JP2009279573A - Method for separating solute from solution containing supercritical carbon dioxide - Google Patents

Method for separating solute from solution containing supercritical carbon dioxide Download PDF

Info

Publication number
JP2009279573A
JP2009279573A JP2008162549A JP2008162549A JP2009279573A JP 2009279573 A JP2009279573 A JP 2009279573A JP 2008162549 A JP2008162549 A JP 2008162549A JP 2008162549 A JP2008162549 A JP 2008162549A JP 2009279573 A JP2009279573 A JP 2009279573A
Authority
JP
Japan
Prior art keywords
solute
pores
carbon dioxide
supercritical carbon
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008162549A
Other languages
Japanese (ja)
Inventor
Yoichi Enokida
洋一 榎田
Kayo Sawada
佳代 澤田
Hiroshi Sugai
弘 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3R CORP
Nagoya University NUC
Original Assignee
3R CORP
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3R CORP, Nagoya University NUC filed Critical 3R CORP
Priority to JP2008162549A priority Critical patent/JP2009279573A/en
Publication of JP2009279573A publication Critical patent/JP2009279573A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for selectively separating/recovering a selected solute on the surface of a specific material from a solution containing supercritical carbon dioxide, which method is friendly to the environment and is carried out while saving energy and reducing the treatment cost. <P>SOLUTION: The method for separating/recovering the solute in the solution comprises the steps of: putting the material having pores of predetermined pore size in the solution which contains supercritical carbon dioxide and in which the solute to be separated is dissolved by the amount equal to or smaller than the solubility; and precipitating the solute in the pores mainly by means of capillary condensation phenomena in pores. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は一般的には溶液中の選択した溶質の分離方法に関する。本発明は特に、超臨界二酸化炭素を含む溶液中から、選択した溶質を析出させることにより溶質を分離、回収する方法に関する。  The present invention relates generally to a method for separating selected solutes in solution. The present invention particularly relates to a method for separating and recovering a solute by precipitating a selected solute from a solution containing supercritical carbon dioxide.

超臨界流体は、物質を臨界点以上の圧力と温度に保つことにより得られる流体であり、液体と同等な溶質に対する溶解度と気体と同等な拡散性を有するという特徴がある。例えば、超臨界二酸化炭素は、臨界点が73気圧(7.38MPa)、31℃(304.1K)であり、工業的に容易に作製できること、溶質を溶解させて臨界点以下の圧力にした場合、二酸化炭素は気化して後には溶質のみが残り、その気化した二酸化炭素は回収して再利用が可能であること等の理由から、コーヒー豆の脱カフェイン化等の目的で既に実用化されている。  A supercritical fluid is a fluid obtained by maintaining a substance at a pressure and temperature above a critical point, and is characterized by having solubility in a solute equivalent to a liquid and diffusibility equivalent to a gas. For example, supercritical carbon dioxide has a critical point of 73 atm (7.38 MPa) and 31 ° C. (304.1 K), and can be easily manufactured industrially. When the solute is dissolved to a pressure below the critical point Since carbon dioxide is vaporized, only the solute remains, and the vaporized carbon dioxide can be recovered and reused, so that it has already been put to practical use for the purpose of decaffeination of coffee beans. ing.

また、従来の重金属や強酸等を使った各種プロセスや可燃性や毒性のある溶媒を使った各種プロセスを、超臨界二酸化炭素を使ったプロセスに置き換えることで、環境への悪い影響を低減できるので、環境に優しい溶媒の視点から、その置き換え利用が期待されている。また、超臨界二酸化炭素は、特に有機化合物に対する溶解度が大きく、たとえ減圧後に溶質に二酸化炭素が残留しても、人体に対する毒性がほとんどないことからも、その利用が期待されている。  In addition, by replacing various processes using conventional heavy metals and strong acids and processes using flammable and toxic solvents with processes using supercritical carbon dioxide, the negative impact on the environment can be reduced. From the viewpoint of environmentally friendly solvents, its replacement is expected. Supercritical carbon dioxide is expected to be used because it has a particularly high solubility in organic compounds, and even if carbon dioxide remains in the solute after decompression, it has almost no toxicity to the human body.

一方で、超臨界二酸化炭素への金属塩等の無機化合物に対する溶解度は小さく、無機化合物には適用はできないと思われていた。しかし、1990年代に、特許文献1に示されるように、金属の持つ電荷を有機キレート剤で中和することにより抽出できることが発見され、現在では、非特許文献1に示されるように、様々な分野での工業的応用を目指した研究や開発が行われている。中でも特許文献2に見られるように、金属化合物を材料の表面に付着させて機能性材料を製造することは、触媒等の画期的な新材料創成にとって重要な方法になりつつある。  On the other hand, it was thought that the solubility with respect to inorganic compounds, such as a metal salt, to supercritical carbon dioxide was small, and it could not be applied to an inorganic compound. However, in the 1990s, it was discovered that the charge of a metal can be extracted by neutralizing with an organic chelating agent as shown in Patent Document 1, and at present, as shown in Non-Patent Document 1, there are various types of extraction. Research and development aimed at industrial applications in the field are being conducted. In particular, as seen in Patent Document 2, the production of a functional material by attaching a metal compound to the surface of the material is becoming an important method for the creation of innovative new materials such as catalysts.

特許文献2に開示されるような方法で、材料表面に超臨界二酸化炭素中に溶解した溶質を付着させる場合、十分な付着量を確保するためには超臨界二酸化炭素中の溶質の溶解度を下げて析出させるために、超臨界二酸化炭素の減圧および気化操作が必要である。その操作の際、二酸化炭素は代表的な地球温暖化ガスの一つであるため、環境中に放出することなく再利用することが求められるが、圧縮による液化や再利用のためには、加圧やリサイクル利用のための高圧機器が不可欠となる。しかし、高圧機器は高価であり、また再加圧には大きなエネルギーが必要であり、総じて処理コストが高くなるという問題がある。さらに、溶質が、塗布したい対象物だけではなく、高圧機器の内面などにも非選択的に析出してしまうという問題がある。  When a solute dissolved in supercritical carbon dioxide is attached to the material surface by a method as disclosed in Patent Document 2, the solubility of the solute in supercritical carbon dioxide is lowered in order to ensure a sufficient amount of adhesion. In order to cause precipitation, supercritical carbon dioxide must be decompressed and vaporized. During the operation, carbon dioxide is one of the typical global warming gases, so it is required to be reused without being released into the environment. High pressure equipment for pressure and recycling is indispensable. However, high-pressure equipment is expensive, and a large amount of energy is required for repressurization, and there is a problem that the processing cost is generally increased. Furthermore, there is a problem that the solute deposits non-selectively not only on the object to be applied but also on the inner surface of the high-pressure device.

米国特許5,356,538  US Patent 5,356,538 米国特許7,294,528  US Patent 7,294,528 A.S.Gopalan,C.M.Wai,H.K.Jacobs編、ACS Symposium Series 860‘’Separations and Processes Using Supercritical Carbon Dioxide‘’  A. S. Gopalan, C.I. M.M. Wai, H .; K. Edited by Jacobs, ACS Symposium Series 860 "" Separations and Processes Using Supercarbon Carbon Dioxide ""

本発明の目的は、減圧および気化操作を軽減すること、あるいは追加の高圧機器の使用を無くすことができる、超臨界二酸化炭素を含む溶液中から選択した溶質を分離、回収する方法を提供することである。  An object of the present invention is to provide a method for separating and recovering a solute selected from a solution containing supercritical carbon dioxide, which can reduce pressure reduction and vaporization operations or eliminate the use of an additional high-pressure apparatus. It is.

さらに、本発明の目的は、超臨界二酸化炭素を含む溶液中から選択した溶質を特定の物質表面にだけ選択的に析出させて分離、回収することができる方法を提供することである。  Furthermore, an object of the present invention is to provide a method capable of selectively separating and recovering a solute selected from a solution containing supercritical carbon dioxide only on the surface of a specific substance.

また、本発明の目的は、環境に優しく、省エネルギー効果が大きく、あるいは処理コストを抑えることが可能な、超臨界二酸化炭素を含む溶液中から選択した溶質を分離、回収する方法を提供することである。  Another object of the present invention is to provide a method for separating and recovering a solute selected from a solution containing supercritical carbon dioxide, which is environmentally friendly, has a large energy saving effect, or can reduce processing costs. is there.

本発明によれば、分離したい溶質がその溶解度以下で溶けている超臨界二酸化炭素を含む溶液中に、所定のサイズの細孔を有する物質を存在させ、細孔における毛細管凝縮現象を利用して、細孔内に溶質を析出させることにより、溶液中の溶質を分離する方法が提供される。  According to the present invention, a substance having pores of a predetermined size is present in a solution containing supercritical carbon dioxide in which a solute to be separated is dissolved at or below its solubility, and the capillary condensation phenomenon in the pores is utilized. A method is provided for separating solutes in solution by precipitating solutes in the pores.

本発明によれば、超臨界二酸化炭素を含む溶液から溶質を分離、回収する際に必要となる減圧および気化操作を軽減することができる。  ADVANTAGE OF THE INVENTION According to this invention, the pressure reduction and vaporization operation required when isolate | separating and collect | recovering a solute from the solution containing a supercritical carbon dioxide can be reduced.

本発明によれば、超臨界二酸化炭素を含む溶液から溶質を分離、回収する際に必要となるエネルギーを軽減することができる。  According to the present invention, energy required for separating and recovering a solute from a solution containing supercritical carbon dioxide can be reduced.

本発明によれば、超臨界二酸化炭素を含む溶液から、溶質を溶液中の特定の物質表面にのみ選択的に析出させることができる。  According to the present invention, a solute can be selectively deposited only on the surface of a specific substance in a solution from a solution containing supercritical carbon dioxide.

発明を実施するための最良の形態について、実施例を示しながら説明する。なお、以下の実施例では、特定の溶質を用いた場合について説明しているが、本発明はこれに限られるものではなく、他の溶質についても適用可能であり、また本発明の趣旨を逸脱しない範囲でいかなる変形も可能であることは当業者には明らかであろう。  The best mode for carrying out the invention will be described with reference to examples. In the following examples, a case where a specific solute is used is described. However, the present invention is not limited to this, and can be applied to other solutes, and deviates from the gist of the present invention. It will be apparent to those skilled in the art that any modifications are possible without departing from the scope.

最初に本発明の実施形態の概要を説明する。超臨界二酸化炭素は、有機化合物または有機化合物と化学的に錯体を形成した無機化合物からなる溶質に対する大きな溶解度と、細孔への大きな拡散浸透性を有する一方、有機溶媒に比較して環境汚染を引き起こさない点で優れている流体媒質である。本発明では、超臨界二酸化炭素中に溶解した溶質を簡単に所定のサイズ(例えば、1マイクロメータ以下)の細孔を有する物質内(細孔内)に選択的に回収できる。そして、その物質を加熱する等の方法によって、細孔内面にその分解物を担持させることにより、機能性材料を得ることができる。  First, an outline of an embodiment of the present invention will be described. Supercritical carbon dioxide has a high solubility in solutes composed of organic compounds or inorganic compounds chemically complexed with organic compounds, and a large diffusion permeability into the pores, while it is less polluting to the environment than organic solvents. It is a fluid medium that excels in not causing it. In the present invention, a solute dissolved in supercritical carbon dioxide can be easily and selectively recovered in a substance having pores of a predetermined size (for example, 1 micrometer or less) (in the pores). Then, the functional material can be obtained by supporting the decomposed material on the inner surface of the pores by a method such as heating the substance.

本発明によれば、対象物を例えば1マイクロメータ以下の代表径の細孔を有する構造物とし、これを、溶質を溶解した超臨界二酸化炭素中にあらかじめ設置するか、あるいは、後から挿入することによって、毛細管凝縮現象を、細孔に流入した高圧流体に物理的に生起させ、細孔内で実効的に低下した圧力により、超臨界二酸化炭素に溶解していた溶質を析出させることができる。これにより、高圧流体を減圧することなく、溶質を細孔内に回収でき、引き続く物理化学操作に供することができる。その結果、高圧機器から構成される工程の合理化が可能となる。  According to the present invention, the object is a structure having pores with a representative diameter of, for example, 1 micrometer or less, and this is placed in advance in supercritical carbon dioxide in which a solute is dissolved or inserted later. As a result, the capillary condensation phenomenon is physically caused in the high-pressure fluid flowing into the pores, and the solute dissolved in the supercritical carbon dioxide can be precipitated by the pressure effectively reduced in the pores. . Thus, the solute can be recovered in the pores without reducing the pressure of the high-pressure fluid, and can be subjected to subsequent physicochemical operations. As a result, it is possible to rationalize the process composed of high-voltage equipment.

超臨界二酸化炭素に十分な溶解度を有する溶質として、1,5シクロオクタジエンジメチル白金(1,5−cyclooctadiene dimethyl platinum)がある。これを最初に超臨界二酸化炭素の溶液中で溶解度近くまで溶解しておく。この高圧流体(超臨界二酸化炭素の溶液)中に、300ナノメートル程度の高さの凹凸を有する撥水性の膜がその表面に付着したステンレス鋼を挿入する。すると、この300ナノメートル程度の凹凸構造の凹部において毛細管凝縮現象が発現し、1,5シクロオクタジエンジメチル白金が、この凹凸構造中に析出する。この状態で高圧流体を排出した後に、膜のついたステンレス鋼の温度を120℃に昇温する。すると、1,5シクロオクタジエンジメチル白金が凹凸構造中で熱分解して白金微粒子がそこに形成される。このようにして、容易に白金粒子を担持した撥水性の触媒、すなわち、機能性材料を作製することができる。この詳細な例を下記の実施例1に示す。  As a solute having sufficient solubility in supercritical carbon dioxide, there is 1,5-cyclooctadiene dimethylplatinum (1,5-cyclooctadiene dimethylplatinum). This is first dissolved to near solubility in a solution of supercritical carbon dioxide. In this high-pressure fluid (supercritical carbon dioxide solution), stainless steel with a water-repellent film having irregularities as high as about 300 nanometers attached to the surface is inserted. Then, a capillary condensation phenomenon appears in the concave portion of the concavo-convex structure of about 300 nanometers, and 1,5 cyclooctadiene dimethyl platinum is precipitated in the concavo-convex structure. After discharging the high-pressure fluid in this state, the temperature of the stainless steel with the film is raised to 120 ° C. Then, 1,5 cyclooctadiene dimethyl platinum is thermally decomposed in the concavo-convex structure, and platinum fine particles are formed there. In this way, a water-repellent catalyst carrying platinum particles, that is, a functional material can be easily produced. A detailed example is shown in Example 1 below.

上の一連の操作の際に、溶解度の異なる二種類の溶質を超臨界二酸化炭素に溶解すれば、毛細管凝縮の際に溶解度の差に応じた析出が起こる。すなわち、溶解度の小さな溶質が先に析出することを利用する。その結果、減圧することなく二種類の溶質を二酸化炭素から分別して回収できる。この詳細な例を下記の実地例2に示す。なお、実施例2に示される方法は、2種類以上の溶質の分離にも拡張できることは明らかであり、その例を実施例3に示す。このように、本発明は、二酸化炭素と溶質の分離だけに限定するものではなく、2種類以上の溶質の分離にも適用できる。  If two kinds of solutes having different solubilities are dissolved in supercritical carbon dioxide during the above series of operations, precipitation corresponding to the difference in solubility occurs during capillary condensation. That is, the fact that a solute having a low solubility is precipitated first is utilized. As a result, two kinds of solutes can be separated and recovered from carbon dioxide without reducing the pressure. A detailed example is shown in Example 2 below. In addition, it is clear that the method shown in Example 2 can be extended to separation of two or more solutes, and an example thereof is shown in Example 3. Thus, the present invention is not limited to the separation of carbon dioxide and solute, but can be applied to the separation of two or more kinds of solutes.

1,5シクロオクタジエンジメチル白金の粉末0.002モルを、内容積が100ミリリットルの高圧オートクレーブ内に入れた。次に高圧オートクレーブ内に、ステンレス鋼製の金網状の充填物である直径6ミリメートルのディクソンパッキンを50ミリリットル入れた。そのディクソンパッキンは、その表面にCVD加工により形成された、有機ケイ素化合物からなる約300ナノメートルの高さ(深さ)の凹凸膜を有している。その後、高圧オートクレーブ内に、液体二酸化炭素を導入し封入後、高圧オートクレーブの温度を80℃に、圧力を180気圧に5時間保った。この操作の際に、液体二酸化炭素は超臨界二酸化炭素となり、0.002モルの1,5シクロオクタジエンジメチル白金の粉末は超臨界二酸化炭素に均一に溶解した。  0.002 mol of powder of 1,5 cyclooctadiene dimethyl platinum was put in a high pressure autoclave having an internal volume of 100 ml. Next, 50 ml of Dixon packing having a diameter of 6 mm, which is a wire mesh-like filling made of stainless steel, was placed in the high-pressure autoclave. The Dickson packing has a concavo-convex film having a height (depth) of about 300 nanometers made of an organosilicon compound formed on the surface by CVD processing. Thereafter, liquid carbon dioxide was introduced into the high pressure autoclave and sealed, and then the temperature of the high pressure autoclave was maintained at 80 ° C. and the pressure at 180 atmospheres for 5 hours. During this operation, the liquid carbon dioxide became supercritical carbon dioxide, and 0.002 mol of 1,5 cyclooctadiene dimethyl platinum powder was uniformly dissolved in the supercritical carbon dioxide.

溶解後、超臨界二酸化炭素のもつ高拡散性のために、溶解している1,5シクロオクタジエンジメチル白金がディクソンパッキン表面の凹凸膜中に進入した。さらに、凹凸膜中では、細孔内で起こる物理現象である毛細管凝縮が生じ、進入した高圧流体の実効的圧力が下がり、超臨界二酸化炭素中の1,5シクロオクタジエンジメチル白金が溶解度に達して凹凸膜中に析出した。  After dissolution, due to the high diffusivity of supercritical carbon dioxide, the dissolved 1,5-cyclooctadiene dimethyl platinum entered the uneven film on the Dickson packing surface. Furthermore, in the concavo-convex film, capillary condensation, which is a physical phenomenon occurring in the pores, occurs, the effective pressure of the high-pressure fluid that has entered decreases, and 1,5-cyclooctadiene dimethyl platinum in supercritical carbon dioxide reaches solubility. And deposited in the uneven film.

この操作の前後におけるディクソンパッキン表面のステンレス鋼金網を走査型電子顕微鏡で観察した結果を図1と図2に示した。図1は操作前の顕微鏡写真であり、図2は操作後の顕微鏡写真である。図2と図1の比較から、図2のステンレス鋼金網の表面に明らかに白い付着物(析出物)があることがわかる。同時に、X線エネルギー分散分光分析法によりステンレス鋼金網表面の元素分析を行い、その白い付着物が白金化合物(1,5シクロオクタジエンジメチル白金)であることを確認した。  The results of observation of the stainless steel wire mesh on the surface of the Dickson packing before and after this operation with a scanning electron microscope are shown in FIGS. FIG. 1 is a photomicrograph before operation, and FIG. 2 is a photomicrograph after operation. From the comparison between FIG. 2 and FIG. 1, it can be seen that there is a clearly white deposit (precipitate) on the surface of the stainless steel wire mesh in FIG. At the same time, elemental analysis of the stainless steel wire mesh surface was performed by X-ray energy dispersive spectroscopy, and it was confirmed that the white deposit was a platinum compound (1,5 cyclooctadiene dimethyl platinum).

次に、オートクレーブ内の高圧流体を排出し、再度、液体二酸化炭素を導入した後、オートクレーブの温度を120℃に、圧力を15気圧に6時間保った。この操作の際に、液体二酸化炭素は超臨界二酸化炭素となり、オートクレーブ内の温度を均一に保つことに寄与した。ステンレス鋼製ディクソンパッキン表面の凹凸膜中に析出した1,5シクロオクタジエンジメチル白金は、熱分解して金属白金となって凹凸膜中に担持された。図3は、この操作の後におけるディクソンパッキン表面のステンレス鋼金網を走査型電子顕微鏡で観察した結果である。図3のステンレス鋼金網の表面に明らかに白い付着物(析出物)があることがわかる。同時に、X線エネルギー分散分光分析法によりステンレス鋼金網表面の元素分析を行い、その白い付着物が白金金属であることを確認した。  Next, the high-pressure fluid in the autoclave was discharged, and liquid carbon dioxide was introduced again, and then the autoclave temperature was kept at 120 ° C. and the pressure was kept at 15 atmospheres for 6 hours. During this operation, the liquid carbon dioxide became supercritical carbon dioxide, which contributed to keeping the temperature inside the autoclave uniform. 1,5 cyclooctadiene dimethylplatinum precipitated in the uneven film on the surface of the stainless steel Dixon packing was thermally decomposed to become metal platinum and supported in the uneven film. FIG. 3 shows the result of observation of the stainless steel wire mesh on the surface of the Dickson packing after this operation with a scanning electron microscope. It can be seen that there is a clearly white deposit (precipitate) on the surface of the stainless steel wire mesh in FIG. At the same time, elemental analysis of the stainless steel wire mesh surface was performed by X-ray energy dispersive spectroscopy, and it was confirmed that the white deposit was platinum metal.

また、この白金金属が担持したステンレス鋼金網を水素ガス(H)と重水素ガス(D)の混合物に30分接触させたところ、水素原子の交換反応が発生し、HD分子が発生した。このことから、水素原子交換活性が観測され、白金の触媒活性が認められた。比較のために行った通常のステンレス鋼製のディクソンパッキングでは、交換反応は全く生じなかった。以上のように、本発明を利用することにより、簡便な操作で、白金触媒のような機能性材料を作製できることが確認できた。Further, when this stainless steel wire mesh supported by platinum metal was brought into contact with a mixture of hydrogen gas (H 2 ) and deuterium gas (D 2 ) for 30 minutes, an exchange reaction of hydrogen atoms occurred and HD molecules were generated. . From this, hydrogen atom exchange activity was observed, and platinum catalytic activity was observed. In the normal stainless steel Dixon packing performed for comparison, no exchange reaction occurred. As described above, it was confirmed that by using the present invention, a functional material such as a platinum catalyst can be produced by a simple operation.

本発明では、超臨界二酸化炭素に溶解する他の物質を利用して、機能性材料を作製することもできる。その物質としては、例えば、リン、銅(II)ビスヘキサフルオロアセチルアセトン水和物(銅)、トリメチルインジウム(インジウム)、テトラチタン(二酸化チタン)、ビスパラジウム(II)(パラジウム)、パラジウム(II)ヘキサフルオロアセチルアセトン(パラジウム)、ニッケル(II)ヘキサフルオロアセチルアセトン(ニッケル)、ビスジイソブチリルメタナイト銅(銅)、銅(I)ヘキサフルオロアセチルアセトン・2ブチン(銅)が挙げられる。かっこ内の金属の膜(層)を最終的に得ることができる。例えば、3番目のトリメチルインジウムからは、インジウムの機能性材料を得ることができる。  In the present invention, a functional material can also be produced using other substances that are soluble in supercritical carbon dioxide. Examples of the substance include phosphorus, copper (II) bishexafluoroacetylacetone hydrate (copper), trimethylindium (indium), tetratitanium (titanium dioxide), bispalladium (II) (palladium), and palladium (II). Examples include hexafluoroacetylacetone (palladium), nickel (II) hexafluoroacetylacetone (nickel), bisdiisobutyrylmethanite copper (copper), and copper (I) hexafluoroacetylacetone · 2 butyne (copper). A metal film (layer) in parentheses can finally be obtained. For example, from the third trimethylindium, an indium functional material can be obtained.

硝酸第二セリウムや硝酸ネオジムのような金属塩は、リン酸トリブチル(TBP)のような錯形成剤を用いて錯体を形成すると、超臨界二酸化炭素に溶解できることが知られている。硝酸第二セリウムアンモニウムおよび硝酸ネオジム六水和塩をそれぞれ純粋なTBPに飽和するまで溶解することにより有機溶液を調製した。後者をTBP硝酸ネオジム溶液と称し、これを用いて図4に示す試験装置100で試験をおこなった。図4の試験装置100で、液化二酸化炭素のボンベ10から、液化二酸化炭素を高圧ポンプ12(米国イスコ社製シリンジポンプD260)により、内容積60ミリリットルの高圧容器14に導入した。さらに、別の容器16内のTBP硝酸ネオジム溶液を別の高圧ポンプ18(東ソー製 DP−8020)により、高圧容器14内に導入した。その後、高圧容器14の下側に設けられた攪拌器20により高圧容器14内の混合溶液を攪拌した。高圧容器14内で一相の均一な流体となったことを高圧容器14の観察窓から撮影したビデオ映像により確認した。  It is known that metal salts such as ceric nitrate and neodymium nitrate can be dissolved in supercritical carbon dioxide when a complex is formed using a complexing agent such as tributyl phosphate (TBP). An organic solution was prepared by dissolving ceric ammonium nitrate and neodymium nitrate hexahydrate in pure TBP until saturated. The latter was referred to as a TBP neodymium nitrate solution, and a test was performed using the test apparatus 100 shown in FIG. In the test apparatus 100 of FIG. 4, the liquefied carbon dioxide was introduced from the liquefied carbon dioxide cylinder 10 into the high-pressure vessel 14 having an internal volume of 60 ml by a high-pressure pump 12 (Syringe pump D260 manufactured by Isco, USA). Furthermore, the TBP neodymium nitrate solution in another container 16 was introduced into the high pressure container 14 by another high pressure pump 18 (DP-8020 manufactured by Tosoh Corporation). Thereafter, the mixed solution in the high-pressure vessel 14 was stirred by a stirrer 20 provided on the lower side of the high-pressure vessel 14. It was confirmed by a video image taken from the observation window of the high-pressure vessel 14 that a single-phase uniform fluid was formed in the high-pressure vessel 14.

試験装置100において、充填カラム22はステンレス鋼製のカラムであり、その入り口と出口にそれぞれ圧力計24、26がある。充填カラム22の出口側の配管は、背圧制御装置28を介して捕集容器30に導かれている。充填カラム22の内部には、表1に示した3種類の充填物を充填した。その3種類は、(イ)JIS規格に準拠したA型シリカゲル(テクノスナカタ社製)を粉砕して、粒径を180〜212マイクロメータに調整したもの、(ロ)JIS規格に準拠したB型シリカゲル(テクノスナカタ社製)を粉砕して、粒径を180〜212マイクロメータに調整したもの、(ハ)多孔質シリカビーズ(GL サイエンス社製、80〜100メッシュ)である。表1の細孔径、細孔容積および比表面積は実測値である。  In the test apparatus 100, the packed column 22 is a stainless steel column, and has pressure gauges 24 and 26 at the inlet and outlet, respectively. The piping on the outlet side of the packed column 22 is led to the collection container 30 via the back pressure control device 28. The inside of the packed column 22 was filled with the three types of packing shown in Table 1. The three types are (a) A type silica gel (Technosnakata Co., Ltd.) compliant with JIS standard, pulverized to a particle size of 180-212 micrometers, (b) B type compliant with JIS standard. Silica gel (manufactured by Technos Nakata) is pulverized to adjust the particle size to 180 to 212 micrometers, and (c) porous silica beads (GL Science, 80 to 100 mesh). The pore diameter, pore volume, and specific surface area in Table 1 are measured values.

Figure 2009279573
Figure 2009279573

この3種類の充填物では、(イ)は比表面積が大きく、シリカ表面での化学吸着が期待できる充填剤である。(ロ)と(ハ)は、細孔容積が相対的に大きいことから化学吸着よりも毛細管凝縮が期待できる充填剤である。実際に高圧流体をこれらの充填剤に供給する試験をおこなった結果の一部を図5に示した。図5はいわゆる破過曲線を示しており、縦軸はTBP硝酸ネオジム溶液の流出濃度(cm/分)であり、横軸はその通水時間(分)である。3つの曲線は、左から、空カラムの場合A、(イ)のA型シリカゲルの場合B、(ロ)のB型シリカゲルの場合Cである。この試験では、TBP硝酸ネオジム溶液の(イ)と(ロ)への吸着量は、シリカゲル1gあたりそれぞれ0.543gと0.825gであった。In these three types of packing, (i) is a filler that has a large specific surface area and can be expected to be chemisorbed on the silica surface. (B) and (C) are fillers that can be expected to undergo capillary condensation rather than chemical adsorption because of the relatively large pore volume. FIG. 5 shows a part of the result of a test for actually supplying a high-pressure fluid to these fillers. FIG. 5 shows a so-called breakthrough curve, where the vertical axis represents the outflow concentration (cm 3 / min) of the TBP neodymium nitrate solution, and the horizontal axis represents the water passage time (min). From the left, the three curves are A for an empty column, B for (A) type A silica gel, and C for (B) type B silica gel. In this test, the adsorbed amounts of the TBP neodymium nitrate solution (a) and (b) were 0.543 g and 0.825 g per 1 g of silica gel, respectively.

この試験結果より、超臨界二酸化炭素中に溶解していたTBP硝酸ネオジム溶液が高圧流体中に設置した約1〜4ナノメートルの細孔を有するシリカゲルに回収できることが確認できた。また、比表面積の大きな(イ)A型シリカゲルの充填剤よりも細孔容積の大きな(ロ)B型シリカゲルの充填剤により多く回収されていることから、毛細管凝縮現象による吸着が大きいこと確認できた。なお、細孔中に回収された硝酸ネオジム塩については、得られたシリカビーズ0.204gを濃度0.01モル/リットルの硝酸水溶液1cmに10分間浸したところ、硝酸水溶液中にネオジムを硝酸ネオジムとして100%回収することができた。From this test result, it was confirmed that the TBP neodymium nitrate solution dissolved in the supercritical carbon dioxide can be recovered on silica gel having pores of about 1 to 4 nanometers installed in the high-pressure fluid. In addition, it is confirmed that the adsorption due to the capillary condensation phenomenon is large, because (b) B type silica gel with larger pore volume than (B) type A silica gel with larger specific surface area is recovered. It was. As for neodymium nitrate recovered in the pores, 0.204 g of the obtained silica beads were immersed in 1 cm 3 of nitric acid solution having a concentration of 0.01 mol / liter for 10 minutes. It was possible to recover 100% as neodymium.

次に、希土類元素のネオジムとセリウムの分離試験の結果について説明する。実施例2で既に説明した図4の試験装置100を用いて、容器16内にTBP硝酸ネオジム錯体溶液とTBP硝酸セリウム溶液を混合した混合溶液を入れた。充填カラム22には、(ハ)多孔質シリカビーズ(GL サイエンス社製、80〜100メッシュ)を入れて、ネオジムとセリウムを分離する実験を行った。この結果、捕集容器30で得られた回収物中のネオジムとセリウムの濃度変化を図6に示す。図6は破過曲線を示しており、縦軸はTBP硝酸ネオジム錯体溶液またはTBP硝酸セリウム溶液の流出濃度(cm/分)であり、横軸はその通水時間(分)である。Next, the result of the separation test of the rare earth elements neodymium and cerium will be described. Using the test apparatus 100 of FIG. 4 already described in Example 2, a mixed solution in which a TBP neodymium nitrate complex solution and a TBP cerium nitrate solution were mixed was placed in the container 16. In the packed column 22, (c) porous silica beads (manufactured by GL Science, 80-100 mesh) were placed, and an experiment was conducted to separate neodymium and cerium. As a result, changes in the concentrations of neodymium and cerium in the recovered material obtained in the collection container 30 are shown in FIG. FIG. 6 shows a breakthrough curve, where the vertical axis represents the outflow concentration (cm 3 / min) of the TBP neodymium nitrate complex solution or the TBP cerium nitrate solution, and the horizontal axis represents the water passage time (min).

図6で、曲線DはTBP硝酸セリウムの場合であり、曲線EはTBP硝酸ネオジムの場合である。容器16には、2つの同一モル濃度の混合液を供給したので、捕集容器30で得られる溶液中にも同じ量ずつ回収されてもよいはずだが、実際には図6から明らかなようにセリウムの濃度Dの方が大きくなっている。これは、ネオジムの方が(ハ)の多孔質シリカビーズ充填剤の細孔中により凝縮しやすいためと考えられる。このことを確かめるために、超臨界二酸化炭素中の溶解度を調べてみた。  In FIG. 6, curve D is for TBP cerium nitrate and curve E is for TBP neodymium nitrate. Since two liquid mixtures having the same molarity were supplied to the container 16, the same amount may be recovered in the solution obtained in the collection container 30, but as is apparent from FIG. The cerium concentration D is higher. This is presumably because neodymium is more easily condensed in the pores of the porous silica bead filler (c). In order to confirm this, the solubility in supercritical carbon dioxide was examined.

図7は、TBP硝酸ネオジム溶液とTBP硝酸セリウム溶液の溶解度の測定結果である。縦軸は圧力(MPa)であり、横軸は各錯体のモル分率である。曲線FはTBP硝酸ネオジムの場合であり、曲線GはTBP硝酸セリウムの場合である。図7では、各曲線よりも高い圧力で、各錯体が超臨界二酸化炭素に溶解する。逆に、圧力が下がって各曲線以下になると、各錯体が析出(凝縮)する。すなわち、図7から、ネオジムを溶解する方(曲線F)が、超臨界二酸化炭素に溶解するには高い圧力を必要とするので、多孔質シリカビーズ充填剤の細孔中で毛細管凝縮が生じると、まずネオジム錯体が凝縮し、その後セリウム錯体が凝縮することがわかる。この結果は、図6の試験結果と一致しており、ネオジムの方が(ハ)の多孔質シリカビーズ充填剤の細孔中により凝縮しやすいことが確認された。  FIG. 7 shows the measurement results of the solubility of the TBP neodymium nitrate solution and the TBP cerium nitrate solution. The vertical axis represents pressure (MPa), and the horizontal axis represents the molar fraction of each complex. Curve F is for TBP neodymium nitrate and curve G is for TBP cerium nitrate. In FIG. 7, each complex is dissolved in supercritical carbon dioxide at a pressure higher than each curve. On the other hand, when the pressure decreases and becomes below each curve, each complex precipitates (condenses). That is, from FIG. 7, the method of dissolving neodymium (curve F) requires high pressure to dissolve in supercritical carbon dioxide, so that capillary condensation occurs in the pores of the porous silica bead filler. First, it can be seen that the neodymium complex is condensed and then the cerium complex is condensed. This result is consistent with the test result of FIG. 6, and it was confirmed that neodymium is more easily condensed in the pores of the porous silica bead filler (c).

本発明の一実施例の処理前のディクソンパッキン表面のステンレス鋼金網の図面代用顕微鏡写真である。  It is a drawing substitute micrograph of the stainless steel wire mesh of the Dickson packing surface before the process of one Example of this invention. 本発明の一実施例の処理後のディクソンパッキン表面のステンレス鋼金網の図面代用顕微鏡写真である。  It is a drawing-substituting micrograph of the stainless steel wire mesh on the surface of the Dickson packing after the processing of one example of the present invention. 本発明の一実施例の加熱後のディクソンパッキン表面のステンレス鋼金網の図面代用顕微鏡写真である。  It is a drawing substitute micrograph of the stainless steel wire mesh of the Dickson packing surface after the heating of one Example of this invention. 本発明の一実施例の試験装置の構成を示す図である。  It is a figure which shows the structure of the test apparatus of one Example of this invention. 本発明の実施例2における破過曲線を示す図である。  It is a figure which shows the breakthrough curve in Example 2 of this invention. 本発明の実施例3における破過曲線を示す図である。  It is a figure which shows the breakthrough curve in Example 3 of this invention. 本発明の実施例3における溶解度を示す図である。  It is a figure which shows the solubility in Example 3 of this invention.

符号の説明Explanation of symbols

10 液化二酸化炭素のボンベ
12、18 高圧ポンプ
14 高圧容器
16 容器
20 攪拌器
22 充填カラム
24、26 圧力計
28 背圧制御装置
30 捕集容器
100 試験装置
DESCRIPTION OF SYMBOLS 10 Liquefied carbon dioxide cylinder 12, 18 High pressure pump 14 High pressure container 16 Container 20 Stirrer 22 Packing column 24, 26 Pressure gauge 28 Back pressure control device 30 Collection container 100 Test apparatus

Claims (6)

分離したい溶質がその溶解度以下で溶けている超臨界二酸化炭素を含む溶液中に、所定のサイズの細孔を有する物質を存在させ、前記細孔における毛細管凝縮現象を利用して、前記細孔内に前記溶質を析出させることにより、溶液中の溶質を分離する方法。  A substance having pores of a predetermined size is present in a solution containing supercritical carbon dioxide in which a solute to be separated is dissolved at or below the solubility, and the capillary condensation phenomenon in the pores is used to make the inside of the pores. A method of separating the solute in the solution by precipitating the solute on the surface. さらに、前記細孔に析出した溶質を所定の温度で熱分解させて、前記溶質に含まれる特定の元素を前記細孔内に担持させることを含む、請求項1に記載の方法。  The method according to claim 1, further comprising thermally decomposing a solute precipitated in the pores at a predetermined temperature to support a specific element contained in the solute in the pores. 前記溶液は、溶解度の異なる2種類以上の溶質を含み、その溶質の中から溶解度の小さな溶質を選択的に前記細孔内に析出させることを含む、請求項1または2に記載の方法。    The method according to claim 1, wherein the solution includes two or more kinds of solutes having different solubilities, and selectively precipitates a solute having a low solubility from the solutes in the pores. 前記所定のサイズの細孔を有する物質は、シリカゲル、B型シリカゲル、表面に微細な凹凸を有する材料、網状材料、ディクソンパッキンを含むグループから選択された1つの物質からなる、請求項1ないし3のいずれか1項に記載の方法。  The substance having pores of a predetermined size is one substance selected from the group including silica gel, B-type silica gel, a material having fine irregularities on its surface, a mesh material, and Dixon packing. The method of any one of these. 前記溶質は、1,5シクロオクタジエンメチル白金、硝酸第2セリウム錯体、硝酸ネオジム錯体、トリフェニルホスフィン、銅(II)ビスヘキサフルオロアセチルアセトン水和物、トリメチルインジウム、テトラチタン、ビスパラジウム(II)、パラジウム(II)ヘキサフルオロアセチルアセトン、ニッケル(II)ヘキサフルオロアセチルアセトン、ビスジイソブチリルメタナイト銅、および銅(I)ヘキサフルオロアセチルアセトン・2ブチンからなるグループから選択された少なくとも1つの化合物を含む、請求項1ないし4のいずれか1項に記載の方法。  The solutes are 1,5 cyclooctadiene methylplatinum, ceric nitrate complex, neodymium nitrate complex, triphenylphosphine, copper (II) bishexafluoroacetylacetone hydrate, trimethylindium, tetratitanium, bispalladium (II) At least one compound selected from the group consisting of: palladium (II) hexafluoroacetylacetone, nickel (II) hexafluoroacetylacetone, bisdiisobutyrylmethanite copper, and copper (I) hexafluoroacetylacetone · 2 butyne Item 5. The method according to any one of Items 1 to 4. 表面に微細な凹凸を有する材料を、1,5シクロオクタジエンメチル白金がその溶解度以下で溶けている超臨界二酸化炭素を含む溶液に接触させる工程と、
前記材料の表面の微細な凹凸における毛細管凝縮現象を利用して、前記凹凸内に前記1,5シクロオクタジエンメチル白金を析出させる工程と、
前記凹凸内に析出した1,5シクロオクタジエンメチル白金を所定の温度で熱分解させて、前記1,5シクロオクタジエンメチル白金に含まれる白金を前記凹凸内に担持させる工程と、を含む白金触媒の製造方法。
Contacting a material having fine irregularities on the surface with a solution containing supercritical carbon dioxide in which 1,5-cyclooctadienemethylplatinum is dissolved below its solubility;
Utilizing the capillary condensation phenomenon in the fine irregularities on the surface of the material, depositing the 1,5 cyclooctadiene methyl platinum in the irregularities;
A step of thermally decomposing 1,5 cyclooctadiene methyl platinum deposited in the irregularities at a predetermined temperature and supporting platinum contained in the 1,5 cyclooctadiene methyl platinum in the irregularities. A method for producing a catalyst.
JP2008162549A 2008-05-26 2008-05-26 Method for separating solute from solution containing supercritical carbon dioxide Pending JP2009279573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162549A JP2009279573A (en) 2008-05-26 2008-05-26 Method for separating solute from solution containing supercritical carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162549A JP2009279573A (en) 2008-05-26 2008-05-26 Method for separating solute from solution containing supercritical carbon dioxide

Publications (1)

Publication Number Publication Date
JP2009279573A true JP2009279573A (en) 2009-12-03

Family

ID=41450604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162549A Pending JP2009279573A (en) 2008-05-26 2008-05-26 Method for separating solute from solution containing supercritical carbon dioxide

Country Status (1)

Country Link
JP (1) JP2009279573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136974A1 (en) * 2012-03-12 2013-09-19 シャープ株式会社 Modified particle purification method and manufacturing method, modified particles, functional material, optical member, heat transfer member, and coverage rate analysis device and coverage rate analysis method
WO2020217507A1 (en) * 2019-04-26 2020-10-29 中国電力株式会社 Obstruction removal method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136974A1 (en) * 2012-03-12 2013-09-19 シャープ株式会社 Modified particle purification method and manufacturing method, modified particles, functional material, optical member, heat transfer member, and coverage rate analysis device and coverage rate analysis method
WO2020217507A1 (en) * 2019-04-26 2020-10-29 中国電力株式会社 Obstruction removal method

Similar Documents

Publication Publication Date Title
Zhang et al. 3D-agaric like core-shell architecture UiO-66-NH2@ ZIF-8 with robust stability for highly efficient REEs recovery
Rösler et al. Metal–organic frameworks as hosts for nanoparticles
Park et al. Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework
Gao et al. Well-defined strategy for development of adsorbent using metal organic frameworks (MOF) template for high performance removal of hexavalent chromium
Chouyyok et al. Surface functionalized nanostructured ceramic sorbents for the effective collection and recovery of uranium from seawater
Batra et al. Adsorption of Bisphenol-A from aqueous solution using amberlite XAD-7 impregnated with aliquat 336: Batch, column, and design studies
Xu et al. Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent
JP6367184B2 (en) Carbon capture
Solís et al. Highly stable UiO-66-NH2 by the microwave-assisted synthesis for solar photocatalytic water treatment
Zhao et al. A stepwise separation process for selective recovery of gallium from hydrochloric acid leach liquor of coal fly ash
Florek et al. Understanding selectivity of mesoporous silica-grafted diglycolamide-type ligands in the solid-phase extraction of rare earths
Liu et al. Preparation of a novel silica-based N-donor ligand functional adsorbent for efficient separation of palladium from high level liquid waste
JP2009279573A (en) Method for separating solute from solution containing supercritical carbon dioxide
Zhou et al. Rational design an amorphous multifunctional δ-MnO2@ Fe/Mg-MIL-88B nanocomposites with tailored components for efficient and rapid removal of arsenic in water
Sravani et al. Highly efficient functionalized MOF-LIC-1 for extraction of U (VI) and Th (IV) from aqueous solution: experimental and theoretical studies
Laatikainen et al. Selective acid leaching of rare earth elements from roasted NdFeB magnets
Wang et al. Fabrication of nitrogen-doped graphene quantum dots hybrid membranes and its sorption for Cu (II), Co (II) and Pb (II) in mixed polymetallic solution
Chang et al. Ultra-low concentration terbium (Tb) adsorption on garlic peels biosorbent and its application for Nd-Fe-B scraps recovery
Iwao et al. Recovery of palladium from spent catalyst with supercritical CO2 and chelating agent
WO2011108112A1 (en) Process for production of aqueous ammonium tungstate solution
JP2006218346A (en) Hydrogen adsorbent material and its production method
JP5254338B2 (en) Method and apparatus for producing cycloolefin
JP2017531550A (en) Method for selectively extracting a platinoid from a carrier containing a platinoid by an extraction medium comprising a supercritical fluid and an organic ligand
Ma et al. Effects of surface activation on the structural and catalytic properties of ruthenium nanoparticles supported on mesoporous silica
US9981313B1 (en) Porous metals from sintering of nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20121030