JP2009278964A - Chitosan powder for salt-pickled food, salt-pickled food using the same and kimchi produced using the same - Google Patents

Chitosan powder for salt-pickled food, salt-pickled food using the same and kimchi produced using the same Download PDF

Info

Publication number
JP2009278964A
JP2009278964A JP2008239594A JP2008239594A JP2009278964A JP 2009278964 A JP2009278964 A JP 2009278964A JP 2008239594 A JP2008239594 A JP 2008239594A JP 2008239594 A JP2008239594 A JP 2008239594A JP 2009278964 A JP2009278964 A JP 2009278964A
Authority
JP
Japan
Prior art keywords
chitosan
kimchi
salted
water
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008239594A
Other languages
Japanese (ja)
Other versions
JP4705137B2 (en
Inventor
Kun Yon Park
ヨン パク、クン
Hon Kyun No
キュン ノ、ホン
Shin Ho Lee
ホ リ、シン
Yon Giru Ha
ギル ハ、ヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEUMHO CHEMICAL PRODUCTS CO LT
KEUMHO CHEMICAL PRODUCTS CO Ltd
Original Assignee
KEUMHO CHEMICAL PRODUCTS CO LT
KEUMHO CHEMICAL PRODUCTS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080082492A external-priority patent/KR101082766B1/en
Application filed by KEUMHO CHEMICAL PRODUCTS CO LT, KEUMHO CHEMICAL PRODUCTS CO Ltd filed Critical KEUMHO CHEMICAL PRODUCTS CO LT
Publication of JP2009278964A publication Critical patent/JP2009278964A/en
Application granted granted Critical
Publication of JP4705137B2 publication Critical patent/JP4705137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chitosan powder for salt-pickled food, standardized by difference in deacetylation degree and viscosity, a salted food using the same and kimchi produced using the same. <P>SOLUTION: The chitosan powder for salt-pickled food, having excellent antimicrobial property, oxidation resistance, mutation resistance and anti-cancer activity is any one or a combination of two or more selected from the group consisting of a water-soluble chitosan having a deacetylation degree of 50-90% and a viscosity of 1-10 cP, an insoluble chitosan having a deacetylation degree of 60-100% and a viscosity of 8-80 cP and its sitologically acceptable salt. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、塩漬け用キトサン粉末、これを用いた塩漬け物、およびこれを用いて製造したキムチに関する。   The present invention relates to a chitosan powder for salting, a salted product using the same, and a kimchi produced using the same.

キトサンは、カニ、ザリガニ、甲イカおよび海老の殻に入っているキチンを脱アセチル化して得た物質であって、(+)電荷を持つ動物性食餌繊維である。キトサンの構造は、脱アセチル化度によってN−アセチル−グルコサミン(キチンの単分子)とグルコサミン(キトサンの単分子)との共重合体からなっている。キトサンは、老廃した細胞を活性化させて老化を抑制し、免疫力を強化させて疾病を予防し、生体の自然的な治癒能力を活性化させるうえ、生体リズムを調節するものと知られているが、そのメカニズムは、未だ完全には解明されていない。キトサンの効能としては、抗癌作用、抗菌作用、免疫強化作用、肝機能強化、コレステロール抑制、腸内有効菌増加、有害菌抑制、血圧調節効果、重金属および有害成分吸着排出、血糖値抑制、細胞活性化などが知られている。ところが、キトサンは、様々な生理活性を持つにも拘らず、その分子量が非常に大きく、われわれの身にはこれを分解する酵素が存在しないため、その応用幅が制限され、そのまま摂取した場合には大部分が体に吸収されず体外に排出されるという問題点がある。   Chitosan is a substance obtained by deacetylating chitin contained in crab, crayfish, squid and shrimp shells, and is an animal dietary fiber having a (+) charge. The structure of chitosan consists of a copolymer of N-acetyl-glucosamine (a chitin molecule) and glucosamine (a chitosan molecule) depending on the degree of deacetylation. Chitosan is known to activate aging cells to suppress aging, strengthen immunity, prevent disease, activate the body's natural healing ability, and regulate biological rhythms. However, the mechanism has not been fully elucidated. The effects of chitosan include anticancer action, antibacterial action, immune enhancement action, liver function enhancement, cholesterol suppression, intestinal effective bacteria increase, harmful bacteria suppression, blood pressure regulation effect, heavy metal and harmful component adsorption excretion, blood sugar level suppression, cell Activation is known. However, even though chitosan has various physiological activities, its molecular weight is very large, and our body does not have an enzyme that decomposes it, so its application range is limited, and when it is taken as it is Has the problem that most of it is not absorbed by the body and discharged outside the body.

一般に、甲殻類であるズワイガニ/ベニズワイガニ類は、慶尚北道の清浄海域で生産される代表的な特産物であって、韓国の全国生産量の30%を専有している。キチンおよびキトサンは、生産基準年産1千億トンに達する資源であって、植物が生産するセルロースに匹敵する量である。よって、キトサンは、主に凝集剤として廃水処理に、または土壌改良剤として農業分野に用いられてきたが、近年では、生理的合成洗剤、医薬品、化粧品および食品などに応用されることにより、その適用範囲が拡大されている。ところが、高分子キトサンは、中性pH条件では水に対して不溶性であり、低濃度有機酸溶液に対しては可溶性であるが、渋い味と苦い味が強いので、食品に適用するには多少難しさがあった。また、キトサン製品は、輸入は年間10%ずつ毎年増えているが、国内生産は2003年以後退潮している実情である。   In general, the crustacean snow crab / snow crab is a typical special product produced in the clean waters of Gyeongsangbuk-do and occupies 30% of Korea's national production. Chitin and chitosan are resources that reach a production base annual production of 100 billion tons, and are comparable to the cellulose produced by plants. Therefore, chitosan has been mainly used in the agricultural field as a flocculant for wastewater treatment or as a soil conditioner, but in recent years, it has been applied to physiological synthetic detergents, pharmaceuticals, cosmetics, foods, etc. The scope of application has been expanded. However, polymeric chitosan is insoluble in water at neutral pH conditions and soluble in low-concentration organic acid solutions, but it has a bitter taste and a bitter taste, so it is somewhat difficult to apply to foods. There was difficulty. In addition, imports of chitosan products are increasing by 10% every year, but domestic production has declined since 2003.

一方、キムチは、韓民族固有の伝統発酵食品であって、各種無機質とビタミンの供給源であり、摂取後には腸内の有効細菌の増殖を助ける健康食品として広く知られている。キムチは、大根、白菜および胡瓜などを塩漬けにして唐辛子、大蒜、ねぎ、生姜、塩辛などの薬味を混ぜ合わせた後、乳酸の生成によって熟成されて低温で発酵された製品であって、韓国人の食卓で欠かせないおかずである。キムチを漬けるのは蔬菜を長期間貯蔵するための手段であって、従来ではキムチを長期間貯蔵するために土の中にキムチ壷を埋めてキムチの保存期間を延長してきた。ところが、最近、住居環境の変化によってキムチ壷を土の中に埋められない場合が多く発生し、また、キムチを土の中に貯蔵するとしても、長期間経過すると、熟成したキムチの特有な匂いがする。したがって、キムチの固有な味を維持しながら長期間保存するための研究が盛んに行われている。このような研究の一環として、最近、キムチの天然添加剤としてキトサンを添加する方法が知られている。キトサンは弱酸に溶け、分子内に(+)電荷を持っており、特に抗菌性が高いものと知られているため、天然保存剤として一般食品に多く使われている。   On the other hand, kimchi is a traditional fermented food unique to the Korean people, a source of various minerals and vitamins, and is widely known as a health food that helps the growth of effective bacteria in the intestine after ingestion. Kimchi is a product made by salting radish, Chinese cabbage, and pepper, mixing with spices such as chili, daikon, green onion, ginger, and salted spices, ripening by the production of lactic acid, and fermenting at a low temperature. An indispensable side dish at the table. Pickling kimchi is a means for storing sugar beet for a long period of time. Conventionally, in order to store kimchi for a long period of time, kimchi has been buried in the soil to extend the preservation period of kimchi. However, due to changes in the living environment, kimchi can often not be buried in the soil, and even if the kimchi is stored in the soil, the scent of kimchi that has aged after a long time has passed. I will. Therefore, research for storing for a long time while maintaining the unique taste of kimchi has been actively conducted. As a part of such research, recently, a method of adding chitosan as a natural additive of kimchi is known. Chitosan is soluble in weak acids, has a (+) charge in the molecule, and is known to have particularly high antibacterial properties, so it is often used in general foods as a natural preservative.

キトサンを用いてキムチの保存性を向上させるための先行技術としては、特許文献1および特許文献2の「酸敗遅延改良キムチの製造方法」、特許文献3の「保存性が延長されるキムチの製造方法」、特許文献4の「キトサンおよび鉱物質を含有したキムチの製造方法」、特許文献5の「キトサン含有黄土水性抽出液剤を用いたキムチの製造方法」、および特許文献6の「新鮮草を主材料としたキムチの製造方法」などがある。また、キムチの薬味にキトサンを適用した技術としては、特許文献7の「即席キムチの天然薬味組成物およびその製造方法」、特許文献8の「キチンキトサンキムチ」などがあり、製造したキムチ自体にキトサンを適用した技術としては、特許文献9の「キムチの熟成遅延方法」、特許文献10の「酸敗遅延キムチ製造法」および特許文献11の「キムチ新鮮度維持方法」などがある。   As prior arts for improving the storability of kimchi using chitosan, Patent Document 1 and Patent Document 2 “Method for producing kimchi delay-improving kimchi” and Patent Document 3 “Manufacturing kimchi with extended shelf life” Method ", Patent Document 4," Method for producing kimchi containing chitosan and mineral substance ", Patent Document 5," Method for producing kimchi using chitosan-containing loess aqueous extract ", and Patent Document 6," Fresh grass There is a manufacturing method of kimchi as a main material. Further, as techniques for applying chitosan to the kimchi flavor, there are “Natural savory kimchi composition of instant kimchi and method for producing the same” in Patent Document 7, “Chitin chitosan kimchi” in Patent Document 8, and the like. Examples of techniques to which chitosan is applied include “Kimchi ripening delay method” in Patent Document 9, “Acid-delayed kimchi production method” in Patent Document 10, and “Kimchi freshness maintenance method” in Patent Document 11.

前述したようにキムチの保存性を向上させるための研究と、キムチの薬味およびキムチ自体にキトサンを適用した技術などが多様に開発されているが、最適の条件を使用するためにキトサンを規格化し、これをキムチに適用した技術に関する研究および開発は未だ全くない状態である。   As described above, various researches have been developed to improve the storage stability of kimchi and the condiment of kimchi and the technology that applies chitosan to kimchi itself, but standardized chitosan in order to use optimal conditions. There is still no research and development on the technology that applied this to Kimchi.

したがって、規格化したキトサンを用いて特定の食品に対する誂え型キトサンが生産されると、食品保存期間を向上させて食品廃棄物を減少させ、食中毒などを予防して国民健康に寄与することができ、キトサンを添加した機能性キムチを生産して巨大なキムチ市場で競争力を確保することができるものと考えられる。
韓国特許出願第1999−23848号明細書 韓国特許出願第1999−23849号明細書 韓国特許出願第1998−20451号明細書 韓国特許出願第1999−25417号明細書 韓国特許出願第2003−26731号明細書 韓国特許出願第2001−42866号明細書 韓国特許出願第1994−34463号明細書 韓国特許出願第1997−24877号明細書 韓国特許出願第1997−81996号明細書 韓国特許出願第1996−33362号明細書 韓国特許出願第1997−66558号明細書
Therefore, when standardized chitosan is used to produce tailored chitosan for a specific food, it can contribute to national health by improving food storage period, reducing food waste, preventing food poisoning, etc. It is considered that functional kimchi with chitosan added can be produced to ensure competitiveness in the huge kimchi market.
Korean Patent Application No. 1999-23848 Korean Patent Application No. 1999-23849 Korean Patent Application No. 1998-20451 Specification Korean Patent Application No. 1999-25417 Korean Patent Application No. 2003-26731 Korean Patent Application No. 2001-42866 Specification Korean Patent Application No. 1994-34463 Specification Korean Patent Application No. 1997-24877 Specification Korean Patent Application No. 1997-81996 Specification Korean Patent Application No. 1996-33362 Korean Patent Application No. 1997-66558

本発明者らは、いろいろの生理活性を持つキトサンを規格化してこれをキムチに適用する研究を行う中で、脱アセチル化度および粘度の差異によるキトサンを規格化し、規格化されたキトサンを用いて製造したキムチがキトサン自体よりさらに優れた抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性を有し、優れた貯蔵安定性および組織感を有することを確認し、本発明を完成した。   The inventors of the present invention standardized chitosan having various physiological activities and applied it to kimchi while standardizing chitosan according to the difference in the degree of deacetylation and the viscosity and using the standardized chitosan. The present invention was completed by confirming that the kimchi produced in this way has antibacterial activity, antioxidant activity, antimutagenic effect and anticancer activity even better than chitosan itself, and excellent storage stability and texture. .

そこで、本発明は、脱アセチル化度および粘度の差異によって規格化された塩漬け用キトサン粉末、これを用いた塩漬け物、およびこれを用いて製造したキムチを提供することを目的とする。   Then, an object of this invention is to provide the chitosan powder for salting standardized by the difference in a deacetylation degree and a viscosity, the salted material using the same, and kimchi manufactured using the same.

上記目的を達成するために、本発明のある観点によれば、50〜90%の脱アセチル化度および1〜10cPの粘度を持つ水溶性キトサン、60〜100%の脱アセチル化度および8〜80cPの粘度を持つ不溶性キトサン、並びにその食品学的に許容される塩よりなる群から選ばれたいずれか一つまたは一つ以上の組み合わせである、抗菌、抗酸化、抗突然変異および抗癌活性に優れた塩漬け用キトサン粉末を提供する。   In order to achieve the above object, according to an aspect of the present invention, water-soluble chitosan having a degree of deacetylation of 50 to 90% and a viscosity of 1 to 10 cP, a degree of deacetylation of 60 to 100% and 8 to Antibacterial, antioxidant, antimutagenic and anticancer activities which are any one or a combination selected from the group consisting of insoluble chitosan having a viscosity of 80 cP and food-acceptable salts thereof To provide excellent salted chitosan powder.

前記水溶性キトサンまたは前記不溶性キトサンは、食品学的に許容される塩の形で使用することができ、塩としては食品学的に許容される遊離酸(free acid)によって形成された酸付加塩が有用である。遊離酸としては無機酸と有機酸を使用することができ、無機酸としては塩酸が好ましく、有機酸としては酢酸、クエン酸および乳酸などが好ましい。   The water-soluble chitosan or the insoluble chitosan can be used in the form of a pharmaceutically acceptable salt, and the salt is an acid addition salt formed by a pharmaceutically acceptable free acid. Is useful. As the free acid, an inorganic acid and an organic acid can be used. As the inorganic acid, hydrochloric acid is preferable, and as the organic acid, acetic acid, citric acid, lactic acid and the like are preferable.

前記塩漬け用キトサン粉末は、脱アセチル化度および粘度の異なる12種の水溶性キトサン(S-1〜S-12)と11種の不溶性キトサン(NS-1〜NS-11)に対して抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性に優れた水溶性/不溶性キトサンを選別し、脱アセチル化度と粘度によって規格化したことを特徴とする。前記キトサンの中でも、5種の水溶性キトサン(S-2、S-9、S-10、S-11、S-12)と6種の不溶性キトサン(NS-2、NS-5、NS-8、NS-9、NS-10、NS-11)は食品群別公示菌株に対して優れた抗菌活性を示し、S-7、S-10およびNS-8は優れた抗酸化活性および抗突然変異効果を示し、S-10およびNS-8は優れた抗癌効果を示す。したがって、本発明に係るキトサンは、50〜90%の脱アセチル化度および1〜10cPの粘度を持つ水溶性キトサンと60〜100%の脱アセチル化度および8〜80cPの粘度を持つ不溶性キトサンを選別し、脱アセチル化度と粘度によって規格化する。これらの中でも90%の脱アセチル化度および3cPの粘度を持つ水溶性キトサン(S-10)と、95%の脱アセチル化度および22cPの粘度を持つ不溶性キトサン(NS-8)が、最も優れた抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性を示す。   The salted chitosan powder has antibacterial activity against 12 water-soluble chitosans (S-1 to S-12) and 11 insoluble chitosans (NS-1 to NS-11) having different degrees of deacetylation and viscosity The water-soluble / insoluble chitosan having excellent antioxidant activity, antimutation effect and anticancer activity was selected and normalized by the degree of deacetylation and viscosity. Among the chitosans, five types of water-soluble chitosan (S-2, S-9, S-10, S-11, S-12) and six types of insoluble chitosan (NS-2, NS-5, NS-8) NS-9, NS-10, NS-11) show excellent antibacterial activity against the strains classified by food group, and S-7, S-10 and NS-8 have excellent antioxidant activity and antimutation S-10 and NS-8 exhibit excellent anticancer effects. Accordingly, the chitosan according to the present invention comprises a water-soluble chitosan having a degree of deacetylation of 50 to 90% and a viscosity of 1 to 10 cP, and an insoluble chitosan having a degree of deacetylation of 60 to 100% and a viscosity of 8 to 80 cP. Screen and standardize by degree of deacetylation and viscosity. Among these, water-soluble chitosan (S-10) having 90% deacetylation degree and 3 cP viscosity and insoluble chitosan (NS-8) having 95% deacetylation degree and 22 cP viscosity are the most excellent. Exhibit antibacterial activity, antioxidant activity, antimutagenic effect and anticancer activity.

また、本発明は、脱アセチル化度および粘度の差異によって規格化された塩漬け用キトサン粉末を含む塩漬け液を提供する。   Moreover, this invention provides the salting liquid containing the chitosan powder for salting normalized by the difference in a deacetylation degree and a viscosity.

前記塩漬け液は、キトサン粉末を塩漬け液の総重量に対して0.2〜1.0重量%で含むことが好ましい。もしキトサン粉末が0.2重量%未満であれば、キトサン粉末の含量があまり少なくて塩漬け物の貯蔵性および組織感を改善することが難しく、もしキトサン粉末が1.0重量%超過であれば、塩漬け物の貯蔵性および組織感がそれ以上向上しない。   The salted solution preferably contains chitosan powder in an amount of 0.2 to 1.0% by weight based on the total weight of the salted solution. If the chitosan powder is less than 0.2% by weight, the chitosan powder content is too low to improve the storage and texture of the salted product, and if the chitosan powder exceeds 1.0% by weight In addition, the storage properties and texture of the salted product are not improved further.

また、本発明は、前記塩漬け液に蔬菜類を漬け込んで製造した塩漬け物を提供する。前記塩漬け物は、蔬菜類のみならず、果物、肉類および魚介類などを塩漬け液に漬け込んで製造した物質を総称し、蔬菜類としては、白菜、若大根、大根、胡瓜、玉葱、大蒜、唐辛子などを含む。前記塩漬け物は、塩漬け物の総重量に対して0.05〜0.25重量%のキトサンが含浸されたことが好ましい。   In addition, the present invention provides a salted product produced by immersing sugar beet in the salted solution. The salted product is a generic term for substances produced by immersing not only vegetables, but also fruits, meats and seafood in salted solution, and examples of vegetables are Chinese cabbage, young radish, radish, pepper, onion, potato, chili. Etc. The salted product is preferably impregnated with 0.05 to 0.25% by weight of chitosan based on the total weight of the salted product.

また、本発明は、前記塩漬け物を用いて製造したキムチを提供する。   Moreover, this invention provides the kimchi manufactured using the said salted product.

また、本発明は、前記塩漬け用キトサン粉末をキムチの総重量に対して0.01〜1.5重量%含むキムチを提供する。   The present invention also provides a kimchi comprising 0.01 to 1.5% by weight of the salted chitosan powder based on the total weight of the kimchi.

本発明に係るキトサン粉末を含むキムチは、標準化キムチレシピを用いて製造することができる。   Kimchi containing chitosan powder according to the present invention can be manufactured using a standardized kimchi recipe.

標準化方法によって製造されたキトサン含有キムチは、キトサン自体よりさらに優れた抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性を示し、キトサンが、キムチの発酵がゆっくりなされるようにして適熟期への到達期間を長くすることにより、優れた貯蔵安全性を示す。また、キトサン含有キムチは、ロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)乳酸菌の成長速度を抑制させて優れた貯蔵性および保存性を示す。また、植物性セルロースは陰(−)電荷の食餌繊維であるが、キトサンは陽(+)電荷の食餌繊維であるため、キトサンが塩漬け物に適量含浸混入されると、陽性食餌繊維になってキムチの植物性セルロースの構造が緻密になるので、キムチの組織感を改善させ且つ食餌繊維自体の機能性を補完する。   Chitosan-containing kimchi produced by a standardized method exhibits better antibacterial, antioxidant, antimutagenic and anticancer activities than chitosan itself, so that chitosan is well-ripened so that kimchi fermentation is slowed down. It shows excellent storage safety by extending the period to reach the season. In addition, chitosan-containing kimchi suppresses the growth rate of Leuconostoc sp. And Lactobacillus sp. Lactic acid bacteria and exhibits excellent storage and storage. In addition, vegetable cellulose is a negative (−)-charged dietary fiber, but chitosan is a positive (+)-charged dietary fiber. Therefore, when chitosan is impregnated in a suitable amount in a salted product, it becomes a positive dietary fiber. Since the structure of kimchi plant cellulose becomes dense, it improves the texture of kimchi and complements the functionality of the dietary fiber itself.

本発明に係る塩漬け用キトサン粉末は、抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性に優れた水溶性/不溶性キトサンを選別して脱アセチル化度と粘度によって規格化した。これにより、これを用いて製造したキトサン含有キムチは、キトサン自体よりさらに優れた抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性を示す。また、本発明のキトサン含有キムチは、キトサンが、キムチの発酵がゆっくりなされるようにして適熟期への到達期間を長くすることにより、優れた貯蔵安定性を示し、ロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)乳酸菌の成長速度を抑制させて優れた貯蔵性および保存性を示し、キトサンが塩漬け物に適量含浸混入されると、陽性食餌繊維になってキムチの植物性セルロースの構造が緻密になるので、キムチの組織感を改善させ且つ食餌繊維自体の機能性を補完するという効果がある。   In the salted chitosan powder according to the present invention, water-soluble / insoluble chitosan excellent in antibacterial activity, antioxidant activity, antimutagenic effect and anticancer activity was selected and normalized by the degree of deacetylation and viscosity. Thereby, the chitosan containing kimchi manufactured using this shows the antibacterial activity, the antioxidant activity, the antimutagenic effect, and the anticancer activity which were further superior to chitosan itself. In addition, the chitosan-containing kimchi of the present invention exhibits excellent storage stability by increasing the time to reach the appropriate maturity period so that the fermentation of kimchi is slow, and Leuconostoc (Leuconostoc sp.) and Lactobacillus sp. (Lactobacillus sp.), which suppresses the growth rate of lactic acid bacteria and exhibits excellent storability and preservability. Since the plant cellulose has a dense structure, it has the effect of improving the texture of kimchi and complementing the functionality of the dietary fiber itself.

以下、本発明の理解を助けるために好適な実施例を提示する。ところが、下記の実施例は本発明をより容易に理解するために提供されるものに過ぎず、本発明の内容を限定するものではない。   Hereinafter, preferred examples will be presented to help understanding of the present invention. However, the following examples are provided only for easier understanding of the present invention, and do not limit the contents of the present invention.

実施例1:キトサンの製造
1−1.キトサンの製造
韓国東海で得たベニズワイガニの蟹殻を乾燥させた後、これを5%NaOH水溶液に入れ、100℃で5時間抽出して脱タンパク蟹殻を得た。前記脱タンパク蟹殻を5%HCl水溶液に入れ、常温で5時間抽出して脱カルシウム化させてキチンを得た。その後、反応槽に45%NaOH水溶液を満たし、ここに、前記で得られたキチンを浸漬させた後、温度(80℃、90℃、100℃、110℃)と時間(5、10、15、20、25、30、35、40、50時間)を変化させながら脱アセチル化反応によってキトサンを製造した。前記製造されたキトサンの脱アセチル化度と粘度を測定して表1に示した。脱アセチル化度はコロイド滴定法(pvsk titration method)を用いて測定し、粘度はキトサンを酢酸に溶かして0.5%のキトサン含有酢酸溶液を作り、20℃の恒温槽で2時間保管した後、恒温の下で測定した。
Example 1: Production of chitosan 1-1. Manufacture of chitosan After drying the rice crabs rice husk obtained in Tokai, Korea, it was put into 5% NaOH aqueous solution and extracted at 100 ° C. for 5 hours to obtain a deproteinized rice husk. The deproteinized rice husk was placed in a 5% HCl aqueous solution, extracted at room temperature for 5 hours, and decalcified to obtain chitin. Thereafter, the reaction vessel was filled with a 45% NaOH aqueous solution, and the chitin obtained above was immersed therein, followed by temperature (80 ° C., 90 ° C., 100 ° C., 110 ° C.) and time (5, 10, 15, (20, 25, 30, 35, 40, 50 hours), chitosan was produced by deacetylation reaction. The degree of deacetylation and viscosity of the produced chitosan were measured and shown in Table 1. Deacetylation degree was measured using a colloid titration method (pvsk titration method). Viscosity was obtained by dissolving chitosan in acetic acid to make a 0.5% chitosan-containing acetic acid solution and storing it in a constant temperature bath at 20 ° C. for 2 hours. Measured under constant temperature.

Figure 2009278964
Figure 2009278964

表1に示すように、45%NaOH水溶液の温度と時間によってキトサンの脱アセチル化度と粘度が異なる。高温で長時間反応させると、脱アセチル化度が高くなるが、粘度は低くなり、反応時間を短くすると、粘度が高くなるが、脱アセチル化度は低くなる。また、低温で反応させると、脱アセチル化の時間が長くかかるが、粘度はゆっくり低下することが分かった。したがって、キトサンの規格は脱アセチル化度と粘度で表示する。   As shown in Table 1, the degree of deacetylation and the viscosity of chitosan differ depending on the temperature and time of the 45% NaOH aqueous solution. When the reaction is carried out at a high temperature for a long time, the degree of deacetylation increases, but the viscosity decreases, and when the reaction time is shortened, the viscosity increases, but the degree of deacetylation decreases. Moreover, when it was made to react at low temperature, although the time of deacetylation took long, it turned out that a viscosity falls slowly. Therefore, chitosan specifications are expressed in terms of deacetylation degree and viscosity.

1−2.規格化されたキトサンの製造
前記1−1で製造したキトサンを規格化するために、脱アセチル化度と粘度の異なる12種の水溶性キトサン(S-1〜S-12)と11種の不溶性キトサン(NS-1〜NS-11)を準備し、これらを下記表2に示した。全てのキトサンは、プラスチック容器に入れて室温で保管しながら使用し、水溶性/不溶性キトサンの抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性を下記実験例1〜4の方法で測定した。前記23種の水溶性/不溶性キトサンのうち抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性に優れたキトサンを選別して規格化した。
1-2. Production of standardized chitosan In order to standardize the chitosan produced in 1-1, 12 types of water-soluble chitosan (S-1 to S-12) having different degrees of deacetylation and viscosity and 11 types of insoluble were obtained. Chitosan (NS-1 to NS-11) was prepared, and these are shown in Table 2 below. All chitosans are used while stored at room temperature in a plastic container, and the antibacterial activity, antioxidant activity, antimutagenic effect and anticancer activity of water-soluble / insoluble chitosan are measured by the methods of Experimental Examples 1 to 4 below. did. Of the 23 water-soluble / insoluble chitosans, chitosan having excellent antibacterial activity, antioxidant activity, antimutation effect and anticancer activity was selected and standardized.

Figure 2009278964
Figure 2009278964

水溶性/不溶性キトサンの抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性を測定した結果、5種の水溶性キトサン(S-2、S-9、S-10、S-11、S-12)と6種の不溶性キトサン(NS-2、NS-5、NS-8、NS-9、NS-10、NS-11)は食品群別公示菌株に対して優れた抗菌活性を示し、S-7、S-10およびNS-8は優れた抗酸化活性および抗突然変異効果を示し、S-10およびNS-8は優れた抗癌効果を示すことが分かった。したがって、本発明に係るキトサンは、50〜90%の脱アセチル化度および1〜10cPの粘度を持つ水溶性キトサンと、60〜100%の脱アセチル化度および8〜80cPの粘度を持つ不溶性キトサンを選別し、脱アセチル化度と粘度によって規格化した。   As a result of measuring the antibacterial activity, antioxidant activity, antimutagenic effect and anticancer activity of water-soluble / insoluble chitosan, five water-soluble chitosans (S-2, S-9, S-10, S-11, S) -12) and six insoluble chitosans (NS-2, NS-5, NS-8, NS-9, NS-10, NS-11) exhibit excellent antibacterial activity against the publicly reported strains of food groups, It was found that S-7, S-10 and NS-8 showed excellent antioxidant activity and antimutation effect, and S-10 and NS-8 showed excellent anticancer effect. Accordingly, the chitosan according to the present invention comprises a water-soluble chitosan having a degree of deacetylation of 50 to 90% and a viscosity of 1 to 10 cP, and an insoluble chitosan having a degree of deacetylation of 60 to 100% and a viscosity of 8 to 80 cP. Were selected and normalized by the degree of deacetylation and viscosity.

実施例2:キトサン含有キムチの製造
2−1.キトサン材料
水溶性/不溶性キトサンのうち、抗菌活性、抗酸化活性、抗突然変異効果および抗癌活性に最も優れた水溶性キトサンS-10(脱アセチル化度90%、粘度3cP)と不溶性キトサンNS-8(脱アセチル化度95%、粘度22cP)を4℃で保管しながら使用した。
Example 2: Production of chitosan-containing kimchi 2-1. Chitosan material Among water-soluble / insoluble chitosan, water-soluble chitosan S-10 (deacetylation degree 90%, viscosity 3 cP) and insoluble chitosan NS, which are most excellent in antibacterial activity, antioxidant activity, antimutation effect and anticancer activity -8 (degree of deacetylation 95%, viscosity 22 cP) was used while being stored at 4 ° C.

2−2.キムチ材料
白菜は韓国の釜山フジョン市場、塩辛は清浄ひしこ液塩辛((株)大商)、赤唐辛子粉はヨンヤン農協清潔赤唐辛子粉加工工場からそれぞれ購入して使用した。大根、ねぎ、大蒜および生姜は釜山フジョン市場からそれぞれ購入した。砂糖は白砂糖、塩は天日塩((株)ゴセン)を使用した。
2-2. Kimchi Ingredients Chinese cabbage was purchased from the Busan Fujeon market in Korea, salted spicy shikoshi sushi (Daisho Co., Ltd.), and red chili powder from Yongyang Agricultural Clean Red Chili Powder Processing Factory. Daikon, green onions, daikon and ginger were purchased from the Busan Fujeong market. The sugar used was white sugar, and the salt was sun salt (Gosen Co., Ltd.).

2−3.キムチの製造
キムチは、塩漬けにした白菜100重量部に対して赤唐辛子粉3.5重量部、大蒜1.4重量部、生姜0.6重量部、塩辛2.2重量部、ねぎ2.0重量部、大根13.0重量部、砂糖1.0重量部の割合で混合して標準化キムチのレシピを用いて製造した。
2-3. Manufacture of Kimchi Kimchi is 3.5 parts by weight of red pepper powder, 1.4 parts by weight of bonito, 0.6 parts by weight of ginger, 2.2 parts by weight of salty spice, 2.0 parts by weight of onion A standardized kimchi recipe was prepared by mixing at a ratio of 1 part by weight, 13.0 parts by weight of radish and 1.0 part by weight of sugar.

すなわち、天日塩で10%塩漬け液を製造した後、ここに白菜を10時間漬け込んだ。こうして塩漬けにした白菜を水道水で3回洗浄し、3時間水気を切った。副材料として水溶性キトサン(S-10)粉末と不溶性キトサン(NS-8)粉末を、塩漬けにした白菜100重量部に対して1重量部、0.5重量部の量で用いて薬味に混ぜ合わせた。大根とねぎを千切りにし、この千切り大根に、水に溶かした赤唐辛子粉を入れて混ぜ合わせた後、さらにひしこ液塩辛、大蒜および生姜をよく混ぜ合わせ、塩度はそれぞれの塩で調節してキムチを製造した。   That is, after preparing a 10% salted solution with sun-dried salt, Chinese cabbage was soaked for 10 hours. The salted Chinese cabbage was washed 3 times with tap water and drained for 3 hours. Use water-soluble chitosan (S-10) powder and insoluble chitosan (NS-8) powder as sub-materials in an amount of 1 part by weight and 0.5 parts by weight for 100 parts by weight of salted Chinese cabbage. Combined. Cut the radish and green onion, add red chili powder dissolved in water to the shredded radish, mix well, and then mix the salted pepper, daikon and ginger well, and adjust the saltiness with each salt. Kimchi was manufactured.

実施例3:キトサン含有塩漬け液で漬けた白菜を用いたキムチの製造
不溶性キトサンNS-8を酢酸に溶かして2%のキトサン溶液を製造した。前記キトサン溶液を用いてキトサン含量が塩漬け液の総重量に対して0.05、0.15、0.3、0.5%となるように添加した水に天日塩を加えて10%の塩漬け液を製造した。前記キトサン含有塩漬け液に白菜を10時間漬け込んだ。こうして塩漬けにした白菜を水道水で3回洗浄し、3時間水気を切った。その後、大根とねぎを千切りにし、この千切り大根に、水に溶かした赤唐辛子粉を入れて混ぜ合わせた後、さらにひしこ液塩辛、大蒜および生姜をよく混ぜ合わせ、塩度はそれぞれの塩で調節してキムチを製造した。
Example 3 Production of Kimchi Using Chinese cabbage Soaked in Chitosan-Containing Salting Solution Insoluble chitosan NS-8 was dissolved in acetic acid to produce a 2% chitosan solution. 10% salted solution by adding sun salt to water added using the chitosan solution so that the chitosan content is 0.05, 0.15, 0.3, 0.5% with respect to the total weight of the salted solution. Manufactured. Chinese cabbage was soaked in the chitosan-containing salted solution for 10 hours. The salted Chinese cabbage was washed 3 times with tap water and drained for 3 hours. Then, chop the radish and green onion, add red chili powder dissolved in water to the shredded radish, mix well, and then mix the salted pepper, daikon and ginger well. Adjusted to produce kimchi.

実施例4:塩漬けにした白菜をキトサン含有濯ぎ液で濯いでから使用したキムチの製造
不溶性キトサンNS-8を酢酸に溶かして2%のキトサン溶液を製造した。前記キトサン溶液を用いてキトサン含量が濯ぎ液の総重量に対して0.1、0.2、0.3、0.5%となるように水を添加してキトサン含有濯ぎ液を製造した。天日塩で10%塩漬け液を製造した後、この塩漬け液に白菜を10時間漬け込んだ。こうして塩漬けにした白菜を水道水で2回洗浄し、最終濯ぎ過程で前記キトサン含有濯ぎ液によって3分間濯いだ後、3時間水気を切った。その後、大根とねぎを千切りにし、この千切り大根に、水に溶かした赤唐辛子粉を入れて混ぜ合わせた後、さらにひしこ液塩辛、大蒜および生姜を混ぜ合わせ、塩度はそれぞれの塩で調節してキムチを製造した。
Example 4: Preparation of Kimchi used after rinsing salted Chinese cabbage with a rinsing solution containing chitosan Insoluble chitosan NS-8 was dissolved in acetic acid to prepare a 2% chitosan solution. Using the chitosan solution, water was added so that the chitosan content was 0.1, 0.2, 0.3, and 0.5% with respect to the total weight of the rinsing solution to prepare a chitosan-containing rinsing solution. After preparing a 10% salted solution with sun-dried salt, Chinese cabbage was soaked in this salted solution for 10 hours. The salted Chinese cabbage was washed twice with tap water, rinsed with the chitosan-containing rinse for 3 minutes in the final rinsing process, and then drained for 3 hours. Then, chop the radish and green onion, add red chili powder dissolved in water to the chopped radish, mix, and then mix the salted pepper, daikon and ginger, and adjust the saltiness with each salt. Kimchi was manufactured.

実施例5:キトサン含有薬味を用いたキムチの製造
天日塩で10%塩漬け液を製造した後、この塩漬け液に白菜を10時間漬け込んだ。こうして塩漬けにした白菜を水道水で3回洗浄し、3時間水気を切った。水溶性キトサン(S-10)粉末と不溶性キトサン(NS-8)粉末を1:1の重量比で混ぜた後、塩漬けにした白菜100重量部に対して0.1.0.25、0.5、1.5重量部のキトサンを副材料として用いて薬味に混ぜ合わせた。大根とねぎを千切りにし、この千切り大根に、水に溶かした赤唐辛子粉を入れて混ぜ合わせた後、さらにひしこ液塩辛、大蒜および生姜をよく混ぜ合わせ、塩度はそれぞれの塩で調節してキムチを製造した。
Example 5: Production of Kimchi Using Chitosan-Containing Seasoning After producing a 10% salted solution with sun salt, Chinese cabbage was soaked in this salted solution for 10 hours. The salted Chinese cabbage was washed 3 times with tap water and drained for 3 hours. The water-soluble chitosan (S-10) powder and the insoluble chitosan (NS-8) powder were mixed at a weight ratio of 1: 1, and then 0.1.0.25, 0.00 with respect to 100 parts by weight of the salted Chinese cabbage. 5, 1.5 parts by weight of chitosan was used as an auxiliary material and mixed with the seasoning. Cut the radish and green onion, add red chili powder dissolved in water to the shredded radish, mix well, and then mix the salted pepper, daikon and ginger well, and adjust the saltiness with each salt. Kimchi was manufactured.

実験例1:抗菌活性の測定
水溶性/不溶性キトサンの抗菌活性を確認するために、下記の実験を行った。
Experimental Example 1: Measurement of antibacterial activity To confirm the antibacterial activity of water-soluble / insoluble chitosan, the following experiment was conducted.

1−1.菌株および培地
抗菌活性を検索するための病原性微生物および腐敗微生物としては、9種のグラム陰性菌と6種のグラム陽性菌を使用し、それらを下記表3に示した。
1-1. Strain and culture medium As the pathogenic microorganisms and spoilage microorganisms for searching antibacterial activity, 9 kinds of gram-negative bacteria and 6 kinds of gram-positive bacteria were used and are shown in Table 3 below.

Listeria monocytogenes ATCC 19115、Staphylococcus aureus ATCC 29737、Bacillus subtilis ATCC 6633、Bacillus cereus ATCC 21366、Aeromonas hydrophila subsp. hydrophila ATCC 7966、Pseudomonas fluorecens ATCC 21541、Proteus vulgaris ATCC 6059、Erwinia carotovora subsp. carotovora ATCC 15390、Lactobacillus curvatus ATCC 25601、Lactobacillus plantrarum ATCC 8014、Serratia marcescens ATCC 990、Escherichia coli ATCC 8739、Vibrio parahaemolyticus ATCC 17802、およびVibrio vulnificus ATCC 27562は韓国微生物保存センター、Salmonella typhimurium ATCC 13311は遺伝子銀行から分譲を受けて使用した。   Listeria monocytogenes ATCC 19115, Staphylococcus aureus ATCC 29737, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 21366, Aeromonas hydrophila subsp. Lactobacillus plantrarum ATCC 8014, Serratia marcescens ATCC 990, Escherichia coli ATCC 8739, Vibrio parahaemolyticus ATCC 17802, and Vibrio vulnificus ATCC 27562 were used after being sold by the Korean Microbiology Conservation Center and Salmonella typhimurium ATCC 13311.

培養培地としてはトリプシン大豆ブロス(tryptic soy broth)(TSB、Difco、USA)、ブレインハート注入液(Brain Heart Infusion)(BHI、Difco、USA)、MRS培養液(Difco、USA)を使用し、キトサンの抗菌活性を検索するための培地としてはミュラーヒントン培養液(Muller Hinton broth)(MHB、Merck、ドイツ)を使用した。   As the culture medium, tryptic soy broth (TSB, Difco, USA), Brain Heart Infusion (BHI, Difco, USA), MRS culture solution (Difco, USA) is used, and chitosan is used. Muller Hinton broth (MHB, Merck, Germany) was used as a medium for searching for antibacterial activity.

Figure 2009278964
Figure 2009278964

1−2.キトサンの種類による抗菌活性
本実験に使用するために、水溶性キトサンは蒸留水に、不溶性キトサンは1%(v/v)酢酸に完全に溶かして1%(w/v)濃度でキトサン貯蔵溶液を製造した。
1-2. Antibacterial activity depending on the type of chitosan For use in this experiment, water-soluble chitosan is completely dissolved in distilled water and insoluble chitosan is completely dissolved in 1% (v / v) acetic acid to give a 1% (w / v) concentration of chitosan stock solution. Manufactured.

キトサンの抗菌活性の検索はペーパーディスク法(paper disc method)によって公示菌株に対する生育阻止環(clear zone)の形成の有無を調べて測定し、使用培地はMHAに最終濃度が0.1%となるようにキトサン貯蔵溶液を添加して製造した。この際、不溶性キトサンのうちNS-1、NS-3およびNS-4キトサンは溶けないため、本実験に使用しなかった。本実験に使用したキトサン添加培地のpHは全て1N HClと1N NaOHを用いてpH5.9に補正した。公示菌株に対する0.1%水溶性キトサンの抗菌活性は表4に示し、公示菌株に対する0.1%不溶性キトサンの抗菌活性は表5に示した。   The antibacterial activity of chitosan was determined by examining the presence or absence of the formation of a growth-inhibiting ring (clear zone) for the published strain by the paper disc method, and the final concentration of the medium used was 0.1% in MHA. The chitosan stock solution was added as described above. At this time, NS-1, NS-3, and NS-4 chitosan among the insoluble chitosans did not dissolve, so they were not used in this experiment. The pH of the chitosan-added medium used in this experiment was corrected to pH 5.9 using 1N HCl and 1N NaOH. The antibacterial activity of 0.1% water-soluble chitosan against the official strains is shown in Table 4, and the antibacterial activity of 0.1% insoluble chitosan against the official strains is shown in Table 5.

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

表4に示すように、0.1%水溶性キトサンの抗菌活性は、菌株によって様々であったが、S-12が15種の公示菌株のうち13種の菌株に対して抗菌活性を示して15種のキトサンの中でも抗菌スペクトルが最も広く、S-10とS-11も9種の菌株に対して抗菌活性を示した。また、S-2とS-9が8菌株に対して抗菌活性を示し、S-3およびS-4が7菌株に対して、S-1およびS-7が6菌株に対して、S-8が5菌株に対して、S-5およびS-6が4菌株に対してそれぞれ抗菌活性を示した。すなわち、キトサンの種類によってその抗菌活性の程度が様々であった。Proteus vulgarisは、全ての水溶性キトサンで成長が抑制され、Aeromonas hydrophila、Salmonella typhimurium、Erwinia carotovoraも大部分の水溶性キトサンで成長が抑制された。Bacillus cereusもS-8以外の全てのキトサンで成長が抑制された。   As shown in Table 4, the antibacterial activity of 0.1% water-soluble chitosan varied depending on the strain, but S-12 exhibited antibacterial activity against 13 strains out of 15 publicly known strains. Among the 15 chitosans, the antibacterial spectrum was the widest, and S-10 and S-11 also showed antibacterial activity against 9 strains. S-2 and S-9 showed antibacterial activity against 8 strains, S-3 and S-4 against 7 strains, S-1 and S-7 against 6 strains, S- 8 showed antibacterial activity against 5 strains, and S-5 and S-6 showed antibacterial activity against 4 strains, respectively. That is, the degree of antibacterial activity varied depending on the type of chitosan. Proteus vulgaris was inhibited by all water-soluble chitosan, and Aeromonas hydrophila, Salmonella typhimurium and Erwinia carotovora were also inhibited by most water-soluble chitosan. Bacillus cereus was also inhibited by all chitosans except S-8.

また、表5に示すように、0.1%不溶性キトサンは全ての公示菌株に対して抗菌活性を示した。また、同一の濃度で、キトサンの抗菌活性は水溶性キトサンより不溶性キトサンが著しく高かった。   Moreover, as shown in Table 5, 0.1% insoluble chitosan showed antibacterial activity against all the publicly known strains. At the same concentration, the antibacterial activity of chitosan was significantly higher for insoluble chitosan than for water-soluble chitosan.

1−3.病原性微生物および腐敗微生物に対するキトサンの成長抑制活性
高い抗菌活性を示す水溶性キトサンS-2、S-9、S-10、S-11、S-12と、高い抗菌活性を示す不溶性キトサンNS-2、NS-5、NS-8、NS-9、NS-10、NS-11を選別し、公示菌株15種に対する成長抑制活性を調べた。
1-3. Growth inhibitory activity of chitosan against pathogenic microorganisms and spoilage microorganisms Water-soluble chitosan S-2, S-9, S-10, S-11, S-12 showing high antibacterial activity and insoluble chitosan NS- showing high antibacterial activity 2, NS-5, NS-8, NS-9, NS-10, NS-11 were selected and examined for growth inhibitory activity against 15 publicly-known strains.

選別されたキトサンの抗菌力を調べるために、1%(w/v)キトサン貯蔵溶液をMHBに添加し、最終濃度が水溶性キトサンは0.1%、不溶性キトサンは0.1%と0.05%となるように調節した後で使用した。病原性微生物はTSBで、乳酸菌はMRS培養液でそれぞれ2回継代培養させた公示菌株をキトサン添加培地に0.05mL接種した後、37℃で24時間振とう培養し、しかる後に、ペプトン水を用いて適正希釈して生菌数(log No.CFU/mL)を測定した。乳酸菌はMRS寒天、Erwinia carotovora subsp. CarotovoraはBHI寒天、その他の腐敗微生物と病原性微生物はTSAを用いて混釈平板法(pour plate method)によって生菌数を測定した。公示菌株に対する0.1%水溶性キトサンの成長抑制活性は表6に示し、公示菌株に対する0.1%不溶性キトサンの成長抑制活性は表7に示し、公示菌株に対する0.05%不溶性キトサンの成長抑制活性は表8に示した。   In order to examine the antibacterial activity of the selected chitosan, a 1% (w / v) chitosan stock solution was added to MHB, and the final concentrations were 0.1% for water-soluble chitosan and 0.1% for insoluble chitosan. It was used after adjusting to 05%. The pathogenic microorganism is TSB, and the lactic acid bacteria are subcultured twice in MRS culture solution twice, respectively. After inoculating 0.05 mL of the chitosan-added medium into the medium supplemented with chitosan, the culture is shaken at 37 ° C. for 24 hours, and then peptone water is used. The number of viable bacteria (log No. CFU / mL) was measured by appropriately diluting with the use of a bacterium. Lactic acid bacteria were measured by virtue of the pour plate method using MRS agar, Erwinia carotovora subsp. Carotovora using BHI agar, and other spoilage and pathogenic microorganisms using TSA. The growth inhibitory activity of 0.1% water-soluble chitosan against the official strain is shown in Table 6, the growth inhibitory activity of 0.1% insoluble chitosan against the official strain is shown in Table 7, and the growth of 0.05% insoluble chitosan against the official strain is shown. The inhibitory activity is shown in Table 8.

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

表6に示すように、A. hydrophilaはS-11とS-12キトサン添加区で成長が観察されておらず、その他の3種のキトサンは対照区に比べて約4〜5ログサイクル程度成長が抑制された。選別したキトサンはE. carotovoraに対して強い抗菌活性を示したが、特にS-2、S-10およびS-11で成長が観察されておらず、S-9およびS-12では約10CFU/mLを示して対照区に比べて約7ログサイクル程度成長が抑制された。P.fluorecens、V. parahaemolyticusおよびV. vulnificusは、対照区で10CFU/mLの菌株を示し、選別されたキトサンでは10CFU/mLの菌株を示して対照区に比べて約1ログサイクル程度低い菌株を示し、キトサンによる生育抑制効果は非常に低かった。B.subtilisはS-9以外の残りのキトサンで菌成長が観察されておらず、S-9でも10CFU/mL以下の菌数を示した。また、B.cereusはS-9、S-10、S-12で10CFU/mL以下の菌株を示し、S-2およびS-11では菌成長が観察されていない。乳酸菌株であるL.curvatusは選別されたキトサンの全てで成長が観察されておらず、L. plantarumはS-11以外の全てのキトサンで成長が観察されていないため、選別されたキトサンの乳酸菌株に対して強い成長抑制活性を示した。L.monocytogenesおよびS. aureusの場合、S-12で菌成長が観察されておらず、残りのキトサンでは10〜10CFU/mLを示して対照区と類似の菌成長を示し、6種のグラム陽性菌のうちキトサンに対して最も低い成長抑制率を示した。上述したように、水溶性キトサンの抗菌活性はグラム陰性菌よりグラム陽性菌に対して高く、水溶性キトサンのうちS-12キトサンが公示菌株に対して広い抗菌活性を示した。 As shown in Table 6, growth of A. hydrophila was not observed in the S-11 and S-12 chitosan addition groups, and the other three types of chitosan grew about 4-5 log cycles compared to the control group. Was suppressed. The selected chitosan showed strong antibacterial activity against E. carotovora, but no growth was observed especially in S-2, S-10 and S-11, and about 10 1 in S-9 and S-12. CFU / mL was shown and growth was suppressed by about 7 log cycles compared to the control group. P. fluorecens, V. parahaemolyticus and V. vulnificus showed 10 8 CFU / mL strain in the control group, and the selected chitosan showed 10 7 CFU / mL strain, which was about 1 log cycle compared to the control group. The strain was low in degree, and the growth inhibitory effect by chitosan was very low. B. subtilis showed no bacterial growth in the remaining chitosan other than S-9, and S-9 showed a bacterial count of 10 1 CFU / mL or less. B. cereus shows strains of 10 1 CFU / mL or less in S-9, S-10, and S-12, and no bacterial growth was observed in S-2 and S-11. L. curvatus, which is a lactic acid strain, has not been observed to grow in all of the selected chitosans, and L. plantarum has not been observed to grow in any chitosan other than S-11. It showed strong growth inhibitory activity against the strain. In the case of L. monocytogenes and S. aureus, no fungus growth was observed in S-12, and the remaining chitosan showed 10 7 to 10 8 CFU / mL, indicating fungal growth similar to the control group, and 6 species Among the gram-positive bacteria, the growth inhibition rate was the lowest for chitosan. As described above, the antibacterial activity of water-soluble chitosan was higher than that of Gram-negative bacteria against Gram-positive bacteria, and among the water-soluble chitosans, S-12 chitosan showed a broad antibacterial activity against the publicly known strains.

また、表7に示すように、A.hydrophilaの場合、対照区は10CFU/mLを示し、NS-11は10CFU/mL、NS-2は10CFU/mLを示して対照区に比べて4〜5ログサイクル程度成長が抑制され、残りのキトサンでも約10〜10CFU/mLの菌数を示して5〜6ログサイクル程度の菌成長が抑制された。P.vulgarisとE.carotovoraは培養24時間後にNS-10で10CFU/mLの菌成長を示し、NS-10キトサン以外の残りのキトサンでは菌成長が観察されていない。V.vulificusはNS-5で10CFU/mLの菌成長を示し、他のキトサンでは菌成長が観察されていない。L. monocytogenes、S. aureus、P. fluorecens、S. marcescens、E. coli、V. parahaemolyticus、B. subtilis、B. cereus、L. curvatus およびL. plantarumは、培養24時間目に全てのキトサンで菌成長が観察されていない。上述したように、不溶性キトサンはグラム陽性菌とグラム陰性菌の全てで強い抗菌活性を示し、グラム陽性菌に対してさらに高い抗菌活性を示した。 As shown in Table 7, in the case of A.hydrophila, the control group showed 10 8 CFU / mL, NS-11 showed 10 5 CFU / mL, and NS-2 showed 10 4 CFU / mL. The growth of about 4 to 5 log cycles was suppressed, and the remaining chitosan also showed the number of bacteria of about 10 2 to 10 3 CFU / mL, and the growth of about 5 to 6 log cycles was suppressed. P. vulgaris and E. carotovora showed 10 2 CFU / mL fungal growth in NS-10 after 24 hours of culture, and no fungal growth was observed in the remaining chitosans other than NS-10 chitosan. V. vulificus showed a growth of 10 2 CFU / mL with NS-5, and no growth was observed with other chitosans. L. monocytogenes, S. aureus, P. fluorecens, S. marcescens, E. coli, V. parahaemolyticus, B. subtilis, B. cereus, L. curvatus and L. plantarum are all in chitosan at 24 hours in culture. No fungal growth has been observed. As described above, insoluble chitosan showed strong antibacterial activity in all of Gram positive bacteria and Gram negative bacteria, and showed higher antibacterial activity against Gram positive bacteria.

A.hydrophilaの場合、水溶性キトサンであるS-11、S-12で菌成長が観察されておらず不溶性キトサンより優れた抗菌活性を示したが、本実験結果、全般的に同一の濃度で不溶性キトサンが水溶性キトサンに比べて広い抗菌スペクトルを示したうえ、高い菌成長抑制を示した。   In the case of A. hydrophila, S-11 and S-12, which are water-soluble chitosans, showed no antimicrobial growth and superior antibacterial activity than insoluble chitosan. Insoluble chitosan showed a broad antibacterial spectrum compared to water-soluble chitosan, and also showed high bacterial growth inhibition.

不溶性キトサンの場合、0.1%濃度で高い抗菌活性を示したが、キトサンの種類による抗菌活性の差異が観察されておらず、公示菌株全てが6種のキトサンに対して成長抑制され、キトサンによる微生物の選別的抗菌活性差が観察されていない。   Insoluble chitosan showed high antibacterial activity at a concentration of 0.1%, but no difference in antibacterial activity depending on the type of chitosan was observed. No difference in the selective antibacterial activity of microorganisms was observed.

また、表8に示すように、S.typhymuriumの場合、NS-2、NS-5、NS-8で培養24時間目に10CFU/mLを示して対照区と類似の菌株を示し、NS-11では10CFU/mLの菌成長を示し、残りのキトサンでは菌成長が観察されていない。S.marcescensは、培養24時間目に全てのキトサンで10〜10CFU/mLの菌数を示して対照区に比べて約6〜7ログサイクル程度成長が抑制されたが、キトサンの種類による成長抑制度の差は観察されていない。A.hydrophilaも、S.marcescensと同様に、キトサンの種類による成長抑制度の差は観察されていないが、対照区に比べて約4ログサイクル程度の菌数が減少して、キトサンの種類に関係なく高い成長抑制度を示した。グラム陽性菌の中でも、L.monocytogenesとS.aureusはN-2で、B.cereusはN-9とN-10のキトサンで10CFU/mL以下の菌成長を示しただけであり、他のキトサンでは菌成長が観察されていない。L.curvatusは10CFU/mL以下または10CFU/mL程度の菌成長を示し、L.plantarumはNS-11以外の残りのキトサンで10〜10CFU/mLの菌成長を示して、対照区に比べて菌成長が著しく抑制されたが、乳酸菌株の場合、他のグラム陽性菌に比べてキトサンの成長抑制効果は多少低い傾向を示した。公示菌株に対する0.5%不溶性キトサンの成長抑制効果はNS-11が最も高く、次はNS-9が多少低い効果を示した。不溶性キトサンの公示菌株に対する成長抑制効果はグラム陰性菌よりグラム陽性菌で高く、グラム陽性菌ではキトサンの種類による成長抑制効果の差がなかったが、グラム陰性菌の場合にはキトサンの脱アセチル化度が高いほど成長抑制効果が高かった。 Moreover, as shown in Table 8, in the case of S. typhymurium, NS-2, NS-5, NS-8 showed 10 8 CFU / mL at 24 hours of culture, indicating a similar strain to the control group, NS -11 showed 10 5 CFU / mL growth and the remaining chitosan did not show growth. S. marcescens showed a bacterial count of 10 1 to 10 2 CFU / mL in all chitosans at 24 hours of culture and its growth was suppressed by about 6 to 7 log cycles compared to the control group. The difference in the degree of growth inhibition due to is not observed. Similar to S. marcescens, A. hydrophila has no difference in the degree of growth inhibition depending on the type of chitosan, but the number of bacteria is reduced by about 4 log cycles compared to the control group. Regardless of the high growth suppression degree. Among Gram-positive bacteria, L. monocytogenes and S. aureus were N-2, B. cereus was only N-9 and N-10 chitosan and showed less than 10 1 CFU / mL growth. No fungal growth was observed in chitosan. L.curvatus is 10 1 CFU / mL showed bacterial growth on the order of less than or 10 1 CFU / mL, L.plantarum show no bacteria growth 10 1 ~10 3 CFU / mL in the remaining chitosan except NS-11 The bacterial growth was remarkably suppressed as compared with the control group, but in the case of the lactic acid strain, the growth inhibitory effect of chitosan tended to be somewhat lower than that of other Gram-positive bacteria. NS-11 showed the highest growth inhibitory effect of 0.5% insoluble chitosan against the publicly reported strain, and NS-9 showed a slightly lower effect. The growth inhibitory effect of insoluble chitosan on the publicly reported strain was higher in Gram-positive bacteria than in Gram-negative bacteria, and in Gram-positive bacteria there was no difference in growth inhibitory effect depending on the type of chitosan, but in the case of Gram-negative bacteria, chitosan deacetylation The higher the degree, the higher the growth suppression effect.

1−4.病原性微生物および腐敗微生物に対する最小成長阻害濃度(Minimum inhibitor concentration;MIC)
高い抗菌活性を示す水溶性キトサンS-2、S-9、S-10、S-11、S-12と、高い抗菌活性を示す不溶性キトサンNS-2、NS-5、NS-8、NS-9、NS-10、NS-11を選別し、これらの15種の公示菌株に対する最小成長阻害濃度を測定した。
1-4. Minimum inhibitor concentration (MIC) against pathogenic and spoilage microorganisms
Water-soluble chitosan S-2, S-9, S-10, S-11, S-12 showing high antibacterial activity, and insoluble chitosan NS-2, NS-5, NS-8, NS- showing high antibacterial activity 9, NS-10 and NS-11 were selected and the minimum growth inhibitory concentrations for these 15 publicly known strains were measured.

水溶性キトサンと不溶性キトサンの公示菌株に対する最小成長阻害濃度を測定するために、寒天拡散法(agar diffusion method)を用い、公示菌株それぞれの成長適温で72時間培養した後、最小成長阻害濃度を測定した。   In order to determine the minimum growth inhibitory concentrations of water-soluble chitosan and insoluble chitosan for the publicly known strains, the agar diffusion method was used, and after culturing at the appropriate growth temperature for each of the publicly known strains for 72 hours, the minimum growth inhibitory concentrations were measured. did.

水溶性キトサンのMIC測定結果は表9に示し、不溶性キトサンのMIC測定結果は表10に示した。また、食品群別高抗菌活性度キトサン規格群は表11に示した。   The MIC measurement results for water-soluble chitosan are shown in Table 9, and the MIC measurement results for insoluble chitosan are shown in Table 10. Moreover, the high antibacterial activity chitosan standard group according to food groups is shown in Table 11.

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

表9に示すように、公示菌株に対する水溶性キトサンのMIC範囲は0.05〜0.8%、>0.8%を示したが、乳酸菌株の場合、他の試験菌株に比べて低いMICを示した。L.curvatusの場合、S-2とS-11で0.05%のMICを示し、残りのキトサンでは0.08%のMICを示した。L.plantarumはS-10で最も高い0.1%のMICを示し、S-12が0.08%、S-2、S-9およびS-11が0.05%のMICを示した。B.cereusおよびB.subtilisのMICは0.1〜0.3%であって、キトサンの種類によって異なったが、B.subtilisのMICがB.cereusのMICより多少低かった。E.carotovoraの場合、S-11とS-12のMICは0.08%であって、他のキトサンに比べて非常に低いMICを示し、E.carotovoraはグラム陰性菌の中で最も低いMICを示した。   As shown in Table 9, the MIC range of water-soluble chitosan for the official strains was 0.05-0.8%,> 0.8%, but in the case of lactic acid strains, the MIC was lower than other test strains showed that. In the case of L. curvatus, S-2 and S-11 showed 0.05% MIC, and the remaining chitosan showed 0.08% MIC. L. plantarum showed the highest MIC of 0.1% for S-10, 0.0-12% for S-12, 0.05% for S-2, S-9 and S-11. The MICs of B. cereus and B. subtilis were 0.1-0.3%, depending on the type of chitosan, but the MICs of B. subtilis were slightly lower than those of B. cereus. In the case of E. carotovora, the MIC of S-11 and S-12 is 0.08%, indicating a very low MIC compared to other chitosans. E. carotovora is the lowest MIC among gram-negative bacteria showed that.

また、表10に示すように、公示菌株に対する不溶性キトサンのMIC範囲は、A.hydrophilaではNS-2、NS-5、P.vulgarisではNS-2、E.coliではNS-5、Sal.typhimuriumではNS-2、NS-5、NS-9、NS-11が、>0.1%のMICをそれぞれ示し、残りのキトサンのMIC範囲は0.03〜0.1%であって、水溶性キトサンに比べて非常に低いMIC値を示した。グラム陽性菌のMIC範囲は0.03〜0.08%であって、公示菌株に対する不溶性キトサンのMICが大部分0.05%を示した。これに対し、グラム陰性菌のMIC範囲は0.05〜1%または>1%であって、グラム陽性群に比べて広いMIC値を示し、グラム陰性菌に対する不溶性キトサンのMICは大部分0.08%を示して、不溶性キトサンのMICもグラム陽性菌がグラム陰性菌より低かった。   Further, as shown in Table 10, the MIC range of insoluble chitosan for the publicly reported strains is NS-2, NS-5 for A.hydrophila, NS-2 for P.vulgaris, NS-5 for E.coli, Sal.typhimurium. NS-2, NS-5, NS-9, NS-11 each show> 0.1% MIC, and the remaining MIC range of chitosan is 0.03-0.1%, water soluble It showed a very low MIC value compared to chitosan. The MIC range of Gram-positive bacteria was 0.03 to 0.08%, and the MIC of insoluble chitosan against the published strain was mostly 0.05%. In contrast, the MIC range for Gram-negative bacteria is 0.05-1% or> 1%, indicating a broad MIC value compared to the Gram-positive group, and the MIC of insoluble chitosan for Gram-negative bacteria is mostly 0. The MIC of insoluble chitosan was also lower for Gram-positive bacteria than Gram-negative bacteria, indicating 08%.

また、表11に示すように、5種の水溶性キトサン(S-2、S-9、S-10、S-11、S-12)と6種の不溶性キトサン(NS-2、NS-5、NS-8、NS-9、NS-10、NS-11)は、食品群別公示菌株に対して優れた抗菌活性を示すので、食品保存期間を向上させて魚介類、肉類、蔬菜類に起因した腐敗および食中毒の予防に効果的である。   In addition, as shown in Table 11, 5 types of water-soluble chitosan (S-2, S-9, S-10, S-11, S-12) and 6 types of insoluble chitosan (NS-2, NS-5) NS-8, NS-9, NS-10, NS-11) show excellent antibacterial activity against the public strains classified by food group, so that it can improve the shelf life of foods, such as seafood, meat, and vegetables. It is effective in preventing caused corruption and food poisoning.

前記結果によれば、公示菌株に対するキトサンの抗菌活性に関連し、水溶性キトサンの場合には脱アセチル化度が60%以上、不溶性キトサンの場合には脱アセチル化度が89%以上のとき、非常に優れた抗菌活性を示した。また、選別されたキトサンの公示菌株に対する成長抑制活性および最小成長阻害濃度が水溶性キトサンより不溶性キトサンで高く、グラム陰性群よりはグラム陽性群に対してさらに高い効果を示した。   According to the above results, it is related to the antibacterial activity of chitosan against the publicly known strain, and in the case of water-soluble chitosan, the degree of deacetylation is 60% or more, and in the case of insoluble chitosan, the degree of deacetylation is 89% or more, It showed very good antibacterial activity. Moreover, the growth inhibitory activity and the minimum growth inhibitory concentration of the selected chitosan against the publicly known strain were higher in the insoluble chitosan than in the water-soluble chitosan, and more effective in the gram positive group than in the gram negative group.

実験例2:抗酸化活性の測定
水溶性/不溶性キトサンの抗酸化活性を確認するために、下記の実験を行った。
Experimental Example 2: Measurement of antioxidant activity In order to confirm the antioxidant activity of water-soluble / insoluble chitosan, the following experiment was conducted.

2−1.DPPH(1,1−ジフェニル−2−ピクリルヒドラジル)消去効果
水溶性/不溶性キトサンのDPPHに対する電子供与能(electron donating ability)をBlois等による方法によって測定した。メタノールで希釈した水溶性/不溶性キトサン(1mg/mL、0.5mg/mL)10μLを96ウェルプレートに入れた後、60μmのDPPH試液100μLを加え、室温で30分間静置した後、540nmで吸光度を測定した。
2-1. DPPH (1,1-diphenyl-2-picrylhydrazyl) elimination effect The electron donating ability of water-soluble / insoluble chitosan to DPPH was measured by the method of Blois et al. 10 μL of water-soluble / insoluble chitosan diluted with methanol (1 mg / mL, 0.5 mg / mL) was added to a 96-well plate, 100 μL of 60 μm DPPH reagent solution was added, and the mixture was allowed to stand at room temperature for 30 minutes, and then absorbance at 540 nm. Was measured.

DPPH自由ラジカルに対する水溶性キトサンの抗酸化効果は図1に示し、DPPH自由ラジカルに対する不溶性キトサンの抗酸化効果は図2に示した。   The antioxidant effect of water-soluble chitosan against DPPH free radicals is shown in FIG. 1, and the antioxidant effect of insoluble chitosan against DPPH free radicals is shown in FIG.

図1および図2に示すように、水溶性キトサンS-9とS-10は、1mg/mLの濃度でそれぞれ79%と74%のラジカル消去能を示し、0.5mg/mLの低濃度でもそれぞれ77%と72%の高い抗酸化活性を示した。これらの2サンプル間の抗酸化活性が濃度によって大きくは異ならないことが分かった。ところが、S-4のサンプルは1mg/mLの濃度では83%の活性を示したが、0.5mg/mLの濃度では48%の活性を示した。このような結果より、水溶性キトサンは抗酸化活性の変化が濃度に大きく影響されることが分かる。これに対し、不溶性キトサンは抗酸化活性の変化が濃度に大きく影響されず、40〜50%の抗酸化活性を示した。   As shown in FIGS. 1 and 2, water-soluble chitosan S-9 and S-10 showed 79% and 74% radical scavenging ability at a concentration of 1 mg / mL, respectively, and even at a low concentration of 0.5 mg / mL. High antioxidant activity of 77% and 72%, respectively. It was found that the antioxidant activity between these two samples did not vary greatly with concentration. However, the S-4 sample showed 83% activity at a concentration of 1 mg / mL, but showed 48% activity at a concentration of 0.5 mg / mL. From these results, it can be seen that the change in antioxidant activity of water-soluble chitosan is greatly influenced by the concentration. On the other hand, insoluble chitosan showed an antioxidant activity of 40 to 50% without significant change in the antioxidant activity.

2−2.セルラーシステムにおける抗酸化実験
1)細胞種類および試薬
LLC−PK(porcine renal epithelial cell)は、ATCC(Solon、ohio、USA)で、培養のためのDMEM(Dulbecco's modified Eagal medium)とFBS(fetal bovine serum)はInvitogen CO.(Grand Island、NY)から購入して使用した。酸化的ストレスを誘導するために使用したSNPは、Wako(東京、日本)社の製品を、SIN−1(3-morpholinosydnonimine)、AAPH[2,2'-Azobis(2-aminopropane)dihydrochloride]、ピロガロール(pyrogallol)、MTT[3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide]は、Sigma Chemical Co.(USA)社の製品を使用した。
2-2. Antioxidation experiment in cellular system 1) Cell types and reagents LLC-PK 1 (porcine renal epithelial cell) is ATCC (Solon, Ohio, USA), DMEM (Dulbecco's modified Eagal medium) and FBS (fetal bovine) for culture. serum) is Invitrogen CO. Used from (Grand Island, NY). The SNP used to induce oxidative stress is a product of Wako (Tokyo, Japan), SIN-1 (3-morpholinosydnonimine), AAPH [2,2'-Azobis (2-aminopropane) dihydrochloride], pyrogallol. (pyrogallol), MTT [3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2H tetrazolium bromide] is available from Sigma Chemical Co. (USA) product was used.

2)細胞培養
LLC−PK細胞は、100units/mLのフェニシリン−ストレプトマイシンと5%のFBSが含有されたDMEMを用いて37℃、5%CO培養器で培養した。培養された細胞は1週に2〜3回再給与し、培養6〜7日頃リン酸塩緩衝溶液(phosphate buffered saline;PBS)で1次洗浄した後、0.05%トリプシン−0.02%EDTAで付着細胞を剥がして遠心分離した後、集積された細胞を培地に入れてピペットで細胞が均一に分散するようによく混合し、6〜7日毎に継代培養しながら実験に使用した。継代培養の際に、それぞれの通過回数(passage number)を記録し、通過回数が10回以上のときは新しい細胞を培養して実験を行った。
2) Cell Culture LLC-PK 1 cells were cultured in a 37 ° C., 5% CO 2 incubator using DMEM containing 100 units / mL phenicillin-streptomycin and 5% FBS. The cultured cells were re-supplied 2-3 times a week, and after primary washing with phosphate buffered saline (PBS) around 6-7 days in culture, 0.05% trypsin-0.02% After detaching the adherent cells with EDTA and centrifuging, the accumulated cells were put into a medium, mixed well with a pipette so that the cells were uniformly dispersed, and used for experiments while being subcultured every 6 to 7 days. At the time of subculture, the number of passages was recorded, and when the number of passages was 10 times or more, new cells were cultured for experiments.

3)細胞生存
細胞が集合(confluence)状態になると、96ウェルプレートにウェル当たり1×10cells/mLで植栽して2時間培養した後、酸化的ストレスを誘発するために、ペルオキシルラジカル(LOO)、ONOO、NO、O の供与体であるAAPH(10mM)、SIN−1(1mM)、SNP(1.2mM)およびピロガロール(1.2mM)を添加して24時間培養した。酸化的ストレスを誘発した後、S-10およびNS-8を濃度別(50、100、500、1000μg/mL)で処理して24時間培養した後、1mg/mLのMTT溶液を各ウェルに注入して37℃で4時間再培養した後、生成されたホルマザン結晶をジメチルスルホキシド(DMSO)に溶かして540nmで吸光度を測定した(Mosmann、1983)。
3) Cell survival When cells are in a confluence state, peroxyl radicals are used to induce oxidative stress after planting in 96-well plates at 1 × 10 4 cells / mL per well and culturing for 2 hours. (LOO ), ONOO , NO, O 2 donors AAPH (10 mM), SIN-1 (1 mM), SNP (1.2 mM) and pyrogallol (1.2 mM) are added and cultured for 24 hours. did. After inducing oxidative stress, S-10 and NS-8 were treated with different concentrations (50, 100, 500, 1000 μg / mL) and cultured for 24 hours, and then 1 mg / mL MTT solution was injected into each well. After re-culturing at 37 ° C. for 4 hours, the produced formazan crystals were dissolved in dimethyl sulfoxide (DMSO) and the absorbance was measured at 540 nm (Mosmann, 1983).

AAPHを処理したLLC−PK細胞に対する水溶性キトサン(S-10)と不溶性キトサン(NS-8)の抗酸化活性を濃度別に示した結果は表12のとおりであり、SIN-1を処理したLLC−PK細胞に対する水溶性キトサン(S-10)と不溶性キトサン(NS-8)の抗酸化活性を濃度別に示した結果は表13のとおりである。 Table 12 shows the results of the antioxidant activity of water-soluble chitosan (S-10) and insoluble chitosan (NS-8) on LLC-PK 1 cells treated with AAPH according to the concentration, and SIN-1 was treated. Table 13 shows the results of the antioxidant activity of water-soluble chitosan (S-10) and insoluble chitosan (NS-8) against LLC-PK 1 cells according to concentration.

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

表12に示すように、AAPHを処理したLLC−PK細胞に対するスクリーニング過程を介して選択された、PBSに溶かした水溶性キトサン(S-10)と1%酢酸に溶かした不溶性キトサン(NS-8)の抗酸化活性を濃度別に考察した結果、AAPHのみを処理した対照区の細胞生存率は23.6%であったが、S-10とNS-8をそれぞれ濃度別に処理した後の細胞生存率は濃度依存的に上昇し、水溶性キトサンの場合、1000μg/mLで67.1%の細胞生存率を示し、対照区に比べて増加した。したがって、水溶性/不溶性キトサンはAAPHによるLLC−PK細胞の酸化的ストレスに対して優れた改善効果を示し、特に水溶性キトサンが不溶性キトサンよりさらに優れた抗酸化活性を示した。 As shown in Table 12, water-soluble chitosan (S-10) dissolved in PBS and insoluble chitosan (NS-) dissolved in 1% acetic acid were selected through a screening process for LLC-PK 1 cells treated with AAPH. As a result of considering the antioxidant activity according to 8) by concentration, the cell viability of the control group treated with only AAPH was 23.6%, but the cells after treatment with S-10 and NS-8 by concentration were each The survival rate increased in a concentration-dependent manner. In the case of water-soluble chitosan, the cell survival rate was 67.1% at 1000 μg / mL, and increased compared to the control group. Therefore, water-soluble / insoluble chitosan showed an excellent improvement effect on oxidative stress of LLC-PK 1 cells by AAPH, and particularly water-soluble chitosan showed further superior antioxidant activity than insoluble chitosan.

また、表13に示すように、SIN-1のみを処理した対照区は酸化的ストレスによる細胞損傷によって細胞生存率が20.4%に減少したが、これに対し、S-10およびNS-8キトサンを濃度別に処理した後の細胞生存率は濃度依存的に増加して1000μg/mL処理の際にそれぞれ72.9%と64.2%であった。これはONOOに対する直接的な消去能を介して酸化的ストレスに対して改善効果を示したものと思われる。 Moreover, as shown in Table 13, the control group treated with SIN-1 alone decreased the cell viability to 20.4% due to cell damage due to oxidative stress, whereas S-10 and NS-8 The cell viability after treating chitosan according to concentration increased in a concentration-dependent manner, and was 72.9% and 64.2%, respectively, when treated with 1000 μg / mL. This seems to have shown an ameliorating effect on oxidative stress through direct erasing ability against ONOO .

実験例3:抗突然変異効果の測定
水溶性/不溶性キトサンおよびキトサン含有キムチの抗突然変異効果を確認するために、下記の実験を行った。
Experimental Example 3: Measurement of antimutagenic effect The following experiment was conducted to confirm the antimutagenic effect of water-soluble / insoluble chitosan and chitosan-containing kimchi.

1−1.試薬および菌株
D−ビオチン、L−ヒスチジン・HCl(一水和物)、D−グルコース−6−ホスフェイト(モノナトリウム塩)、およびNADP(ナトリウム塩)は、Sigma Chemical Co.(USA)から購入し、バクト栄養培養液(脱水した)とビテック寒天(Bitek agar)はDifco Laboratories(USA)から購入した。また、突然変異誘発源としては、直接突然変異源であるMNNG(4-methyl-N'-nitro-N-nitrosoguanidine)をAldrich Chemical Co.(USA)から購入して滅菌蒸留水に溶かして実験に使用し、間接突然変異源であるAFB(アフラトキシンB)をSigma Cemical Co.(St.Lous、MO、USA)から購入してDMSOに溶かして使用した。
1-1. Reagents and strains D-biotin, L-histidine.HCl (monohydrate), D-glucose-6-phosphate (monosodium salt), and NADP (sodium salt) are available from Sigma Chemical Co. (USA) and Bact nutrient cultures (dehydrated) and Bitek agar were purchased from Difco Laboratories (USA). Further, as a mutagenesis source, MNNG (4-methyl-N′-nitro-N-nitrosoguanidine), which is a direct mutagenesis, is obtained from Aldrich Chemical Co. (USA), dissolved in sterilized distilled water and used for experiments. AFB 1 (aflatoxin B 1 ), an indirect mutagen, was obtained from Sigma Chemical Co. (St.Louse, MO, USA) was used by dissolving in DMSO.

実験に使用した菌株は、Salmonella typhimurium TA100であって、米国カリフォルニア大学のAmes,B.N.博士から提供を受けて使用した。そして、これらの菌株は、実験直前にヒスチジン要求性、ディープラフ(deep rough)(rfa)突然変異、uvrB突然変異、R−因子などの遺伝形質を確認して使用した。   The strain used in the experiment was Salmonella typhimurium TA100, which is Ames, B., University of California, USA. N. Used as provided by Dr. These strains were used after confirming genetic traits such as histidine requirement, deep rough (rfa) mutation, uvrB mutation, and R-factor immediately before the experiment.

キムチ試料は、実施例2で製造したキトサン含有キムチの初期キムチと適熟期キムチ(pH4.3)を搾汁器(ミキサー)(NUC、韓国)で搾汁して製造した汁液試料と2種のメタノール抽出物を使用した。汁液試料は、汁液の形で集めた後、4℃、9000rpmで15分間遠心分離して採取した上澄み液をミリポアフィルター(Millipore filter)(0.20μm)で濾過して除菌した後、試料として使用した。メタノール抽出物は、初期およびpH4.3の適熟期まで発酵させたそれぞれのキトサンキムチを採取して凍結乾燥させた後、試料を磨砕して粉末に調製し、粉末試料に20倍(w/v)のメタノールを添加して12時間攪拌を2回繰り返し行って濾過した後、回転式真空濃縮器で濃縮して得た。抽出物はDMSOで希釈して実験に使用した。   The kimchi sample was prepared by squeezing the initial kimchi of the chitosan-containing kimchi produced in Example 2 and the ripening kimchi (pH 4.3) with a juicer (NUC, Korea) and two kinds Of methanol extract was used. The sap sample was collected in the form of a sap, and then centrifuged at 4 ° C. and 9000 rpm for 15 minutes, and the supernatant was collected by filtering through a Millipore filter (0.20 μm) to be sterilized. used. The methanol extract was prepared by grinding each chitosan kimchi fermented to the initial stage and the optimum ripening period of pH 4.3, lyophilized, and then grinding the sample to prepare a powder. / V) methanol was added, and the mixture was stirred twice for 12 hours, filtered, and then concentrated by a rotary vacuum concentrator. The extract was diluted with DMSO and used for experiments.

1−2.直接突然変異源(MNNG)に対する抗突然変異効果
0.5mLのリン酸緩衝液(直接突然変異源)に一晩培養した菌株(1〜2×10cells/mL)0.1mL、希釈試料50μLおよび突然変異誘発物質50μLを氷浴中のキャップチューブ(cap tube)に添加して軽くボルテキシング(vortexing)し、37℃で30分間予備培養した。ここに45℃のトップアガー(ヒスチジン/ビオチン溶液)2μLを予備培養した各チューブに注ぎ、3秒間ボルテキシングして最小平板培地(minimal glucose agar plate)に塗抹し、37℃で48時間培養した後、復帰突然変異体(revertant)の数を計数した。突然変異抑制率(inhibition rate)は数式1によって計算した。Salmonella typhimurium TA100で直接突然変異源MNNG(0.4μg/plate)によって誘発された突然変異に対する水溶性キトサンおよび不溶性キトサンの抗突然変異効果はそれぞれ表14および表15に示し、キトサン含有キムチのメタノール抽出物の抗突然変異効果は表16および図3に示した。
1-2. Antimutagenic effect on direct mutagen (MNNG) 0.1 mL of a strain (1-2 × 10 9 cells / mL) cultured overnight in 0.5 mL phosphate buffer (direct mutagen), diluted sample 50 μL And 50 μL of the mutagen was added to the cap tube in an ice bath and vortexed lightly and pre-incubated at 37 ° C. for 30 minutes. Here, 2 μL of 45 ° C. top agar (histidine / biotin solution) was poured into each pre-cultured tube, vortexed for 3 seconds, smeared on a minimal glucose agar plate, and cultured at 37 ° C. for 48 hours. The number of revertants was counted. The inhibition rate was calculated according to Equation 1. The antimutagenic effects of water-soluble and insoluble chitosan against mutations induced directly in Salmonella typhimurium TA100 by mutagen MNNG (0.4 μg / plate) are shown in Table 14 and Table 15, respectively, and methanol extraction of chitosan-containing kimchi The antimutagenic effect of the product is shown in Table 16 and FIG.

抑制率(%)=[(a−b)/(a−c)]×10 ・・・(数式1)
a:突然変異源によって誘導された復帰突然変異数、
b:試料を処理したときの復帰突然変異数、
c:突然変異源と試料がない場合の自然復帰突然変異の数。
Inhibition rate (%) = [(ab) / (ac)] × 10 (Expression 1)
a: the number of back mutations induced by the mutation source,
b: number of back mutations when the sample was processed,
c: Number of spontaneous reversion mutations in the absence of mutation source and sample.

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

表14および表15に示すように、水溶性キトサンは1.25mg/plateの低濃度より2.5mg/plateの高濃度で抗突然変異効果が高かった。水溶性キトサンを2.5mg/plateの濃度で処理したとき、S-7は55%の抗突然変異効果を示したが、これに対し、S-10は添加濃度によって濃度依存的にさらに高い抗突然変異効果を示した。水溶性キトサンの中ではS-7とS-10の抗突然変異効果が55%と非常に高く、不溶性キトサンの中ではNS-8が抑制率70%であって抗突然変異効果が最も高かった。大部分の水溶性/不溶性キトサンは、濃度が増加するにつれて抗突然変異効果も有意に増加した。また、水溶性/不溶性キトサンは、脱アセチル化度が大きいほど、粘度が小さくなるほど抗突然変異効果が増加した。この実験は23種のキトサンをスクリーニングする重要な根拠資料を提供している。   As shown in Tables 14 and 15, water-soluble chitosan had a higher antimutagenic effect at a higher concentration of 2.5 mg / plate than at a lower concentration of 1.25 mg / plate. When water-soluble chitosan was treated at a concentration of 2.5 mg / plate, S-7 showed an antimutagenic effect of 55%, whereas S-10 had a higher anti-mutation effect depending on the concentration added. Mutation effect was shown. Among the water-soluble chitosans, the antimutagenic effect of S-7 and S-10 was as high as 55%, and among the insoluble chitosans, NS-8 had a suppression rate of 70% and the antimutagenic effect was the highest. . Most water soluble / insoluble chitosans also significantly increased the antimutagenic effect with increasing concentration. In addition, the water-soluble / insoluble chitosan increased the antimutagenic effect as the degree of deacetylation increased and the viscosity decreased. This experiment provides an important basis for screening 23 chitosans.

また、表16および図3に示すように、不溶性キトサンNS-8を1%添加したキムチを1.25mg/plateの濃度で処理したとき、64%の抗突然変異効果を示した。これは標準化キムチの抗突然変異効果(41%)より高かった。また、キトサン含有キムチを2.5mg/plateの濃度で処理したとき、水溶性キトサンS-10を1%添加したキムチと不溶性キトサンNS-8を1%添加したキムチは77%の最も高い抗突然変異効果を示した。これも標準化キムチの抗突然変異効果(58%)より高かった。よって、水溶性/不溶性キトサン添加キムチは標準化キムチより高い抗突然変異効果を示すことが分かった。また、水溶性キトサンS-10を添加したキムチに比べて不溶性キトサンNS-8を添加したキムチが高い抗突然変異効果を示し、0.5%のキトサンを添加したキムチより1%のキトサンを添加したキムチが高い抗突然変異効果を示した。   Further, as shown in Table 16 and FIG. 3, when Kimchi supplemented with 1% insoluble chitosan NS-8 was treated at a concentration of 1.25 mg / plate, an antimutagenic effect of 64% was exhibited. This was higher than the antimutagenic effect of standardized kimchi (41%). In addition, when chitosan-containing kimchi was treated at a concentration of 2.5 mg / plate, 1% of water-soluble chitosan S-10 and 1% of insoluble chitosan NS-8 were 77%. Mutation effect was shown. This was also higher than the antimutagenic effect of standardized kimchi (58%). Thus, it was found that water-soluble / insoluble chitosan-added kimchi exhibits a higher antimutagenic effect than standardized kimchi. In addition, kimchi with insoluble chitosan NS-8 shows higher antimutagenic effect than kimchi with water-soluble chitosan S-10, and 1% chitosan is added to kimchi with 0.5% chitosan. Kimchi showed high antimutagenic effect.

1−3.間接突然変異源(MNNG)に対する抗突然変異効果
間接突然変異源を活性化させるために、MaronとAmesの方法によって、肝のミクロソーム酵素混合物(microsomal enzyme mixture)であるS9混合物を調製した。約200gの雄性SD(Sprague-Dawley)ラットの肝酵素誘発のために、ポリ塩化ビフェニル(PCB)混合物であるAroclor1254をトウモロコシ油1mL当たり200mgの濃度で希釈して1回腹腔注射し(500mg/kg)、5日後に肝を摘出した。4℃の無菌状態で摘出した肝を0.15M KClで数回洗浄し、肝の重量の3倍量に相当する0.15M KCl溶液を加えて均質化器(Potter-Elvehjem apparatus、USA)で均質化した。これを9000×gで10分間遠心分離して上澄み液としてのS9分画を得た。その後、クリオチューブ(cryo tube)に1〜2mLずつ分注してドライアイスで急速凍結した後、−180℃の液体窒素タンクに保管しながら実験に使用した。前記S9分画(10%)をMgCl−KCl塩(2%)、1Mグルコース−6−ホスフェイト(0.5%)、1M NADP(4%)、0.2Mリン酸塩緩衝液(pH7.4)および滅菌数と混合してS9混合物を調製した。
1-3. Antimutagenic effect on indirect mutagen (MNNG) To activate the indirect mutagen, an S9 mixture, a microsomal enzyme mixture of liver, was prepared by the method of Maron and Ames. For induction of liver enzymes in approximately 200 g of male SD (Sprague-Dawley) rats, Arochlor 1254, a polychlorinated biphenyl (PCB) mixture, was diluted once at a concentration of 200 mg per mL of corn oil and injected once (500 mg / kg). ) After 5 days, the liver was removed. The liver removed aseptically at 4 ° C. was washed several times with 0.15 M KCl, a 0.15 M KCl solution corresponding to 3 times the weight of the liver was added, and the mixture was homogenized (Potter-Elvehjem apparatus, USA). Homogenized. This was centrifuged at 9000 × g for 10 minutes to obtain an S9 fraction as a supernatant. Thereafter, 1 to 2 mL was dispensed into a cryo tube and rapidly frozen with dry ice, and then stored in a liquid nitrogen tank at −180 ° C. and used for experiments. The S9 fraction (10%) was mixed with MgCl—KCl salt (2%), 1M glucose-6-phosphate (0.5%), 1M NADP (4%), 0.2M phosphate buffer (pH 7.4). ) And sterilization number to prepare S9 mixture.

リン酸緩衝液(直接突然変異源)の代わりにS9混合物(間接突然変異源)を使用した以外は、前記1−2の方法と同様にして実験した。Salmonella typhimurium TA100で間接突然変異源AFB(0.5μg/plate)によって誘発された突然変異に対するキトサン含有キムチのメタノール抽出物の抗突然変異効果は表17および図4に示した。 The experiment was carried out in the same manner as in the above method 1-2 except that the S9 mixture (indirect mutagenesis source) was used instead of the phosphate buffer (direct mutagenesis source). The antimutagenic effect of chitosan-containing kimchi methanol extract against mutations induced by the indirect mutagen AFB 1 (0.5 μg / plate) in Salmonella typhimurium TA100 is shown in Table 17 and FIG.

Figure 2009278964
Figure 2009278964

表17および図4に示すように、1.25mg/plateの低濃度で不溶性キトサンNS-8を0.5%添加したキムチは67%の抑制率を示して抗突然変異効果が最も高かった。水溶性キトサンS-10を1%添加したキムチは63%の抑制率を示した。これは標準化キムチの抗突然変異効果(53%)よりも高かった。キトサン添加キムチを2.5mg/plateの濃度で処理したとき、水溶性キトサンS-10を0.5%添加したキムチは92%の抑制率を示して抗突然変異効果が非常に大きかった。水溶性キトサンS-10を1%添加したキムチは87%の抑制率を示した。これは標準化キムチの抗突然変異効果(77%)より高い。よって、水溶性/不溶性キトサンを添加したキムチは、間接突然変異源であるAFBに対する抗突然変異効果においても、MNNGにおける抗突然変異効果と類似な傾向を示した。 As shown in Table 17 and FIG. 4, kimchi to which 0.5% of insoluble chitosan NS-8 was added at a low concentration of 1.25 mg / plate showed a suppression rate of 67% and had the highest antimutagenic effect. Kimchi to which 1% of water-soluble chitosan S-10 was added showed an inhibition rate of 63%. This was higher than the antimutagenic effect of standardized kimchi (53%). When chitosan-added kimchi was treated at a concentration of 2.5 mg / plate, kimchi to which 0.5% of water-soluble chitosan S-10 was added showed a suppression rate of 92%, and the antimutagenic effect was very large. Kimchi to which 1% of water-soluble chitosan S-10 was added showed an inhibition rate of 87%. This is higher than the antimutagenic effect of standardized kimchi (77%). Therefore, kimchi to which water-soluble / insoluble chitosan was added showed a tendency similar to the antimutagenic effect in MNNG in the antimutagenic effect on AFB 1 which is an indirect mutation source.

実験例4:抗体活性の測定
水溶性/不溶性キトサンおよびキトサン含有キムチの抗癌活性を確認するために、下記の実験を行った。
Experimental Example 4: Measurement of antibody activity The following experiment was performed to confirm the anticancer activity of water-soluble / insoluble chitosan and chitosan-containing kimchi.

4−1.細胞培養
細胞培養のためにRPMI1640、FBS、0.05%のトリプシン−0.02%EDTAおよび100units/mLのフェニシリン−ストレプトマイシンは、GIBCO社(USA)から購入して使用した。細胞培養には5%CO培養器(Forma、model MC096、日本)を使用した。AGSヒト胃癌細胞(AGS human gastric adenocarcinoma cell)、HT−29ヒト結腸癌細胞(HT-29 human colon adenocarcinoma cell)は韓国細胞株銀行(ソウル医大)から分譲を受けて培養しながら実験に使用した。
4-1. Cell culture RPMI1640, FBS, 0.05% trypsin-0.02% EDTA and 100 units / mL phenicillin-streptomycin were purchased from GIBCO (USA) and used for cell culture. A 5% CO 2 incubator (Forma, model MC096, Japan) was used for cell culture. AGS human gastric cancer cells (AGS human gastric adenocarcinoma cells) and HT-29 human colon adenocarcinoma cells (HT-29 human colon adenocarcinoma cells) were used in the experiments after being sold by the South Korea Cell Line Bank (Seoul Medical University).

AGSヒト胃癌細胞およびHT−29ヒト結腸癌細胞は、100units/mLのフェニシリン−ストレプトマイシンと10%のFBSが含有されたRPMI1640を用いて5%CO培養器で培養した。培養されたそれぞれの癌細胞は、1週に2〜3回再給与し、6〜7日目にPBSで洗浄した後、0.05%トリプシン−0.02%EDTAで付着細胞を剥がして遠心分離した後、集積された癌細胞を培地に入れてピペットで癌細胞が均一に分散するようによく混合し、75mL細胞培養フラスコに10mLずつ一定の数を分割して注入し、6〜7日毎に継代培養しながら実験に使用した。継代培養の際にそれぞれの通過回数を記録し、通過回数が10回以上のときは新しい癌細胞を液体窒素タンクから取り出して再び培養して実験した。 AGS human gastric cancer cells and HT-29 human colon cancer cells were cultured in RPMI 1640 containing 100 units / mL phenicillin-streptomycin and 10% FBS in a 5% CO 2 incubator. Each cultured cancer cell was re-fed 2-3 times a week and washed with PBS on days 6-7, and then the adherent cells were detached with 0.05% trypsin-0.02% EDTA and centrifuged. After separation, put the accumulated cancer cells in a medium and mix well with a pipette so that the cancer cells are uniformly dispersed, and inject a fixed number of 10 mL into a 75 mL cell culture flask every 6-7 days Were used for experiments while being subcultured. The number of passages was recorded at the time of subculture, and when the number of passages was 10 times or more, new cancer cells were taken out of the liquid nitrogen tank and cultured again for experiments.

4−2.MTTアッセイ
前記培養された癌細胞を96ウェルプレートにウェル当たり1×10cells/mLとなるように180μLずつ分注し、試料を濃度別に20μLずつ添加した後、37℃、5%培養器で72時間培養した。ここに、リン酸生理食塩水に5mg/mLの濃度で製造したMTT(Sigma、USA)溶液20μLを添加し、同一の培養条件で4時間さらに培養した。10分間2000rpmで遠心分離した後、上澄み液を捨て、DMSO150μLを加えた後、30分間プレートを振とうした。この際、生成されたホルマザン結晶をDMSOに溶かしてELISAリーダーによって540nmで吸光度を測定した。細胞毒性率(%)は数式2で計算した。
4-2. MTT assay The cultured cancer cells were dispensed into a 96-well plate at 180 μL at a concentration of 1 × 10 4 cells / mL per well, and 20 μL of each sample was added according to the concentration, followed by incubation at 37 ° C. in a 5% incubator. Cultured for 72 hours. To this, 20 μL of MTT (Sigma, USA) solution produced at a concentration of 5 mg / mL was added to phosphate physiological saline, and further cultured for 4 hours under the same culture conditions. After centrifugation at 2000 rpm for 10 minutes, the supernatant was discarded, 150 μL of DMSO was added, and the plate was shaken for 30 minutes. At this time, the produced formazan crystals were dissolved in DMSO, and the absorbance was measured at 540 nm using an ELISA reader. Cytotoxicity (%) was calculated using Equation 2.

細胞毒性率(%)=[(対照区の吸光度−試料処理区の吸光度)/対照区の吸光度]×100 ・・・(数式2)   Cytotoxicity rate (%) = [(absorbance of control group−absorbance of sample treatment group) / absorbance of control group] × 100 (Equation 2)

水溶性キトサンのAGSヒト胃癌細胞に対する成長抑制効果は表18に示し、水溶性キトサンのHT−29ヒト結腸癌細胞に対する成長抑制効果は表19に示し、不溶性キトサンのHT−29ヒト結腸癌細胞に対する成長抑制効果は表20に示した。また、キトサン含有キムチのメタノール抽出物のAGSヒト胃癌細胞に対する成長抑制効果は表21に示し、キトサン含有キムチのメタノール抽出物のHT−29ヒト結腸癌細胞に対する成長抑制効果は表22に示した。   The growth inhibitory effect of water-soluble chitosan on AGS human gastric cancer cells is shown in Table 18, the growth inhibitory effect of water-soluble chitosan on HT-29 human colon cancer cells is shown in Table 19, and insoluble chitosan on HT-29 human colon cancer cells. The growth inhibition effect is shown in Table 20. The growth inhibitory effect of chitosan-containing kimchi methanol extract on AGS human gastric cancer cells is shown in Table 21, and the growth inhibitory effect of chitosan-containing kimchi methanol extract on HT-29 human colon cancer cells is shown in Table 22.

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

表18に示すように、水溶性/不溶性キトサンのAGSヒト胃癌細胞に対する抗癌効果は、5mg/mLの高濃度でS-10が最も高い抗癌効果を示し、濃度が増加するにつれて、抗癌効果も8〜88%と急速に増加した。   As shown in Table 18, the anticancer effect of water-soluble / insoluble chitosan on AGS human gastric cancer cells showed that S-10 showed the highest anticancer effect at a high concentration of 5 mg / mL, and as the concentration increased, the anticancer effect was increased. The effect also increased rapidly from 8 to 88%.

また、表19および表20に示すように、HT-29ヒト結腸癌細胞においてもAGSヒト胃癌細胞と同様の傾向を示して、1mg/mLの低濃度のキトサンより5mg/mLの高濃度のキトサンで高い抗癌効果を示した。水溶性キトサンS-7、S-8は43〜44%の最も高い抗癌効果を示し、不溶性キトサンNS-8とNS-9は83%の非常に高い抗癌活性を示した。   Further, as shown in Table 19 and Table 20, HT-29 human colon cancer cells showed the same tendency as AGS human gastric cancer cells, with a high concentration of chitosan of 5 mg / mL compared to a low concentration of 1 mg / mL of chitosan. It showed a high anticancer effect. Water-soluble chitosan S-7 and S-8 showed the highest anticancer effect of 43 to 44%, and insoluble chitosan NS-8 and NS-9 showed very high anticancer activity of 83%.

また、表21に示すように、キトサン含有キムチのメタノール抽出物のAGSヒト胃癌細胞に対する癌細胞成長抑制効果は、高濃度(200μg/mL)で1%S-10含有キムチと1%NS-8含有キムチの場合にそれぞれ66%と89%であって、標準化キムチ(38%)より高い癌細胞成長抑制効果を示した。また、表22に示すように、キトサン含有キムチのメタノール抽出物のHT-29ヒト結腸癌細胞に対する癌細胞成長抑制効果は、高濃度(200μg/mL)で1%S-10含有キムチと1%NS-8含有キムチの場合にそれぞれ47%と63%であって、標準化キムチ(32%)より高い癌細胞成長抑制効果を示した。前述したように、不溶性キトサンを添加したキムチが水溶性キトサンを添加したキムチよりさらに優れた抗癌効果を示すことが分かる。   Further, as shown in Table 21, the effect of suppressing the growth of cancer cells on AGS human gastric cancer cells by the methanol extract of chitosan-containing kimchi was 1% S-10-containing kimchi and 1% NS-8 at a high concentration (200 μg / mL). In the case of containing kimchi, it was 66% and 89%, respectively, and showed higher cancer cell growth inhibitory effect than standardized kimchi (38%). Further, as shown in Table 22, the effect of suppressing the growth of cancer cells on HT-29 human colon cancer cells by the methanol extract of chitosan-containing kimchi was 1% S-10-containing kimchi and 1% at a high concentration (200 μg / mL). In the case of NS-8 containing kimchi, 47% and 63%, respectively, showed a higher cancer cell growth inhibitory effect than standardized kimchi (32%). As described above, it can be seen that kimchi to which insoluble chitosan is added exhibits a superior anticancer effect than kimchi to which water-soluble chitosan is added.

実験例5:キトサン含有キムチの貯蔵安定性検証
本発明に係るキトサン含有キムチの貯蔵安定性を確認するために、キムチを4〜15℃で発酵させながら5日毎に発酵特性を観察した。
Experimental Example 5: Storage stability verification of chitosan-containing kimchi In order to confirm the storage stability of chitosan-containing kimchi according to the present invention, fermentation characteristics were observed every 5 days while kimchi was fermented at 4 to 15 ° C.

5−1.キムチ発酵中のpHおよび酸度の変化測定
試料は、実施例2〜5で製造したキトサン含有キムチを搾汁器(NUC、韓国)で搾汁し、その汁液を使用した。pHはpHメーター(Corning220、USA)によって室温で測定した。酸度は試料20mLを蒸留水で20倍に希釈した後、ここから10mLを取ってAOAC方法によって測定した。この際、0.1%フェノールフタレインを指示薬として1mL添加し、0.1N NaOHを滴定して、ピンク色を帯びる点を終末点とした。滴定値は数式3を用いて乳酸に換算し、含量%で表示した。
5-1. Measurement of changes in pH and acidity during kimchi fermentation As the sample, the chitosan-containing kimchi produced in Examples 2 to 5 was squeezed with a squeezer (NUC, Korea), and the juice was used. The pH was measured at room temperature with a pH meter (Corning 220, USA). The acidity was measured by AOAC method after taking 20 mL of a sample 20 times with distilled water and taking 10 mL from it. At this time, 1 mL of 0.1% phenolphthalein was added as an indicator, 0.1N NaOH was titrated, and the point of pink color was defined as the end point. The titration value was converted to lactic acid using Equation 3 and expressed as% content.

乳酸(%)={(0.1N NaOHのmL×NaOHの規定濃度)/試料の重量(g)}×9・・・(数式3)   Lactic acid (%) = {(mL of 0.1N NaOH × normal concentration of NaOH) / weight of sample (g)} × 9 (Equation 3)

15℃で発酵された水溶性/不溶性キトサン含有キムチ(実施例2)のpHおよび酸度の変化は表23に示し、4℃で発酵されたキトサン含有塩漬け液で漬けた白菜を用いて製造したキムチ(実施例3)のpHおよび酸度の変化は表24に示し、4℃で発酵された塩で漬けた白菜をキトサン含有濯ぎ液で濯いでから製造したキムチ(実施例4)のpHおよび酸度の変化は表25に示し、4℃で発酵されたキトサン含有薬味を用いて製造したキムチ(実施例5)のpHおよび酸度の変化は表26に示した。   Changes in pH and acidity of water-soluble / insoluble chitosan-containing kimchi fermented at 15 ° C. (Example 2) are shown in Table 23, and kimchi produced using Chinese cabbage soaked in a salted solution containing chitosan fermented at 4 ° C. The changes in pH and acidity of (Example 3) are shown in Table 24. The pH and acidity of Kimchi (Example 4) produced after rinsing Chinese cabbage fermented with salt fermented at 4 ° C. with a rinsing solution containing chitosan. Changes are shown in Table 25, and changes in pH and acidity of Kimchi (Example 5) produced using chitosan-containing seasonings fermented at 4 ° C. are shown in Table 26.

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

表23に示すように、キムチを作った直後のpH変化を考察すると、不溶性キトサンを添加したキムチが著しく高いpHを維持した。発酵が進むにつれて、標準化キムチの発酵速度よりキトサンを添加したキムチの発酵速度が遅く、7日目のpHを比較すると、1%S-10を添加したキムチのpHが3.91であるが、標準化キムチのpHは3.71と低かった。また、濃度が低いほどpHが低く、0.5%NS-8を添加したキムチのpHは3.73であって標準化キムチとほぼ類似であった。4日目の適熟期を経て、キトサンを添加したキムチはさらに速く発酵が進み、発酵7日目になると、pHは類似の値を示した。また、酸度の変化においても、最初は不溶性キトサン含有キムチの酸度が水溶性キトサン含有キムチの酸度より著しく低かったが、発酵が進むにつれて、酸度変化は類似であった。前述したように、発酵の初期にキトサンの添加によってキムチの発酵速度が遅くなるが、これはキトサンが初期発酵を抑制する効果のためであると思われる。   As shown in Table 23, considering the change in pH immediately after making kimchi, kimchi to which insoluble chitosan was added maintained a remarkably high pH. As the fermentation progresses, the fermentation rate of kimchi with chitosan added is slower than the fermentation rate of standardized kimchi, and the pH of kimchi with 1% S-10 added is 3.91 when the pH on the seventh day is compared. The pH of standardized kimchi was as low as 3.71. Further, the lower the concentration, the lower the pH, and the pH of kimchi with 0.5% NS-8 added was 3.73, which was almost similar to standardized kimchi. The kimchi to which chitosan was added passed through a suitable maturity period on the fourth day, and the fermentation proceeded more rapidly. On the seventh day of fermentation, the pH showed a similar value. Also, in terms of changes in acidity, the acidity of insoluble chitosan-containing kimchi was initially significantly lower than that of water-soluble chitosan-containing kimchi, but the acidity change was similar as fermentation progressed. As described above, the addition of chitosan in the early stage of fermentation slows down the rate of kimchi fermentation, which seems to be due to the effect of chitosan suppressing the initial fermentation.

また、表24に示すように、白菜を漬け込む塩水におけるキトサン濃度が0.05%、0.15%、0.3%、0.5%に増加するにつれて、pHの減少がゆっくりなされた。0.3%のキトサン含有塩漬け液で漬けた白菜を用いて製造したキムチの場合、発酵15〜25日目までpH4.2〜4.4、酸度0.6〜0.7%を維持し、0.5%のキトサン含有塩漬け液で漬けた白菜を用いて製造したキムチの場合、35日目になって初めて適熟期に到達し、35日目になってもpHは4.0以下に減少しなかった。これは標準化キムチの発酵様相と比較するときに貯蔵性が増加し、可食期間が長くなることが分かる。これに対し、0.05%および0.15%のキトサン含有塩漬け液で漬けた白菜を用いて製造したキムチの場合は、標準化キムチと類似の時期に適熟期に到達した。   Further, as shown in Table 24, as the chitosan concentration in the salt water in which Chinese cabbage was soaked was increased to 0.05%, 0.15%, 0.3%, and 0.5%, the pH was slowly decreased. In the case of kimchi produced using Chinese cabbage pickled with 0.3% chitosan-containing salted solution, pH 4.2-4.4 and acidity 0.6-0.7% are maintained until 15-25 days of fermentation. In the case of kimchi made with Chinese cabbage soaked in 0.5% chitosan-containing salted solution, the optimal maturity period is reached only on the 35th day, and the pH remains below 4.0 even on the 35th day. It did not decrease. This shows that when compared with the fermentation aspect of standardized kimchi, the storability increases and the edible period becomes longer. In contrast, in the case of kimchi produced using Chinese cabbage soaked with 0.05% and 0.15% chitosan-containing salted solution, the optimal maturity period was reached at a time similar to standardized kimchi.

また、表25に示すように、塩で漬けた白菜をキトサン含有濯ぎ液で濯いでから製造したキムチも、15日に適熟期に到達したことからみて、標準化キムチより貯蔵性が増加することが分かる。ところが、キトサン添加濃度間には差異を示していない。   Also, as shown in Table 25, kimchi produced after rinsing Chinese cabbage soaked in salt with a rinsing solution containing chitosan also has a greater storage than standardized kimchi, as it reached the proper maturity on the 15th. I understand. However, there is no difference between the chitosan addition concentrations.

また、表26に示すように、水溶性/不溶性キトサン含有(0.1、0.25、1.5%)薬味を用いて製造したキムチは、15日に適熟期に到達し、0.5%の水溶性/不溶性キトサンを含有した薬味を用いて製造したキムチは、標準化キムチと同様に10日目に適熟期(pH4.34)に到達したことを確認した。酸度もpHと類似の傾向を示し、水溶性/不溶性キトサン含有薬味を用いて製造したキムチが標準化キムチより増加した貯蔵性を示すことが分かる。ところが、キトサン添加濃度間には差異を示していない。   Also, as shown in Table 26, kimchi produced using a water-soluble / insoluble chitosan-containing (0.1, 0.25, 1.5%) seasoning reached the appropriate maturity on the 15th, It was confirmed that the kimchi produced using the seasoning containing 5% water-soluble / insoluble chitosan reached the suitable maturity period (pH 4.34) on the 10th day like the standardized kimchi. The acidity also shows a tendency similar to pH, and it can be seen that kimchi produced using a water-soluble / insoluble chitosan-containing spice has an increased storability over standardized kimchi. However, there is no difference between the chitosan addition concentrations.

前記pHと酸度の変化を観察した結果、キトサン含有塩漬け液で漬けた白菜を用いて製造したキムチが、塩漬けにした白菜をキトサン含有濯ぎ液で濯いでから製造したキムチと水溶性/不溶性キトサン含有薬味を用いて製造したキムチと比較して最も優れた貯蔵性および保存性を示した。   As a result of observing the change in pH and acidity, kimchi produced using Chinese cabbage pickled with a chitosan-containing salted solution contains kimchi produced after rinsing salted Chinese cabbage with a rinsing solution containing chitosan and water-soluble / insoluble chitosan-containing It showed the best storage and storage compared to kimchi produced with spices.

前述したように、キトサン含有キムチは、キトサンがキムチをゆっくり発酵させて、その貯蔵性および保存性を増加させる役割を果たすことにより、標準化キムチに比べて適熟期への到達期間が長くて発酵がゆっくり起るようにして、これにより貯蔵安定性に優れたことが分かる。   As described above, chitosan-containing kimchi has a longer time to reach a suitable maturation period than fermented kimchi because chitosan slowly ferments kimchi and increases its storage and storage. It can be seen that the storage stability is excellent.

5−2.キムチ発酵中の乳酸菌数の測定
実施例2〜5で製造したキトサン含有キムチがキムチ乳酸菌、すなわちロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の成長に及ぼす影響を観察した。
5-2. Measurement of the number of lactic acid bacteria during kimchi fermentation The effect of chitosan-containing kimchi produced in Examples 2 to 5 on the growth of kimchi lactic acid bacteria, namely Leuconostoc sp. And Lactobacillus sp. .

キムチは、発酵初期にロイコノストック属(Leuconostoc sp.)乳酸菌が生成されながらキムチの味と風味を良くするうえ、雑菌である好気性細菌の繁殖を抑制させ、さっぱりした味を出すが、発酵が進むにつれて、酸っぱい味を出すラクトバチルス属(Lactobacillus sp.)乳酸菌が増加し、pHは減少し、酸度は増加する。   Kimchi improves the taste and flavor of kimchi while Leuconostoc sp. Lactic acid bacteria are produced in the early stages of fermentation, and suppresses the growth of aerobic bacteria, which are miscellaneous bacteria, giving a refreshing taste. As it progresses, Lactobacillus sp. Lactic acid bacteria that give a sour taste increase, pH decreases, and acidity increases.

キムチ発酵中の乳酸菌数は、平板計数法(plate count technique)を用いて測定した。キムチ発酵熟成中の微生物菌数の変化は、混合液1mLを滅菌した蒸留水で段階的に10〜10まで希釈し、各希釈液中の0.1mLずつを予め加熱融解して43〜45℃に冷却したMRS培地10mLに仕込んで混合した後、ペトリー皿に平板を作り、37℃の培養器で48時間培養して、現れたコロニー数を数えて乳酸菌数として測定した。培地は乳酸菌の分離に主に使われるMRS寒天培地を使用した。MRS寒天培地の組成は表27に示した。ラクトバチルス(Lactobacillus)培地は、ラクトバチルス選択培地(LBS培地)にペディオコッカス(Pediococcus)の生育を抑制するために酢酸と酢酸ナトリウムを添加した改質LBS寒天培地(m−LBS培地、表28)を用いて30℃で3日間平板培養した。ロイコノストック(Leuconostoc)選択培地として、フェニルエチルアルコールとスクロースを添加したフェニルエチルアルコールスクロース寒天培地(PES培地、表29)を用いて20℃で3日間平板培養した。 The number of lactic acid bacteria during kimchi fermentation was measured using a plate count technique. Changes in the number of microbial bacteria during kimchi fermentation and aging were performed by diluting 1 mL of the mixed solution in a stepwise manner to 10 1 to 10 7 with sterilized distilled water, and heating and thawing 0.1 mL of each diluted solution in advance. After charging and mixing in 10 mL of MRS medium cooled to 45 ° C., a plate was made on a Petri dish and cultured for 48 hours in a 37 ° C. incubator, and the number of colonies that appeared was counted as the number of lactic acid bacteria. The medium used was an MRS agar medium mainly used for isolation of lactic acid bacteria. The composition of the MRS agar medium is shown in Table 27. Lactobacillus medium is a modified LBS agar medium (m-LBS medium, Table 28) in which acetic acid and sodium acetate are added to Lactobacillus selective medium (LBS medium) to inhibit the growth of Pediococcus. ) For 3 days at 30 ° C. As a Leuconostoc selective medium, a phenylethyl alcohol sucrose agar medium (PES medium, Table 29) supplemented with phenylethyl alcohol and sucrose was plated at 20 ° C. for 3 days.

キトサン含有キムチ(実施例2)の15℃における発酵中のロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の数変化は図5に示し、キトサン含有塩漬け液で漬けた白菜を用いて製造したキムチ(実施例3)の4℃における発酵中のロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の数変化は図6に示し、塩漬けにした白菜をキトサン含有濯ぎ液で濯いでから製造したキムチ(実施例4)の4℃における発酵中のロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の数変化は図7に示し、キトサン含有薬味を用いて製造したキムチ(実施例5)の4℃における発酵中のロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の数変化は図8に示した。   Changes in the numbers of Leuconostoc sp. And Lactobacillus sp. During fermentation of chitosan-containing kimchi (Example 2) at 15 ° C. are shown in FIG. 5, and Chinese cabbage pickled in a salted solution containing chitosan The changes in the number of Leuconostoc sp. And Lactobacillus sp. During fermentation at 4 ° C. of kimchi produced using sucrose (Example 3) are shown in FIG. Changes in the numbers of Leuconostoc sp. And Lactobacillus sp. During the fermentation at 4 ° C. of kimchi produced after rinsing with a chitosan-containing rinsing solution are shown in FIG. Changes in the numbers of Leuconostoc sp. And Lactobacillus sp. During fermentation at 4 ° C. for kimchi produced using a chitosan-containing spice (Example 5) are shown in FIG.

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

Figure 2009278964
Figure 2009278964

図5〜図8に示すように、本発明に係るキトサン含有キムチは、ロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)乳酸菌の成長速度を抑制させて優れた貯蔵性および保存性を示すことが分かる。   As shown in FIG. 5 to FIG. 8, the chitosan-containing kimchi according to the present invention suppresses the growth rate of Leuconostoc sp. And Lactobacillus sp. It turns out that it shows preservability.

実験例6:キトサン含有キムチの組織感の測定
本発明に係るキトサン含有キムチの貯蔵期間中の組織感を確認するために、下記の実験を行った。
Experimental Example 6: Measurement of texture of chitosan-containing kimchi The following experiment was performed to confirm the texture of the chitosan-containing kimchi according to the present invention during the storage period.

3週および4週発酵した、実施例3で製造したキムチ(0.3%および0.5%キトサン含有塩漬け液を使用)を10cmずつ切って試片として準備し、この試片の切断強度を測定して組織感を判断した。その結果は表30に示した。 The kimchi produced in Example 3 fermented for 3 weeks and 4 weeks (using salted solution containing 0.3% and 0.5% chitosan) was cut into 10 cm 2 pieces to prepare specimens, and the cutting strength of the specimens Was measured to judge the sense of organization. The results are shown in Table 30.

Figure 2009278964
Figure 2009278964

表30に示すように、本発明に係るキトサン含有キムチは標準化キムチより非常に優れた組織感を持つことが分かる。   As shown in Table 30, it can be seen that the chitosan-containing kimchi according to the present invention has a much better texture than the standardized kimchi.

実験例7:キトサン含有塩漬け液で漬けた塩漬け白菜、およびこれを用いて製造したキムチのキトサン含量の測定
本発明に係るキトサン含有塩漬け液で漬けた塩漬け白菜、およびこれを用いて製造したキムチのキトサン含量を確認するために、下記の実験を行った。
Experimental Example 7: Measurement of chitosan content of salted Chinese cabbage soaked in chitosan-containing salted solution and kimchi produced using the salted Chinese cabbage soaked in chitosan-containing salted solution according to the present invention, and kimchi produced using the same In order to confirm the chitosan content, the following experiment was conducted.

実施例3で0.3%および0.5%キトサン含有塩漬け液で漬けた塩漬け白菜、および前記塩漬け白菜を用いて製造したキムチのキトサン含量を測定した。その結果は表31に示した。   The chitosan content of the salted Chinese cabbage soaked in the salted solution containing 0.3% and 0.5% chitosan in Example 3 and the kimchi produced using the salted Chinese cabbage was measured. The results are shown in Table 31.

Figure 2009278964
Figure 2009278964

表31に示すように、キトサン含有塩漬け液で漬けた塩漬け白菜およびこれを用いて製造したキムチは、塩漬け濃度によってキトサンが塩漬け白菜に含浸され、これによりキムチの組織感を改善させ、食餌繊維自体の機能性を補完する。すなわち、植物性セルロースは陰(−)電荷の食餌繊維であるが、キトサンは陽(+)電荷の食餌繊維であるため、キトサンが塩漬け物に適量含浸混入されると、陽性食餌繊維になってキムチの植物性セルロースの構造が緻密になるので、キムチの組織感を改善させ且つ食餌繊維自体の機能性を補完するものと考えられる。   As shown in Table 31, the salted Chinese cabbage soaked in the salted solution containing chitosan and the kimchi produced using the same are impregnated into the salted Chinese cabbage by the salting concentration, thereby improving the texture of the kimchi and the dietary fiber itself. Complement the functionality of. That is, vegetable cellulose is a negative (−)-charged dietary fiber, but chitosan is a positive (+)-charged dietary fiber. Therefore, when chitosan is impregnated in a proper amount in a salted product, it becomes a positive dietary fiber. Since the structure of kimchi's vegetable cellulose becomes dense, it is considered that the texture of kimchi is improved and the functionality of the dietary fiber itself is complemented.

DPPH自由ラジカルに対する水溶性キトサンの抗酸化効果を示す図である。It is a figure which shows the antioxidant effect of water-soluble chitosan with respect to a DPPH free radical. DPPH自由ラジカルに対する不溶性キトサンの抗酸化効果を示す図である。It is a figure which shows the antioxidant effect of insoluble chitosan with respect to DPPH free radical. Salmonella typhimurium TA100で直接突然変異源としてのMNNG(0.4μg/plate)によって誘発された突然変異に対するキトサン含有キムチのメタノール抽出物の抗突然変異効果を示す図である。FIG. 6 shows the antimutagenic effect of chitosan-containing kimchi methanol extract against mutations induced by MNNG (0.4 μg / plate) as a direct mutagen in Salmonella typhimurium TA100. Salmonella typhimurium TA100で間接突然変異源としてのAFB(0.5μg/plate)によって誘発された突然変異に対するキトサン含有キムチのメタノール抽出物の抗突然変異効果を示す図である。FIG. 2 shows the antimutagenic effect of chitosan-containing kimchi methanol extract against mutations induced by AFB 1 (0.5 μg / plate) as an indirect mutation source in Salmonella typhimurium TA100. キトサン含有キムチ(実施例2)の15℃での発酵中におけるロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の数の変化を示す図である。It is a figure which shows the change of the number of the genus Leuconostoc (Leuconostoc sp.) And the genus Lactobacillus (Lactobacillus sp.) During fermentation at 15 degreeC of chitosan containing Kimchi (Example 2). キトサン含有塩漬け液で漬けた白菜を用いて製造したキムチ(実施例3)の4℃における発酵中のロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の数変化を示す図である。The figure which shows the number change of Leuconostoc sp (Leuconostoc sp.) And Lactobacillus sp (Lactobacillus sp.) During the fermentation at 4 degreeC of kimchi (Example 3) manufactured using the Chinese cabbage pickled with the salt solution containing chitosan. It is. 塩漬けにしたキムチをキトサン含有濯ぎ液で濯いでから製造したキムチ(実施例4)の4℃における発酵中のロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の数変化を示す図である。Changes in the numbers of Leuconostoc sp. And Lactobacillus sp. During the fermentation at 4 ° C. of kimchi produced after rinsing salted kimchi with a rinsing solution containing chitosan FIG. キトサン含有薬味を用いて製造したキムチ(実施例5)の4℃における発酵中のロイコノストック属(Leuconostoc sp.)およびラクトバチルス属(Lactobacillus sp.)の数変化を示す図である。It is a figure which shows the number change of Leuconostoc sp. (Leuconostoc sp.) And Lactobacillus sp. (Lactobacillus sp.) During fermentation at 4 degreeC of kimchi (Example 5) manufactured using chitosan containing seasoning.

Claims (8)

50〜90%の脱アセチル化度および1〜10cPの粘度を持つ水溶性キトサン、60〜100%の脱アセチル化度および8〜80cPの粘度を持つ不溶性キトサン、並びにその食品学的に許容される塩よりなる群から選ばれたいずれか一つまたは一つ以上の組み合わせである、抗菌、抗酸化、抗突然変異および抗癌活性に優れた塩漬け用キトサン粉末。   Water-soluble chitosan having a degree of deacetylation of 50-90% and a viscosity of 1-10 cP, insoluble chitosan having a degree of deacetylation of 60-100% and a viscosity of 8-80 cP, and its food acceptable A salted chitosan powder excellent in antibacterial, antioxidant, antimutation and anticancer activity, which is one or a combination of one or more selected from the group consisting of salts. 前記食品学的に許容される塩は塩酸塩、酢酸塩、クエン酸塩および乳酸塩よりなる群から選ばれたいずれか1種であることを特徴とする、請求項1に記載の塩漬け用キトサン粉末。   2. The salted chitosan according to claim 1, wherein the foodically acceptable salt is any one selected from the group consisting of hydrochloride, acetate, citrate and lactate. Powder. 請求項1または2に記載の塩漬け用キトサン粉末を塩漬け液の総重量に対して0.2〜1.0重量%含む塩漬け液。   A salting solution containing 0.2 to 1.0% by weight of chitosan powder for salting according to claim 1 or 2 based on the total weight of the salting solution. 請求項3に記載の塩漬け液に蔬菜類を漬け込んで製造した塩漬け物。   A salted product produced by immersing a vegetable in the salted solution according to claim 3. 前記蔬菜類は白菜、若大根、大根、胡瓜、玉葱、大蒜および唐辛子よりなる群から選ばれた少なくとも1種であることを特徴とする、請求項4に記載の塩漬け物。   The salted product according to claim 4, wherein the sugar beet is at least one selected from the group consisting of Chinese cabbage, young radish, radish, pepper, onion, daikon and chili. 前記塩漬け物は塩漬け物の総重量に対して0.05〜0.25重量%のキトサンが含浸されたことを特徴とする、請求項4に記載の塩漬け物。   The salted product according to claim 4, wherein the salted product is impregnated with 0.05 to 0.25% by weight of chitosan based on the total weight of the salted product. 請求項4〜6のいずれか1項に記載の塩漬け物を用いて製造したキムチ。   Kimchi manufactured using the salted thing of any one of Claims 4-6. 請求項1または2に記載の塩漬け用キトサン粉末をキムチの総重量に対して0.01〜1.5重量%含むキムチ。   Kimchi containing 0.01 to 1.5% by weight of the salted chitosan powder according to claim 1 or 2 based on the total weight of the kimchi.
JP2008239594A 2008-05-19 2008-09-18 Chitosan powder for salting, salted food using the same, and kimchi produced using the same Active JP4705137B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20080046330 2008-05-19
KR10-2008-0046330 2008-05-19
KR10-2008-0082492 2008-08-22
KR1020080082492A KR101082766B1 (en) 2008-05-19 2008-08-22 Chitosan powder for salting, salted material using the same, and kimchi prepared using the same

Publications (2)

Publication Number Publication Date
JP2009278964A true JP2009278964A (en) 2009-12-03
JP4705137B2 JP4705137B2 (en) 2011-06-22

Family

ID=41450124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239594A Active JP4705137B2 (en) 2008-05-19 2008-09-18 Chitosan powder for salting, salted food using the same, and kimchi produced using the same

Country Status (1)

Country Link
JP (1) JP4705137B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042845A (en) * 2014-08-25 2016-04-04 ポッカサッポロフード&ビバレッジ株式会社 Method for producing capsicum-containing soup
KR102331198B1 (en) * 2021-04-05 2021-12-01 가톨릭관동대학교산학협력단 Kimchi comprising Chionoecetes opilio and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231845A (en) * 1988-03-11 1989-09-18 Dai Ichi Kogyo Seiyaku Co Ltd Pickling bed additive, pickling bed and production of pickles
JP2001046011A (en) * 1999-08-09 2001-02-20 Jung Moon Lee Method for producing powdery kimuchi (korean pickle)- mixed spice
JP2002069101A (en) * 2000-09-01 2002-03-08 Kyowa Technos:Kk Near neutral aqueous chitosan solution, its dried product, and method of producing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231845A (en) * 1988-03-11 1989-09-18 Dai Ichi Kogyo Seiyaku Co Ltd Pickling bed additive, pickling bed and production of pickles
JP2001046011A (en) * 1999-08-09 2001-02-20 Jung Moon Lee Method for producing powdery kimuchi (korean pickle)- mixed spice
JP2002069101A (en) * 2000-09-01 2002-03-08 Kyowa Technos:Kk Near neutral aqueous chitosan solution, its dried product, and method of producing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042845A (en) * 2014-08-25 2016-04-04 ポッカサッポロフード&ビバレッジ株式会社 Method for producing capsicum-containing soup
KR102331198B1 (en) * 2021-04-05 2021-12-01 가톨릭관동대학교산학협력단 Kimchi comprising Chionoecetes opilio and manufacturing method thereof

Also Published As

Publication number Publication date
JP4705137B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
Liu et al. Effect of Citrus wilsonii Tanaka extract combined with alginate-calcium coating on quality maintenance of white shrimps (Litopenaeus vannamei Boone)
CN1769426B (en) Pentose lactobacillus bacteriocin and its special production strain and uses
Tataridou et al. Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157: H7 and Listeria monocytogenes
CN106857786B (en) Marine product fresh-keeping composition, fresh-keeping agent and marine product fresh-keeping method
CN104522596B (en) A kind of low-salt preservative-less lactic acid pickles and its production technology containing compound lactobacillus
CN108347928B (en) Antimicrobial agents comprising xanthohumol and their use in food products
CN102524911B (en) Biological preservative and method for antisepsis and freshness retaining of foods by using the biological preservative
JP5017378B2 (en) Can kimchi with improved storage and functionality
Milani et al. Effect of novel bioactive coating enriched with nanoemulsion of mustard essential oil on the quality of Turkey meat.
KR102092740B1 (en) Black tea kimchi using the black tea extract, and its manufacturing method
KR101082766B1 (en) Chitosan powder for salting, salted material using the same, and kimchi prepared using the same
KR101647778B1 (en) Method for remove a fishy smell and the lipid rancidity prevention on mackerel and spanish mackerel using low salinity carbonated water and jujube extract
CN106720196B (en) Preparation method of pickling preservative solution, pickling preservative solution and application thereof
JP4705137B2 (en) Chitosan powder for salting, salted food using the same, and kimchi produced using the same
KR102564916B1 (en) Seafood processing method
CN101507485A (en) Kraut preparation method and product thereof using sweet potato stem and leaf as raw material
KR101098624B1 (en) Method for preparing soup prepared with fermented soybeans comprising old-fermented kimchi
CN103976410A (en) Processing method for instant shelled seasoning tegillarca granosa
CN104664449B (en) A kind of processing method of intermediate moisture activity preconditioned whitefish
KR20200094700A (en) Method for Selecting Lactic Acid Bacteria Complex for Development of Fermentation Food
KR20150131483A (en) Method for producing Platycodon grandiflorus fermented broth with enhanced antioxidant activity and inhibition activity of alpha-glucosidase
BASTON et al. Calcium lactate influence on some non-pathogenic microorganisms
JP2015008672A (en) Fermented food product, manufacturing method thereof, and new lactic acid bacterium
KR20180071894A (en) Kimchi having excellent appealability
CN108450543B (en) Fruit and vegetable fresh-keeping agent and fresh-keeping method for fresh-cut fruits and vegetables

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4705137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250