JP2009281274A - Gas fuel injection device - Google Patents

Gas fuel injection device Download PDF

Info

Publication number
JP2009281274A
JP2009281274A JP2008133945A JP2008133945A JP2009281274A JP 2009281274 A JP2009281274 A JP 2009281274A JP 2008133945 A JP2008133945 A JP 2008133945A JP 2008133945 A JP2008133945 A JP 2008133945A JP 2009281274 A JP2009281274 A JP 2009281274A
Authority
JP
Japan
Prior art keywords
gaseous fuel
injection
pressure
hole
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133945A
Other languages
Japanese (ja)
Other versions
JP4883047B2 (en
Inventor
Makoto Masuda
誠 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008133945A priority Critical patent/JP4883047B2/en
Publication of JP2009281274A publication Critical patent/JP2009281274A/en
Application granted granted Critical
Publication of JP4883047B2 publication Critical patent/JP4883047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas fuel injection device capable of simultaneously achieving both of high output and prevention of delivery of unburned gas fuel by accelerating mixing of gas fuel with compressed air in the gas fuel injection device for injecting the high pressure gas fuel into an engine combustion chamber. <P>SOLUTION: The gas fuel injection device where the gas fuel is injected under the condition that an injection pressure P<SB>INJ</SB>of the gas fuel and an atmosphere pressure P<SB>AMB</SB>in the combustion chamber has the following relationship of P<SB>INJ</SB>/P<SB>AMB</SB>≥4, satisfies the relationship of L<SB>P</SB><Lm(max) wherein a distance from an opening end face of a first injection hole to an intersection point P of a center axis of the first injection hole and a center axis of a second injection hole is an intersection point distance LP with a Mach disk generation region where a Mach disk is formed in a gas jet injected from the injection hole is Lm(max). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関内に高圧の気体燃料を噴射する気体燃料噴射装置に関する。   The present invention relates to a gaseous fuel injection device that injects high-pressure gaseous fuel into an internal combustion engine.

エネルギーマネージメントの観点から、次世代の自動車用内燃機関の開発においては、従来の液体化石燃料に代わる燃料として、天然ガス(LNG、CNG)、液化石油ガス(LPG)、水素ガス、といった気体燃料を用いる気体燃料機関の開発が求められている。   From the viewpoint of energy management, gas fuels such as natural gas (LNG, CNG), liquefied petroleum gas (LPG), and hydrogen gas are used as fuels to replace conventional liquid fossil fuels in the development of next-generation automotive internal combustion engines. Development of a gas fuel engine to be used is required.

しかし、気体燃料はそのエネルギ密度の低さから短期間に必要量の燃料を噴射することができず、出力不足を起こす虞がある。さらに、気体燃料と燃焼室内の圧縮空気との混合が困難であり、混合の促進による自着火の制御が課題となっている。このため、出力不足の改善、及び、混合の促進を目的として、種々の技術が検討されている。   However, gaseous fuel cannot inject a required amount of fuel in a short period of time due to its low energy density, which may cause insufficient output. Furthermore, it is difficult to mix the gaseous fuel and the compressed air in the combustion chamber, and control of self-ignition by promoting the mixing is an issue. For this reason, various techniques have been studied for the purpose of improving output shortage and promoting mixing.

例えば、特許文献1には、高圧気体燃料をノズル先端に設けた噴孔から機関燃焼室内に噴射するインジェクタであって、上記噴孔へ高圧気体燃料を供給する高圧気体燃料供給通路と、噴孔を開閉するニードルの駆動を制御する電気式駆動部とを備え、さらに、ノズル内の高圧気体燃料供給通路に、噴孔側から上流側へ向かう方向に上記高圧気体燃料供給通路の断面積を急拡大させる容積拡大部を設けて、噴孔に近いノズル内の高圧気体燃料供給通路に、所定容積を有する容積拡大部を設けたので、噴射初期に噴孔へ大量の高圧気体燃料を供給することを可能にし、さらに、噴射の際に発生した圧力波を利用して、短時間に大量の気体燃料を高圧で機関燃焼室に噴射可能とし、空気との混合を促進して、高出力化と未燃気体燃料の排出防止とを同時に実現可能な気体燃料噴射インジェクタが開示されている。   For example, Patent Document 1 discloses an injector for injecting high-pressure gaseous fuel into an engine combustion chamber from an injection hole provided at a nozzle tip, a high-pressure gaseous fuel supply passage for supplying high-pressure gaseous fuel to the injection hole, and an injection hole An electric drive unit that controls the drive of the needle that opens and closes the nozzle, and further, the cross-sectional area of the high-pressure gas fuel supply passage is rapidly increased in the direction from the nozzle hole side to the upstream side in the high-pressure gas fuel supply passage in the nozzle. Since the volume expanding part to be expanded is provided and the volume expanding part having a predetermined volume is provided in the high pressure gas fuel supply passage in the nozzle close to the nozzle hole, a large amount of high pressure gas fuel is supplied to the nozzle hole at the initial stage of injection. In addition, by using the pressure wave generated during injection, a large amount of gaseous fuel can be injected into the engine combustion chamber at a high pressure in a short time, and mixing with air is promoted to increase output. To prevent the discharge of unburned gaseous fuel Sometimes feasible gaseous fuel injector is disclosed.

また、出力不足の改善を図るべく、気体燃料をノズル先端に設けた噴孔から機関燃焼室内に極めて高圧で噴射する必要があるが、高圧噴射された気体では以下のような現象が起こることが知られている。
非特許文献1等には、気体噴流に関する解析が示されている。図11に示すように、単噴孔ノズルIから噴射圧力PINJの高圧気体が雰囲気圧力PAMBの低圧雰囲気内に噴射され、噴射圧力PINJと雰囲気圧力PAMBとの圧力比PINJ/PAMBが4倍以上の場合、噴孔出口近傍では、噴孔から噴射された気体が雰囲気圧力PAMBまで完全に膨張できず、不足膨張噴流となる。このような不足膨張噴流では、外側に向かって膨張する膨張波ExWが生じ、この時の流速は超音速(M>1)となり、噴流と雰囲気気体との境界面JBにおいて圧縮波CmWとして反射され、再び噴流境界面JBにおいて反射し膨張波ExWとなり、再び圧縮波CmWと膨張波ExWとが繰り返し発生する。特に、圧力比PINJ/PAMBが大きい時には、噴流FJの中心軸上で衝撃は正常交差できなくなり、膨張波ExWと圧縮波CmWと反射波RSとの合体と干渉によって樽型衝撃波BSを形成し、噴射方向に直交する円盤状のマッハディスクMDが形成され、マッハディスクMDを境に、超音速(M>1)の膨張波域と亜音速(M<1)の圧縮波域とが形成されていることが知られている(非特許文献1等)。
特開2006−14474号公報 日本機会学会論文集(B編) 72巻 721号(2006/9) No.06−0160 不足膨張音速噴流の近距離場構造に及ばすノズル形状の影響 乙部由美子 他
Further, in order to improve the output shortage, it is necessary to inject gaseous fuel into the engine combustion chamber from the nozzle hole provided at the tip of the nozzle at an extremely high pressure, but the following phenomenon may occur in the gas injected at high pressure. Are known.
Non-Patent Document 1 and the like show an analysis related to a gas jet. As shown in FIG. 11, the high-pressure gas injection pressure P INJ a single injection hole nozzle I S is injected into the low pressure atmosphere of the ambient pressure P AMB, injection pressure P INJ and the ambient pressure ratio P between the pressure P AMB INJ / When PAMB is four times or more, in the vicinity of the nozzle hole outlet, the gas injected from the nozzle hole cannot be completely expanded to the atmospheric pressure PAMB, resulting in an underexpanded jet. In such an underexpanded jet, an expansion wave ExW expanding outward is generated, and the flow velocity at this time becomes supersonic (M> 1), and is reflected as a compression wave CmW at the boundary surface JB between the jet and the atmospheric gas. Then, it is reflected again at the jet boundary surface JB and becomes the expansion wave ExW, and the compression wave CmW and the expansion wave ExW are repeatedly generated again. In particular, when the pressure ratio P INJ / P AMB is large, the shock cannot normally intersect on the central axis of the jet FJ, and a barrel shock wave BS is formed by the combination and interference of the expansion wave ExW, the compression wave CmW, and the reflected wave RS. Then, a disk-shaped Mach disk MD perpendicular to the injection direction is formed, and a supersonic (M> 1) expansion wave region and a subsonic (M <1) compression wave region are formed with the Mach disk MD as a boundary. It is known (Nonpatent literature 1 etc.).
JP 2006-14474 A Proceedings of the Japan Opportunity Society (Part B) Vol. 72, No. 721 (2006/9) No.06-0160 Influence of nozzle shape on near-field structure of underexpanded sonic jet Yumiko Otobe and others

このため、従来の燃料噴射弁を用いて高圧の気体燃料を噴射した場合、樽型衝撃波BS内に気体燃料が閉じこめられ、気体燃料と燃焼室内の圧縮空気とは、噴流境界JB近傍で僅かに混じり合うものの、樽型衝撃波BS内では気体燃料と燃焼室内の圧縮空気とはほとんど混じり合うことがない。また、徐々に噴流の速度が失われ、マッハディスク形成領域Lm(max)の外では、噴流の速度は小さくなり、その運動エネルギも極めて小さいので、空気と混じり合うのに時間を要する虞がある。   For this reason, when high pressure gaseous fuel is injected using a conventional fuel injection valve, the gaseous fuel is confined in the barrel shock wave BS, and the gaseous fuel and the compressed air in the combustion chamber are slightly in the vicinity of the jet boundary JB. Although mixed, gaseous fuel and compressed air in the combustion chamber hardly mix in the barrel shock wave BS. Further, the speed of the jet is gradually lost, and outside the Mach disk formation region Lm (max), the speed of the jet is reduced and its kinetic energy is extremely small, so that it may take time to mix with the air. .

そこで、本発明は、高圧の気体燃料を機関燃焼室内に噴射する気体燃料噴射装置において、気体燃料と圧縮空気との混合の促進を可能とする気体燃料噴射装置を提供することを目的とするものである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a gaseous fuel injection device that can facilitate mixing of gaseous fuel and compressed air in a gaseous fuel injection device that injects high-pressure gaseous fuel into an engine combustion chamber. It is.

請求項1の発明では、少なくとも第1の噴孔と第2の噴孔とからなる2以上の噴孔を設けた燃料噴射弁を具備し、該燃料噴射弁内に導入した高圧の気体燃料を、上記噴孔から内燃機関の燃焼室内への噴射を行う気体燃料噴射装置であって、上記気体燃料の噴射圧力をPINJとし、上記燃焼室内の雰囲気圧力をPAMBとしたとき、下記式1の関係を満たす条件下で上記気体燃料を噴射する気体燃料噴射装置において、上記第1の噴孔の開口端面から上記第1の噴孔の中心軸と上記第2の噴孔の中心軸との交点Pまでの距離を交点距離Lとし、上記噴孔から噴射した気体噴流にマッハディスクが形成されるマッハディスク生成領域をLm(max)としたとき、下記式2の関係を満たすべく、上記第1の噴孔の中心軸と上記噴射弁の中心軸とのなす第1の噴射角度θと上記第2の噴孔の中心軸と上記噴射弁の中心軸とのなす第2の噴射角度θとを設定する。
INJ/PAMB≧4・・・式1
<Lm(max)・・・式2
In the first aspect of the invention, a fuel injection valve having at least two injection holes including at least a first injection hole and a second injection hole is provided, and high-pressure gaseous fuel introduced into the fuel injection valve is provided. , A gaseous fuel injection device for injecting into the combustion chamber of the internal combustion engine from the nozzle hole, where the injection pressure of the gaseous fuel is PINJ and the atmospheric pressure in the combustion chamber is PAMB , In the gaseous fuel injection device for injecting the gaseous fuel under the condition satisfying the relationship, the central axis of the first injection hole and the central axis of the second injection hole from the opening end surface of the first injection hole. When the distance to the intersection P is defined as the intersection distance L P and the Mach disk generation region in which the Mach disk is formed in the gas jet injected from the nozzle hole is defined as Lm (max), The center axis of the first injection hole and the center of the injection valve Setting a first injection angle theta 1 and the second formed by the central axis of the central shaft and the injection valve of the second injection hole of the injection angle theta 2 formed by the.
P INJ / P AMB ≧ 4 Equation 1
L P <Lm (max) ... Formula 2

請求項1の発明によれば、噴孔の出口近傍で複数の噴流が衝突し、樽型衝撃波の衝突により、ショックセル構造が破壊され、噴流が大きく乱れるので、気体燃料の運動エネルギが大きい状態で圧縮空気との混合が可能となり、気体燃料と空気との混合が促進される。したがって、気体燃料と圧縮空気との速やかな混合によって、燃焼排気中への未燃気体燃料の排出を抑制させることが可能な燃料噴射装置が実現できる。   According to the invention of claim 1, a plurality of jets collide in the vicinity of the exit of the nozzle hole, the shock cell structure is destroyed by the collision of the barrel shock wave, and the jet is greatly disturbed, so that the kinetic energy of the gaseous fuel is large. Thus, mixing with compressed air becomes possible, and mixing of gaseous fuel and air is promoted. Therefore, it is possible to realize a fuel injection device capable of suppressing the discharge of unburned gaseous fuel into the combustion exhaust by rapid mixing of gaseous fuel and compressed air.

具体的には、請求項2の発明のように、上記交点距離Lを6mm以下の範囲に設定する。また、請求項3の発明ように、上記交点距離Lを0.01mm以上の範囲に設定する。請求項2及び3の発明の範囲で複数の噴流を交差させれば、運動エネルギの高い状態で気体燃料噴流が衝突し、大きな乱れを生じることができることが判明した。 Specifically, as in the invention of claim 2, the intersection distance L P is set to a range of 6 mm or less. Further, as in the invention of claim 3, the intersection distance L P is set in a range of 0.01 mm or more. It has been found that if a plurality of jets are crossed within the scope of the inventions of claims 2 and 3, the gaseous fuel jets collide with each other with high kinetic energy, and a large turbulence can be generated.

より具体的には請求項4の発明のように上記式2の関係を満たすべく、上記第1の噴孔の中心軸と上記噴射弁の中心軸とのなす第1の噴射角度θと上記第2の噴孔の中心軸と上記噴射弁の中心軸とのなす第2の噴射角度θとをθ>θとなるように設定するのが望ましい。 More specifically, the first injection angle θ 1 formed by the central axis of the first injection hole and the central axis of the injection valve is set to satisfy the relationship of the expression 2 as in the invention of claim 4. It is desirable to set the second injection angle θ 2 formed by the central axis of the second injection hole and the central axis of the injection valve so that θ 1 > θ 2 .

さらに、請求項5の発明のように、上記複数の噴孔間の距離Dpは、6mm以下に設定するのが望ましい。   Furthermore, as in the invention of claim 5, it is desirable that the distance Dp between the plurality of nozzle holes is set to 6 mm or less.

請求項6の発明のように、上記噴孔の開口径Deは、0.01mm以上に穿設するのが望ましい。   As in the sixth aspect of the invention, it is desirable that the nozzle hole has an opening diameter De of 0.01 mm or more.

本発明の第1の実施形態における気体燃料噴射装置について図を参照して説明する。図1は、本発明の気体燃料噴射装置を内燃機関3に適用した全体構成を示す概略図で、内燃機関3のシリンダヘッド30には、気体燃料噴射弁I、図略の点火装置、吸気筒301、吸気バルブ302、排気筒303、排気バルブ304が設けられ、シリンダヘッド30とシリンダ31とピストン32とによって区画された燃焼室34内に気体燃料噴射弁Iから直接噴射された高圧気体燃料と空気との混合気に点火するようになっている。気体燃料としては、水素、CNG(圧縮天然ガス)、LNG(液化天然ガス)、DME(ジメチルエーテル)等が用いられている。気体燃料噴射弁Iには、高圧ボンベに接続された蓄圧アキュムレータや、高圧ポンプによって蓄圧されたコモンレールなどの高圧源5から高圧気体燃料GFが供給される。   A gaseous fuel injection device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an overall configuration in which a gaseous fuel injection device of the present invention is applied to an internal combustion engine 3. A cylinder head 30 of the internal combustion engine 3 includes a gaseous fuel injection valve I, an ignition device (not shown), and an intake cylinder. 301, an intake valve 302, an exhaust cylinder 303, and an exhaust valve 304 are provided. The air-fuel mixture is ignited. As the gaseous fuel, hydrogen, CNG (compressed natural gas), LNG (liquefied natural gas), DME (dimethyl ether) or the like is used. The gaseous fuel injection valve I is supplied with a high-pressure gaseous fuel GF from a high-pressure source 5 such as a pressure accumulator connected to a high-pressure cylinder or a common rail accumulated by a high-pressure pump.

電子制御装置ECU4には、燃焼室内の筒内圧力PAMB、高圧気体燃料噴射圧力PINJ、エンジン回転数NE、エンジン水温WT、アクセル開度、上死点等のエンジン状況検出手段によって検知される負荷状況が入力され、負荷状況に応じて、燃料の噴射時期、噴射圧力、噴射量、点火時期等が演算され、駆動制御装置EDU41に送られ、EDU41によって所定のタイミングで気体燃料噴射弁Iが駆動される。特に本発明においては、噴射圧力PINJと筒内圧力PAMBとの圧力比PINJ/PAMBが4以上となる条件で燃焼室34内に高圧気体燃料が噴射されている。 The electronic control unit ECU4 detects the in-cylinder pressure P AMB in the combustion chamber, the high-pressure gaseous fuel injection pressure P INJ , the engine speed NE, the engine water temperature WT, the accelerator opening, the top dead center, and the like. The load status is input, and the fuel injection timing, injection pressure, injection amount, ignition timing, etc. are calculated according to the load status, sent to the drive control unit EDU41, and the gaseous fuel injection valve I is set at a predetermined timing by the EDU41. Driven. Particularly in the present invention, high-pressure gaseous fuel is injected into the combustion chamber 34 under the condition where the pressure ratio P INJ / P AMB and injection pressure P INJ and the in-cylinder pressure P AMB is 4 or more.

図2に、本発明の第1の実施形態における気体燃料噴射装置に用いられる気体燃料噴射弁Iの概要を示す。気体燃料噴射弁Iは、ノズル部100とインジェクタ基部110とアクチュエータ部120とによって構成されている。
インジェクタ基部110には、高圧気体燃料を導入する高圧気体燃料導入流路103、導入された高圧気体燃料の圧力を蓄圧する蓄圧室102、ノズル部100内に形成された燃料室10に気体燃料を導入する気体燃料供給流路101が形成されている。
さらに、インジェクタ基部には、ニードル200の上昇方向と下降方向とのいずれか若しくは両方に作用する圧力を伝達するとともに、ニードル200の摺動部を潤滑すべく、作動液体を導入する公知の作動液体流路120が適宜形成されている。
ニードル200の先端側には、径小となるニードル軸部20が形成され、ニードル軸部20の周囲には、燃料室10が区画され、燃料室10の先端に設けられた噴孔14、15の開閉を離着座によって行う弁体2がニードル軸部20の先端に形成されている。
インジェクタ基部100の内部には軸方向に摺動可能に保持された長軸状のニードル200が収納され、ニードル200の基端側には、EDU41に接続されたアクチュエータ120が設けられ、アクチュエータ120によってニードル200は軸方向の昇降が制御されている。アクチュエータ120には、通電により励磁する電磁ソレノイドを用いた電磁アクチュエータや通電により伸長する圧電素子を用いた圧電アクチュエータ等、公知の駆動制御手段を適宜用いることができる。
In FIG. 2, the outline | summary of the gaseous fuel injection valve I used for the gaseous fuel injection apparatus in the 1st Embodiment of this invention is shown. The gaseous fuel injection valve I includes a nozzle part 100, an injector base part 110, and an actuator part 120.
The injector base 110 includes a high-pressure gaseous fuel introduction passage 103 for introducing high-pressure gaseous fuel, a pressure accumulating chamber 102 for accumulating the pressure of the introduced high-pressure gaseous fuel, and gaseous fuel in the fuel chamber 10 formed in the nozzle portion 100. A gaseous fuel supply channel 101 to be introduced is formed.
Further, a known working liquid that transmits a pressure acting on one or both of the ascending direction and the descending direction of the needle 200 to the injector base and introduces a working liquid to lubricate the sliding part of the needle 200. A flow path 120 is appropriately formed.
A needle shaft portion 20 having a small diameter is formed on the distal end side of the needle 200. A fuel chamber 10 is defined around the needle shaft portion 20, and nozzle holes 14 and 15 provided at the distal end of the fuel chamber 10. A valve body 2 that opens and closes by opening and closing is formed at the tip of the needle shaft portion 20.
A long-axis needle 200 that is slidably held in the axial direction is accommodated inside the injector base 100, and an actuator 120 connected to the EDU 41 is provided on the proximal end side of the needle 200. The needle 200 is controlled to move up and down in the axial direction. As the actuator 120, known drive control means such as an electromagnetic actuator using an electromagnetic solenoid excited by energization or a piezoelectric actuator using a piezoelectric element extending by energization can be appropriately used.

図3を参照して、本発明の第1の実施形態における気体燃料噴射装置の要部である燃料噴射弁Iのノズル部100の先端の構造について詳述する。
本実施形態において、弁体2は、略円錐状に形成されている。ノズル基体1の内側には、燃料室10に練通する略摺り鉢状に形成されたシート面11、12と先端が閉塞するサック室13が形成され、第1の噴孔14と第2の噴孔とが穿設されている。
第1の噴孔14は、ノズル部の中心軸に対して第1の噴孔穿設角度θの角度で設けられ、第2の噴孔15は、ノズル部の中心軸に対して第2の噴孔穿設角度θの角度で設けられている。第1の噴孔穿設角度θは第2の噴孔穿設角度θよりも大きく設定され、第1の噴孔14の中心軸と第2の噴孔15の中軸とは交点Pで交差している。
第1の噴孔14の出口端部から交点Pまでの交点距離LPは、マッハディスク形成領域Lm(max)よりも短い距離に設定されている。
また、第1の噴孔14と第2の噴孔15とは、噴孔出口において噴孔間距離Dだけ離して設けられ、Dは、6mm以下に設定されている。 さらに、噴孔14及び噴孔15は、出口開口径φDeは0.01mm以上に設定されている。
閉弁時には、弁体2が下降し、ノズル部1の内側に形成された第1のシート面11、第2のシート面12と、弁体2の第1の弁座部21、第2の弁座部22とがそれぞれ当接し、第1の噴孔14と第2の噴孔15とが閉鎖された状態となっている。
開弁時には、弁体2が上昇し、ノズル部1の内側に形成された第1のシート面11、第2のシート面12と、弁体2の第1の弁座部21、第2の弁座部22とが離れ、第1の噴孔14と第2の噴孔15とが燃料室10と練通した状態となっている。
With reference to FIG. 3, the structure of the front-end | tip of the nozzle part 100 of the fuel injection valve I which is the principal part of the gaseous fuel injection apparatus in the 1st Embodiment of this invention is explained in full detail.
In the present embodiment, the valve body 2 is formed in a substantially conical shape. Inside the nozzle base 1, there are formed sheet surfaces 11, 12 formed in a substantially bowl shape that penetrates the fuel chamber 10, and a sac chamber 13 whose tip is closed, and a first injection hole 14 and a second injection hole 14. A nozzle hole is formed.
The first nozzle hole 14 is provided at an angle of the first nozzle hole drilling angle θ 1 with respect to the central axis of the nozzle portion, and the second nozzle hole 15 is second with respect to the central axis of the nozzle portion. The nozzle hole is provided at an angle θ 2 . The first nozzle hole drilling angle θ 1 is set to be larger than the second nozzle hole drilling angle θ 2 , and the central axis of the first nozzle hole 14 and the center axis of the second nozzle hole 15 are at an intersection P. Crossed.
The intersection distance LP from the outlet end of the first injection hole 14 to the intersection P is set to be shorter than the Mach disk formation region Lm (max).
Further, the first nozzle hole 14 and the second nozzle hole 15 are provided apart from each other by a distance D P between nozzle holes at the nozzle hole outlet, and D P is set to 6 mm or less. Further, the nozzle hole 14 and the nozzle hole 15 have an outlet opening diameter φDe set to 0.01 mm or more.
When the valve is closed, the valve body 2 descends, and the first seat surface 11 and the second seat surface 12 formed inside the nozzle portion 1, the first valve seat portion 21 of the valve body 2, and the second seat surface 2. The valve seat 22 is in contact with each other, and the first nozzle hole 14 and the second nozzle hole 15 are closed.
When the valve is opened, the valve body 2 rises, and the first seat surface 11 and the second seat surface 12 formed inside the nozzle portion 1, the first valve seat portion 21 of the valve body 2, and the second seat surface 2. The valve seat part 22 is separated, and the first nozzle hole 14 and the second nozzle hole 15 are in a state of being in communication with the fuel chamber 10.

図4を参照して、マッハディスク形成領域Lm(max)と圧力比PINJ/PAMBとの関係について説明する。出口開口径φDeが1.0mmのときの本実施形態において、噴射圧PINJと筒内雰囲気圧PAMBとの圧力比PINJ/PAMBの変化に対して、マッハディスク形成領域Lm(max)は、正比例的に変化する。第1の噴孔14の開口出口Deから交点Pまでの交点距離LPが6mm以下であれば、交点Pは、マッハディスク形成領域Lm(max)の範囲内となることが判明した。 The relationship between the Mach disk formation region Lm (max) and the pressure ratio P INJ / P AMB will be described with reference to FIG. In this embodiment when the outlet opening diameter φDe is 1.0 mm, the Mach disk formation region Lm (max) with respect to the change in the pressure ratio P INJ / P AMB between the injection pressure P INJ and the in-cylinder atmosphere pressure P AMB Changes in direct proportion. If the intersection distance LP from the opening outlet De of the first nozzle hole 14 to the intersection P is 6 mm or less, the intersection P is found to be within the range of the Mach disk formation region Lm (max).

図5から図8を参照して本発明の効果について説明する。
図5(a)に示すように、本発明の第1の実施形態において、第1の噴孔14と第2の噴孔15とを第1の噴孔穿設角度θ1と第2の噴孔穿設角度θ2とが、θ1>θ2の関係を満たし、かつ、L<Lm(max)となるように穿設した場合において、第1の噴孔14の開口出口から中心軸線上のL、L、L、Lの距離における燃料気体の濃度の測定結果P、P、P、Pを実施例1とし、図5(b)に示すように、本発明の第1の実施形態において、第1の噴孔14と第2の噴孔15とを第1の噴孔穿設角度θと第2の噴孔穿設角度θとが、θ>θの関係を満たし、かつ、L≧Lm(max)となるように穿設した場合において、第1の噴孔14の開口出口から中心軸線上のL、L、L、Lの距離における燃料気体の濃度の測定結果P、P、P、Pを実施例2とし、図6(a)に示すように、第1の噴孔14と第2の噴孔15とを第1の噴孔穿設角度θ1と第2の噴孔穿設角度θ2とが、θ=θの関係、即ち、平行となるように穿設した場合における、第1の噴孔14の開口出口から中心軸線上のL、L、L、Lの距離における燃料気体の濃度の測定結果P、P、P、Pを比較例1とし、図6(b)に示すように、第1の噴孔14と第2の噴孔15とを第1の噴孔穿設角度θ1と第2の噴孔穿設角度θ2とが、θ<θの関係となるように穿設した場合において、第1の噴孔14の開口出口から中心軸線上のL、L、L、Lの距離における燃料気体の濃度の測定結果P、P、P、Pを比較例2として、その結果を図7に示す。
The effects of the present invention will be described with reference to FIGS.
As shown in FIG. 5A, in the first embodiment of the present invention, the first injection hole 14 and the second injection hole 15 are connected to the first injection hole forming angle θ1 and the second injection hole. When drilling is performed so that the drilling angle θ2 satisfies the relationship θ1> θ2 and L P <Lm (max), L 1 on the central axis from the opening outlet of the first injection hole 14 , L 2 , L 3 , and L 4 , the measurement results P 1 , P 2 , P 3 , and P 4 of the fuel gas concentration at the distances are taken as Example 1, and as shown in FIG. In the first embodiment, the first nozzle hole 14 and the second nozzle hole 15 have a first nozzle hole drilling angle θ 1 and a second nozzle hole drilling angle θ 2 such that θ 1 > θ 2. satisfies the relationship, and, L P ≧ Lm when bored so that the (max), L 1 of the central axis from the opening outlet of the first nozzle holes 14, L 2, L 3, Measurement of the concentration of fuel gas at a distance of 4 P 1, P 2, P 3, and P 4 and Example 2, as shown in FIG. 6 (a), a first injection hole 14 second injection holes 15 in which the first nozzle hole drilling angle θ1 and the second nozzle hole drilling angle θ2 are drilled so as to be in a relationship of θ 1 = θ 2 , that is, parallel to each other. The measurement results P 1 , P 2 , P 3 , P 4 of the concentration of the fuel gas at the distances L 1 , L 2 , L 3 , L 4 on the central axis from the opening exit of the hole 14 are referred to as Comparative Example 1, and FIG. As shown in (b), the first nozzle hole 14 and the second nozzle hole 15 are formed such that the first nozzle hole forming angle θ1 and the second nozzle hole forming angle θ2 are θ 12. in the case where bored so that the relation, L 1 of the central axis from the opening outlet of the first nozzle holes 14, L 2, L 3, measurement results of the concentration of fuel gas in the distance L 4 As P 1, P 2, P 3, compared P 4 Example 2 and the results are shown in Figure 7.

図7に示すように、比較例1、2の場合には、距離が離れても気体燃料の濃度が余り下がらず、距離Lにおいて、急激に濃度低下していることから、周囲の圧縮空気との混合が行われていないと推察される。一方、本発明の実施例1、2においては、第1の噴孔14の開口出口近傍Lでは、比較例1、2と同程度の気体濃度であったにもかかわらず、Lの位置で急激な気体濃度の低下が見られ、Lではさらに気体濃度が低くなるが、Lにおいては、比較例1、2よりも高い気体濃度となることが判明した。また、実施例1の方が実施例2に比べて短い距離で濃度低下が起こることが判明した。
このことから、本発明によれば、第1の噴孔14と第2の噴孔15とから噴射された高圧気体噴流がマッハディスク形成領域内で衝突することのよって、高い運動エネルギを持った状態で衝突した噴流に大きな乱れが生じ、周囲の圧縮空気との混合が活発になり、速やかに濃度の低下が起こったものと推察される。
As shown in FIG. 7, in the case of Comparative Examples 1 and 2, the distance is not reduced much the concentration of the gaseous fuel be separated, at a distance L 4, rapidly because it is a concentration drop, the surrounding compressed air It is inferred that the mixing with is not performed. On the other hand, in Examples 1 and 2 of the present invention, in the vicinity of the opening outlet L1 of the first nozzle hole 14, although the gas concentration was similar to that in Comparative Examples 1 and 2 , the position of L2 in a rapid reduction in the gas concentration was observed, further gas concentration in L 3 but becomes lower in the L 4, it was found that a higher gas concentration than Comparative examples 1 and 2. Further, it was found that the density drop occurred in Example 1 at a shorter distance than in Example 2.
Therefore, according to the present invention, the high-pressure gas jet injected from the first nozzle hole 14 and the second nozzle hole 15 collides in the Mach disk formation region, and thus has high kinetic energy. It is presumed that the jet flow collided in the state was greatly disturbed, the mixing with the surrounding compressed air became active, and the concentration decreased rapidly.

図8に本発明の第1の実施形態における燃料噴射装置を用いて、燃料噴射圧PINJと雰囲気圧PAMBとの圧力比PINJ/PAMBが10の時の交点Pまでの交点距離LPを変化させたときの気体濃度均一度を示す。
なお、気体濃度均一度は、測定距離を30mm、40mm、50mmとしたときの3点の気体燃料濃度の平均値である。
本図に示すように、交点距離Lを6mm以下で気体燃料濃度の均一度が高くなることが判明した。
本試験結果からも、第1の噴孔14と第2の噴孔15とをマッハディスク形成領域Lm(max)の範囲内で衝突させることにより、速やかに気体燃料濃度を均一化できることが判明した。
With a fuel injection device of the first embodiment of the present invention in FIG. 8, the intersection distance LP to an intersection P when the pressure ratio P INJ / P AMB 10 of a fuel injection pressure P INJ and the ambient pressure P AMB It shows the gas concentration uniformity when changing.
The gas concentration uniformity is an average value of gas fuel concentrations at three points when the measurement distance is 30 mm, 40 mm, and 50 mm.
As shown in the figure, it has been found that the uniformity of the gaseous fuel concentration becomes high when the intersection distance L P is 6 mm or less.
Also from this test result, it was found that the gas fuel concentration can be made uniform quickly by causing the first nozzle hole 14 and the second nozzle hole 15 to collide with each other within the range of the Mach disk formation region Lm (max). .

図9、10に本発明の他の実施形態における要部断面図を示す。
本図(a)に示すように、第1の噴孔14aをサック室13に穿設して、第2の噴孔15aをシート部に穿設しても良いし、本図(b)に示すように、第1の噴孔14bと第2の噴孔15bとの両方をサック室13bに穿設しても良い。いずれの場合にも、本発明の交点Pがマッハディスク形成領域Lm(max)内に設ける限りにおいて同様の効果が得られる。
9 and 10 are cross-sectional views showing the main part of another embodiment of the present invention.
As shown in this figure (a), the first nozzle hole 14a may be drilled in the sack chamber 13, and the second nozzle hole 15a may be drilled in the seat portion. As shown, both the first nozzle hole 14b and the second nozzle hole 15b may be formed in the sack chamber 13b. In either case, the same effect can be obtained as long as the intersection point P of the present invention is provided in the Mach disk formation region Lm (max).

さらに、10図(a)に示すように、第1の噴孔14c、第2の噴孔15c、第3の噴孔16cを設けて3以上の気体噴流が交差するような構成としても良い。また、本図(b)に示すように、ノズル先端の壁面に噴孔を穿設するのではなく、円盤状の噴孔プレート17に複数の噴孔14dを穿設して、これらの中心軸の交点Pがマッハディスク形成領域Lm(max)内となるように設けた構成であっても良い。   Furthermore, as shown to Fig.10 (a), it is good also as a structure which provides the 1st nozzle hole 14c, the 2nd nozzle hole 15c, and the 3rd nozzle hole 16c, and 3 or more gas jets cross | intersect. In addition, as shown in FIG. 4B, the nozzle holes are not drilled in the wall surface at the tip of the nozzle, but a plurality of nozzle holes 14d are drilled in the disc-shaped nozzle hole plate 17, and the central axes thereof are formed. The crossing point P may be within the Mach disk formation area Lm (max).

なお、本発明は、上記実施形態に限定するものではなく、複数の噴孔から噴射される高圧気体燃料をマッハディスク形成領域内で衝突せしめ、気体燃料と筒内空気との速やかな混合を図る本発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記実施形態の説明において、具体的なニードル駆動方法について明記していないが、ニードルの開弁方向と閉弁方向とに圧力流体の圧力を作用せしめ、駆動用アクチュエータによって作動する制御弁によって開弁方向の圧力と閉弁方向の圧力とのバランスを変化させて、ニードルの昇降を行う公知の駆動方法が適宜採用可能である。
また、上記実施形態において、燃料噴射圧PINJと筒内雰囲気圧PAMBとの圧力比PINJ/PAMBとが所定圧以上であれば、いずれの噴射時期においても本発明の効果が発揮される。しかし、筒内雰囲気圧PAMBの低い状態において燃料噴射を行えば、本発明の効果に加え、シリンダピストンの上昇したときに筒内に発生するタンブル渦によって、さらに、気体燃料と圧縮空気との混合を促進することも期待できる。
さらに、上記実施形態においては、点火装置を設けた内燃機関について本発明を適用した例を説明したが、気体燃料に軽油等の自着火性液体燃料を少量混合する等、点火装置を具備しない自着火機関にも適用できる。
In addition, this invention is not limited to the said embodiment, The high pressure gaseous fuel injected from a some nozzle hole is made to collide in a Mach disk formation area, and rapid mixing with gaseous fuel and cylinder air is aimed at. Modifications can be made as appropriate without departing from the spirit of the present invention.
For example, in the description of the above embodiment, although a specific needle driving method is not specified, the pressure of the pressure fluid is applied in the valve opening direction and the valve closing direction, and the control valve is operated by the driving actuator. A known driving method for raising and lowering the needle by changing the balance between the pressure in the valve opening direction and the pressure in the valve closing direction can be appropriately employed.
In the above embodiment, the effect of the present invention is exhibited at any injection timing as long as the pressure ratio P INJ / P AMB between the fuel injection pressure P INJ and the in-cylinder atmospheric pressure P AMB is equal to or higher than a predetermined pressure. The However, if fuel injection is performed in a state where the in-cylinder atmospheric pressure PAMB is low, in addition to the effect of the present invention, the tumble vortex generated in the cylinder when the cylinder piston is raised further mixes the gaseous fuel and the compressed air. Can also be expected to promote.
Furthermore, in the above embodiment, an example in which the present invention is applied to an internal combustion engine provided with an ignition device has been described. However, a self-igniting liquid fuel such as light oil is mixed with a gaseous fuel in a small amount. Applicable to ignition engines.

本発明の第1の実施形態における気体燃料噴射装置を備えた内燃機関の概要を示す構成図。The block diagram which shows the outline | summary of the internal combustion engine provided with the gaseous fuel injection apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における燃料噴射装置に用いられる気体燃料噴射弁の概要を示す一部断面図。The partial cross section figure which shows the outline | summary of the gaseous fuel injection valve used for the fuel-injection apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における燃料噴射装置に用いられる気体燃料噴射弁の要部断面図。The principal part sectional view of the gaseous fuel injection valve used for the fuel injection device in a 1st embodiment of the present invention. 圧力比PINJ/PAMBに対する交点距離Lとマッハディスク形成領域Lm(max)の変化とを示す特性図。The characteristic view which shows the change of the intersection distance L P and the Mach disk formation area Lm (max) with respect to the pressure ratio P INJ / P AMB . (a)は、実施例1の構成を示す要部断面図、(b)は、実施例2の構成を示す要部断面図。(A) is principal part sectional drawing which shows the structure of Example 1, (b) is principal part sectional drawing which shows the structure of Example 2. FIG. (a)は、比較例1の構成を示す要部断面図、(b)は、比較例2の構成を示す要部断面図。(A) is principal part sectional drawing which shows the structure of the comparative example 1, (b) is principal part sectional drawing which shows the structure of the comparative example 2. FIG. 本発明の効果を比較例と共に示す特性図。The characteristic view which shows the effect of this invention with a comparative example. 本発明の効果を示し、交点距離Lに対する気体濃度均一度の特性図。It shows the effect of the present invention, the characteristic diagram of the gas concentration uniformity for intersection distance L P. (a)、(b)は、本発明の変形例を示す要部断面図。(A), (b) is principal part sectional drawing which shows the modification of this invention. (a)、(b)は、本発明の変形例を示す要部断面図。(A), (b) is principal part sectional drawing which shows the modification of this invention. は、高圧気体燃料噴射用単噴孔ノズルの噴孔近傍における現象を示す概念図。These are the conceptual diagrams which show the phenomenon in the nozzle hole vicinity of the single nozzle hole for high-pressure gaseous fuel injection.

符号の説明Explanation of symbols

I 燃料噴射弁
1 ノズル先端部
10 燃料室
11、12シート部
13 サック室
14 第1の噴孔
15 第2の噴孔
2 弁体
21、22 弁体着座部
INJ 燃料噴射圧
AMB 筒内雰囲気圧
Lm(max) マッハディスク形成領域
噴孔間距離
φDe 噴孔出口開口径
P 噴孔中心軸交点
交点距離
θ 第1の噴孔穿設角度
θ 第2の噴孔穿設角度
I Fuel injection valve 1 Nozzle tip 10 Fuel chamber 11, 12 Seat portion 13 Suck chamber 14 First injection hole 15 Second injection hole 2 Valve body 21, 22 Valve body seating portion P INJ Fuel injection pressure P AMB cylinder Atmospheric pressure Lm (max) Mach disk formation region D P inter-hole distance φDe injection hole outlet opening diameter P injection hole center axis intersection L P intersection distance θ 1 first injection hole formation angle θ 2 second injection hole Angle

Claims (6)

少なくとも第1の噴孔と第2の噴孔とからなる2以上の噴孔を設けた燃料噴射弁を具備し、該燃料噴射弁内に導入した高圧の気体燃料を、上記噴孔から内燃機関の燃焼室内への噴射を行う気体燃料噴射装置であって、
上記気体燃料の噴射圧力をPINJとし、上記燃焼室内の雰囲気圧力をPAMBとしたとき、下記式1の関係を満たす条件下で上記気体燃料を噴射する気体燃料噴射装置において、
上記第1の噴孔の開口端面から上記第1の噴孔の中心軸と上記第2の噴孔の中心軸との交点Pまでの距離を交点距離Lとし、上記噴孔から噴射した気体噴流にマッハディスクが形成されるマッハディスク生成領域をLm(max)としたとき、下記式2の関係を満たすことを特徴とする気体燃料噴射装置。
INJ/PAMB≧4・・・式1
<Lm(max)・・・式2
A fuel injection valve provided with two or more injection holes composed of at least a first injection hole and a second injection hole is provided, and high-pressure gaseous fuel introduced into the fuel injection valve is transferred from the injection hole to the internal combustion engine. A gaseous fuel injection device for injecting into the combustion chamber,
In the gaseous fuel injection device for injecting the gaseous fuel under a condition satisfying the relationship of the following formula 1 when the injection pressure of the gaseous fuel is P INJ and the atmospheric pressure in the combustion chamber is PAMB :
The distance from the opening end face of the first nozzle hole to the intersection point P between the central axis of the first nozzle hole and the central axis of the second nozzle hole is defined as an intersection distance L P, and the gas injected from the nozzle hole A gaseous fuel injection device satisfying the relationship of the following formula 2 when a Mach disk generation region where a Mach disk is formed in a jet is Lm (max).
P INJ / P AMB ≧ 4 Equation 1
L P <Lm (max) ... Formula 2
上記交点距離Lを6mm以下の範囲に設定した請求項1に記載の気体燃料噴射装置。 The gaseous fuel injection device according to claim 1, wherein the intersection distance L P is set in a range of 6 mm or less. 上記交点距離Lを0.01mm以上の範囲に設定した請求項1又は2に記載の気体燃料噴射装置。 The gaseous fuel injection device according to claim 1 or 2, wherein the intersection distance L P is set in a range of 0.01 mm or more. 上記式2の関係を満たすべく、上記第1の噴孔の中心軸と上記噴射弁の中心軸とのなす第1の噴射角度θと上記第2の噴孔の中心軸と上記噴射弁の中心軸とのなす第2の噴射角度θとをθ>θとなるように設定した請求項1ないし3のいずれか1項に記載の気体燃料噴射装置。 In order to satisfy the relationship of Formula 2, the first injection angle θ 1 formed by the central axis of the first injection hole and the central axis of the injection valve, the central axis of the second injection hole, and the injection valve 4. The gaseous fuel injection device according to claim 1, wherein a second injection angle θ 2 formed with the central axis is set to satisfy θ 1 > θ 2. 5 . 上記複数の噴孔間の距離Dpは、6mm以下に設定した請求項1ないし4のいずれか1項に記載の気体燃料噴射装置。   The gaseous fuel injection device according to any one of claims 1 to 4, wherein a distance Dp between the plurality of nozzle holes is set to 6 mm or less. 上記噴孔の開口径Deは、φ0.01mm以上に穿設した請求項1ないし5のいずれか1項に記載の気体燃料噴射装置。
The gaseous fuel injection device according to any one of claims 1 to 5, wherein an opening diameter De of the injection hole is formed to be φ0.01 mm or more.
JP2008133945A 2008-05-22 2008-05-22 Gas fuel injection device Expired - Fee Related JP4883047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133945A JP4883047B2 (en) 2008-05-22 2008-05-22 Gas fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133945A JP4883047B2 (en) 2008-05-22 2008-05-22 Gas fuel injection device

Publications (2)

Publication Number Publication Date
JP2009281274A true JP2009281274A (en) 2009-12-03
JP4883047B2 JP4883047B2 (en) 2012-02-22

Family

ID=41451979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133945A Expired - Fee Related JP4883047B2 (en) 2008-05-22 2008-05-22 Gas fuel injection device

Country Status (1)

Country Link
JP (1) JP4883047B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188987A (en) * 2011-03-10 2012-10-04 Isuzu Motors Ltd Fuel nozzle, and leak detection device
JP2016501333A (en) * 2012-11-20 2016-01-18 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Liquid jet spraying device with impinging jet
CN105484900A (en) * 2014-10-07 2016-04-13 罗伯特·博世有限公司 Gas valve
JP2017031952A (en) * 2015-08-06 2017-02-09 日立オートモティブシステムズ株式会社 Fuel injector
JP2018096378A (en) * 2016-12-13 2018-06-21 マン ディーゼル アンド ターボ フィリアル ア マン ディーゼル アンド ターボ エスイー チュスクランMAN Diesel & Turbo,filial af MAN Diesel & Turbo SE,Tyskland Nozzle for fuel valve for injecting fuel into cylinder of large turbocharged two-stroke compression-ignition internal combustion engine
KR20220053389A (en) * 2020-10-22 2022-04-29 엔진테크윈(주) Fuel supply sytem fior dme engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188987A (en) * 2011-03-10 2012-10-04 Isuzu Motors Ltd Fuel nozzle, and leak detection device
JP2016501333A (en) * 2012-11-20 2016-01-18 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Liquid jet spraying device with impinging jet
US10502171B2 (en) 2012-11-20 2019-12-10 Nostrum Energy Pte. Ltd. Liquid injector atomizer with colliding jets
JP2020016242A (en) * 2012-11-20 2020-01-30 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Liquid injector atomizer with colliding jet
CN105484900A (en) * 2014-10-07 2016-04-13 罗伯特·博世有限公司 Gas valve
CN105484900B (en) * 2014-10-07 2020-08-04 罗伯特·博世有限公司 Gas valve
JP2017031952A (en) * 2015-08-06 2017-02-09 日立オートモティブシステムズ株式会社 Fuel injector
JP2018096378A (en) * 2016-12-13 2018-06-21 マン ディーゼル アンド ターボ フィリアル ア マン ディーゼル アンド ターボ エスイー チュスクランMAN Diesel & Turbo,filial af MAN Diesel & Turbo SE,Tyskland Nozzle for fuel valve for injecting fuel into cylinder of large turbocharged two-stroke compression-ignition internal combustion engine
KR20220053389A (en) * 2020-10-22 2022-04-29 엔진테크윈(주) Fuel supply sytem fior dme engine
KR102444882B1 (en) * 2020-10-22 2022-09-19 엔진테크윈(주) Fuel supply sytem fior dme engine

Also Published As

Publication number Publication date
JP4883047B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4883047B2 (en) Gas fuel injection device
CN102906413B (en) Fuel injector assemblies having acoustical force modifiers and associated methods of use and manufacture
CN103261662B (en) Fuelinjection nozzle
US7162995B2 (en) Method for injecting gaseous fuels into an internal combustion engine at high pressures
JP2007051589A (en) Fuel injection device for internal combustion engine
JP5188899B2 (en) Fuel injection valve
JP2006144774A (en) Gaseous fuel injector
JP5494824B2 (en) Fuel injection valve
JP5537049B2 (en) In-cylinder injection spark ignition engine
JP2008151000A (en) Internal combustion engine
CN106460689A (en) Method and system for operating gaseous-fuelled direct injection internal combustion engine
US20130263820A1 (en) Integrated lean burn stabilizers
CN103392065B (en) Fuelinjection nozzle
JP4415900B2 (en) Internal combustion engine using hydrogen
JP6254122B2 (en) Fuel injection nozzle
JP2007231913A (en) Fuel injection device for internal combustion engine
JP4222256B2 (en) Control device for internal combustion engine
JP5825228B2 (en) Fuel injection valve
US20180179995A1 (en) Internal combusition engine control apparatus
JP2005127196A (en) Fuel injection device
WO2004099584A1 (en) Combustion chamber structure of divided gas engine and divided gas engine
JP4394974B2 (en) Internal combustion engine for injecting gaseous fuel into cylinder and ignition method for internal combustion engine
JP2010031772A (en) Group injection hole nozzle and selecting method of its design specification
JP2010255536A (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4883047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees