JP2009278347A - Bandpass filter - Google Patents

Bandpass filter Download PDF

Info

Publication number
JP2009278347A
JP2009278347A JP2008127230A JP2008127230A JP2009278347A JP 2009278347 A JP2009278347 A JP 2009278347A JP 2008127230 A JP2008127230 A JP 2008127230A JP 2008127230 A JP2008127230 A JP 2008127230A JP 2009278347 A JP2009278347 A JP 2009278347A
Authority
JP
Japan
Prior art keywords
circuit
frequency
transmission lines
stub
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008127230A
Other languages
Japanese (ja)
Other versions
JP5116560B2 (en
Inventor
Satoshi Yoneda
諭 米田
Hideki Hatakeyama
英樹 畠山
Hiromitsu Uchida
浩光 内田
Satoru Owada
哲 大和田
Hisafumi Yoneda
尚史 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008127230A priority Critical patent/JP5116560B2/en
Publication of JP2009278347A publication Critical patent/JP2009278347A/en
Application granted granted Critical
Publication of JP5116560B2 publication Critical patent/JP5116560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a bandpass filter which relieves a spurious response resulting from serial resonance of a transmission line and has broadband low spurious characteristics when the bandpass filter is constituted by connecting a resonant circuit by the transmission line in order to obtain a broadband pass band. <P>SOLUTION: The bandpass filter is provided with: a plurality of parallel resonant circuits (3, 4) which resonate in a use frequency; and a plurality of transmission lines (2) for coupling, and is constituted by alternatively performing cascade connection between the parallel resonant circuits and the transmission lines for coupling, wherein electric length of the plurality of transmission lines for coupling becomes two or more kinds of different values. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、主にマイクロ波帯及びミリ波帯において、比較的広帯域な通過帯域を有する帯域通過フィルタに関するものである。   The present invention relates to a band pass filter having a relatively wide pass band mainly in a microwave band and a millimeter wave band.

まず、図19から図21を用いて、例えば下記非特許文献1等に記載のある従来の広帯域な帯域通過フィルタについて説明する。図19は回路図、図20は通過帯域の中心周波数fにおける図19の等価回路、図21は図19の回路が有する周波数特性である。図19において、1Aは外部へつながる入出力端子、2Aは周波数fにおいて約90°の電気長を有する伝送線路、3Aは周波数fにおいて約90°の電気長を有する先端短絡スタブを示す。図19の回路は、入出力端子1A間で、複数の伝送線路2Aと複数の先端短絡スタブ3Aとを交互に縦続接続して構成している。 First, a conventional wideband bandpass filter described in, for example, Non-Patent Document 1 below will be described with reference to FIGS. 19 is a circuit diagram, FIG. 20 is an equivalent circuit of FIG. 19 at the center frequency f 0 of the pass band, and FIG. 21 is a frequency characteristic of the circuit of FIG. In Figure 19, 1A denotes input and output terminals connected to the outside transmission line 2A is having an electrical length of approximately 90 ° at a frequency f 0, 3A is a short-circuited stub having an electrical length of approximately 90 ° at a frequency f 0. The circuit of FIG. 19 is configured by alternately connecting a plurality of transmission lines 2A and a plurality of short-circuited short stubs 3A between input / output terminals 1A.

図19において、先端短絡スタブ3Aは周波数fにおいて並列共振する。一般に、図19のように、周波数fで並列共振する回路を伝送線路で直接接続した回路は、前後の共振器間で高い結合量が得られることから、共振器間で高い結合量を必要とする、広帯域な通過特性を有する帯域通過フィルタの実現に適した回路構成の1つとして知られている。 19, the leading-end short stub 3A is parallel resonance at a frequency f 0. In general, as shown in FIG. 19, a circuit in which a circuit that resonates in parallel at a frequency f 0 is directly connected by a transmission line can obtain a high coupling amount between the front and rear resonators, and therefore requires a high coupling amount between the resonators. It is known as one of the circuit configurations suitable for realizing a band pass filter having a wide band pass characteristic.

次に、図20を参照して図19の回路動作について説明する。図20は、図19において、入出力端子1Aを終端抵抗4Aと置き換え、伝送線路2Aを理想Jインバータ回路5Aと置き換え、先端短絡スタブ3Aを並列共振回路6Aと置き換えた回路で、周波数fにおける図19の等価回路である。理想Jインバータ回路5Aは、前後に接続された2つの並列共振回路6Aを、要求される通過帯域幅に応じた結合量で結合する特性を有しており、要求される通過帯域幅が広い場合、高い結合量を実現する必要がある。並列共振回路6Aは周波数fにおいて並列共振する。一般に、図20は、通過帯域の中心周波数をfとする3段の帯域通過フィルタの回路構成として知られており、図19の回路は、周波数fを中心周波数とする通過帯域を有する。なお、先端短絡スタブ3Aは周波数fにおいて並列共振する他に、高次共振として周波数3fにおいても並列共振する。そのため、図19の回路は、図21に示すように、周波数f近辺の他に、周波数3f近辺にも通過特性を有する。このように、所望の周波数以外の周波数における不要通過域をスプリアス応答と呼ぶ。 Next, the circuit operation of FIG. 19 will be described with reference to FIG. Figure 20 is a 19, replacing the input and output terminals 1A and terminating resistor 4A, replacing the transmission line 2A ideal J inverter circuit 5A, a circuit is replaced with a parallel resonant circuit 6A a short-circuited stub 3A, at the frequency f 0 It is the equivalent circuit of FIG. The ideal J inverter circuit 5A has a characteristic of coupling two parallel resonant circuits 6A connected at the front and rear with a coupling amount corresponding to a required pass bandwidth, and a required pass bandwidth is wide. It is necessary to realize a high binding amount. Parallel resonant circuit 6A to parallel resonance at a frequency f 0. In general, FIG. 20 is known the center frequency of the pass band as a circuit configuration of the band-pass filter of three stages to f 0, the circuit of Figure 19 has a pass band having a center frequency of f 0. In addition to the parallel resonance at the frequency f 0 , the tip short-circuited stub 3A also performs parallel resonance at the frequency 3f 0 as a high-order resonance. Therefore, as shown in FIG. 21, the circuit of FIG. 19 has pass characteristics not only near the frequency f 0 but also near the frequency 3f 0 . In this way, an unnecessary pass band at a frequency other than the desired frequency is called a spurious response.

またこの種の装置に関連して、伝送線路と共振器を接続し、加工が容易で量産性に優れたマイクロ波帯及びミリ波帯で用いられるストリップ線路フィルタが、例えば下記特許文献1に開示されている。   Further, in connection with this type of device, a stripline filter that is connected to a transmission line and a resonator, is easy to process, and is excellent in mass productivity and used in a microwave band and a millimeter wave band is disclosed in, for example, Patent Document 1 below. Has been.

特開平06−097702号公報Japanese Patent Laid-Open No. 06-097702 G. Matthaei, L. Young, and E. M. T. Jones, "Microwave Filters, Impedance Matching Networks, and Coupling Structures", McGraw-Hill, 1964,p423G. Matthaei, L. Young, and E. M. T. Jones, "Microwave Filters, Impedance Matching Networks, and Coupling Structures", McGraw-Hill, 1964, p423

上述のような従来の帯域通過フィルタでは、周波数2fにおいて、伝送線路2A(5A)は電気長が約180°となって直列共振する。一方、先端短絡スタブ3A(6A)は電気長が同様に約180°となり、理想的には短絡端となる。しかし、実際に回路を作製した場合、スタブ先端の短絡構造や製造誤差等の影響により、理想的な短絡端とはならず、微小な並列インダクタンス回路となる場合が多い。また、直列共振回路と微小な並列インダクタンス回路とを交互に縦続接続した回路は、狭帯域な通過帯域を有する帯域通過フィルタの回路構成の1つとして知られている。そのため、図19の回路は、周波数2fにおいて狭帯域な通過帯域を有する帯域通過フィルタとして動作しやすく、図22に示すように、周波数2fにおいて局所的なスプリアス応答が発生しやすい問題があった。 In the conventional bandpass filter as described above, at the frequency 2f 0 , the transmission line 2A (5A) has an electrical length of about 180 ° and is in series resonance. On the other hand, the tip short-circuit stub 3A (6A) has an electrical length of about 180 °, which is ideally a short-circuit end. However, when a circuit is actually manufactured, it is not an ideal short-circuited end due to the short-circuit structure at the end of the stub, manufacturing errors, and the like, and it is often a minute parallel inductance circuit. A circuit in which series resonance circuits and minute parallel inductance circuits are alternately connected in cascade is known as one of circuit configurations of a band pass filter having a narrow pass band. For this reason, the circuit of FIG. 19 is likely to operate as a bandpass filter having a narrow passband at the frequency 2f 0 , and as shown in FIG. 22, there is a problem that a local spurious response is likely to occur at the frequency 2f 0 . It was.

この発明は、広帯域な通過帯域を得るため、共振回路を伝送線路で接続して帯域通過フィルタを構成する場合において、伝送線路の直列共振に起因するスプリアス応答を軽減し、広帯域な低スプリアス特性を有する帯域通過フィルタを得ることを目的とする。   The present invention reduces the spurious response caused by the series resonance of the transmission line and reduces the broadband low spurious characteristic when a resonant circuit is connected by a transmission line to form a wide band. An object of the present invention is to obtain a bandpass filter having the same.

この発明は、使用周波数において共振する複数の並列共振回路と、複数の結合用伝送線路とを備え、前記並列共振回路と前記結合用伝送線路とを交互に縦続接続して構成された帯域通過フィルタであって、前記複数の結合用伝送線路の電気長が2種類以上の異なる値となっていることを特徴とする帯域通過フィルタにある。   The present invention includes a plurality of parallel resonant circuits that resonate at a use frequency and a plurality of coupling transmission lines, and a band-pass filter configured by cascading the parallel resonant circuits and the coupling transmission lines alternately. In the band-pass filter, the electrical lengths of the plurality of coupling transmission lines have two or more different values.

この発明では、伝送線路の直列共振に起因するスプリアス応答を軽減し、広帯域な低スプリアス特性を有する帯域通過フィルタを提供することができる。   According to the present invention, it is possible to provide a bandpass filter having a low-spurious characteristic in a wide band by reducing spurious response due to series resonance of the transmission line.

実施の形態1.
図1はこの発明の実施の形態1による帯域通過フィルタの構成を示す図である。図1において、1は外部へつながる入出力端子、2は伝送線路、3は先端短絡スタブ、4は容量回路を示す。伝送線路2は、4つの伝送線路2を縦続接続して主線路を構成し、主線路の両端が入出力端子1となっている。
Embodiment 1 FIG.
1 is a diagram showing a configuration of a band-pass filter according to Embodiment 1 of the present invention. In FIG. 1, 1 is an input / output terminal connected to the outside, 2 is a transmission line, 3 is a tip short-circuited stub, and 4 is a capacitance circuit. The transmission line 2 forms a main line by cascading four transmission lines 2, and both ends of the main line are input / output terminals 1.

各伝送線路2の電気長は、入出力端子1に接続されている2つの伝送線路2は通過帯域の中心周波数fにおいて約75°及び約100°の電気長を有し、その他の2つの伝送線路2は、周波数fにおいて約90°の電気長を有する。先端短絡スタブ3は、周波数fにおいて約90°の電気長を有し、一端が短絡され、他端は伝送線路2同士の接続箇所に接続されている。容量回路4は、周波数fにおいて約75°及び100°の電気長を有する2つの伝送線路2のそれぞれの両端に1つずつ並列接続されている。 The electrical length of each transmission line 2 is such that the two transmission lines 2 connected to the input / output terminal 1 have electrical lengths of about 75 ° and about 100 ° at the center frequency f 0 of the passband, and the other two transmission line 2 has an electrical length of approximately 90 ° at a frequency f 0. The tip short-circuit stub 3 has an electrical length of about 90 ° at the frequency f 0 , one end is short-circuited, and the other end is connected to a connection portion between the transmission lines 2. One capacitive circuit 4 is connected in parallel to each end of two transmission lines 2 having electrical lengths of about 75 ° and 100 ° at the frequency f 0 .

次に、動作について説明する。図2は周波数fにおいて約90°の電気長を有する伝送線路2のπ型回路変換で、特性インピーダンスがZで電気長が周波数fにおいて90°である伝送線路と、特性インピーダンスがZ’で電気長が周波数fにおいてθである伝送線路の両端に寄生容量回路Cを接続した回路が、周波数fにおいて等価で回路変換が可能であることを示す。なお、図2において、Z、Z’、θ、Cは下記式(1)、式(2)を満たす。 Next, the operation will be described. FIG. 2 shows a π-type circuit conversion of the transmission line 2 having an electrical length of about 90 ° at the frequency f 0 , a transmission line having a characteristic impedance of Z and an electrical length of 90 ° at the frequency f 0 , and a characteristic impedance of Z ′. in indicating that electrical length circuit connected parasitic capacitance circuit C p at both ends of the transmission line is θ at the frequency f 0 is a possible circuit converts an equivalent in the frequency f 0. Incidentally, in FIG. 2, Z, Z ', θ , C p is the following formula (1), satisfies the equation (2).

Z’=Z/sinθ (1)
2πf=(cosθ)/Z (2)
Z '= Z / sinθ (1)
2πf 0 C p = (cos θ) / Z (2)

次に、図2に示したπ型回路変換を、上記式(1)、式(2)においてθを75°及び100°として図19の回路の入出力端子1Aに接続された2つの伝送線路2Aにそれぞれ適用すると、図1の回路が得られる。すなわち、図1の回路は図19の回路の伝送線路2Aの一部にπ型回路変換を適用した回路である。   2 is converted into two transmission lines connected to the input / output terminal 1A of the circuit of FIG. 19 with θ being 75 ° and 100 ° in the above formulas (1) and (2). When applied to 2A, the circuit of FIG. 1 is obtained. That is, the circuit of FIG. 1 is a circuit in which π-type circuit conversion is applied to a part of the transmission line 2A of the circuit of FIG.

次に図1の回路において、伝送線路2の直列共振について考える。図19の回路では、全ての伝送線路2Aが周波数2fにおいて電気長が約180°となって直列共振するため、図22に示したように周波数2fにおいて局所的なスプリアス応答が発生しやすい問題があった。 Next, consider the series resonance of the transmission line 2 in the circuit of FIG. In the circuit of Figure 19, because all of the transmission line 2A to series resonance electrical length at the frequency 2f 0 is turned approximately 180 °, local spurious response is likely to occur at the frequency 2f 0 as shown in FIG. 22 There was a problem.

しかし、図1の回路では、入出力端子1に接続された2つの伝送線路2は、周波数1.8fと2.4fにおいてそれぞれ電気長が約180°となり、他の2つの伝送線路2は周波数2fにおいて電気長が約180°となる。すなわち、図1の回路では、伝送線路2の直列共振に起因するスプリアスは1つの周波数に集中せず3つの周波数1.8f、2f、2.4fに分散して発生する。従って、図1の回路は、図3に示すように、伝送線路2の直列共振に起因するスプリアス応答が3つの周波数1.8f、2f、2.4fに分散して発生し、且つそれぞれの周波数においてスプリアス応答の強度が抑えられた周波数特性を有する。 However, in the circuit of FIG. 1, the two transmission lines 2 connected to the input / output terminal 1 have an electrical length of about 180 ° at frequencies of 1.8 f 0 and 2.4 f 0 , respectively, and the other two transmission lines 2 Has an electrical length of about 180 ° at a frequency of 2f 0 . That is, in the circuit of Figure 1, the spurious caused by the series resonance of the transmission line 2 is not concentrated in one frequency three frequency 1.8F 0, 2f 0, generated by dispersing the 2.4f 0. Thus, the circuit of Figure 1, as shown in FIG. 3, spurious responses three frequency 1.8F 0, 2f 0 due to the series resonance of the transmission line 2, generated by dispersing a 2.4F 0, and Each frequency has a frequency characteristic in which the intensity of the spurious response is suppressed.

すなわちこの実施の形態1により、伝送線路2の直列共振に起因するスプリアス応答を2つ以上の周波数に分散して発生させ、その強度を抑えることができる。   That is, according to the first embodiment, the spurious response due to the series resonance of the transmission line 2 can be distributed and generated in two or more frequencies, and the strength thereof can be suppressed.

なお、この実施の形態1では、4つの伝送線路2の内で入出力端子1に接続された2つの伝送線路2に、上記式(1)(2)においてθを75°及び100°としたπ型回路変換を適用しているが、90°以外の値であれば、θを75°及び100°に限定する必要はない。   In the first embodiment, θ is set to 75 ° and 100 ° in the above formulas (1) and (2) for two transmission lines 2 connected to the input / output terminal 1 among the four transmission lines 2. Although π-type circuit conversion is applied, it is not necessary to limit θ to 75 ° and 100 ° as long as the value is other than 90 °.

また、この実施の形態1では4つの伝送線路2の内、2つの伝送線路2にπ型回路変換を適用しているが、1つ以上の伝送線路2に上記式(1)(2)においてθを90°以外の値としたπ型回路変換を適用すれば同様の効果を得ることができる。   In the first embodiment, π-type circuit conversion is applied to two transmission lines 2 out of the four transmission lines 2, but one or more transmission lines 2 are represented by the above formulas (1) and (2). The same effect can be obtained by applying π-type circuit conversion in which θ is a value other than 90 °.

また、この実施の形態1は3段の帯域通過フィルタであるが、フィルタの段数を3段に限定する必要はない。   The first embodiment is a three-stage bandpass filter, but the number of filter stages need not be limited to three.

また、この実施の形態1では、周波数(使用周波数)fにおいて共振する共振器として先端短絡スタブ3を用いているが、周波数fにおいて共振する共振回路であれば、その形態を先端短絡スタブに限定する必要はない。異なる形態の共振器を適用する場合、それに応じ、図3では周波数3fに発生した共振器の高次共振に起因するスプリアス応答に該当する周波数も変化する。 In the first embodiment, the tip short-circuit stub 3 is used as a resonator that resonates at the frequency (operating frequency) f 0. However, if the resonance circuit resonates at the frequency f 0 , the tip is short-circuited. It is not necessary to limit to. When a resonator having a different form is applied, the frequency corresponding to the spurious response due to the higher-order resonance of the resonator generated at the frequency 3f 0 in FIG. 3 changes accordingly.

実施の形態2.
図4はこの発明の実施の形態2による帯域通過フィルタの構成を示す図である。図4において、1は外部へつながる入出力端子、2は伝送線路、3は先端短絡スタブ、4は容量回路を示す。伝送線路2は、4つの伝送線路2を縦続接続して主線路を構成し、主線路の両端が入出力端子1となっている。
Embodiment 2. FIG.
FIG. 4 is a diagram showing a configuration of a bandpass filter according to the second embodiment of the present invention. In FIG. 4, 1 is an input / output terminal connected to the outside, 2 is a transmission line, 3 is a short-circuited stub, 4 is a capacitance circuit. The transmission line 2 forms a main line by cascading four transmission lines 2, and both ends of the main line are input / output terminals 1.

各伝送線路2の電気長は、入出力端子1に接続されている2つの伝送線路2は周波数fにおいて約45°の電気長を有し、それ他の2つの伝送線路2は、周波数fにおいて約90°の電気長を有する。先端短絡スタブ3は、図1に示した実施の形態1における同箇所と同じなので説明は省略する。容量回路4は、周波数fにおいて約45°の電気長を有する2つの伝送線路2のそれぞれの両端に1つずつ並列接続されている。 The electrical length of each transmission line 2 is such that the two transmission lines 2 connected to the input / output terminal 1 have an electrical length of about 45 ° at the frequency f 0 , and the other two transmission lines 2 have the frequency f 0 has an electrical length of about 90 °. The tip short-circuit stub 3 is the same as that in the first embodiment shown in FIG. One capacitive circuit 4 is connected in parallel to both ends of each of the two transmission lines 2 having an electrical length of about 45 ° at the frequency f 0 .

次に動作について説明する。まず、図2に示したπ型回路変換を、θを45°として図19の回路の入出力端子1Aに接続された2つの伝送線路2Aにそれぞれ適用すると図4の回路が得られる。すなわち、図4の回路は図19の回路の伝送線路2Aの一部にπ型回路変換を適用した回路である。   Next, the operation will be described. First, when the π-type circuit conversion shown in FIG. 2 is applied to two transmission lines 2A connected to the input / output terminal 1A of the circuit of FIG. 19 with θ being 45 °, the circuit of FIG. 4 is obtained. That is, the circuit of FIG. 4 is a circuit in which π-type circuit conversion is applied to a part of the transmission line 2A of the circuit of FIG.

次に図4の回路において、伝送線路2の直列共振について考える。図4の回路では、入出力端子1に接続された2つの伝送線路2は、周波数4fにおいて電気長が約180°となり、他の2つの伝送線路2は周波数2fにおいて電気長が約180°となる。すなわち、図4の回路では、伝送線路2の直列共振に起因するスプリアス応答は2つの周波数2f、4fに分散して発生する。従って、図4の回路は、図5に示すように、伝送線路2の直列共振に起因するスプリアス応答が2つの周波数2f、4fに分散して発生し、且つそれぞれの周波数においてスプリアス応答の強度が抑えられた周波数特性を有する。 Next, consider the series resonance of the transmission line 2 in the circuit of FIG. In the circuit of FIG. 4, the two transmission lines 2 connected to the input / output terminal 1 have an electrical length of about 180 ° at the frequency 4f 0 , and the other two transmission lines 2 have an electrical length of about 180 at the frequency 2f 0 . °. That is, in the circuit of FIG. 4, spurious responses due to series resonance of the transmission line 2 are generated in a distributed manner at two frequencies 2f 0 and 4f 0 . Therefore, in the circuit of FIG. 4, as shown in FIG. 5, the spurious response due to the series resonance of the transmission line 2 is generated by being distributed to the two frequencies 2f 0 and 4f 0 , and the spurious response of each frequency is It has frequency characteristics with reduced intensity.

すなわちこの実施の形態2により、伝送線路2の直列共振に起因するスプリアス応答を周波数2fより高い周波数に発生させることができる。 That the second embodiment, a spurious response due to the series resonance of the transmission line 2 can be generated at a frequency higher than the frequency 2f 0.

なおこの実施の形態2では、4つの伝送線路2の内、入出力端子1に接続された2つの伝送線路2に上記式(1)(2)においてθを45°としたπ型回路変換を適用しているが、90°未満の値であれば、θを45°に限定する必要はない。
また、伝送線路2の直列共振に起因するスプリアス応答が、必ずしも抑圧を必要としないほど高い周波数で発生する場合、スプリアス応答を分散させて強度を抑える必要もないことから、全ての伝送線路2の電気長を同じ値としてもよい。
In the second embodiment, π-type circuit conversion in which θ is 45 ° in the above equations (1) and (2) is applied to two transmission lines 2 connected to the input / output terminal 1 among the four transmission lines 2. Although it is applied, if the value is less than 90 °, there is no need to limit θ to 45 °.
In addition, when the spurious response due to the series resonance of the transmission line 2 is generated at a high frequency that does not necessarily require suppression, it is not necessary to suppress the intensity by dispersing the spurious response. The electrical length may be the same value.

また、この実施の形態2では4つの伝送線路2の内、2つの伝送線路2にπ型回路変換を適用しているが、1つ以上の伝送線路2に上記式(1)(2)においてθを、回路実現時の製造限界値以上90°未満の値としたπ型回路変換を適用すれば同様の効果を得ることができる。   In the second embodiment, π-type circuit conversion is applied to two transmission lines 2 out of the four transmission lines 2, but one or more transmission lines 2 are represented by the above formulas (1) and (2). The same effect can be obtained by applying π-type circuit conversion in which θ is a value greater than or equal to the manufacturing limit value at the time of circuit realization and less than 90 °.

また、この実施の形態2は3段の帯域通過フィルタであるが、フィルタの段数を3段に限定する必要はない。   The second embodiment is a three-stage bandpass filter, but the number of filter stages need not be limited to three.

また、この実施の形態2では、周波数fにおいて共振する共振器として先端短絡スタブ3を用いているが、周波数fにおいて共振する共振回路であれば、その形態を先端短絡スタブに限定する必要はない。異なる形態の共振器を適用する場合、それに応じ、図5では周波数3fに発生した共振器の高次共振に起因するスプリアス応答に該当する周波数も変化する。 Further, in the second embodiment, is used a short-circuit stub 3 as a resonator that resonates at a frequency f 0, as long as the resonant circuit which resonates at a frequency f 0, necessary to limit the embodiments to the leading-end short stub There is no. When a resonator having a different form is applied, the frequency corresponding to the spurious response due to the higher-order resonance of the resonator generated at the frequency 3f 0 also changes in FIG.

実施の形態3.
図6はこの発明の実施の形態3による帯域通過フィルタの構成を示す図である。図6において、1は外部へつながる入出力端子、2は伝送線路、3は先端短絡スタブ、5は先端開放スタブを示す。伝送線路2は、4つの伝送線路2を縦続接続して主線路を構成し、主線路の両端が入出力端子1となっている。
Embodiment 3 FIG.
FIG. 6 is a diagram showing a configuration of a band-pass filter according to Embodiment 3 of the present invention. In FIG. 6, 1 is an input / output terminal connected to the outside, 2 is a transmission line, 3 is a short-circuited stub, and 5 is an open stub. The transmission line 2 forms a main line by cascading four transmission lines 2, and both ends of the main line are input / output terminals 1.

各伝送線路2の電気長は、入出力端子1に接続されている2つの伝送線路2は周波数fにおいて約75°及び100°の電気長を有し、それ以外の2つの伝送線路2は、周波数fにおいて約90°の電気長を有する。先端短絡スタブ3は、特性インピーダンスが60Ωで、周波数fにおいて約30°の電気長を有し、一端が短絡され、他端は伝送線路2同士の接続箇所に接続されている。先端開放スタブ5は、周波数fにおいて90°未満の電気長を有し、先端短絡スタブ3よりも低い特性インピーダンスを有し、一端が開放端となっており、他端は伝送線路2同士の接続箇所に接続され先端短絡スタブ3と並列接続されるようにされている。 The electrical length of each transmission line 2 is that the two transmission lines 2 connected to the input / output terminal 1 have electrical lengths of about 75 ° and 100 ° at the frequency f 0 , and the other two transmission lines 2 are , Having an electrical length of about 90 ° at frequency f 0 . The tip short-circuited stub 3 has a characteristic impedance of 60Ω, an electrical length of about 30 ° at the frequency f 0 , one end is short-circuited, and the other end is connected to a connection point between the transmission lines 2. The tip open stub 5 has an electrical length of less than 90 ° at the frequency f 0 , has a lower characteristic impedance than the tip short-circuited stub 3, one end is an open end, and the other end is between the transmission lines 2. It is connected to the connection location and is connected in parallel with the tip short-circuit stub 3.

次に動作について説明する。まず、図7は特性インピーダンスが60Ωで周波数fにおいて約30°の電気長を有する先端短絡スタブと、特性インピーダンスが35Ωで周波数fにおいて約45°の電気長を有する先端開放スタブとを並列接続して構成する共振回路である。図8は、図7において、先端短絡スタブと先端開放スタブの接続点から両回路を見た入力サセプタンスBinで、図7の共振回路はBinが零となる周波数で並列共振する。図8より、図7の共振回路は、周波数fで並列共振し、周波数3.7fで高次共振することがわかる。 Next, the operation will be described. First, FIG. 7 is parallel with the leading-end short stub having an electrical length of approximately 30 ° at a frequency f 0 at 60Ω characteristic impedance, the characteristic impedance is the open stub having an electrical length of approximately 45 ° at a frequency f 0 at 35Ω It is the resonance circuit which connects and comprises. FIG. 8 is an input susceptance B in as seen from the connection point of the tip short-circuited stub and the tip open stub in FIG. 7, and the resonant circuit of FIG. 7 resonates in parallel at a frequency at which B in becomes zero. From FIG. 8, the resonant circuit of Figure 7, parallel resonance at a frequency f 0, it can be seen that the high-order resonance at the frequency 3.7f 0.

図7の共振回路のように、周波数fにおいて90°未満の電気長を有する先端短絡スタブと、その先端短絡スタブよりも低い特性インピーダンスを有する先端開放スタブとを並列接続した共振回路は、各スタブの特性インピーダンスと電気長を適切な値とすることで、周波数fで並列共振しつつ、高次共振する周波数を3fよりも高い周波数にシフトできることが知られており、図7の回路構成はその一例である。 As in the resonance circuit of FIG. 7, a resonance circuit in which a tip short-circuit stub having an electrical length of less than 90 ° at a frequency f 0 and a tip open stub having a lower characteristic impedance than the tip short-circuit stub are connected in parallel. It is known that the frequency of high-order resonance can be shifted to a frequency higher than 3f 0 while performing parallel resonance at the frequency f 0 by setting the characteristic impedance and the electrical length of the stub to appropriate values. The configuration is an example.

図9は、図1に示した実施の形態1の回路において、先端短絡スタブ3の代替として、図7に示した共振回路を接続した回路である。図9において図1又は図7と同一もしくは相当部分は同一符号で示し、説明は省略する。一般に、周波数fにおいて90°未満の電気長を有する先端開放スタブは、周波数fにおいて容量性を呈することが知られている。図9において、容量回路4を、周波数fにおいて同等の容量性を呈する先端開放スタブに置き換え、破線で囲んだ箇所をそれぞれ1つの先端開放スタブにまとめると、図6に示した回路となる。 FIG. 9 is a circuit in which the resonance circuit shown in FIG. 7 is connected as an alternative to the tip short-circuit stub 3 in the circuit of the first embodiment shown in FIG. In FIG. 9, the same or corresponding parts as those in FIG. 1 or FIG. In general, open stub having an electrical length of less than 90 ° at a frequency f 0 is known to exhibit a capacitive at frequency f 0. In FIG. 9, when the capacitive circuit 4 is replaced with an open-ended stub exhibiting equivalent capacitance at the frequency f 0 and the portions surrounded by broken lines are combined into one open-ended stub, the circuit shown in FIG. 6 is obtained.

すなわち、図6の回路は、周波数fにて共振する並列共振器として図7の共振回路を適用し、図1に示した実施の形態1の回路と同様に、伝送線路2の直列共振に起因するスプリアス応答が発生する周波数を3つの周波数1.8f、2f、2.4fに分散化した回路である。従って、図6の回路は、図3に示した実施の形態1の周波数特性において、共振器の高次共振に起因するスプリアス応答が周波数3fから周波数3.7fシフトした図10に示す周波数特性を有する。 That is, the circuit of FIG. 6 applies the resonance circuit of FIG. 7 as a parallel resonator that resonates at the frequency f 0, and performs series resonance of the transmission line 2 as in the circuit of the first embodiment shown in FIG. due to the three frequency spurious response is generated frequency 1.8f 0, 2f 0, a circuit which is distributed to 2.4f 0. Therefore, the circuit of FIG. 6 has the frequency characteristic shown in FIG. 10 in which the spurious response due to the higher-order resonance of the resonator is shifted from the frequency 3f 0 to the frequency 3.7f 0 in the frequency characteristic of the first embodiment shown in FIG. Has characteristics.

すなわち、この実施の形態3により、共振器の高次共振に起因するスプリアス応答を周波数3fより高い周波数へシフトさせ、且つ、伝送線路2の直列共振に起因するスプリアス応答を分散化して強度を抑えることができる。 That is, according to the third embodiment, the spurious response due to the higher-order resonance of the resonator is shifted to a frequency higher than the frequency 3f 0 , and the spurious response due to the series resonance of the transmission line 2 is dispersed to increase the strength. Can be suppressed.

また、この実施の形態3は、伝送線路、先端短絡スタブ、先端開放スタブのみで構成されているので、ストリップ導体からなるマイクロストリップ線路やトリプレート線路形の回路にスルーホール等の短絡手段を用いる構成とすることで、回路の実現が容易である。   In addition, since the third embodiment is composed only of a transmission line, a tip short-circuit stub, and a tip-open stub, a short-circuit means such as a through hole is used for a microstrip line or a triplate line type circuit made of a strip conductor. With the configuration, the circuit can be easily realized.

なお、この実施の形態3では、実施の形態1と同様に、4つの伝送線路2の内で入出力端子1に接続された2つの伝送線路2に上記式(1)(2)においてθを75°及び100°としたπ型回路変換を適用しているが、θを75°及び100°に限定する必要はない。   In the third embodiment, as in the first embodiment, θ is set to the two transmission lines 2 connected to the input / output terminal 1 among the four transmission lines 2 in the above formulas (1) and (2). Although π-type circuit conversion with 75 ° and 100 ° is applied, it is not necessary to limit θ to 75 ° and 100 °.

また、この実施の形態3では、図7に示した共振回路を適用しているが、先端短絡スタブと先端開放スタブを並列接続して構成する回路で、共振器の高次共振に起因するスプリアス応答を周波数3fより高い周波数へシフトさせる構成であれば、図7の共振回路と同じ回路構成にする必要はない。 Further, in the third embodiment, the resonance circuit shown in FIG. 7 is applied. However, in the circuit configured by connecting the tip short-circuited stub and the tip-open stub in parallel, the spurious caused by the higher-order resonance of the resonator is used. As long as the response is shifted to a frequency higher than the frequency 3f 0 , it is not necessary to use the same circuit configuration as the resonance circuit of FIG.

また、この実施の形態3では4つの伝送線路2の内、2つの伝送線路2にπ型回路変換を適用しているが、1つ以上の伝送線路2に上記式(1)(2)においてθを90°以外の値としたπ型回路変換を適用すれば同様の効果を得ることができる。   In the third embodiment, π-type circuit conversion is applied to two transmission lines 2 out of the four transmission lines 2, but in the above formulas (1) and (2), one or more transmission lines 2 are applied. The same effect can be obtained by applying π-type circuit conversion in which θ is a value other than 90 °.

また、この実施の形態3は3段の帯域通過フィルタであるが、フィルタの段数を3段に限定する必要はない。   Further, although the third embodiment is a three-stage bandpass filter, it is not necessary to limit the number of filter stages to three.

実施の形態4.
図11、図12、図13はこの発明の実施の形態4による帯域通過フィルタの構成を示す図である。図11は実施の形態4の帯域通過フィルタの透過斜視図、図12は透過上面図、図13は図12のA−A’線に沿った断面図である。
Embodiment 4 FIG.
11, FIG. 12, and FIG. 13 are diagrams showing the configuration of a bandpass filter according to Embodiment 4 of the present invention. 11 is a transmission perspective view of the bandpass filter according to the fourth embodiment, FIG. 12 is a transmission top view, and FIG. 13 is a cross-sectional view taken along the line AA ′ of FIG.

図11〜13において、6は多層誘電体基板、7は擬似集中定数形容量回路、8は先端短絡スタブ、9は伝送線路、10は外部へつながる入出力線路、11はスルーホール、12は地導体層を示す。この実施の形態は、対向する一対の主面上(上下面)に地導体層12を配置、形成した多層誘電体基板6の内部にストリップ導体を配置した構成とする多層トリプレート線路形帯域通過フィルタである。   11 to 13, 6 is a multilayer dielectric substrate, 7 is a quasi-lumped constant capacitance circuit, 8 is a short-circuited short stub, 9 is a transmission line, 10 is an input / output line connected to the outside, 11 is a through hole, and 12 is a ground. A conductor layer is shown. In this embodiment, a multi-layer triplate line type band-pass structure in which a ground conductor layer 12 is disposed on a pair of opposing main surfaces (upper and lower surfaces) and a strip conductor is disposed in the formed multilayer dielectric substrate 6 is provided. It is a filter.

伝送線路9はトリプレート線路から成り、4つの伝送線路9を縦続接続して主線路を構成し、主線路の両端が入出力線路10となっている。
擬似集中定数形容量回路7は、伝送線路9に接続した円形の電極板71の上下に、スルーホール11を介して上下の地導体層12にそれぞれ接地した同形の接地電極72a,72bを配置して容量回路を構成している。
先端短絡スタブ8は、伝送線路9と同層に配置したトリプレート線路の一端側を、スルーホール11を介して上下の地導体層12に接地し、他端側は伝送線路9同士の接続箇所に接続されている。
The transmission line 9 is formed of a triplate line, and the four transmission lines 9 are connected in cascade to form a main line. Both ends of the main line are input / output lines 10.
The quasi-lumped-constant capacitance circuit 7 has ground electrodes 72 a and 72 b having the same shape grounded to the upper and lower ground conductor layers 12 through the through holes 11 above and below the circular electrode plate 71 connected to the transmission line 9. The capacitor circuit is configured.
The short-circuited short stub 8 grounds one end side of the triplate line arranged in the same layer as the transmission line 9 to the upper and lower ground conductor layers 12 through the through holes 11, and the other end side is a connection point between the transmission lines 9. It is connected to the.

次に動作について説明する。まず、図14は特性インピーダンスが60Ωで周波数fにおいて約30°の電気長を有する先端短絡スタブと、容量回路とを並列接続して構成する共振回路である。容量回路は、周波数fにおいて先端短絡スタブが有するサセプタンス値と逆符号のサセプタンス値を有し、例として周波数fが10GHzのとき、約0.5pFとなる。図15は周波数fが10GHzのときの、先端短絡スタブと容量回路の接続点から両回路を見た入力サセプタンスBinで、図14の共振回路はBinが零となる周波数で並列共振する。図15より、図14の共振回路は、周波数fで並列共振し、高次共振する周波数は、少なくとも4f以上であることがわかる。 Next, the operation will be described. First, FIG. 14 shows a resonance circuit formed by connecting a tip short-circuited stub having a characteristic impedance of 60Ω and an electrical length of about 30 ° at a frequency f 0 and a capacitor circuit in parallel. The capacitance circuit has a susceptance value opposite in sign to the susceptance value of the short-circuited short stub at the frequency f 0. For example, when the frequency f 0 is 10 GHz, the capacitance circuit is about 0.5 pF. FIG. 15 shows the input susceptance B in as seen from the connection point between the short-circuited stub and the capacitance circuit when the frequency f 0 is 10 GHz. The resonant circuit of FIG. 14 resonates in parallel at a frequency at which B in becomes zero. . From FIG. 15, it can be seen that the resonant circuit of FIG. 14 resonates in parallel at the frequency f 0 and the frequency at which the higher-order resonance occurs is at least 4f 0 or more.

図14の共振回路のように、周波数fにおいて90°未満の電気長を有する先端短絡スタブと容量回路とを並列接続した共振回路は、先端短絡スタブの特性インピーダンスと電気長と、容量回路が有する容量値を適切な値とすることで、周波数fで並列共振しつつ、一般に、高次共振する周波数を、分布定数回路で構成する図7の共振器を適用する場合よりも高い周波数にシフトできることが知られており、図14の回路構成はその一例である。 As in the resonance circuit of FIG. 14, a resonance circuit in which a short-circuited short stub having an electrical length of less than 90 ° at a frequency f 0 and a capacitive circuit are connected in parallel has a characteristic impedance, electrical length, and capacitive circuit of the short-circuited short stub. By setting the capacitance value to an appropriate value, in general, the frequency of higher-order resonance is made higher than that in the case of applying the resonator of FIG. 7 configured by a distributed constant circuit while performing parallel resonance at the frequency f 0 . It is known that shifting is possible, and the circuit configuration of FIG. 14 is an example.

図16は図1に示した実施の形態1の回路において、先端短絡スタブ3の代替として、図14に示した共振回路を接続した回路である。図16において、4は容量回路を示し、その他の部位は、図1にて示したものと同じなので説明は省略する。図16において、破線で囲んだ2つの容量回路4の組をそれぞれ1つの容量回路にまとめると、図17に示す回路が得られ、多層基板を用いて図17の回路を構成すると、図11〜13に示したこの実施の形態4の帯域通過フィルタが得られる。   FIG. 16 is a circuit in which the resonance circuit shown in FIG. 14 is connected as an alternative to the tip short-circuit stub 3 in the circuit of the first embodiment shown in FIG. In FIG. 16, reference numeral 4 denotes a capacitor circuit, and the other parts are the same as those shown in FIG. In FIG. 16, when a set of two capacitive circuits 4 surrounded by a broken line is combined into one capacitive circuit, the circuit shown in FIG. 17 is obtained. When the circuit of FIG. 17 is configured using a multilayer substrate, FIGS. The bandpass filter of the fourth embodiment shown in FIG. 13 is obtained.

すなわち、図11〜13の帯域通過フィルタは、周波数fにて共振する並列共振器として図14の共振回路を適用し、図1に示した実施の形態1の回路と同様に、伝送線路9(2)の直列共振に起因するスプリアス応答が発生する周波数を3つの周波数1.8f、2f、2.4fに分散化した回路である。従って、図11〜13の帯域通過フィルタは、図3に示した実施の形態1の周波数特性において、共振器の高次共振に起因するスプリアス応答が実施の形態3の場合よりも高い周波数にシフトした図18に示す周波数特性を有する。 That is, the band-pass filters of FIGS. 11 to 13 apply the resonance circuit of FIG. 14 as a parallel resonator that resonates at the frequency f 0, and, similarly to the circuit of the first embodiment shown in FIG. three frequency 1.8F 0 frequency spurious response is generated due to the series resonance of the (2), 2f 0, a circuit which is distributed to 2.4f 0. Accordingly, in the bandpass filters of FIGS. 11 to 13, in the frequency characteristics of the first embodiment shown in FIG. 3, the spurious response due to the higher-order resonance of the resonator is shifted to a higher frequency than in the third embodiment. The frequency characteristics shown in FIG.

この実施の形態4により、共振器の高次共振に起因するスプリアス応答を実施の形態3の場合よりも高い周波数へシフトさせ、且つ、伝送線路9(2)の直列共振に起因するスプリアス応答を分散化して強度を抑えることができる。   According to the fourth embodiment, the spurious response due to the higher-order resonance of the resonator is shifted to a higher frequency than in the third embodiment, and the spurious response due to the series resonance of the transmission line 9 (2) is changed. It can be dispersed to reduce strength.

また、この実施の形態4は、伝送線路、先端短絡スタブ、擬似集中定数形容量回路のみで構成されているので、ストリップ導体からなるマイクロストリップ線路やトリプレート線路形回路にスルーホール等の短絡手段を用いる構成とすることで、回路の実現が容易である。   In addition, since the fourth embodiment is composed only of a transmission line, a tip short-circuit stub, and a pseudo lumped constant capacitance circuit, a short-circuit means such as a through hole is added to a microstrip line or a triplate line-type circuit made of a strip conductor. By using the configuration, it is easy to realize a circuit.

また、この実施の形態4は擬似集中定数形容量回路7を構成する電極板の形状を円形としているので、2つの伝送線路9、先端短絡スタブ8、擬似集中定数形容量回路7の4つの回路が接続される分岐部の実現が容易である。   In addition, since the shape of the electrode plate constituting the quasi-lumped constant capacitance circuit 7 is circular in the fourth embodiment, the four circuits of the two transmission lines 9, the tip short-circuit stub 8, and the quasi-lumped constant capacitance circuit 7 are used. Is easily realized.

なお、この実施の形態4では、実施の形態1と同様に、4つの伝送線路9(2)の内で入出力線路10に接続された2つの伝送線路9に上記式(1)(2)においてθを75°及び100°としたπ型回路変換を適用しているが、θを75°及び100°に限定する必要はない。   In the fourth embodiment, similar to the first embodiment, the two transmission lines 9 connected to the input / output line 10 among the four transmission lines 9 (2) are connected to the above formulas (1) and (2). However, it is not necessary to limit θ to 75 ° and 100 °.

また、この実施の形態4では、図14に示した共振回路を適用しているが、先端短絡スタブと擬似集中定数形容量回路を並列接続して構成する回路で、共振器の高次共振に起因するスプリアス応答を周波数3fより高い周波数へシフトさせる構成であれば、図13の共振回路と同じ回路構成にする必要はない。 Further, in the fourth embodiment, the resonance circuit shown in FIG. 14 is applied. However, in the circuit configured by connecting the short-circuited tip stub and the quasi-lumped constant capacitance circuit in parallel, the high-order resonance of the resonator is achieved. As long as the resulting spurious response is shifted to a frequency higher than the frequency 3f 0 , it is not necessary to use the same circuit configuration as the resonance circuit of FIG.

また、この実施の形態4では4つの伝送線路9(2)の内、2つの伝送線路9(2)にπ型回路変換を適用しているが、1つ以上の伝送線路9(2)に上記式(1)(2)においてθを90°以外の値としたπ型回路変換を適用すれば同様の効果を得ることができる。   In the fourth embodiment, π-type circuit conversion is applied to two transmission lines 9 (2) out of four transmission lines 9 (2), but one or more transmission lines 9 (2) are applied. The same effect can be obtained by applying π-type circuit conversion in which θ is a value other than 90 ° in the above formulas (1) and (2).

また、この実施の形態4は3段の帯域通過フィルタであるが、フィルタの段数を3段に限定する必要はない。   Further, although the fourth embodiment is a three-stage bandpass filter, it is not necessary to limit the number of filter stages to three.

なお、各実施の形態において、伝送線路2により結合用伝送線路が構成され、先端短絡スタブ3、容量回路4、先端開放スタブ5等により並列共振回路が構成される。   In each embodiment, a transmission line for coupling is constituted by the transmission line 2, and a parallel resonant circuit is constituted by the short-circuited stub 3, the capacitive circuit 4, the open-ended stub 5, and the like.

また、例えば電気長等の約n°は全て、約n°、又はn°とする。   Further, for example, about n ° such as electrical length is all about n ° or n °.

この発明の実施の形態1による帯域通過フィルタの回路図である。It is a circuit diagram of the band pass filter by Embodiment 1 of this invention. この発明の実施の形態1による帯域通過フィルタでの伝送線路のπ型回路変換を示す図である。It is a figure which shows (pi) type | mold circuit conversion of the transmission line in the band pass filter by Embodiment 1 of this invention. この発明の実施の形態1による帯域通過フィルタの帯域通過の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the band pass of the band pass filter by Embodiment 1 of this invention. この発明の実施の形態2による帯域通過フィルタの回路図である。It is a circuit diagram of the band pass filter by Embodiment 2 of this invention. この発明の実施の形態2による帯域通過フィルタの帯域通過の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the band pass of the band pass filter by Embodiment 2 of this invention. この発明の実施の形態3による帯域通過フィルタの回路図である。It is a circuit diagram of the band pass filter by Embodiment 3 of this invention. この発明の実施の形態3による帯域通過フィルタに適用している共振回路を示す図である。It is a figure which shows the resonance circuit applied to the bandpass filter by Embodiment 3 of this invention. 図7の共振回路が有する入力サセプタンスの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the input susceptance which the resonance circuit of FIG. 7 has. この発明の実施の形態1による帯域通過フィルタの容量回路を先端開放スタブで置き換えた回路図である。It is the circuit diagram which replaced the capacitive circuit of the bandpass filter by Embodiment 1 of this invention with the open end stub. この発明の実施の形態3による帯域通過フィルタの帯域通過の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the band pass of the band pass filter by Embodiment 3 of this invention. この発明の実施の形態4による帯域通過フィルタの透過斜視図である。It is a permeation | transmission perspective view of the bandpass filter by Embodiment 4 of this invention. この発明の実施の形態4による帯域通過フィルタの透過上面図である。It is a permeation | transmission top view of the bandpass filter by Embodiment 4 of this invention. 図12のA−A‘線に沿った断面図である。It is sectional drawing along the AA 'line of FIG. この発明の実施の形態4による帯域通過フィルタに適用している共振回路の図である。It is a figure of the resonant circuit applied to the bandpass filter by Embodiment 4 of this invention. 図13の共振回路が有する入力サセプタンスの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the input susceptance which the resonance circuit of FIG. 13 has. 図1の先端短絡スタブを図13の共振回路で置き換えた回路を示す図である。It is a figure which shows the circuit which replaced the front-end | tip short circuit stub of FIG. 1 with the resonance circuit of FIG. 図16の回路から得られる回路を示す図である。It is a figure which shows the circuit obtained from the circuit of FIG. この発明の実施の形態4による帯域通過フィルタの帯域通過の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the band pass of the band pass filter by Embodiment 4 of this invention. 従来の広帯域な帯域通過フィルタの一例を示す回路図である。It is a circuit diagram which shows an example of the conventional wide bandpass filter. 周波数fにおける図19の回路の等価回路を示す図である。FIG. 20 is a diagram showing an equivalent circuit of the circuit of FIG. 19 at the frequency f 0 . 従来の広帯域な帯域通過フィルタの帯域通過の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the band pass of the conventional wide band pass filter. 図21において局所的にスプリアスが発生した場合の周波数特性を示す図である。It is a figure which shows the frequency characteristic when a spurious generate | occur | produces locally in FIG.

符号の説明Explanation of symbols

1 入出力端子、2 伝送線路、3 先端短絡スタブ、4 容量回路、5 先端開放スタブ、6 (多層)誘電体基板、7 擬似集中定数形容量回路、8 先端短絡スタブ、9 伝送線路、10 入出力線路、11 スルーホール、12 地導体層。   1 input / output terminal, 2 transmission line, 3 tip short circuit stub, 4 capacitance circuit, 5 tip open stub, 6 (multilayer) dielectric substrate, 7 quasi-lumped constant capacitance circuit, 8 tip short circuit stub, 9 transmission line, 10 input Output line, 11 through hole, 12 ground conductor layer.

Claims (4)

使用周波数において共振する複数の並列共振回路と、複数の結合用伝送線路とを備え、前記並列共振回路と前記結合用伝送線路とを交互に縦続接続して構成された帯域通過フィルタであって、前記複数の結合用伝送線路の電気長が2種類以上の異なる値となっていることを特徴とする帯域通過フィルタ。   A band-pass filter comprising a plurality of parallel resonant circuits that resonate at a use frequency and a plurality of coupling transmission lines, wherein the parallel resonant circuits and the coupling transmission lines are alternately connected in cascade, The band-pass filter characterized in that the electrical lengths of the plurality of coupling transmission lines have two or more different values. 使用周波数において共振する複数の並列共振回路と、複数の結合用伝送線路とを備え、前記並列共振回路と前記結合用伝送線路とを交互に縦続接続して構成された帯域通過フィルタであって、前記複数の結合用伝送線路のうち少なくとも1つの電気長が、使用周波数において90°未満となっていることを特徴とする帯域通過フィルタ。   A band-pass filter comprising a plurality of parallel resonant circuits that resonate at a use frequency and a plurality of coupling transmission lines, wherein the parallel resonant circuits and the coupling transmission lines are alternately connected in cascade, A band pass filter, wherein an electrical length of at least one of the plurality of coupling transmission lines is less than 90 ° at a use frequency. 前記並列共振回路が、先端短絡スタブと先端開放スタブを並列接続した回路で構成され、前記先端開放スタブの特性インピーダンスが、前記先端短絡スタブの特性インピーダンスよりも低インピーダンスであることを特徴とする請求項1又は2に記載の帯域通過フィルタ。   The parallel resonant circuit is configured by a circuit in which a tip short-circuit stub and a tip open stub are connected in parallel, and the characteristic impedance of the tip open stub is lower than the characteristic impedance of the tip short-circuit stub. Item 3. A bandpass filter according to Item 1 or 2. 縦続接続された前記複数の結合用伝送線路が、誘電体基板と、前記誘電体基板内をこれに沿って通るストリップ導体と、前記誘電体基板の前記ストリップ導体の両側の一対の主面上に形成された地導体層からなり、
縦続接続された前記複数の並列共振回路が、
前記ストリップ導体と同層に配置された電極板と、前記ストリップ導体と前記地導体層とを電気的に接続する第1のスルーホールと、前記電極板と各前記地導体層の間にそれぞれ配置された接地電極と、前記接地電極と前記地導体層とを電気的に接続する第2のスルーホールからなり、
前記電極板と前記接地電極の間に構成される容量回路で前記先端開放スタブが構成されることを特徴とする請求項3に記載の帯域通過フィルタ。
The plurality of coupling transmission lines connected in cascade are on a dielectric substrate, a strip conductor passing through the dielectric substrate along the dielectric substrate, and a pair of main surfaces on both sides of the strip conductor of the dielectric substrate. It consists of a formed ground conductor layer,
The plurality of parallel resonant circuits connected in cascade are:
An electrode plate disposed in the same layer as the strip conductor, a first through hole for electrically connecting the strip conductor and the ground conductor layer, and disposed between the electrode plate and each ground conductor layer, respectively. And a second through hole that electrically connects the ground electrode and the ground conductor layer,
The band pass filter according to claim 3, wherein the open-ended stub is configured by a capacitive circuit configured between the electrode plate and the ground electrode.
JP2008127230A 2008-05-14 2008-05-14 Band pass filter Active JP5116560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127230A JP5116560B2 (en) 2008-05-14 2008-05-14 Band pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127230A JP5116560B2 (en) 2008-05-14 2008-05-14 Band pass filter

Publications (2)

Publication Number Publication Date
JP2009278347A true JP2009278347A (en) 2009-11-26
JP5116560B2 JP5116560B2 (en) 2013-01-09

Family

ID=41443364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127230A Active JP5116560B2 (en) 2008-05-14 2008-05-14 Band pass filter

Country Status (1)

Country Link
JP (1) JP5116560B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174424A3 (en) * 2015-04-28 2016-12-22 David Rhodes A tuneable microwave filter and a tuneable microwave multiplexer
CN111129673A (en) * 2018-11-01 2020-05-08 西安邮电大学 LCP (liquid Crystal display wafer) process-based ultra-wideband band-pass filter
CN114256573A (en) * 2021-12-22 2022-03-29 网络通信与安全紫金山实验室 Microstrip low-pass filter and design method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870554B (en) * 2016-06-06 2018-09-28 南通大学 The differential type broadband filter of unsymmetric structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141005A (en) * 1982-02-17 1983-08-22 Sony Corp Band-pass filter for microwave
JPH09260902A (en) * 1996-03-26 1997-10-03 Fujitsu Ltd Stub type filter
JP2002204105A (en) * 2000-12-28 2002-07-19 Hiiruhaado:Kk Microwave filter
JP2007158920A (en) * 2005-12-07 2007-06-21 Ube Ind Ltd Laminated dielectric resonator and laminated dielectric filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141005A (en) * 1982-02-17 1983-08-22 Sony Corp Band-pass filter for microwave
JPH09260902A (en) * 1996-03-26 1997-10-03 Fujitsu Ltd Stub type filter
JP2002204105A (en) * 2000-12-28 2002-07-19 Hiiruhaado:Kk Microwave filter
JP2007158920A (en) * 2005-12-07 2007-06-21 Ube Ind Ltd Laminated dielectric resonator and laminated dielectric filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174424A3 (en) * 2015-04-28 2016-12-22 David Rhodes A tuneable microwave filter and a tuneable microwave multiplexer
CN111129673A (en) * 2018-11-01 2020-05-08 西安邮电大学 LCP (liquid Crystal display wafer) process-based ultra-wideband band-pass filter
CN111129673B (en) * 2018-11-01 2021-02-12 西安邮电大学 LCP (liquid Crystal display wafer) process-based ultra-wideband band-pass filter
CN114256573A (en) * 2021-12-22 2022-03-29 网络通信与安全紫金山实验室 Microstrip low-pass filter and design method thereof

Also Published As

Publication number Publication date
JP5116560B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
EP1990863B1 (en) Dual band resonator and dual band filter
TWI556502B (en) Multiple-mode filter for radio frequency integrated circuits
JP4565145B2 (en) Ultra-wideband bandpass filter
US7541888B2 (en) Dual band coupled-line balanced-to-unbalanced bandpass filter
JP5116560B2 (en) Band pass filter
JPWO2009011168A1 (en) Microstrip line filter and manufacturing method thereof
CN109088134B (en) Microstrip band-pass filter
JP4176752B2 (en) filter
JP4550915B2 (en) FILTER CIRCUIT, FILTER CIRCUIT ELEMENT, MULTILAYER CIRCUIT BOARD AND CIRCUIT MODULE HAVING THE SAME
JP4140855B2 (en) Band stop filter
KR102259102B1 (en) Low pass filter with transmission zero
JP4501729B2 (en) High frequency filter
JP5288904B2 (en) BANDPASS FILTER, RADIO COMMUNICATION MODULE AND RADIO COMMUNICATION DEVICE USING THE SAME
JP2009260698A (en) High frequency coupling line, and high frequency filter
CN109980327B (en) Adjustable dual-mode band-pass filter with high selectivity and constant bandwidth
JP4698639B2 (en) High frequency filter
Hsieh et al. Synthesis of filters with stub-loaded multiple-mode resonators
JP5305855B2 (en) Polarized bandpass filter
Jayan et al. A Miniature UWB Filter with In-Band Interference Cancelation
JP4030900B2 (en) filter
JP4959530B2 (en) Waveguide type band-stop filter
Mao et al. Novel compact quarter-wavelength resonator filter using lumped coupling elements
JPS6311802B2 (en)
Chen A four-pole parallel-coupled dual-mode resonator bandpass filter
Khalid et al. Design of highly selective ultra-wideband bandpass filter using multiple resonance resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Ref document number: 5116560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250