JP2009281306A - Air-fuel ratio detection device for internal combustion engine - Google Patents

Air-fuel ratio detection device for internal combustion engine Download PDF

Info

Publication number
JP2009281306A
JP2009281306A JP2008135070A JP2008135070A JP2009281306A JP 2009281306 A JP2009281306 A JP 2009281306A JP 2008135070 A JP2008135070 A JP 2008135070A JP 2008135070 A JP2008135070 A JP 2008135070A JP 2009281306 A JP2009281306 A JP 2009281306A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
detection
value
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008135070A
Other languages
Japanese (ja)
Inventor
Makoto Doi
真 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008135070A priority Critical patent/JP2009281306A/en
Publication of JP2009281306A publication Critical patent/JP2009281306A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly detect air-fuel ratio variation of an internal combustion engine by conducting air-fuel ratio determination based on an output differential value. <P>SOLUTION: In an air-fuel ratio detection device, an O2 sensor 30 generates different electromotive force depending on if the air-fuel ratio of an engine 10 is rich or lean. An ECU 40 carries out detection of the air-fuel ratio using the electromotive force of the O2 sensor 10. In one embodiment, specifically, the ECU 40 determines the differential value of the electromotive force as an output differential value, and detects if the air-fuel ratio is rich or lean based on the determined output differential value. Compared with a case of carrying out detection of the air-fuel ratio based on the electromotive force, the air-fuel ratio variation can be thus quickly detected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の空燃比検出装置に関し、詳しくは、酸素センサの起電力値を用いて空燃比検出を実施する内燃機関の空燃比検出装置に関するものである。   The present invention relates to an air-fuel ratio detection apparatus for an internal combustion engine, and more particularly to an air-fuel ratio detection apparatus for an internal combustion engine that performs air-fuel ratio detection using an electromotive force value of an oxygen sensor.

従来、内燃機関の排気エミッションの向上を図るために、内燃機関の排気管に酸素センサを配設し、その酸素センサの起電力値に基づいて排気ガスの空燃比をフィードバック(F/B)制御する空燃比制御システムが知られている。空燃比F/B制御として具体的には、例えば酸素センサの起電力値を判定値と比較することで排気ガスの空燃比が目標空燃比よりもリッチかリーンかを判定する。そして、リーンとリッチとの反転時には、まずスキップ制御により空燃比フィードバック補正係数を大きく変化させ、その後、次の反転までの期間で、積分動作により空燃比フィードバック補正係数を段階的に変化させる。
特開2001−3788号公報
Conventionally, in order to improve the exhaust emission of an internal combustion engine, an oxygen sensor is provided in the exhaust pipe of the internal combustion engine, and the air-fuel ratio of the exhaust gas is feedback (F / B) controlled based on the electromotive force value of the oxygen sensor. An air-fuel ratio control system is known. Specifically, as the air-fuel ratio F / B control, for example, by comparing an electromotive force value of an oxygen sensor with a determination value, it is determined whether the air-fuel ratio of the exhaust gas is richer or leaner than the target air-fuel ratio. At the time of reversal between lean and rich, first, the air-fuel ratio feedback correction coefficient is largely changed by skip control, and then the air-fuel ratio feedback correction coefficient is changed stepwise by integration operation during the period until the next reversal.
Japanese Patent Laid-Open No. 2001-3788

ところで、酸素センサにおいては、排気ガス雰囲気が変化してから起電力値が判定値に至るまでの応答が遅れることが考えられる。そのため、特許文献1のように酸素センサの起電力値に基づいて空燃比判定を実施する構成では、酸素センサの応答遅れのために空燃比が目標空燃比(例えば理論空燃比)に収束するのが遅延してしまうおそれがある。かかる場合、空燃比が目標空燃比からずれてしまい、排気エミッションが悪化することが懸念される。特に、実空燃比と目標空燃比との偏差が大きい場合や、空燃比が不安定な状況下(例えば、空燃比フィードバック制御への移行時や、車両過渡運転時、燃料カットからの復帰時など)においては、排気エミッション悪化を抑制するために、空燃比を目標空燃比に速やかに収束させる必要性が高いものと考えられる。   By the way, in the oxygen sensor, it is conceivable that the response from when the exhaust gas atmosphere changes until the electromotive force value reaches the determination value is delayed. For this reason, in the configuration in which the air-fuel ratio determination is performed based on the electromotive force value of the oxygen sensor as in Patent Document 1, the air-fuel ratio converges to the target air-fuel ratio (for example, the theoretical air-fuel ratio) due to the response delay of the oxygen sensor. May be delayed. In such a case, there is a concern that the air-fuel ratio deviates from the target air-fuel ratio and exhaust emission deteriorates. In particular, when the deviation between the actual air-fuel ratio and the target air-fuel ratio is large, or when the air-fuel ratio is unstable (for example, when shifting to air-fuel ratio feedback control, during vehicle transient operation, when returning from fuel cut, etc. ), It is considered highly necessary to quickly converge the air-fuel ratio to the target air-fuel ratio in order to suppress exhaust emission deterioration.

本発明は、上記課題を解決するためになされたものであり、内燃機関の空燃比変化を迅速に検出することができる内燃機関の空燃比検出装置を提供することを主たる目的とする。   The present invention has been made to solve the above-described problems, and has as its main object to provide an air-fuel ratio detection device for an internal combustion engine that can quickly detect a change in the air-fuel ratio of the internal combustion engine.

本発明は、上記課題を解決するために、以下の手段を採用した。   The present invention employs the following means in order to solve the above problems.

請求項1に記載の発明は、内燃機関の空燃比がリッチかリーンかに応じて異なる起電力を発生する酸素センサに適用され、該酸素センサの起電力値を用いて空燃比検出を実施する内燃機関の空燃比検出装置において、前記起電力値の微分値を出力微分値として算出する算出手段と、前記算出手段により算出した出力微分値に基づいて空燃比がリッチかリーンかを検出する空燃比検出手段とを備える。   The invention according to claim 1 is applied to an oxygen sensor that generates different electromotive force depending on whether the air-fuel ratio of the internal combustion engine is rich or lean, and performs air-fuel ratio detection using the electromotive force value of the oxygen sensor. In an air-fuel ratio detection apparatus for an internal combustion engine, a calculation unit that calculates a differential value of the electromotive force value as an output differential value, and an air-fuel ratio that detects whether the air-fuel ratio is rich or lean based on the output differential value calculated by the calculation unit. And a fuel ratio detecting means.

この発明によれば、酸素センサの出力微分値に基づいて空燃比のリッチ/リーンを判定するため、空燃比のリッチ/リーンの反転を、センサ出力が上昇方向又は降下方向に転じた時点で検出することができる。つまり、従来のように、酸素センサの起電力値と判定値との比較結果に基づいて空燃比検出を行う構成では、実際の空燃比が変化した場合に、センサ起電力値が変化して所定の判定値に達するまでに時間がかかるため、空燃比判定がなされるまでに応答遅れが発生するところ、本発明では出力微分値により空燃比判定を行うため、空燃比変化を迅速に検出することができる。ここで、出力微分値は、例えば酸素センサの起電力値における単位時間あたりの変化量により算出するとよい。   According to the present invention, in order to determine the rich / lean of the air / fuel ratio based on the output differential value of the oxygen sensor, the reversal of the rich / lean of the air / fuel ratio is detected when the sensor output changes in the upward or downward direction. can do. That is, in the conventional configuration in which the air-fuel ratio detection is performed based on the comparison result between the electromotive force value of the oxygen sensor and the determination value, when the actual air-fuel ratio changes, the sensor electromotive force value changes to a predetermined value. Since it takes time to reach this judgment value, a response delay occurs until the air-fuel ratio judgment is made. In the present invention, since the air-fuel ratio judgment is performed based on the output differential value, a change in the air-fuel ratio can be detected quickly. Can do. Here, the output differential value may be calculated from, for example, the amount of change per unit time in the electromotive force value of the oxygen sensor.

出力微分値に基づく空燃比検出によれば、空燃比変化を迅速に検出できるのに対し、センサ起電力値に基づく空燃比検出によれば、空燃比変化によるリッチ/リーンの反転を確実に検出できるものと考えられる。そして、空燃比検出の迅速さと確実さとのいずれが要求されるかは、内燃機関の運転状態に応じて異なるものと考えられる。その点に鑑み、請求項2に記載の発明は、前記空燃比検出手段が、前記出力微分値に基づいて空燃比がリッチかリーンかを検出する第1検出手段と、前記起電力値に基づいて空燃比がリッチかリーンかを検出する第2検出手段と、前記第1検出手段による空燃比検出と前記第2検出手段による空燃比検出とを前記内燃機関の運転状態に基づいて切り替えて空燃比検出を行わせる切替手段とを備える。この構成によれば、空燃比検出を出力微分値に基づいて行うか又は起電力値に基づいて行うかを、内燃機関の運転状態に応じて切り替えるため、空燃比検出の迅速さと確実さとのいずれを優先させるかを、内燃機関の運転状態に応じて適宜設定することができる。ここで、内燃機関の運転状態としては、例えば内燃機関の回転速度やスロットル開度、空燃比、所定の空燃比制御を開始してからの経過時間などとするのが望ましい。   The air-fuel ratio detection based on the output differential value can quickly detect the air-fuel ratio change, whereas the air-fuel ratio detection based on the sensor electromotive force value reliably detects the rich / lean reversal due to the air-fuel ratio change. It is considered possible. It is considered that which one of quickness and certainty of air-fuel ratio detection is required depends on the operating state of the internal combustion engine. In view of this point, the invention according to claim 2 is based on the electromotive force value, the first detecting means for detecting whether the air-fuel ratio is rich or lean based on the output differential value, and the electromotive force value. The second detection means for detecting whether the air-fuel ratio is rich or lean, and the air-fuel ratio detection by the first detection means and the air-fuel ratio detection by the second detection means are switched based on the operating state of the internal combustion engine. Switching means for performing fuel ratio detection. According to this configuration, whether the air-fuel ratio detection is performed based on the output differential value or the electromotive force value is switched according to the operating state of the internal combustion engine. It can be set as appropriate according to the operating state of the internal combustion engine. Here, it is desirable that the operating state of the internal combustion engine is, for example, the rotational speed of the internal combustion engine, the throttle opening, the air-fuel ratio, the elapsed time since the start of predetermined air-fuel ratio control, or the like.

空燃比が目標値を含む所定範囲(例えばストイキ近傍の領域)に収束していない場合には、空燃比変化によるリッチ/リーンの反転を迅速に検出することが要求されるのに対し、空燃比が目標値を含む所定範囲に収束している場合には、その反転を確実に検出することが要求されるものと考えられる。その点に鑑み、請求項3に記載の発明は、前記空燃比検出手段により検出した空燃比を目標値に一致させるよう空燃比フィードバック制御を実施する空燃比制御システムに適用され、前記切替手段は、空燃比が前記目標値を含む所定範囲に収束していない場合に前記第1検出手段による空燃比検出を実施し、前記所定範囲に収束している場合に前記第2検出手段による空燃比検出を実施する。この構成によれば、空燃比が目標値から大きく外れている場合には、出力微分値を用いて空燃比検出を行うため、空燃比を目標値に速やかに収束できるとともに、空燃比が目標値へ収束した後は、起電力値を用いて空燃比検出を行うため、空燃比変化を確実に検出することができる。   When the air-fuel ratio does not converge to a predetermined range including the target value (for example, a region near the stoichiometric range), it is required to quickly detect the rich / lean reversal due to the air-fuel ratio change. Is converging within a predetermined range including the target value, it is considered that it is required to reliably detect the inversion. In view of this, the invention according to claim 3 is applied to an air-fuel ratio control system that performs air-fuel ratio feedback control so that the air-fuel ratio detected by the air-fuel ratio detection means matches a target value, and the switching means is The air-fuel ratio is detected by the first detection means when the air-fuel ratio has not converged to the predetermined range including the target value, and the air-fuel ratio is detected by the second detection means when the air-fuel ratio has converged to the predetermined range. To implement. According to this configuration, when the air-fuel ratio is greatly deviated from the target value, the air-fuel ratio is detected using the output differential value, so that the air-fuel ratio can be quickly converged to the target value, and the air-fuel ratio is the target value. Since the air-fuel ratio is detected by using the electromotive force value after the convergence to, the air-fuel ratio change can be detected reliably.

特に、内燃機関の排気通路に排気浄化用触媒としての三元触媒を備える構成では、空燃比が目標値としての理論空燃比に収束している場合にセンサ起電力値に基づく空燃比判定を実施することで、理論空燃比への収束後にリッチとリーンとの繰り返しが確実に行われるとともに、その繰り返し周期としてある程度の長さが確保されるため、三元触媒の触媒性能(酸素ストレージ機能)を十分に発揮させることができ、排気エミッション向上の点で好適である。   In particular, in the configuration in which the exhaust passage of the internal combustion engine is provided with a three-way catalyst as an exhaust purification catalyst, the air-fuel ratio determination based on the sensor electromotive force value is performed when the air-fuel ratio has converged to the theoretical air-fuel ratio as the target value. By doing so, the rich and lean repetitions are ensured after convergence to the stoichiometric air-fuel ratio, and a certain length is secured as the repetition period, so the catalyst performance (oxygen storage function) of the three-way catalyst is improved. It can be sufficiently exerted, which is preferable in terms of improving exhaust emission.

ここで、空燃比が目標値を含む所定範囲に収束していない場合としては、例えば内燃機関の過渡運転時や空燃比フィードバック制御の開始当初(例えば、内燃機関の始動期間経過に伴う空燃比フィードバック制御への移行時や燃料カットからの復帰時)などがある。また、空燃比がその所定範囲に収束していないことを検出するには、例えば検出空燃比に基づいて直接実施してもよいし、あるいは内燃機関の回転速度変化量やスロットル開度変化量などの内燃機関の運転状態を示すパラメータに基づいて検出するか、又は空燃比フィードバック制御を開始してからの経過時間に基づいて間接的に実施してもよい。   Here, when the air-fuel ratio does not converge to a predetermined range including the target value, for example, during the transient operation of the internal combustion engine or at the beginning of the air-fuel ratio feedback control (for example, the air-fuel ratio feedback accompanying the passage of the start period of the internal combustion engine) When switching to control or when returning from a fuel cut). Further, in order to detect that the air-fuel ratio does not converge to the predetermined range, for example, it may be performed directly based on the detected air-fuel ratio, or the rotational speed change amount of the internal combustion engine, the throttle opening change amount, etc. May be detected based on a parameter indicating the operating state of the internal combustion engine, or indirectly based on an elapsed time since the start of air-fuel ratio feedback control.

空燃比フィードバック制御の開始当初では、空燃比が例えば空燃比制御の適正値から外れていることが考えられる。かかる場合、空燃比をその適正値に速やかに戻すためには、空燃比変化をいち早く検出することが望ましい。その点に鑑み、請求項4に記載の発明は、前記空燃比検出手段により検出した空燃比を目標値に一致させるよう空燃比フィードバック制御を実施する空燃比制御システムに適用され、前記切替手段は、前記空燃比フィードバック制御の実行開始後の所定時間において前記第1検出手段による空燃比検出を実施し、前記所定時間経過後において前記第2検出手段による空燃比検出を実施する。この構成によれば、空燃比フィードバック制御の開始当初では酸素センサの出力微分値を用いて空燃比検出を行うため、検出空燃比と目標値とのずれを迅速に解消して空燃比を適正な値にすることができる。   At the beginning of the air-fuel ratio feedback control, it is conceivable that the air-fuel ratio deviates from an appropriate value for air-fuel ratio control, for example. In such a case, in order to quickly return the air-fuel ratio to its proper value, it is desirable to detect the air-fuel ratio change promptly. In view of this point, the invention according to claim 4 is applied to an air-fuel ratio control system that performs air-fuel ratio feedback control so that the air-fuel ratio detected by the air-fuel ratio detection means matches a target value. The air-fuel ratio is detected by the first detecting means at a predetermined time after the start of the execution of the air-fuel ratio feedback control, and the air-fuel ratio is detected by the second detecting means after the predetermined time has elapsed. According to this configuration, since the air-fuel ratio detection is performed using the output differential value of the oxygen sensor at the beginning of the air-fuel ratio feedback control, the deviation between the detected air-fuel ratio and the target value is quickly eliminated, and the air-fuel ratio is adjusted appropriately. Can be a value.

酸素センサにおいて、空燃比変化に対する追従性が良好になると、空燃比フィードバック補正量の積分量をより大きくするとともにスキップ量をより小さくすることが可能になる。そこで、請求項5に記載の発明は、前記空燃比検出手段により検出した空燃比を目標値に一致させるための空燃比フィードバック補正量を、空燃比が前記目標値に向かう方向に所定の積分量ずつ増加又は減少させるとともに、空燃比が前記目標値に達したことが検出される場合に前記空燃比フィードバック補正量をそれまでとは反対方向に所定のスキップ量だけ増加又は減少させる空燃比制御を実施する空燃比制御システムに適用される。また、前記第1検出手段により空燃比検出を実施する場合に、前記第2検出手段により空燃比検出を実施する場合に比べて前記積分量を大きくしかつ前記スキップ量を小さくする。この構成によれば、酸素センサの出力微分値を用いて空燃比検出を行う場合に、空燃比フィードバック補正量を空燃比変化に合わせて適正な値に設定することができる。特に、空燃比が目標値に収束していないときに出力微分値を用いて空燃比検出を行う場合、スキップ量を小さい値に制限していることから、燃料噴射量の急激な変化を回避することができ、ひいては空燃比が目標値よりもリッチ側又はリーン側へ大きくオーバーシュートしてしまうのを回避することができ好適である。   In the oxygen sensor, when the followability to the air-fuel ratio change becomes good, it is possible to increase the integral amount of the air-fuel ratio feedback correction amount and to reduce the skip amount. In view of this, the invention according to claim 5 provides an air-fuel ratio feedback correction amount for making the air-fuel ratio detected by the air-fuel ratio detecting means coincide with a target value, a predetermined integral amount in a direction in which the air-fuel ratio is directed toward the target value. Air-fuel ratio control that increases or decreases each time and increases or decreases the air-fuel ratio feedback correction amount by a predetermined skip amount in the opposite direction when it is detected that the air-fuel ratio has reached the target value. Applicable to the air-fuel ratio control system to be implemented. Further, when the air-fuel ratio detection is performed by the first detection means, the integral amount is increased and the skip amount is decreased as compared with the case where the air-fuel ratio detection is performed by the second detection means. According to this configuration, when the air-fuel ratio detection is performed using the output differential value of the oxygen sensor, the air-fuel ratio feedback correction amount can be set to an appropriate value in accordance with the air-fuel ratio change. In particular, when the air-fuel ratio is detected using the output differential value when the air-fuel ratio has not converged to the target value, the skip amount is limited to a small value, so that a rapid change in the fuel injection amount is avoided. As a result, it is possible to avoid overshooting the air-fuel ratio to the rich side or the lean side from the target value.

空燃比のリッチ/リーンを検出するための検出しきい値を設け、酸素センサの出力微分値とその検出しきい値との比較結果に基づいて空燃比を判定する構成では、検出しきい値の大小に応じて判定の迅速さと判定の確実さとが異なると考えられる。また、判定の迅速さと確実さとのいずれが要求されるかは、内燃機関の運転状態に応じて異なると考えられる。その点に鑑み、請求項6に記載の発明は、前記出力微分値に基づいて空燃比のリッチ検出又はリーン検出を行う場合の検出しきい値を、前記内燃機関の運転状態に基づいて設定する。また、前記空燃比検出手段は、前記しきい値設定手段により設定した検出しきい値と、前記算出手段により算出した出力微分値との比較結果に基づいて空燃比判定を実施する。こうすれば、内燃機関の運転状態に応じて検出しきい値が設定されるため、空燃比判定の迅速さとその判定結果の確実さとのいずれを優先させるかを、内燃機関の運転状態に応じて適宜設定することができる。   In a configuration in which a detection threshold value for detecting rich / lean of the air-fuel ratio is provided and the air-fuel ratio is determined based on a comparison result between the output differential value of the oxygen sensor and the detection threshold value, It is considered that the determination speed and the determination reliability differ depending on the size. Further, it is considered that whether quick determination or certainty is required depends on the operating state of the internal combustion engine. In view of this point, the invention according to claim 6 sets a detection threshold value when performing rich detection or lean detection of the air-fuel ratio based on the output differential value based on the operating state of the internal combustion engine. . The air-fuel ratio detection means performs air-fuel ratio determination based on a comparison result between the detection threshold set by the threshold setting means and the output differential value calculated by the calculation means. In this way, since the detection threshold is set according to the operating state of the internal combustion engine, which of the priority of the quick determination of the air-fuel ratio and the certainty of the determination result is given according to the operating state of the internal combustion engine. It can be set appropriately.

内燃機関の回転速度が高いほど燃料噴射を行う頻度が高くなるため、空燃比変化をいち早く検出するのが望ましい。その点に鑑み、請求項7に記載の発明は、前記検出しきい値を、前記起電力値が増加する場合に用いる正側しきい値と、前記起電力値が減少する場合に用いる負側しきい値とし、前記内燃機関の回転速度が高いほど前記正側しきい値及び前記負側しきい値をゼロに近付ける。この構成によれば、内燃機関の回転速度が高いほど空燃比判定の迅速性が良好になるため、燃料噴射の頻度が高い場合であっても、空燃比変化を迅速に検出することができる。   Since the frequency of fuel injection increases as the rotational speed of the internal combustion engine increases, it is desirable to detect the air-fuel ratio change as soon as possible. In view of this, the invention according to claim 7 is configured such that the detection threshold value is a positive threshold value used when the electromotive force value increases and a negative side value used when the electromotive force value decreases. As the threshold value, the positive threshold value and the negative threshold value are made closer to zero as the rotational speed of the internal combustion engine increases. According to this configuration, the higher the rotational speed of the internal combustion engine, the quicker the air-fuel ratio determination becomes. Therefore, even when the frequency of fuel injection is high, the air-fuel ratio change can be detected quickly.

請求項8に記載の発明は、前記空燃比検出手段により検出した空燃比を目標値に一致させるための空燃比フィードバック補正量を、空燃比が前記目標値に向かう方向に所定の積分量ずつ増加又は減少させるとともに、空燃比が前記目標値に達したことが検出される場合に前記空燃比フィードバック補正量をそれまでとは反対方向に所定のスキップ量だけ増加又は減少させる空燃比制御を実施する空燃比制御システムに適用される。また、前記検出しきい値がゼロに近いほど前記積分量を大きくしかつ前記スキップ量を小さくする。上述したように、酸素センサにおける空燃比変化に対する追従性が良好になると、空燃比フィードバック補正量の積分量をより大きくするとともにスキップ量をより小さくすることが可能になる。したがって、請求項8の構成によれば、検出しきい値がゼロに近いほど、空燃比フィードバック補正量を空燃比変化に合わせて適正な値に設定することができる。特に、空燃比が目標値に収束していないときに出力微分値を用いて空燃比検出を行う場合、スキップ量を小さい値に制限していることから、燃料噴射量の急激な変化を回避することができ、ひいては空燃比が目標値よりもリッチ側又はリーン側へ大きくオーバーシュートしてしまうのを回避することができ好適である。   According to an eighth aspect of the present invention, an air-fuel ratio feedback correction amount for making the air-fuel ratio detected by the air-fuel ratio detecting means coincide with a target value is increased by a predetermined integral amount in a direction in which the air-fuel ratio is directed toward the target value. Or, when it is detected that the air-fuel ratio has reached the target value, the air-fuel ratio control is performed to increase or decrease the air-fuel ratio feedback correction amount by a predetermined skip amount in the opposite direction. Applies to air-fuel ratio control system. Further, as the detection threshold is closer to zero, the integration amount is increased and the skip amount is decreased. As described above, when the followability of the oxygen sensor to the air-fuel ratio change is improved, it is possible to increase the integration amount of the air-fuel ratio feedback correction amount and to reduce the skip amount. Therefore, according to the configuration of claim 8, the closer the detection threshold is to zero, the more the air-fuel ratio feedback correction amount can be set to an appropriate value in accordance with the change in the air-fuel ratio. In particular, when the air-fuel ratio is detected using the output differential value when the air-fuel ratio has not converged to the target value, the skip amount is limited to a small value, so that a rapid change in the fuel injection amount is avoided. As a result, it is possible to avoid overshooting the air-fuel ratio to the rich side or the lean side from the target value.

以下、本発明を具体化した実施の形態について図面を参照しつつ説明する。本実施の形態は、自動二輪車用の単気筒ガソリンエンジンを対象にエンジン制御システムを構築するものとしている。当該制御システムにおいては、電子制御ユニット(以下、ECUという)を中枢として燃料噴射量の制御や点火時期の制御等を実施する。このエンジン制御システムの全体概略構成図を図1に示す。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings. In the present embodiment, an engine control system is constructed for a single-cylinder gasoline engine for a motorcycle. In this control system, an electronic control unit (hereinafter referred to as ECU) is used as a center to control the fuel injection amount, control the ignition timing, and the like. FIG. 1 shows an overall schematic configuration diagram of the engine control system.

図1において、エンジン10には、吸気管11(吸気通路)の最上流部にエアクリーナ12が設けられている。エアクリーナ12の下流側には、DCモータ等のスロットルアクチュエータ13によって開度調節されるスロットルバルブ14が設けられている。スロットルバルブ14の開度(スロットル開度)は、スロットルアクチュエータ13に内蔵されたスロットル開度センサにより検出される。また、スロットルバルブ14の下流側には、吸気管圧力を検出する吸気管圧力センサ15が設けられるとともに、その下流側において、吸気ポート近傍には、燃料を噴射供給する電磁駆動式の燃料噴射弁16が取り付けられている。   In FIG. 1, an engine 10 is provided with an air cleaner 12 at the most upstream portion of an intake pipe 11 (intake passage). A throttle valve 14 whose opening degree is adjusted by a throttle actuator 13 such as a DC motor is provided on the downstream side of the air cleaner 12. The opening of the throttle valve 14 (throttle opening) is detected by a throttle opening sensor built in the throttle actuator 13. An intake pipe pressure sensor 15 for detecting the intake pipe pressure is provided on the downstream side of the throttle valve 14, and an electromagnetically driven fuel injection valve that injects fuel in the vicinity of the intake port on the downstream side thereof. 16 is attached.

エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気バルブ17及び排気バルブ18が設けられている。そして、吸気バルブ17の開動作により空気と燃料との混合気が燃焼室19内に導入され、排気バルブ18の開動作により燃焼後の排ガスが排気管21(排気通路)に排出される。   An intake valve 17 and an exhaust valve 18 are provided at the intake port and the exhaust port of the engine 10, respectively. Then, the air / fuel mixture is introduced into the combustion chamber 19 by the opening operation of the intake valve 17, and the exhaust gas after combustion is discharged to the exhaust pipe 21 (exhaust passage) by the opening operation of the exhaust valve 18.

エンジン10のシリンダヘッドには点火プラグ22が取り付けられている。点火プラグ22には、点火コイル等よりなる点火装置23を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグ22の対向電極間に火花放電が発生し、燃焼室19内に導入した混合気が着火され燃焼に供される。   A spark plug 22 is attached to the cylinder head of the engine 10. A high voltage is applied to the spark plug 22 at a desired ignition timing through an ignition device 23 made of an ignition coil or the like. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 22, and the air-fuel mixture introduced into the combustion chamber 19 is ignited and used for combustion.

また、排気管21には、排出ガス中のCO,HC,NOx等を浄化するための三元触媒24が設けられている。三元触媒24の上流側には、排ガスを検出対象として混合気の空燃比(酸素濃度)を検出するためのO2センサ30が設けられている。   The exhaust pipe 21 is provided with a three-way catalyst 24 for purifying CO, HC, NOx and the like in the exhaust gas. On the upstream side of the three-way catalyst 24, an O2 sensor 30 for detecting the air-fuel ratio (oxygen concentration) of the air-fuel mixture with exhaust gas as a detection target is provided.

O2センサ30は、コップ型構造のセンサ素子を有している。図2に、センサ素子31の断面図を示す。実際には、当該センサ素子31は、素子全体がハウジングや素子カバー内に収容される構成となっている。   The O2 sensor 30 has a cup-type sensor element. FIG. 2 shows a sectional view of the sensor element 31. Actually, the sensor element 31 is configured such that the entire element is accommodated in a housing or an element cover.

センサ素子31において、固体電解質層32は断面コップ状に形成されており、その外表面には排ガス側電極層33が設けられ、内表面には大気側電極層34が設けられている。固体電解質層32は、ZrO2、HfO2、ThO2、BiO2等にCaO、MgO、Y2O3等を安定剤として固溶させた酸素イオン伝導性酸化物焼結体からなる。また、各電極層33,34はともに白金等の触媒活性の高い貴金属からなり、その表面には多孔質の化学メッキが施されている。固体電解質層32にて囲まれる内部空間は大気室35となっており、その大気室35にはヒータ36が収容されている。ヒータ36は、センサ素子31を活性化するのに十分な発熱容量を有しており、その発熱エネルギによりセンサ素子全体が加熱される。   In the sensor element 31, the solid electrolyte layer 32 is formed in a cup shape in cross section, an exhaust gas side electrode layer 33 is provided on the outer surface thereof, and an atmosphere side electrode layer 34 is provided on the inner surface thereof. The solid electrolyte layer 32 is made of an oxygen ion conductive oxide sintered body in which CaO, MgO, Y2O3 or the like is dissolved in ZrO2, HfO2, ThO2, BiO2 or the like as a stabilizer. Each of the electrode layers 33 and 34 is made of a noble metal having high catalytic activity such as platinum, and the surface thereof is subjected to porous chemical plating. An internal space surrounded by the solid electrolyte layer 32 is an atmospheric chamber 35, and a heater 36 is accommodated in the atmospheric chamber 35. The heater 36 has a heat generation capacity sufficient to activate the sensor element 31, and the entire sensor element is heated by the heat generation energy.

上記センサ素子31では、固体電解質層32の外側(電極層33側)が排ガス雰囲気、同内側(電極層34側)が大気雰囲気となっており、これら双方の酸素濃度の差(酸素分圧の差)に応じて電極層33,34間で起電力が発生する。図3は、排ガスの空燃比とセンサ素子31の起電力との関係を示す起電力特性図である。図3に示すように、センサ素子31は、空燃比がリッチかリーンかで異なる起電力を発生し、理論空燃比(ストイキ)付近で起電力が急変する特性を有する。具体的には、燃料リッチ時のセンサ起電力は約0.9Vであり、燃料リーン時のセンサ起電力は約0Vである。   In the sensor element 31, the outer side (electrode layer 33 side) of the solid electrolyte layer 32 is an exhaust gas atmosphere, and the inner side (electrode layer 34 side) is an air atmosphere. An electromotive force is generated between the electrode layers 33 and 34 in accordance with the difference. FIG. 3 is an electromotive force characteristic diagram showing the relationship between the air-fuel ratio of exhaust gas and the electromotive force of the sensor element 31. As shown in FIG. 3, the sensor element 31 has characteristics that generate different electromotive forces depending on whether the air-fuel ratio is rich or lean, and the electromotive force changes suddenly near the stoichiometric air-fuel ratio (stoichiometric). Specifically, the sensor electromotive force when the fuel is rich is about 0.9V, and the sensor electromotive force when the fuel is lean is about 0V.

図1の説明に戻り、その他本システムには、エンジンの所定クランク角毎にクランク角信号を出力するクランク角度センサ25や、エンジン側の冷却水温度を検出する冷却水温センサ26等が設けられている。   Returning to the explanation of FIG. 1, the present system is provided with a crank angle sensor 25 for outputting a crank angle signal at every predetermined crank angle of the engine, a cooling water temperature sensor 26 for detecting the cooling water temperature on the engine side, and the like. Yes.

ECU40は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータ(以下、マイコンという)41を主体として構成され、ROMに記憶された各種の制御プログラムを実行することで、都度のエンジン運転状態に応じてエンジン10の各種制御を実施する。具体的には、ECU40のマイコン41は、前述した各種センサから各種検出信号等を入力し、これらの各種検出信号等に基づいて燃料噴射量や点火時期等を演算して燃料噴射弁16や点火装置23の駆動を制御する。   As is well known, the ECU 40 is mainly composed of a microcomputer (hereinafter referred to as a microcomputer) 41 composed of a CPU, ROM, RAM, and the like, and executes various control programs stored in the ROM, so that the engine operation state can be changed each time. In response, various controls of the engine 10 are performed. Specifically, the microcomputer 41 of the ECU 40 inputs various detection signals from the various sensors described above, calculates the fuel injection amount, ignition timing, etc. based on these various detection signals and the like, and calculates the fuel injection valve 16 and the ignition. The drive of the device 23 is controlled.

また、ECU40には、O2センサ30の起電力を検出するセンサ制御回路42が設けられている。燃料噴射量の制御として、ECU40のマイコン41は、センサ制御回路42で検出した起電力値を用いることにより、実空燃比が目標空燃比(例えば理論空燃比)に一致するよう空燃比制御を実施する。空燃比制御としてマイコン41は、基本的には、空燃比をストイキ近傍の領域(ストイキ近傍領域)でフィードバック制御するストイキ燃焼制御を実施する。なお、エンジン始動時やアイドル運転時、燃料カット時、冷却水温が低いときなどの所定条件下では、フィードバック制御を中止し、例えばエンジン始動時やアイドル運転時であれば、空燃比がストイキよりもリッチ側になるようオープン制御を実施する。このセンサ制御回路42では、空燃比制御の他に、センサ素子を活性状態に保持するべくO2センサ30のヒータ通電の制御等を行う。   The ECU 40 is provided with a sensor control circuit 42 that detects the electromotive force of the O2 sensor 30. As control of the fuel injection amount, the microcomputer 41 of the ECU 40 uses the electromotive force value detected by the sensor control circuit 42 to perform air-fuel ratio control so that the actual air-fuel ratio matches the target air-fuel ratio (for example, the theoretical air-fuel ratio). To do. As the air-fuel ratio control, the microcomputer 41 basically performs stoichiometric combustion control in which the air-fuel ratio is feedback-controlled in a region near the stoichiometric range (region near the stoichiometric range). Note that feedback control is stopped under certain conditions such as when the engine is started, when idling, when fuel is cut, or when the coolant temperature is low.For example, if the engine is starting or idling, the air-fuel ratio is higher than the stoichiometric ratio. Open control is performed so that the rich side is reached. In addition to air-fuel ratio control, the sensor control circuit 42 controls the heater energization of the O2 sensor 30 to keep the sensor element in an active state.

センサ制御回路42では、O2センサ30の起電力値が理論空燃比付近で急変する特性(図3参照)を利用して、基本的には、検出した起電力値と、起電力変動の中間付近に予め設定した基準電圧値Vth(例えば、理論空燃比値の0.45V)とを比較することで燃料リッチ/リーンを判定し、その結果を2値の判定信号としてマイコン41に出力する。起電力値に基づく空燃比判定(空燃比通常判定処理)について具体的には、O2センサ30の出力値である起電力値Vo2を入力し、その起電力値Vo2と基準電圧値Vthとを比較する。そして、起電力値Vo2が基準電圧値Vthより大きければリーンと判定し、基準電圧値Vth以下であればリッチと判定する。なお、リッチ/リーンの判定に際し、起電力値Vo2が基準電圧値Vthを超えるか又は基準電圧値Vth以下の状態が所定時間継続された場合にリッチ/リーンを切り替えてもよい。   The sensor control circuit 42 basically uses the characteristic that the electromotive force value of the O2 sensor 30 changes suddenly in the vicinity of the theoretical air-fuel ratio (see FIG. 3), and basically, the detected electromotive force value and the vicinity of the middle of the electromotive force fluctuation. Is compared with a preset reference voltage value Vth (for example, a theoretical air-fuel ratio value of 0.45 V), and fuel rich / lean is determined, and the result is output to the microcomputer 41 as a binary determination signal. Specifically, the air-fuel ratio determination (air-fuel ratio normal determination process) based on the electromotive force value is inputted with an electromotive force value Vo2 which is an output value of the O2 sensor 30, and the electromotive force value Vo2 is compared with the reference voltage value Vth. To do. If the electromotive force value Vo2 is greater than the reference voltage value Vth, it is determined to be lean, and if it is equal to or less than the reference voltage value Vth, it is determined to be rich. In the determination of rich / lean, the rich / lean may be switched when the electromotive force value Vo2 exceeds the reference voltage value Vth or remains below the reference voltage value Vth for a predetermined time.

また、マイコン41では、リッチ/リーンの判定結果に基づいて空燃比フィードバック補正を実施する。空燃比フィードバック補正について、図4のタイムチャートを用いて説明する。なお、図4のうち(a)はセンサ起電力値Vo2の推移を示し、(b)は空燃比判定の結果を示し、(c)は空燃比フィードバック補正係数の推移を示す。   Further, the microcomputer 41 performs air-fuel ratio feedback correction based on the rich / lean determination result. The air-fuel ratio feedback correction will be described with reference to the time chart of FIG. In FIG. 4, (a) shows the transition of the sensor electromotive force value Vo2, (b) shows the result of the air-fuel ratio determination, and (c) shows the transition of the air-fuel ratio feedback correction coefficient.

図4において、空燃比がリーン判定からリッチ判定に反転した場合に、空燃比フィードバック補正係数をスキップ量Ksだけ小さくするスキップ制御を行った後、リッチ判定が継続される間、空燃比フィードバック補正係数を積分量Kiずつ段階的に減少させる積分制御を行う。これにより、燃料噴射量の減量補正がなされ、その結果、空燃比がリーン側に移行することとなる。また、空燃比がリッチ判定からリーン判定に反転した場合には、空燃比フィードバック補正係数をスキップ量Ksだけ大きくするスキップ制御を行った後、リーン判定が継続される間、空燃比フィードバック補正係数を積分量Kiずつ段階的に増加させる積分制御を行う。これにより、燃料噴射量の増量補正がなされ、その結果、空燃比がリッチ側に移行することとなる。なお、スキップ量Ks及び積分量Kiは、ECU40によりエンジン運転状態に応じて都度算出される。   In FIG. 4, when the air-fuel ratio is reversed from lean determination to rich determination, the air-fuel ratio feedback correction coefficient is maintained while the rich determination is continued after performing the skip control for reducing the air-fuel ratio feedback correction coefficient by the skip amount Ks. Is integrated in a step-by-step manner. As a result, the fuel injection amount is corrected to decrease, and as a result, the air-fuel ratio shifts to the lean side. In addition, when the air-fuel ratio is reversed from the rich determination to the lean determination, after performing the skip control for increasing the air-fuel ratio feedback correction coefficient by the skip amount Ks, the air-fuel ratio feedback correction coefficient is set while the lean determination is continued. Integral control is performed to increase the integration amount Ki step by step. As a result, the fuel injection amount is increased and corrected, and as a result, the air-fuel ratio shifts to the rich side. Note that the skip amount Ks and the integral amount Ki are calculated each time by the ECU 40 according to the engine operating state.

ところで、O2センサ30の起電力値により空燃比検出を実施する場合、排ガス雰囲気のリッチ/リーンが実際に反転したとしても、酸素分圧に対応する起電力がO2センサ30で発生するまでに時間がかかるため、ガス雰囲気が変化してから起電力値が基準電圧値Vthに至るまでに応答遅れが生じ、その結果、リッチ/リーンが確定されるまでに時間遅れが生じることが考えられる。特に、実空燃比が目標空燃比(ストイキ)から大きく外れている場合や、空燃比が不安定な場合には、空燃比を目標空燃比に速やかに収束させる必要性が高いのにもかかわらず、空燃比における理論空燃比からのずれが継続され、その結果、排気エミッションの悪化を招くおそれがある。   By the way, when air-fuel ratio detection is performed based on the electromotive force value of the O2 sensor 30, it takes time until the O2 sensor 30 generates an electromotive force corresponding to the oxygen partial pressure even if the rich / lean in the exhaust gas atmosphere is actually reversed. Therefore, it is considered that a response delay occurs until the electromotive force value reaches the reference voltage value Vth after the gas atmosphere changes, and as a result, a time delay occurs until rich / lean is determined. In particular, when the actual air-fuel ratio is significantly different from the target air-fuel ratio (stoichiometric) or when the air-fuel ratio is unstable, it is highly necessary to quickly converge the air-fuel ratio to the target air-fuel ratio. Further, the deviation of the air-fuel ratio from the stoichiometric air-fuel ratio is continued, and as a result, the exhaust emission may be deteriorated.

この点につき、本願発明者は、空燃比のリッチ/リーンの変化をO2センサ30により検出するのにあたり、O2センサ30の起電力値における一定時間あたりの変化量(出力微分値)に着目した。つまり、出力微分値によれば、起電力値に基づく場合に比べ、空燃比のリッチ/リーンの反転をいち早く検出できることを見出した。また、出力微分値による空燃比判定の結果を用いて空燃比F/B制御を行うことにより、空燃比をより迅速に目標空燃比に収束できることを見出した。   In this regard, the inventor of the present application paid attention to the amount of change (output differential value) per unit time in the electromotive force value of the O2 sensor 30 when detecting the rich / lean change of the air-fuel ratio by the O2 sensor 30. That is, it has been found that, based on the output differential value, it is possible to quickly detect the rich / lean inversion of the air-fuel ratio as compared with the case based on the electromotive force value. It has also been found that the air-fuel ratio can be converged more quickly to the target air-fuel ratio by performing the air-fuel ratio F / B control using the result of the air-fuel ratio determination based on the output differential value.

その一方で、空燃比がストイキ近傍にある場合では、空燃比変化を検出するのにあたり、迅速さよりも確実さが要求される。つまり、三元触媒24には、リーン雰囲気で酸素吸蔵してNOxを浄化し、その後リッチ雰囲気になることで吸蔵酸素を放出してHC、COの浄化を促進させる機能(O2ストレージ機能)があり、空燃比のリッチ/リーンが繰り返される状況下で触媒性能を発揮する特性がある。このとき、その触媒性能を十分に発揮させるには、リッチ判定及びリーン判定を確実に行うとともに、その繰り返しの周期としてある程度の長さが確保されていることが望ましい。   On the other hand, when the air-fuel ratio is in the vicinity of the stoichiometry, certainty is required rather than quickness in detecting the air-fuel ratio change. In other words, the three-way catalyst 24 has a function (O2 storage function) for purifying NOx by storing oxygen in a lean atmosphere and then purging NOx by releasing the stored oxygen in a rich atmosphere (O2 storage function). In addition, there is a characteristic that the catalyst performance is exhibited under a situation where the rich / lean air-fuel ratio is repeated. At this time, in order to sufficiently exhibit the catalyst performance, it is desirable that the rich determination and the lean determination are performed reliably and a certain length is secured as the repetition cycle.

そこで、本実施形態では、空燃比制御においてオープン制御からF/B制御への移行時やエンジン10の過渡運転時のように、空燃比がストイキ近傍領域から外れる場合に出力微分値に基づいて空燃比判定を実施し、その後、空燃比のストイキ近傍領域に収束したのに伴い、センサ起電力値に基づく空燃比判定に移行する。   Therefore, in the present embodiment, the air-fuel ratio control is performed based on the output differential value when the air-fuel ratio deviates from the stoichiometric vicinity region, such as during transition from open control to F / B control or during transient operation of the engine 10. After the fuel ratio is determined and then converges to the vicinity of the air / fuel ratio stoichiometry, the process proceeds to the air / fuel ratio determination based on the sensor electromotive force value.

以下ではまず、O2センサ30の出力微分値に基づく空燃比判定(空燃比早期判定処理)について説明する。図5は、空燃比早期判定処理の処理手順を示すフローチャートである。この処理は、ECU40のマイコン41により所定周期毎に実行される。図5において、まずステップS11では、O2センサ30の出力値のノイズ除去処理としてなまし処理を行う。なまし処理として、例えばセンサ検出信号に重畳するノイズを除去するためにローパスフィルタ(LPF)処理を実施してもよいし、あるいは移動平均処理を実施してもよい。   Hereinafter, first, the air-fuel ratio determination (air-fuel ratio early determination process) based on the output differential value of the O2 sensor 30 will be described. FIG. 5 is a flowchart showing the procedure of the early air-fuel ratio determination process. This process is executed at predetermined intervals by the microcomputer 41 of the ECU 40. In FIG. 5, first, in step S11, a smoothing process is performed as a noise removal process for the output value of the O 2 sensor 30. As the annealing process, for example, a low-pass filter (LPF) process may be performed to remove noise superimposed on the sensor detection signal, or a moving average process may be performed.

続くステップS12では、出力微分値Vo2*を算出する。本実施形態では、なまし値の前回値を記憶しておき、なまし値の今回値から前回値を差し引くことにより出力微分値Vo2*を算出する。続いて、ステップS13で、前回の検出空燃比がリッチ判定かリーン判定かを判断する。前回の検出空燃比がリッチ判定の場合にはステップS14へ進み、出力微分値Vo2*がリーン判定値Vle以下か否かを判定する。このリーン判定値Vleは、起電力値Vo2が減少する場合の空燃比検出に用いる検出しきい値であり、ゼロ近傍の負の値として設定してある。そして、出力微分値Vo2*がリーン判定値Vleより大きい場合には、ステップS15へ移行し、検出空燃比の判定結果としてリッチ判定を維持する。これに対し、出力微分値Vo2*がリーン判定値Vle以下であれば、ステップS16へ進み、検出空燃比をリッチ判定からリーン判定に切り替える。   In the subsequent step S12, an output differential value Vo2 * is calculated. In this embodiment, the previous value of the smoothed value is stored, and the output differential value Vo2 * is calculated by subtracting the previous value from the current value of the smoothed value. Subsequently, in step S13, it is determined whether the previous detected air-fuel ratio is rich determination or lean determination. If the previous detected air-fuel ratio is rich, the process proceeds to step S14 to determine whether the output differential value Vo2 * is equal to or less than the lean determination value Vle. The lean determination value Vle is a detection threshold value used for air-fuel ratio detection when the electromotive force value Vo2 decreases, and is set as a negative value near zero. When the output differential value Vo2 * is larger than the lean determination value Vle, the process proceeds to step S15, and the rich determination is maintained as the determination result of the detected air-fuel ratio. On the other hand, if the output differential value Vo2 * is equal to or less than the lean determination value Vle, the process proceeds to step S16, and the detected air-fuel ratio is switched from the rich determination to the lean determination.

また、前回の検出空燃比がリーン判定の場合、ステップS13で否定判定がなされ、ステップS17へ進み、出力微分値Vo2*がリッチ判定値Vri以上か否かを判定する。なお、リッチ判定値Vriについては、起電力値Vo2が増加する場合の空燃比検出に用いる検出しきい値であり、ゼロ近傍の正の値として設定してある。そして、出力微分値Vo2*がリッチ判定値Vri未満であれば、ステップS18へ進み、検出空燃比の判定結果としてリーン判定を維持する。これに対し、出力微分値Vo2*がリッチ判定値Vri以上であれば、ステップS19へ進み、検出空燃比をリーン判定からリッチ判定に切り替える。   If the previous detected air-fuel ratio is a lean determination, a negative determination is made in step S13, and the process proceeds to step S17 to determine whether or not the output differential value Vo2 * is equal to or greater than the rich determination value Vri. The rich determination value Vri is a detection threshold value used for air-fuel ratio detection when the electromotive force value Vo2 increases, and is set as a positive value near zero. If the output differential value Vo2 * is less than the rich determination value Vri, the process proceeds to step S18, and the lean determination is maintained as the determination result of the detected air-fuel ratio. On the other hand, if the output differential value Vo2 * is greater than or equal to the rich determination value Vri, the process proceeds to step S19, and the detected air-fuel ratio is switched from lean determination to rich determination.

次に、センサ起電力値Vo2による空燃比判定の結果と、出力微分値Vo2*による空燃比判定の結果との相違を、図6を用いて説明する。図6において、(a)は排気ガスの空燃比の推移を示し、(b)は起電力値Vo2による空燃比の判定結果の推移を示し、(c)は出力微分値Vo2*による空燃比の判定結果の推移を示す。   Next, the difference between the air-fuel ratio determination result based on the sensor electromotive force value Vo2 and the air-fuel ratio determination result based on the output differential value Vo2 * will be described with reference to FIG. 6A shows the change in the air-fuel ratio of the exhaust gas, FIG. 6B shows the change in the air-fuel ratio determination result based on the electromotive force value Vo2, and FIG. 6C shows the change in the air-fuel ratio based on the output differential value Vo2 *. Shows the transition of judgment results.

図6において、排気ガスの空燃比がリーン雰囲気からリッチ雰囲気に切り替わった場合について考える。このとき、起電力値Vo2に基づいて空燃比判定を実施する場合、図6(b)に示すように、起電力値Vo2が電圧判定値Vthに達した時刻t3で、リーン判定からリッチ判定に切り替わる。つまり、排気ガス雰囲気が変化してからECU40により空燃比変化が判定されるまでに時刻t1から時刻t3の応答遅れが発生することになる。なお、センサ起電力値Vo2が電圧判定値Vthに達した後、所定時間TAが維持されたことを条件として空燃比判定の結果を切り替える構成では、時刻t3から所定時間TAが経過した時刻t4でリーン判定からリッチ判定に切り替わり、時刻t1から時刻t4の応答遅れが発生する。   Consider the case where the air-fuel ratio of the exhaust gas is switched from the lean atmosphere to the rich atmosphere in FIG. At this time, when the air-fuel ratio determination is performed based on the electromotive force value Vo2, the lean determination is changed to the rich determination at time t3 when the electromotive force value Vo2 reaches the voltage determination value Vth, as shown in FIG. 6B. Switch. That is, a response delay from time t1 to time t3 occurs from when the exhaust gas atmosphere changes until the ECU 40 determines that the air-fuel ratio has changed. In the configuration in which the result of air-fuel ratio determination is switched on condition that the predetermined time TA is maintained after the sensor electromotive force value Vo2 reaches the voltage determination value Vth, at time t4 when the predetermined time TA has elapsed from time t3. Switching from lean determination to rich determination causes a response delay from time t1 to time t4.

これに対し、出力微分値Vo2*に基づいて空燃比判定を実施する場合、図6(c)に示すように、排気ガス雰囲気がリーンからリッチに変化してセンサ起電力値Vo2が次第に上昇すると、出力微分値Vo2*がゼロから正の値に変わる。そして、出力微分値Vo2*がリッチ判定値Vriに達した時刻t2で、リーン判定からリッチ判定に切り替わる。つまり、空燃比早期判定処理によれば、起電力値Vo2の変化率により空燃比変化を検出するため、センサ起電力値Vo2が電圧判定値Vthに達する時刻t3よりも早いタイミングの時刻t2で、空燃比がリーンからリッチへ切り替わったことが検出される。したがって、排気ガス雰囲気が変化してからECU40により空燃比変化が判定されるまでに、時刻t1から時刻t2の応答遅れしか発生せず、空燃比の判定遅れが抑制される。   On the other hand, when the air-fuel ratio determination is performed based on the output differential value Vo2 *, as shown in FIG. 6C, when the exhaust gas atmosphere changes from lean to rich and the sensor electromotive force value Vo2 gradually increases. The output differential value Vo2 * changes from zero to a positive value. Then, at time t2 when the output differential value Vo2 * reaches the rich determination value Vri, the lean determination is switched to the rich determination. That is, according to the air-fuel ratio early determination process, since the air-fuel ratio change is detected based on the rate of change of the electromotive force value Vo2, at time t2, which is earlier than time t3 when the sensor electromotive force value Vo2 reaches the voltage determination value Vth, It is detected that the air-fuel ratio has switched from lean to rich. Therefore, only a response delay from time t1 to time t2 occurs between the time when the exhaust gas atmosphere changes and the time when the ECU 40 determines a change in the air / fuel ratio, and the determination delay of the air / fuel ratio is suppressed.

更に、空燃比早期判定処理の空燃比判定の結果を用いて空燃比F/B制御を実施する場合について、図7のタイムチャートを用いて詳述する。ここで、図7のうち(a)は起電力値Vo2の推移を示し、(b)は出力微分値Vo2*の推移を示し、(c)は空燃比判定の結果の推移を示し、(d)は空燃比F/B補正係数の推移を示す。なお、図7(c)中の一点鎖線は、起電力値Vo2に基づく空燃比判定の結果を示す(図4(b)参照)。   Furthermore, the case where the air-fuel ratio F / B control is performed using the result of the air-fuel ratio determination of the air-fuel ratio early determination process will be described in detail with reference to the time chart of FIG. 7A shows the transition of the electromotive force value Vo2, FIG. 7B shows the transition of the output differential value Vo2 *, FIG. 7C shows the transition of the air-fuel ratio determination result, (d ) Shows the transition of the air-fuel ratio F / B correction coefficient. In addition, the dashed-dotted line in FIG.7 (c) shows the result of the air fuel ratio determination based on the electromotive force value Vo2 (refer FIG.4 (b)).

上述したように、空燃比早期判定処理では、空燃比通常判定処理に比べて空燃比の判定遅れが小さい(図6参照)。そのため、空燃比早期判定処理では、図7(d)に示すように、空燃比通常判定処理でのスキップ量Ks及び積分量Kiと比較して、スキップ量Ksを小さくするとともに、積分量Kiを大きくしている。   As described above, the air-fuel ratio early determination process has a smaller air-fuel ratio determination delay than the air-fuel ratio normal determination process (see FIG. 6). Therefore, in the air-fuel ratio early determination process, as shown in FIG. 7 (d), the skip amount Ks is made smaller than the skip amount Ks and the integral amount Ki in the air-fuel ratio normal determination process, and the integral amount Ki is set to be smaller. It is getting bigger.

次に、空燃比F/B制御の実行開始又は実行中に空燃比判定を行うのにあたり、起電力値Vo2に基づく場合と出力微分値Vo2*に基づく場合との実施時期について説明する。上述したように、本実施形態では、空燃比がストイキ近傍領域から外れている場合や不安定な場合に、出力微分値Vo2*に基づいて空燃比判定を実施し、空燃比がストイキ近傍領域に収束している場合に、起電力値Vo2に基づいて空燃比判定を実施する。そして、その空燃比判定の結果を用いて空燃比F/B制御を実施する。   Next, a description will be given of the execution timing when the air-fuel ratio determination is based on the electromotive force value Vo2 and when the air-fuel ratio determination is based on the output differential value Vo2 * when performing the air-fuel ratio F / B control. As described above, in this embodiment, when the air-fuel ratio is out of the stoichiometric vicinity region or unstable, the air-fuel ratio determination is performed based on the output differential value Vo2 *, and the air-fuel ratio is in the stoichiometric vicinity region. In the case of convergence, the air-fuel ratio determination is performed based on the electromotive force value Vo2. Then, air-fuel ratio F / B control is performed using the result of the air-fuel ratio determination.

図8は、本実施形態における空燃比制御の処理手順の一例を示すフローチャートである。この処理は、ECU40のマイコン41により所定時間毎に実行される。まず、図8のステップS21で、空燃比F/B制御の実行条件(空燃比F/B条件)が成立しているか否かを判定する。空燃比F/B条件には、例えば冷却水温センサ26により検出した冷却水温度が所定温度以上であること、高回転・高負荷状態でないこと、O2センサ30が活性状態にあることなどが含まれる。   FIG. 8 is a flowchart showing an example of a processing procedure of air-fuel ratio control in the present embodiment. This process is executed every predetermined time by the microcomputer 41 of the ECU 40. First, in step S21 in FIG. 8, it is determined whether or not an execution condition (air-fuel ratio F / B condition) of the air-fuel ratio F / B control is satisfied. The air-fuel ratio F / B condition includes, for example, that the coolant temperature detected by the coolant temperature sensor 26 is equal to or higher than a predetermined temperature, that it is not in a high rotation / high load state, and that the O2 sensor 30 is in an active state. .

そして、空燃比F/B条件が成立している場合には、ステップS22へ進み、出力微分値Vo2*に基づいて空燃比判定を実行するための条件(早期判定実施条件)が成立しているか否かを判定するために、以下の実施条件判定処理を実行する。   If the air-fuel ratio F / B condition is satisfied, the process proceeds to step S22, and whether the condition for executing the air-fuel ratio determination based on the output differential value Vo2 * (early determination execution condition) is satisfied. In order to determine whether or not, the following execution condition determination processing is executed.

図9は、実施条件判定処理の処理手順を示すフローチャートである。図9において、まずステップS31で、空燃比F/B制御開始から所定時間が経過したか否かを判定する。所定時間の経過前であれば、ステップS32へ進み、早期判定実施条件が成立しているものと判断する。空燃比F/B制御の開始直前に、例えばリッチ側での空燃比オープン制御が実施されていた場合、実空燃比がストイキよりもリッチ側にあるため、空燃比をリッチ側からストイキ近傍領域へ速やかに収束させる必要性が高い。そのため、空燃比F/B制御の開始当初では、出力微分値Vo2*に基づいて空燃比検出を実施する。   FIG. 9 is a flowchart illustrating a processing procedure of the execution condition determination process. In FIG. 9, first, in step S31, it is determined whether or not a predetermined time has elapsed since the start of the air-fuel ratio F / B control. If the predetermined time has not elapsed, the process proceeds to step S32, and it is determined that the early determination execution condition is satisfied. Immediately before the start of the air-fuel ratio F / B control, for example, when the air-fuel ratio open control on the rich side is performed, the actual air-fuel ratio is on the rich side with respect to the stoichiometric, so the air-fuel ratio is changed from the rich side to the stoichiometric vicinity region. There is a high need for rapid convergence. Therefore, at the beginning of air-fuel ratio F / B control, air-fuel ratio detection is performed based on the output differential value Vo2 *.

一方、空燃比F/B開始から所定時間が経過した後であれば、ステップS33へ進み、現在のエンジン運転状態が定常状態か過渡状態かを判定する。エンジン運転状態について本実施形態では、エンジン回転速度の増減変化量が所定値以下であること、及びスロットル開度の増減変化量が所定開度以下であること、の両条件を満たす場合に定常運転状態と判断し、上記条件のいずれかを満たさない場合に過渡運転状態と判断する。なお、エンジン運転状態については、演算により定常運転状態か過渡運転状態かを判定する代わりに、例えばエンジン回転速度変化量とスロットル開度変化量とをパラメータとしたマップを用いて判断してもよい。   On the other hand, if a predetermined time has elapsed since the start of the air-fuel ratio F / B, the process proceeds to step S33, and it is determined whether the current engine operating state is a steady state or a transient state. Regarding the engine operating state, in this embodiment, steady operation is performed when both the increase / decrease change amount of the engine speed is equal to or less than a predetermined value and the increase / decrease change amount of the throttle opening is equal to or less than the predetermined opening degree are satisfied. If it does not satisfy any of the above conditions, it is determined as a transient operation state. Note that the engine operating state may be determined using, for example, a map that uses the engine speed change amount and the throttle opening change amount as parameters instead of determining whether the engine is in a steady operation state or a transient operation state. .

そして、エンジン運転状態が定常状態の場合には、ステップS34へ進み、早期判定実施条件を不成立とする。つまり、エンジン10が定常運転状態であれば、空燃比はストイキ近傍領域に収束しているものと考えられるため、センサ起電力値Vo2に基づいて空燃比判定を実施する。一方、過渡運転状態の場合には、ステップS32へ進み、早期判定実施条件が成立しているものとする。つまり、エンジン10が過渡運転状態の場合には、吸入空気量の急激な変化等に起因して空燃比が不安定になり、空燃比のストイキ近傍領域から外れること考えられることから、ストイキ近傍領域に収束させるために、出力微分値Vo2*に基づいて空燃比判定を実施する。   If the engine operating state is a steady state, the process proceeds to step S34, and the early determination execution condition is not satisfied. That is, if the engine 10 is in a steady operation state, it is considered that the air-fuel ratio has converged in the stoichiometric vicinity region, so the air-fuel ratio determination is performed based on the sensor electromotive force value Vo2. On the other hand, in the case of the transient operation state, the process proceeds to step S32, and it is assumed that the early determination execution condition is satisfied. That is, when the engine 10 is in a transient operation state, it is considered that the air-fuel ratio becomes unstable due to a sudden change in the intake air amount and the like and deviates from the stoichiometric vicinity region of the air-fuel ratio. In order to converge to the air-fuel ratio, the air-fuel ratio determination is performed based on the output differential value Vo2 *.

図8の説明に戻り、ステップS23では、早期判定実施条件が成立しているか否かを判定し、早期判定実施条件が成立していない場合には、ステップS24へ進み、空燃比通常判定処理により空燃比判定を実施する。一方、早期判定実施条件が成立している場合には、ステップS25へ進み、空燃比早期判定処理(図5参照)により空燃比判定を実施する。空燃比判定の実施後、ステップS26へ移行し、その判定結果を用いて空燃比F/B制御を実施する。   Returning to the description of FIG. 8, in step S23, it is determined whether or not the early determination execution condition is satisfied. If the early determination execution condition is not satisfied, the process proceeds to step S24, and the air-fuel ratio normal determination process is performed. Carry out air-fuel ratio determination. On the other hand, when the early determination execution condition is satisfied, the process proceeds to step S25, and the air-fuel ratio determination is performed by the air-fuel ratio early determination process (see FIG. 5). After performing the air-fuel ratio determination, the process proceeds to step S26, and air-fuel ratio F / B control is performed using the determination result.

図10に、本システムにおける空燃比制御の推移を示すタイムチャートを示す。図10に示すように、空燃比早期判定処理は、リッチ側で空燃比制御している最中にストイキ燃焼制御に切り替わる場合(図中Aの場合)や、車両加速時又は減速時において空燃比が不安定な場合(図中Bの場合)に実施される。そして、エンジン10が過渡運転状態から定常運転状態に移行すると、空燃比をストイキ近傍領域で収束させることが可能となり、空燃比通常判定処理に切り替わる。   FIG. 10 shows a time chart showing the transition of air-fuel ratio control in this system. As shown in FIG. 10, in the air-fuel ratio early determination process, the air-fuel ratio is switched to the stoichiometric combustion control during the rich-side air-fuel ratio control (in the case of A in the figure), or during vehicle acceleration or deceleration. Is carried out when is unstable (B in the figure). When the engine 10 shifts from the transient operation state to the steady operation state, the air-fuel ratio can be converged in the vicinity of the stoichiometric range, and the routine is switched to the air-fuel ratio normal determination process.

以上詳述した実施形態によれば以下の優れた効果が得られる。   According to the embodiment described in detail above, the following excellent effects can be obtained.

O2センサ30の出力微分値Vo2*に基づいて空燃比判定を実施する構成としたため、空燃比のリッチ/リーンの反転を、センサ出力が上昇方向又は降下方向に転じた時点で検出することができる。したがって、O2センサ30の起電力値Vo2に基づいて空燃比判定を実施する場合に比べ、空燃比変化を迅速に検出することができる。   Since the air-fuel ratio determination is performed based on the output differential value Vo2 * of the O2 sensor 30, the rich / lean reversal of the air-fuel ratio can be detected when the sensor output changes in the upward or downward direction. . Therefore, the change in the air-fuel ratio can be detected more quickly than in the case where the air-fuel ratio determination is performed based on the electromotive force value Vo2 of the O2 sensor 30.

出力微分値Vo2*に基づく空燃比判定と、起電力値Vo2に基づく空燃比判定とをエンジン運転状態に応じて切り替える構成としたため、空燃比検出の迅速さと確実さとのいずれを優先させるかを、エンジン運転状態に応じて適宜設定することができる。   Since the air-fuel ratio determination based on the output differential value Vo2 * and the air-fuel ratio determination based on the electromotive force value Vo2 are switched according to the engine operating state, which one of priority is given to the quickness or certainty of the air-fuel ratio detection, It can be set as appropriate according to the engine operating state.

エンジン10の過渡運転時又は空燃比F/B開始から所定時間内では、出力微分値Vo2*に基づく空燃比判定を実施し、エンジン10の定常運転時及び空燃比F/B開始から所定時間が経過した後では、起電力値Vo2に基づく空燃比判定を実施する構成としたため、エンジン10の運転状態に適した実施態様で空燃比検出を行うことができる。つまり、エンジン10の過渡運転時や空燃比F/B開始当初では、空燃比がストイキ近傍領域から外れて不安定であることが考えられるところ、本実施形態では、出力微分値Vo2*に基づいて空燃比判定を行い、その判定結果を用いて空燃比F/B制御を実施するため、空燃比の乱れをいち早く解消することができる。一方、空燃比がストイキ近傍領域に収束している場合には、起電力値Vo2に基づく空燃比検出を実施するため、空燃比変化を確実に検出することができる。また、空燃比がストイキ近傍領域に収束している場合にセンサ起電力値Vo2に基づく空燃比判定を実施することで、リッチとリーンとの繰り返しが確実に行われるとともに、その繰り返し周期がある程度の長さで保持されるため、三元触媒24の触媒性能(酸素ストレージ機能)を十分に発揮させることができる。   During a transient operation of the engine 10 or within a predetermined time from the start of the air-fuel ratio F / B, an air-fuel ratio determination based on the output differential value Vo2 * is performed, and a predetermined time from the steady operation of the engine 10 and the start of the air-fuel ratio F / B. Since the air-fuel ratio determination based on the electromotive force value Vo2 is performed after the elapse of time, the air-fuel ratio detection can be performed in an embodiment suitable for the operating state of the engine 10. That is, during transient operation of the engine 10 or at the beginning of the air-fuel ratio F / B, it is considered that the air-fuel ratio deviates from the vicinity of the stoichiometric region and is unstable. In this embodiment, based on the output differential value Vo2 *. Since air-fuel ratio determination is performed and air-fuel ratio F / B control is performed using the determination result, the air-fuel ratio disturbance can be quickly resolved. On the other hand, when the air-fuel ratio has converged in the vicinity of the stoichiometric range, the air-fuel ratio change is detected based on the electromotive force value Vo2, so that a change in the air-fuel ratio can be reliably detected. In addition, when the air-fuel ratio has converged in the vicinity of the stoichiometric range, the air-fuel ratio determination based on the sensor electromotive force value Vo2 is performed, so that the rich and lean repetitions are reliably performed, and the repetition period is somewhat Since the length is maintained, the catalyst performance (oxygen storage function) of the three-way catalyst 24 can be sufficiently exhibited.

空燃比フィードバック補正係数において、出力微分値Vo2*に基づく空燃比判定を実施する場合では、起電力値Vo2に基づく空燃比判定を実施する場合に比べ、スキップ量Ksを大きくしかつ積分量Kiを小さくする構成としたため、空燃比をストイキ近傍領域に収束させる際に燃料噴射量の急激な変化を回避することができ、ひいては空燃比がストイキ近傍領域よりもリッチ側又はリーン側へ大きくオーバーシュートしてしまうのを回避することができる。   In the air-fuel ratio feedback correction coefficient, when the air-fuel ratio determination based on the output differential value Vo2 * is performed, the skip amount Ks is increased and the integral amount Ki is set as compared with the case where the air-fuel ratio determination based on the electromotive force value Vo2 is performed. Since the air-fuel ratio is converged to the stoichiometric vicinity region, a sudden change in the fuel injection amount can be avoided, and as a result, the air-fuel ratio greatly overshoots to the rich side or lean side than the stoichiometric vicinity region. Can be avoided.

リッチ判定値Vri及びリーン判定値Vleと出力微分値Vo2*との比較結果に基づいて空燃比判定を実施するため、誤判定を抑制することができる。   Since the air-fuel ratio determination is performed based on the comparison result of the rich determination value Vri, the lean determination value Vle, and the output differential value Vo2 *, erroneous determination can be suppressed.

(他の実施形態)
本発明は、上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.

・上記実施形態では、出力微分値Vo2*に基づいて空燃比判定を実施する場合、空燃比検出に用いる検出しきい値としてのリッチ判定値Vri及びリーン判定値Vleを固定値としたが、例えばエンジン運転状態に応じてリーン判定値Vri及びリーン判定値Vleを可変にしてもよい。この構成によれば、出力微分値Vo2*に基づいて空燃比変化を検出する際に、その検出の迅速性と確実性とのいずれを更に優先させるかを、エンジン運転状態等に応じて適宜設定することができる。ここで、エンジン運転状態としては、エンジン回転速度やスロットル開度、空燃比F/B制御開始からの経過時間とするのが望ましい。例えばエンジン回転速度に応じて判定値Vri,Vleを可変にする場合、エンジン回転速度が高いほど判定値Vri,Vleをゼロに近付けるのが望ましい。こうすることで、エンジン回転速度が高いほど空燃比判定の迅速性が良好になるため、燃料噴射の頻度が高い場合であっても、空燃比変化を迅速に検出することができる。なお、リッチ判定値Vriが上記正側しきい値に相当し、リーン判定値Vleが上記負側しきい値に相当する。   In the above embodiment, when the air-fuel ratio determination is performed based on the output differential value Vo2 *, the rich determination value Vri and the lean determination value Vle as detection threshold values used for air-fuel ratio detection are fixed values. The lean determination value Vri and the lean determination value Vle may be made variable according to the engine operating state. According to this configuration, when detecting a change in the air-fuel ratio based on the output differential value Vo2 *, it is set as appropriate according to the engine operating state or the like, which priority should be given to the quickness or certainty of the detection. can do. Here, it is desirable that the engine operating state is an engine speed, a throttle opening, or an elapsed time from the start of air-fuel ratio F / B control. For example, when the determination values Vri and Vle are made variable according to the engine rotation speed, it is desirable that the determination values Vri and Vle be closer to zero as the engine rotation speed is higher. As a result, the higher the engine speed, the better the speed of air-fuel ratio determination. Therefore, even when the frequency of fuel injection is high, it is possible to quickly detect a change in air-fuel ratio. The rich determination value Vri corresponds to the positive threshold value, and the lean determination value Vle corresponds to the negative threshold value.

・上記実施形態において、判定値Vri,Vleを可変にする構成とした場合、空燃比フィードバック補正係数につき、リッチ判定値Vri及びリーン判定値Vleがゼロに近いほどスキップ量Ksを大きくしかつ積分量Kiを小さくするとよい。こうすれば、判定値Vri,Vleが比較的ゼロに近い場合に、空燃比フィードバック補正係数を空燃比変化に合わせて適正な値に設定することができる。特に、スキップ量Ksが比較的小さい値に制限されるため、燃料噴射量の急激な変化を回避することができ、ひいては空燃比が目標値よりもリッチ側又はリーン側へ大きくオーバーシュートしてしまうのを回避することができる。   In the above embodiment, when the determination values Vri and Vle are made variable, the skip amount Ks is increased and the integration amount is increased as the rich determination value Vri and the lean determination value Vle are closer to zero for the air-fuel ratio feedback correction coefficient. It is good to make Ki small. In this way, when the determination values Vri and Vle are relatively close to zero, the air-fuel ratio feedback correction coefficient can be set to an appropriate value in accordance with the change in the air-fuel ratio. In particular, since the skip amount Ks is limited to a relatively small value, a rapid change in the fuel injection amount can be avoided, and the air-fuel ratio overshoots to the rich side or lean side more than the target value. Can be avoided.

・上記実施形態では、出力微分値Vo2*に基づく空燃比判定と、起電力値Vo2に基づく空燃比判定とをエンジン運転状態に応じて切り替える構成としたが、その切り替えを行わず、常に出力微分値Vo2*に基づいて空燃比判定を実施する構成としてもよい。このとき、上記と同様にして判定値Vri,Vleをエンジン運転状態に応じて可変にするとよい。こうすれば、エンジン運転状態に応じて判定値Vri,Vleが設定されるため、空燃比判定の迅速さとその判定結果の確実さとのいずれを優先させるかを、エンジン運転状態に応じて適宜設定することができる。   In the above embodiment, the air-fuel ratio determination based on the output differential value Vo2 * and the air-fuel ratio determination based on the electromotive force value Vo2 are switched according to the engine operating state. The air-fuel ratio determination may be performed based on the value Vo2 *. At this time, the determination values Vri and Vle may be made variable according to the engine operating state in the same manner as described above. In this way, the determination values Vri and Vle are set according to the engine operating state, and accordingly, whether to give priority to the quickness of the air-fuel ratio determination or the certainty of the determination result is appropriately set according to the engine operating state. be able to.

・上記実施形態では、早期判定実施条件を、空燃比F/B制御開始から所定時間内であること、エンジン10が過渡運転状態であること、としたが、その代わりに又はそれに加えて、検出空燃比がストイキ近傍領域から外れていることとしてもよい。こうすれば、空燃比をストイキ近傍領域に収束させるべき状況を直接検出でき、空燃比早期判定処理の実施期間を設定する上で好適である。具体的には、例えばO2センサ30の起電力値に基づいて行う。O2センサ30においては、空燃比がストイキ近傍領域にある場合にはリッチ信号とリーン信号とを一定周期で繰り返すのに対し、ストイキ近傍領域から外れると、リッチ信号又はリーン信号を継続して出力する。そこで、O2センサ30の起電力値Vo2が所定時間変化しない場合に、空燃比がストイキ近傍領域から外れているものと判断する。   In the above-described embodiment, the early determination execution condition is that the air-fuel ratio F / B control is within a predetermined time from the start, and the engine 10 is in a transient operation state. The air-fuel ratio may be out of the stoichiometric vicinity region. By doing this, it is possible to directly detect the situation where the air-fuel ratio should converge to the stoichiometric vicinity region, which is suitable for setting the execution period of the air-fuel ratio early determination process. Specifically, for example, it is performed based on the electromotive force value of the O2 sensor 30. In the O2 sensor 30, when the air-fuel ratio is in the stoichiometric vicinity region, the rich signal and the lean signal are repeated at a constant cycle. On the other hand, when the air / fuel ratio is outside the stoichiometric vicinity region, the rich signal or lean signal is continuously output. . Therefore, when the electromotive force value Vo2 of the O2 sensor 30 does not change for a predetermined time, it is determined that the air-fuel ratio is out of the stoichiometric vicinity region.

あるいは、早期判定実施条件に、燃料カットからの復帰時であることを含めてもよい。燃料カットからの復帰時には、空燃比がストイキ近傍領域から大きく外れているため、空燃比をストイキ近傍領域にいち早く収束させる必要性が高いからである。燃料カットからの復帰時であることは、例えば燃料カット停止からの経過時間に基づいて判断してもよい。また、上記実施形態において、早期判定実施条件を、空燃比F/B制御開始から所定時間内であること、及びエンジン運転状態が過渡状態であることのいずれかとしてもよい。   Alternatively, the early determination execution condition may include a time of return from the fuel cut. This is because when returning from the fuel cut, since the air-fuel ratio is greatly deviated from the stoichiometric vicinity region, it is highly necessary to quickly converge the air-fuel ratio to the stoichiometric region. For example, it may be determined based on the elapsed time from the stop of the fuel cut that the vehicle is returning from the fuel cut. In the above-described embodiment, the early determination execution condition may be either within a predetermined time from the start of the air-fuel ratio F / B control or the engine operating state is in a transient state.

エンジン制御システムの全体概略構成図。1 is an overall schematic configuration diagram of an engine control system. O2センサにおけるセンサ素子の断面図。Sectional drawing of the sensor element in an O2 sensor. 排ガスの空燃比とセンサ素子の起電力との関係を示す起電力特性図。The electromotive force characteristic view which shows the relationship between the air fuel ratio of exhaust gas, and the electromotive force of a sensor element. 空燃比フィードバック補正を説明するタイムチャート。The time chart explaining air-fuel ratio feedback correction. 空燃比早期判定処理の処理手順を示すフローチャート。The flowchart which shows the process sequence of an air fuel ratio early determination process. 起電力値による空燃比判定と出力微分値による空燃比判定との相違を説明するタイムチャート。The time chart explaining the difference between the air fuel ratio determination by an electromotive force value and the air fuel ratio determination by an output differential value. 空燃比早期判定処理における空燃比フィードバック補正を説明するタイムチャート。The time chart explaining the air fuel ratio feedback correction | amendment in an air fuel ratio early determination process. 空燃比制御の処理手順を示すフローチャート。The flowchart which shows the process sequence of air fuel ratio control. 実施条件判定処理の処理手順を示すフローチャート。The flowchart which shows the process sequence of an implementation condition determination process. 空燃比制御の推移を示すタイムチャート。The time chart which shows transition of air fuel ratio control.

符号の説明Explanation of symbols

10…エンジン、16…燃料噴射弁、24…三元触媒、30…O2センサ、40…ECU、41…マイコン、42…センサ制御回路。   DESCRIPTION OF SYMBOLS 10 ... Engine, 16 ... Fuel injection valve, 24 ... Three-way catalyst, 30 ... O2 sensor, 40 ... ECU, 41 ... Microcomputer, 42 ... Sensor control circuit.

Claims (8)

内燃機関の空燃比がリッチかリーンかに応じて異なる起電力を発生する酸素センサに適用され、該酸素センサの起電力値を用いて空燃比検出を実施する内燃機関の空燃比検出装置において、
前記起電力値の微分値を出力微分値として算出する算出手段と、
前記算出手段により算出した出力微分値に基づいて空燃比がリッチかリーンかを検出する空燃比検出手段と、
を備えることを特徴とする内燃機関の空燃比検出装置。
In an air-fuel ratio detection apparatus for an internal combustion engine that is applied to an oxygen sensor that generates different electromotive force depending on whether the air-fuel ratio of the internal combustion engine is rich or lean, and performs air-fuel ratio detection using the electromotive force value of the oxygen sensor,
Calculating means for calculating a differential value of the electromotive force value as an output differential value;
Air-fuel ratio detection means for detecting whether the air-fuel ratio is rich or lean based on the output differential value calculated by the calculation means;
An air-fuel ratio detection apparatus for an internal combustion engine, comprising:
前記空燃比検出手段は、
前記出力微分値に基づいて空燃比がリッチかリーンかを検出する第1検出手段と、
前記起電力値に基づいて空燃比がリッチかリーンかを検出する第2検出手段と、
前記第1検出手段による空燃比検出と前記第2検出手段による空燃比検出とを前記内燃機関の運転状態に基づいて切り替えて空燃比検出を行わせる切替手段と、
を備えることを特徴とする請求項1に記載の内燃機関の空燃比検出装置。
The air-fuel ratio detection means includes
First detecting means for detecting whether the air-fuel ratio is rich or lean based on the output differential value;
Second detection means for detecting whether the air-fuel ratio is rich or lean based on the electromotive force value;
Switching means for performing air-fuel ratio detection by switching air-fuel ratio detection by the first detection means and air-fuel ratio detection by the second detection means based on the operating state of the internal combustion engine;
The air-fuel ratio detection apparatus for an internal combustion engine according to claim 1, comprising:
前記空燃比検出手段により検出した空燃比を目標値に一致させるよう空燃比フィードバック制御を実施する空燃比制御システムに適用され、
前記切替手段は、空燃比が前記目標値を含む所定範囲に収束していない場合に前記第1検出手段による空燃比検出を実施し、前記所定範囲に収束している場合に前記第2検出手段による空燃比検出を実施することを特徴とする請求項2に記載の内燃機関の空燃比検出装置。
Applied to an air-fuel ratio control system that performs air-fuel ratio feedback control so that the air-fuel ratio detected by the air-fuel ratio detection means matches a target value;
The switching means performs air-fuel ratio detection by the first detection means when the air-fuel ratio has not converged to a predetermined range including the target value, and the second detection means when the air-fuel ratio has converged to the predetermined range. The air-fuel ratio detection apparatus for an internal combustion engine according to claim 2, wherein the air-fuel ratio detection by means of is performed.
前記空燃比検出手段により検出した空燃比を目標値に一致させるよう空燃比フィードバック制御を実施する空燃比制御システムに適用され、
前記切替手段は、前記空燃比フィードバック制御の実行開始後の所定時間において前記第1検出手段による空燃比検出を実施し、前記所定時間経過後において前記第2検出手段による空燃比検出を実施することを特徴とする請求項2又は3に記載の内燃機関の空燃比検出装置。
Applied to an air-fuel ratio control system that performs air-fuel ratio feedback control so that the air-fuel ratio detected by the air-fuel ratio detection means matches a target value;
The switching means performs air-fuel ratio detection by the first detection means at a predetermined time after the start of execution of the air-fuel ratio feedback control, and performs air-fuel ratio detection by the second detection means after the predetermined time has elapsed. The air-fuel ratio detection apparatus for an internal combustion engine according to claim 2 or 3, characterized by the above-mentioned.
前記空燃比検出手段により検出した空燃比を目標値に一致させるための空燃比フィードバック補正量を、空燃比が前記目標値に向かう方向に所定の積分量ずつ増加又は減少させるとともに、空燃比が前記目標値に達したことが検出される場合に前記空燃比フィードバック補正量をそれまでとは反対方向に所定のスキップ量だけ増加又は減少させる空燃比制御を実施する空燃比制御システムに適用され、
前記第1検出手段により空燃比検出を実施する場合に、前記第2検出手段により空燃比検出を実施する場合に比べて前記積分量を大きくしかつ前記スキップ量を小さくすることを特徴とする請求項2乃至4のいずれか一項に記載の内燃機関の空燃比検出装置。
The air-fuel ratio feedback correction amount for making the air-fuel ratio detected by the air-fuel ratio detecting means coincide with the target value is increased or decreased by a predetermined integral amount in the direction toward the target value, and the air-fuel ratio is Applied to an air-fuel ratio control system that performs air-fuel ratio control to increase or decrease the air-fuel ratio feedback correction amount by a predetermined skip amount in the opposite direction when it is detected that the target value has been reached,
When the air-fuel ratio detection is performed by the first detection means, the integral amount is increased and the skip amount is decreased compared to the case where the air-fuel ratio detection is performed by the second detection means. Item 5. The air-fuel ratio detection device for an internal combustion engine according to any one of Items 2 to 4.
前記出力微分値に基づいて空燃比のリッチ検出又はリーン検出を行う場合の検出しきい値を、前記内燃機関の運転状態に基づいて設定するしきい値設定手段を備え、
前記空燃比検出手段は、前記しきい値設定手段により設定した検出しきい値と、前記算出手段により算出した出力微分値との比較結果に基づいて空燃比判定を実施することを特徴とする請求項1乃至5のいずれか一項に記載の内燃機関の空燃比検出装置。
Threshold value setting means for setting a detection threshold value when performing rich detection or lean detection of the air-fuel ratio based on the output differential value based on the operating state of the internal combustion engine;
The air-fuel ratio detection means performs air-fuel ratio determination based on a comparison result between the detection threshold set by the threshold setting means and the output differential value calculated by the calculation means. Item 6. The air-fuel ratio detection apparatus for an internal combustion engine according to any one of Items 1 to 5.
前記検出しきい値は、前記起電力値が増加する場合に用いる正側しきい値と、前記起電力値が減少する場合に用いる負側しきい値とからなり、
前記しきい値設定手段は、前記内燃機関の回転速度が高いほど前記正側しきい値及び前記負側しきい値をゼロに近付けることを特徴とする請求項6に記載の内燃機関の空燃比検出装置。
The detection threshold consists of a positive threshold used when the electromotive force value increases and a negative threshold used when the electromotive force value decreases,
The air-fuel ratio of the internal combustion engine according to claim 6, wherein the threshold value setting means brings the positive threshold value and the negative threshold value closer to zero as the rotational speed of the internal combustion engine is higher. Detection device.
前記空燃比検出手段により検出した空燃比を目標値に一致させるための空燃比フィードバック補正量を、空燃比が前記目標値に向かう方向に所定の積分量ずつ増加又は減少させるとともに、空燃比が前記目標値に達したことが検出される場合に前記空燃比フィードバック補正量をそれまでとは反対方向に所定のスキップ量だけ増加又は減少させる空燃比制御を実施する空燃比制御システムに適用され、
前記検出しきい値がゼロに近いほど前記積分量を大きくしかつ前記スキップ量を小さくすることを特徴とする請求項6又は7に記載の内燃機関の空燃比検出装置。
The air-fuel ratio feedback correction amount for making the air-fuel ratio detected by the air-fuel ratio detecting means coincide with the target value is increased or decreased by a predetermined integral amount in the direction toward the target value, and the air-fuel ratio is Applied to an air-fuel ratio control system that performs air-fuel ratio control to increase or decrease the air-fuel ratio feedback correction amount by a predetermined skip amount in the opposite direction when it is detected that the target value has been reached,
The air-fuel ratio detection apparatus for an internal combustion engine according to claim 6 or 7, wherein the integral amount is increased and the skip amount is decreased as the detection threshold is closer to zero.
JP2008135070A 2008-05-23 2008-05-23 Air-fuel ratio detection device for internal combustion engine Pending JP2009281306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135070A JP2009281306A (en) 2008-05-23 2008-05-23 Air-fuel ratio detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135070A JP2009281306A (en) 2008-05-23 2008-05-23 Air-fuel ratio detection device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009281306A true JP2009281306A (en) 2009-12-03

Family

ID=41452008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135070A Pending JP2009281306A (en) 2008-05-23 2008-05-23 Air-fuel ratio detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009281306A (en)

Similar Documents

Publication Publication Date Title
JP5748180B2 (en) Catalyst deterioration diagnosis device
JP6107586B2 (en) Control device for internal combustion engine
JP6323281B2 (en) Control device for internal combustion engine
JP5817581B2 (en) Exhaust gas purification device for internal combustion engine
JP5884702B2 (en) Exhaust gas purification device for internal combustion engine
JP5884701B2 (en) Exhaust gas purification device for internal combustion engine
WO2013114814A1 (en) Exhaust gas purification device for internal combustion engine
WO2015170449A1 (en) Exhaust gas purification device for internal combustion engine
JP6361699B2 (en) Control device for internal combustion engine
JP5696789B2 (en) Control device for internal combustion engine
JP4726663B2 (en) Air-fuel ratio control device for internal combustion engine
JP3819494B2 (en) Fuel supply control device for internal combustion engine
JP2009281306A (en) Air-fuel ratio detection device for internal combustion engine
JP6268874B2 (en) Gas sensor control device
JP2018003777A (en) Control device of internal combustion engine
JP5459513B2 (en) Air-fuel ratio control device for internal combustion engine
JP6442920B2 (en) Gas sensor control device and air-fuel ratio detection system
JP2015071985A (en) Control device for internal combustion engine
JP6268933B2 (en) Control device for internal combustion engine
JP2018003776A (en) Control device of internal combustion engine
JP4064092B2 (en) Engine air-fuel ratio control device
JP2014218946A (en) Air fuel ratio control device for internal combustion engine
JP6255909B2 (en) Control device for internal combustion engine
JP5794788B2 (en) Air-fuel ratio control device
JP2002364421A (en) Air-fuel ratio controller for engine