受信する弱信号チャネルとなる複数の受信チャネルと、
前記複数の受信チャネルのうちの1つの強信号チャネルの周波数及び拡散コードの種別・位相を持つ第1信号が入力され、その第1信号と、前記複数の受信チャネルのうちの1つの弱信号チャネルのドップラー成分を含む周波数及び拡散コードの種別・位相とで、相互相関を行い、第2信号である相互相関チャネル相関成分を出力する、少なくとも1つの相互相関チャネルを有し、
前記1つの弱信号チャネルの出力である第3信号に含まれており、且つ、前記1つの強信号チャネルでアクイジションまたはトラッキングされている強信号と前記1つの弱信号チャネルでアクイジションまたはトラッキングされるべき弱信号との相互相関成分に対する前記第2信号の相互相関割合を、前記第2信号と前記第3信号とを用いて推定し、
前記相互相関割合を前記第2信号に乗算して前記第3信号に含まれる相互相関成分を決定し、
前記第3信号から、前記第3信号に含まれる相互相関成分を減算して、前記第3信号に含まれる弱信号成分を得る、ことを特徴とする、GPS受信機。
Received signals are input and tracked with frequency and spreading code type / phase corresponding to different satellite signals, receiving strong signal satellite signals or weak satellite signals. A plurality of receiving channels to be weak signal channels,
A first signal having a frequency and a spreading code type / phase of one strong signal channel of the plurality of reception channels is input, and the first signal and one weak signal channel of the plurality of reception channels Having at least one cross-correlation channel that performs cross-correlation with the frequency including the Doppler component and the type / phase of the spreading code and outputs a cross-correlation channel correlation component that is the second signal,
The strong signal that is included in the third signal that is the output of the one weak signal channel and is acquired or tracked in the one strong signal channel and should be acquired or tracked in the one weak signal channel Estimating a cross-correlation ratio of the second signal with respect to a cross-correlation component with a weak signal using the second signal and the third signal;
Multiplying the second signal by the cross-correlation ratio to determine a cross-correlation component included in the third signal;
A GPS receiver, wherein a weak signal component included in the third signal is obtained by subtracting a cross-correlation component included in the third signal from the third signal.
受信信号が入力されそれぞれ異なる衛星信号に対応した周波数及び拡散コードの種別・位相でアクイジション及びまたはトラッキングするものであって、強信号の衛星信号を受信する強信号チャネルもしくは弱信号の衛星信号を受信する弱信号チャネルとなる複数Nの受信チャネルと、
前記複数の受信チャネルのうちのいずれかの強信号チャネルの周波数及び拡散コードの種別・位相を持つ第1信号が入力され、その第1信号と、前記複数の受信チャネルのうちのいずれかの弱信号チャネルのドップラー成分を含む周波数及び拡散コードの種別・位相とで、相互相関を行い、第2信号である相互相関チャネル相関成分を出力するための、受信チャネル数Nに応じた所定数の相互相関チャネルを有し、
1つもしくは複数N−1以下の強信号チャネルが形成される場合に、
1つの弱信号チャネルの出力である第3信号に含まれており、且つ1つの強信号チャネルでアクイジションまたはトラッキングされている強信号と当該弱信号チャネルでアクイジションまたはトラッキングされるべき弱信号との相互相関成分に対して、当該弱信号チャネル及び前記1つの強信号チャネルに係る前記第2信号の相互相関割合を、当該弱信号チャネル及び前記1つの強信号チャネルに係る第2信号と前記第3信号とを用いて、前記第3信号に含まれる強信号成分ごとに推定し、
前記第3信号に含まれる強信号成分ごとの前記相互相関割合を当該弱信号チャネルに係る第2信号に乗算して前記第3信号に含まれる相互相関成分を決定し、
前記第3信号から、前記第3信号に含まれる相互相関成分を減算して、前記第3信号に含まれる弱信号成分を得る、ことを特徴とする、GPS受信機。
Received signals are input and tracked with frequency and spreading code type / phase corresponding to different satellite signals, receiving strong signal satellite signals or weak satellite signals. A plurality of N reception channels to be weak signal channels,
A first signal having a frequency of a strong signal channel and a type / phase of a spreading code of any one of the plurality of reception channels is input, and the first signal and a weak one of the plurality of reception channels are input. A predetermined number of mutual channels corresponding to the number N of reception channels for performing cross-correlation with the frequency including the Doppler component of the signal channel and the type / phase of the spreading code and outputting the cross-correlation channel correlation component as the second signal A correlation channel,
If one or more N-1 or less strong signal channels are formed,
A mutual relationship between a strong signal included in a third signal that is an output of one weak signal channel and being acquired or tracked in one strong signal channel and a weak signal to be acquired or tracked in the weak signal channel. For the correlation component, the cross-correlation ratio of the second signal related to the weak signal channel and the one strong signal channel is set to the second signal and the third signal related to the weak signal channel and the one strong signal channel. And for each strong signal component included in the third signal,
Multiplying the second signal related to the weak signal channel by the cross-correlation ratio for each strong signal component included in the third signal to determine a cross-correlation component included in the third signal;
A GPS receiver, wherein a weak signal component included in the third signal is obtained by subtracting a cross-correlation component included in the third signal from the third signal.
請求項1または2に記載のGPS受信機において、前記第2信号は、相互相関チャネルで得られた相互相関チャネル相関成分に、当該チャネルに係る強信号チャネルの出力の符号を乗算して、データ変調の影響を取り除いたものであることを特徴とする、GPS受信機。   3. The GPS receiver according to claim 1, wherein the second signal is obtained by multiplying a cross-correlation channel correlation component obtained by the cross-correlation channel by a sign of an output of the strong signal channel related to the channel. A GPS receiver, wherein the influence of modulation is removed.
JP2008133794A 2008-05-22 2008-05-22 GPS receiver Active JP5095499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133794A JP5095499B2 (en) 2008-05-22 2008-05-22 GPS receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133794A JP5095499B2 (en) 2008-05-22 2008-05-22 GPS receiver

Publications (2)

Publication Number Publication Date
JP2009281844A true JP2009281844A (en) 2009-12-03
JP5095499B2 JP5095499B2 (en) 2012-12-12

Family

ID=41452450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133794A Active JP5095499B2 (en) 2008-05-22 2008-05-22 GPS receiver

Country Status (1)

Country Link
JP (1) JP5095499B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857252A (en) * 2012-07-31 2013-01-02 北京邮电大学 Tracking method and tracking device based on broadcast positioning signal
JP2013534634A (en) * 2010-07-01 2013-09-05 インスティテュト―テレコム/テレコム シュドパリ Method for reducing glare of receivers in a system, especially in a geolocation system
JP2013535662A (en) * 2010-07-01 2013-09-12 インスティテュト―テレコム/テレコム シュドパリ Method for reducing glare in a receiver receiving a signal from a transmitter
CN114598337A (en) * 2020-12-03 2022-06-07 海能达通信股份有限公司 Anti-interference method of zero intermediate frequency terminal, terminal and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518819A (en) * 1999-12-14 2003-06-10 シーフ、テクノロジー、インコーポレーテッド How to cancel a strong signal and strengthen a weak spread spectrum signal
JP2009052927A (en) * 2007-08-24 2009-03-12 Japan Radio Co Ltd Gps receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518819A (en) * 1999-12-14 2003-06-10 シーフ、テクノロジー、インコーポレーテッド How to cancel a strong signal and strengthen a weak spread spectrum signal
JP2009052927A (en) * 2007-08-24 2009-03-12 Japan Radio Co Ltd Gps receiver

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534634A (en) * 2010-07-01 2013-09-05 インスティテュト―テレコム/テレコム シュドパリ Method for reducing glare of receivers in a system, especially in a geolocation system
JP2013535662A (en) * 2010-07-01 2013-09-12 インスティテュト―テレコム/テレコム シュドパリ Method for reducing glare in a receiver receiving a signal from a transmitter
CN102857252A (en) * 2012-07-31 2013-01-02 北京邮电大学 Tracking method and tracking device based on broadcast positioning signal
CN102857252B (en) * 2012-07-31 2014-11-26 北京邮电大学 Tracking method and tracking device based on broadcast positioning signal
CN114598337A (en) * 2020-12-03 2022-06-07 海能达通信股份有限公司 Anti-interference method of zero intermediate frequency terminal, terminal and storage medium
CN114598337B (en) * 2020-12-03 2023-12-12 海能达通信股份有限公司 Anti-interference method for zero intermediate frequency terminal, terminal and storage medium

Also Published As

Publication number Publication date
JP5095499B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US7006556B2 (en) Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
EP1916535B1 (en) GNSS receiver with cross-correlation rejection
JP5524226B2 (en) Method for processing combined navigation signals
US6879913B1 (en) Indoor GPS clock
US5903597A (en) Suppression on multipath signal effects
KR101073408B1 (en) Apparatus and method for correlating in satellite tracking device
EP1321774B1 (en) A method for performing reacquisition in a positioning receiver, and corresponding electronic device
EP3076204A1 (en) Scanning correlator for global navigation satellite system signal tracking
US8284818B2 (en) Spread spectrum transmission systems
JP5095499B2 (en) GPS receiver
KR20010032254A (en) Method of Increasing the Noise Immunity of Reception of Signals of Satellite Navigational System and Device for realizing the same
JP2008286753A (en) Position measuring device and method for controlling the same
KR20110060734A (en) Apparatus and method for adaptive acquiring satellite navigation signal
JP5368213B2 (en) GNSS receiver
US8295411B2 (en) Method and system for maintaining integrity of a binary offset carrier signal
JP4859790B2 (en) GPS receiver
JP5607606B2 (en) Multipath detection apparatus and GNSS reception apparatus
JP2019528434A (en) Global Navigation Satellite System (GNSS) signal tracking
US20120068885A1 (en) Gnss receiver
KR100930219B1 (en) Satellite navigation system receiver
JP2007124291A (en) Positioning device and its controlling method
JP2005195347A (en) Direction search sensor, and radio wave emission source position estimation system
JP2009168451A (en) Positioning apparatus
JP2005207815A (en) Multipath signal detection device
Schmid et al. Enabling location based services with a combined Galileo/GPS receiver architecture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3