JP2009276512A - Method for manufacturing toner for development of electrostatic charge image - Google Patents

Method for manufacturing toner for development of electrostatic charge image Download PDF

Info

Publication number
JP2009276512A
JP2009276512A JP2008126985A JP2008126985A JP2009276512A JP 2009276512 A JP2009276512 A JP 2009276512A JP 2008126985 A JP2008126985 A JP 2008126985A JP 2008126985 A JP2008126985 A JP 2008126985A JP 2009276512 A JP2009276512 A JP 2009276512A
Authority
JP
Japan
Prior art keywords
release agent
particles
particle dispersion
toner
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008126985A
Other languages
Japanese (ja)
Other versions
JP5294696B2 (en
Inventor
Makoto Natori
良 名取
Masakichi Kato
政吉 加藤
Takayuki Toyoda
隆之 豊田
Takashi Azuma
隆司 東
Takao Shibata
隆穂 柴田
Hironari Senbon
裕也 千本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008126985A priority Critical patent/JP5294696B2/en
Publication of JP2009276512A publication Critical patent/JP2009276512A/en
Application granted granted Critical
Publication of JP5294696B2 publication Critical patent/JP5294696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for manufacturing a toner excellent in image stability, blocking property, and fixability. <P>SOLUTION: The method for manufacturing a toner includes: a step for aggregating a mixture containing a resin particle dispersion liquid, a coloring particle dispersion liquid, and a release agent particle dispersion liquid to form flocculated particles; and a step for heating and fusing the aggregated particles. The release agent particle dispersion liquid in which release agent particles are dispersed is acquired by a manufacturing method including a dispersion step for acquiring an O/W emulsion by dispersing the release agent on a dispersion device having shear force while heating a release agent mixture containing at least a release agent, a surfactant, and an aquatic medium to a temperature higher than the melting point of the release agent, and a cooling step for cooling the acquired O/W emulsion to the temperature lower than the melting point of the release agent. The 50% particle size on a volumetric basis of the release agent particle in the release agent particle dispersion liquid is 0.05 μm-0.40 μm, and the content of the release agent particle of 0.80 μm or more is one volumetric percent or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子写真法による画像形成の際に、好適に用いられる静電荷像現像用トナーを効率的に製造する方法に関する。   The present invention relates to a method for efficiently producing a toner for developing an electrostatic charge image that is suitably used for image formation by electrophotography.

電子写真法のように、静電荷像を経て画像情報を可視化する方法は、現在各種の分野で広く利用されている。電子写真法においては、帯電工程、露光工程等を経て感光体上に静電荷像を形成し、トナーを含有する現像剤を用いて静電荷像を現像し、転写工程、定着工程等を経て静電荷像が可視化される。トナーは、現像性、転写性、及びクリーニング性等の観点から、粒子形状及び表面構造を意図的に制御されていることが望ましい。   A method of visualizing image information through an electrostatic charge image, such as electrophotography, is currently widely used in various fields. In electrophotography, an electrostatic charge image is formed on a photoreceptor through a charging process, an exposure process, etc., and the electrostatic charge image is developed using a developer containing toner, followed by a transfer process, a fixing process, and the like. The charge image is visualized. In the toner, it is desirable that the particle shape and the surface structure are intentionally controlled from the viewpoint of developability, transferability, cleaning property, and the like.

近年、トナーの粒子形状及び表面構造を意図的に制御する方法として、乳化重合凝集法が提案されている。乳化重合凝集法は、乳化重合により樹脂粒子分散液を作製し、一方、溶媒に着色剤を分散させた着色剤粒子分散液を作成し、これらを混合する混合工程と、トナー粒径に相当する凝集粒子を形成する凝集工程と、該凝集粒子を加熱することによって融合する融合工程とを含む方法である。この乳化重合凝集法によると、加熱温度条件を選択することにより、トナー形状を不定形から球形まで任意に制御することができる。また、混合工程においてワックスなどの離型剤粒子分散液を添加することにより容易にトナー中へ離型剤を内添することが可能である(特許文献1及び2)。   In recent years, an emulsion polymerization aggregation method has been proposed as a method for intentionally controlling the particle shape and surface structure of a toner. The emulsion polymerization agglomeration method corresponds to the toner particle size by preparing a resin particle dispersion by emulsion polymerization, creating a colorant particle dispersion in which a colorant is dispersed in a solvent, and mixing them. It is a method comprising an aggregating step for forming aggregated particles and a fusion step for fusing the aggregated particles by heating. According to this emulsion polymerization aggregation method, the toner shape can be arbitrarily controlled from an indeterminate shape to a spherical shape by selecting the heating temperature condition. Further, it is possible to easily add the release agent into the toner by adding a release agent particle dispersion such as wax in the mixing step (Patent Documents 1 and 2).

しかし、乳化重合凝集法において離型剤を内添する場合、離型剤の粒径が小さすぎると定着性の向上効果が低下し、逆に大きすぎるとトナー表面へ露出して熱や圧力によって粉体特性が悪化する傾向にある。さらに大きい場合には凝集工程で凝集粒子中に内包されない、あるいは、融着工程で離型剤粒子が脱落してしまう問題が生じる為、離型剤をあらかじめ体積平均粒径を0.5〜3.0μmにした分散液として添加する方法が提案されている。(特許文献3)。
しかし、離型剤のような物質を水中に分散しようとした場合、サンドグランドミルやローターステーター等、従来の高速攪拌型の分散機を用いた時の最終到達粒径は数ミクロンであり、更なる離型剤の微粒化は困難であった。
However, when a release agent is internally added in the emulsion polymerization aggregation method, if the particle size of the release agent is too small, the effect of improving the fixing property is reduced. The powder properties tend to deteriorate. If it is larger, there is a problem that the release agent particles are not included in the aggregated particles in the aggregation process, or the release agent particles fall off in the fusion process. A method of adding a dispersion liquid having a thickness of 0.0 μm has been proposed. (Patent Document 3).
However, when trying to disperse a substance such as a release agent in water, the final particle size when using a conventional high-speed stirring type disperser such as a sand gland mill or rotor stator is several microns. It was difficult to atomize the release agent.

また、懸濁重合法によるトナー粒子の製造方法において、高剪断力を有する高速攪拌型の乳化分散機を用いて、重合性単量体中に離型剤を十分に小さく且つ均一な粒径で微分散する方法が提案されている(特許文献4)。
しかし、重合性単量体中への離型剤の分散、かつ離型剤の融点未満での加熱による分散の為、該方法で水中へ離型剤を分散させることは困難であった。
In addition, in the method for producing toner particles by the suspension polymerization method, a release agent is sufficiently small and has a uniform particle size in the polymerizable monomer using a high-speed stirring type emulsifying disperser having high shearing force. A method of fine dispersion has been proposed (Patent Document 4).
However, it is difficult to disperse the release agent in water by this method because of the dispersion of the release agent in the polymerizable monomer and the dispersion by heating below the melting point of the release agent.

一方、カラートナーにおける発色性、OHP透過性、定着性向上等のために、離型剤粒子分散液を高圧吐出型に分類される乳化分散機を用いて乳化することにより、離型剤粒子の分散径を0.05μm以上0.4μm以下、0.8μm以上の粗大粒子を5%以下に制御する方法が提案されている(特許文献5)。
特開昭63−282749号公報 特開平6−250439号公報 特開平5−11501号公報 特開2006−221023号公報 特開平11−2922号公報
On the other hand, in order to improve color developability, OHP permeability, fixability, etc. in color toners, the release agent particle dispersion is emulsified using an emulsification disperser classified as a high-pressure discharge type, thereby releasing the release agent particles. A method has been proposed in which the dispersion diameter is controlled to 0.05 μm or more and 0.4 μm or less, and coarse particles of 0.8 μm or more are controlled to 5% or less (Patent Document 5).
JP-A-63-282749 JP-A-6-250439 JP-A-5-11501 JP 2006-221023 A Japanese Patent Laid-Open No. 11-2922

近年、低温定着の要求が高まり、使用する離型剤についても低融点離型剤へ移行しているが、一般に離型剤の液比重は、融点が低くなると共に低下していく傾向があることが知られている。
しかし、液比重が低い離型剤を分散する場合、特開平11−2922号公報で提案された方法では粗大粒子が少なく、均一に離型剤を微分散することが困難な場合があった。
さらに、僅かな離型剤の粗大粒子が存在することで、トナー粒子の粒度分布に悪影響を及ぼし、画像特性の悪化を引き起こすだけでなく、再凝集し易くなるため、離型剤粒子分散液の保存安定性が悪化する。
In recent years, the demand for low-temperature fixing has increased, and the release agent used has also shifted to a low melting point release agent. However, the liquid specific gravity of the release agent generally tends to decrease as the melting point decreases. It has been known.
However, when dispersing a release agent having a low liquid specific gravity, the method proposed in Japanese Patent Application Laid-Open No. 11-2922 has few coarse particles, and it may be difficult to finely disperse the release agent uniformly.
Further, the presence of a few coarse particles of the release agent not only adversely affects the particle size distribution of the toner particles, but also causes deterioration in image characteristics, and is easy to reaggregate. Storage stability deteriorates.

本発明の目的は、上述のごとき問題を解決した静電荷像現像用トナー(以下、単にトナーともいう)の製造方法を提供することである。即ち、本発明の目的は、液比重の低い低融点離型剤を均一に水中に分散し、得られた離型剤粒子の体積分布基準の50%粒径が0.05μm以上0.40μm以下に制御され、かつ、粗大粒子がさらに低減された離型剤粒子分散液を調製し、離型剤がトナー粒子中に微細且つ均一に内包される新たなトナーの製造方法を提供することである。更に、本発明の目的は、画像安定性、ブロッキング性及び定着性に優れるトナーの新たな製造方法を提供することである。   An object of the present invention is to provide a method for producing an electrostatic charge image developing toner (hereinafter also simply referred to as a toner) that solves the above-described problems. That is, an object of the present invention is to uniformly disperse a low-melting-point release agent having a low liquid specific gravity in water, and a 50% particle size based on volume distribution of the obtained release agent particles is 0.05 μm to 0.40 μm. To provide a new toner production method in which a release agent particle dispersion liquid in which coarse particles are further reduced is prepared, and the release agent is finely and uniformly contained in the toner particles. . Furthermore, an object of the present invention is to provide a new method for producing a toner excellent in image stability, blocking property and fixing property.

本発明者らは、前記課題を解決すべく鋭意検討を行った結果、以下の方法によれば、前述の粗大粒子が少なく、均一に離型剤を微分散することにより、低融点離型剤がトナー粒子中に均一に内包されることを見出した。すなわち、本発明の要旨は以下の通りである。   As a result of intensive studies to solve the above problems, the present inventors have found that, according to the following method, the above-mentioned coarse particles are small, and the low melting point release agent is obtained by uniformly finely dispersing the release agent. Has been found to be uniformly encapsulated in the toner particles. That is, the gist of the present invention is as follows.

<1> 樹脂粒子が分散された樹脂粒子分散液、着色剤粒子が分散された着色剤粒子分散液、及び、離型剤粒子が分散された離型剤粒子分散液を含む混合液を調製する工程、調製された混合液に少なくとも含まれる樹脂粒子、着色剤粒子、及び、離型剤粒子を凝集し、凝集体粒子を形成する工程、凝集体粒子を加熱して融合する工程を包含する静電荷像現像用トナーの製造方法であって、離型剤粒子が分散された離型剤粒子分散液は、離型剤、界面活性剤、及び、水系媒体を少なくとも含有する離型剤混合液を、離型剤の融点以上に加熱しながら、剪断力を有する分散装置にて離型剤を分散し、O/Wエマルジョンを得る分
散工程、及び、得られたO/Wエマルジョンを離型剤の融点未満まで冷却する冷却工程を
含む製造方法で得られたものであり、分散装置が、回転する攪拌羽根と前記攪拌羽根の周囲に攪拌羽根と逆方向に回転するスクリーンを少なくとも有する攪拌手段、攪拌手段が設置された容器、及び、容器に対して離型剤混合液を導入及び排出を繰り返して循環させるための循環手段を少なくとも有する分散装置であり、分散工程は、分散装置の攪拌手段を用いて離型剤混合液を110000sec−1以上200000sec−1以下の速度勾配で回転剪断攪拌し、かつ、分散装置の循環手段を用いて離型剤混合液を循環して離型剤を分散する工程を含み、離型剤粒子分散液中における離型剤粒子の、レーザー回折/散乱
式粒度分布測定装置で測定された体積分布基準の50%粒径が、0.05μm以上0.40μm以下であり、かつ、0.80μm以上の離型剤粒子が1体積%以下であることを特徴とするトナーの製造方法。
<1> A liquid mixture including a resin particle dispersion in which resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, and a release agent particle dispersion in which release agent particles are dispersed is prepared. A step comprising agglomerating at least resin particles, colorant particles, and release agent particles contained in the prepared mixed liquid to form aggregated particles, and heating and aggregating the aggregated particles. A method for producing a toner for developing a charge image, wherein a release agent particle dispersion in which release agent particles are dispersed is a release agent mixed solution containing at least a release agent, a surfactant, and an aqueous medium. The dispersion step of dispersing the release agent in a dispersing device having shearing force while heating to above the melting point of the release agent to obtain an O / W emulsion, and the obtained O / W emulsion to the release agent It was obtained by a manufacturing method including a cooling step for cooling to below the melting point. The dispersing device has at least a stirring blade that rotates and a screen that rotates around the stirring blade in a direction opposite to the stirring blade, a container in which the stirring device is installed, and a release agent mixture for the container Is a dispersion apparatus having at least a circulation means for circulating introduction and discharge repeatedly, and the dispersion step uses a stirring means of the dispersion apparatus to cause the release agent mixture liquid to have a velocity gradient of 110000 sec −1 or more and 200000 sec −1 or less. And a step of dispersing the release agent by circulating the release shearing mixture using the circulation means of the dispersing device, and dispersing the release agent particles in the release agent particle dispersion liquid. One release agent particle having a volume distribution standard 50% particle size measured by a diffraction / scattering particle size distribution analyzer of 0.05 μm or more and 0.40 μm or less and 0.80 μm or more Method for producing a toner, wherein the% or less.

<2> 上記冷却工程において、O/Wエマルジョンを5℃/分以上の冷却速度で離型剤
の融点未満まで冷却することを特徴とする<1>に記載のトナーの製造方法。
<2> The method for producing a toner according to <1>, wherein in the cooling step, the O / W emulsion is cooled to a temperature lower than the melting point of the release agent at a cooling rate of 5 ° C./min or more.

<3> 上記冷却工程において、分散装置の攪拌手段を用いてO/Wエマルジョンを20
000sec−1以下の速度勾配で回転剪断攪拌し、かつ、分散装置の循環手段を用いてO/Wエマルジョンを循環して冷却することを特徴とする<1>または<2>に記載のト
ナーの製造方法。
<3> In the above cooling step, the O / W emulsion is 20
The toner according to <1> or <2>, wherein the toner is subjected to rotational shear stirring at a speed gradient of 000 sec −1 or less, and the O / W emulsion is circulated and cooled using a circulation unit of a dispersion device. Production method.

<4> 上記冷却工程において、攪拌羽根を有する攪拌手段、攪拌手段が設置された容器を少なくとも有する冷却装置を用いて、攪拌羽根にて攪拌しながら、離型剤の融点未満まで冷却することを特徴とする<1>または<2>に記載のトナーの製造方法。 <4> In the cooling step, using a cooling device having at least a stirring means having a stirring blade and a container provided with the stirring means, cooling to below the melting point of the release agent while stirring with the stirring blade. <1> or <2>, wherein the toner production method is characterized.

<5> 離型剤の融点が40℃以上120℃以下であることを特徴とする<1>乃至<4>のいずれかに記載のトナーの製造方法。 <5> The toner production method according to any one of <1> to <4>, wherein the release agent has a melting point of 40 ° C. or higher and 120 ° C. or lower.

<6> 離型剤の融点における液体密度が0.70g/cm以上0.95g/cm以下であることを特徴とする<1>乃至<5>のいずれかに記載のトナーの製造方法。 <6> The method for producing a toner according to any one of <1> to <5>, wherein the liquid density at the melting point of the release agent is 0.70 g / cm 3 or more and 0.95 g / cm 3 or less. .

<7> 離型剤が高級脂肪族アルコールであることを特徴とする<1>乃至<6>のいずれかに記載のトナーの製造方法。 <7> The method for producing a toner according to any one of <1> to <6>, wherein the release agent is a higher aliphatic alcohol.

本発明によれば、水中へ離型剤を簡便に微分散することができ、特に低液比重な離型剤を粗大粒子が少なく、均一に微分散させることができる。従って、本発明によれば、所望の離型剤が微細且つ均一に内包され、画像安定性、ブロッキング性及び定着性に優れたトナーを提供することができる。   According to the present invention, a release agent can be easily finely dispersed in water, and in particular, a release agent having a low liquid specific gravity can be uniformly finely dispersed with few coarse particles. Therefore, according to the present invention, it is possible to provide a toner in which a desired release agent is finely and uniformly encapsulated and excellent in image stability, blocking property and fixing property.

本発明のトナーの製造方法は、樹脂粒子が分散された樹脂粒子分散液、着色剤粒子が分散された着色剤粒子分散液、及び、離型剤粒子が分散された離型剤粒子分散液を含む混合液を調製する工程、調製された混合液に少なくとも含まれる樹脂粒子、着色剤粒子、及び、離型剤粒子を凝集し、凝集体粒子を形成する工程、前記凝集体粒子を加熱して融合する工程を包含する静電荷像現像用トナーの製造方法であって、
前記離型剤粒子が分散された離型剤粒子分散液は、離型剤、界面活性剤、及び、水系媒体を少なくとも含有する離型剤混合液を、前記離型剤の融点以上に加熱しながら、剪断力を有する分散装置にて前記離型剤を分散し、O/W(水中油滴ともいう)エマルジョンを
得る分散工程、及び、得られたO/Wエマルジョンを前記離型剤の融点未満まで冷却する
冷却工程を含む製造方法で得られたものであり、
前記分散装置が、回転する攪拌羽根と前記攪拌羽根の周囲に前記攪拌羽根と逆方向に回転するスクリーンを少なくとも有する攪拌手段、前記攪拌手段が設置された容器、及び、前記容器に対して前記離型剤混合液を導入及び排出を繰り返して循環させるための循環手段を少なくとも有する分散装置であり、
前記分散工程は、前記分散装置の攪拌手段を用いて前記離型剤混合液を110000sec−1以上200000sec−1以下の速度勾配で回転剪断攪拌し、かつ、前記分散装置の循環手段を用いて前記離型剤混合液を循環して前記離型剤を分散する工程を含み、
前記離型剤粒子分散液中における離型剤粒子の、レーザー回折/散乱式粒度分布測定装
置で測定された体積分布基準の50%粒径が、0.05μm以上0.40μm以下であり、かつ、0.80μm以上の離型剤粒子が1体積%以下であることを特徴とする。
The toner production method of the present invention includes a resin particle dispersion in which resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, and a release agent particle dispersion in which release agent particles are dispersed. A step of preparing a mixed liquid, a step of aggregating at least the resin particles, the colorant particles, and the release agent particles contained in the prepared mixed liquid to form aggregate particles, and heating the aggregate particles. A method for producing an electrostatic charge image developing toner comprising a fusing step,
The release agent particle dispersion in which the release agent particles are dispersed is obtained by heating a release agent mixed solution containing at least a release agent, a surfactant, and an aqueous medium to a temperature equal to or higher than the melting point of the release agent. However, a dispersion step of dispersing the release agent in a dispersing device having a shearing force to obtain an O / W (also referred to as oil-in-water) emulsion, and the obtained O / W emulsion with the melting point of the release agent Obtained by a production method including a cooling step of cooling to less than
The dispersing device includes at least a stirring blade that rotates and a screen that rotates around the stirring blade in a direction opposite to the stirring blade, a container in which the stirring device is installed, and the separation with respect to the container. A dispersing device having at least a circulating means for circulating the mold mixture liquid repeatedly by introducing and discharging;
In the dispersion step, the release agent mixed solution is rotationally sheared and stirred at a speed gradient of 110000 sec −1 or more and 200000 sec −1 or less using the stirring means of the dispersion apparatus, and the circulation means of the dispersion apparatus is used to Circulating the release agent mixture to disperse the release agent,
The 50% particle size of the volume distribution standard of the release agent particles in the release agent particle dispersion measured with a laser diffraction / scattering particle size distribution measuring device is 0.05 μm or more and 0.40 μm or less, and The release agent particles of 0.80 μm or more are 1% by volume or less.

<本発明で用いられる離型剤>
本発明で用いられる離型剤としては特に限定されないが、例えば、ポリエチレン等のポリオレフィン類、加熱により融点(軟化点)を有するシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪酸アミド、ステアリン酸ステアリル、ベヘン酸ベヘニル等のエステルワックス、カルナバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等の植物系ワックス、ミツロウ等の動物系ワックス、モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス、エステルワックス等の鉱物・石油系ワックス、ステアリン酸、ベヘン酸等の高級脂肪酸、ステアリルアルコール、
ベヘニルアルコール等の高級脂肪族アルコール、及びこれらのグラフト化合物、ブロック化合物の如き誘導体等の変性物などが挙げられる。
これらの内、本発明で用いられる離型剤としては、高級脂肪族アルコールが低温定着性の観点からより好ましい。
<Releasing agent used in the present invention>
The release agent used in the present invention is not particularly limited. For example, polyolefins such as polyethylene, silicones having a melting point (softening point) by heating, oleic acid amide, erucic acid amide, ricinoleic acid amide, stearic acid amide Fatty acid amides such as stearyl stearate, behenyl behenate wax, carnauba wax, rice wax, candelilla wax, tree wax, jojoba oil and other plant waxes, beeswax animal waxes, montan wax, ozokerite, Minerals such as ceresin, paraffin wax, microcrystalline wax, Fischer-Tropsch wax, ester wax, petroleum-based wax, higher fatty acids such as stearic acid and behenic acid, stearyl alcohol,
Examples thereof include higher aliphatic alcohols such as behenyl alcohol, and modified products such as these graft compounds and derivatives such as block compounds.
Of these, higher aliphatic alcohols are more preferred from the viewpoint of low-temperature fixability as the release agent used in the present invention.

本発明で用いられる離型剤の融点は、室温以上150℃以下のものがトナーの耐ブロッキング性、多数枚耐久性、低温定着性、耐オフセット性の点で好ましく、40℃以上120℃以下のものがより好ましい。   The melting point of the release agent used in the present invention is preferably from room temperature to 150 ° C. from the viewpoint of toner blocking resistance, multi-sheet durability, low-temperature fixability, and offset resistance, and is from 40 ° C. to 120 ° C. Those are more preferred.

本発明で用いられる離型剤は、低温定着性の観点から、当該離型剤の融点における液体密度が0.70g/cm以上0.95g/cm以下であることが好ましく、0.70g/cm以上0.85g/cm以下であることがより好ましい。
前記融点とは、ASTM D3418−82に準じて測定されたDSC曲線における主
体吸熱ピーク温度を示す。具体的には、測定温度範囲を30〜200℃とし、昇温速度を10℃/minとし、常温常湿環境下における2回目の昇温過程によって温度30〜20
0℃の範囲におけるDSC曲線を得、得られたDSC曲線における主体吸熱ピーク温度の値である。
なお、前記離型剤は、トナーを構成する樹脂100質量部に対して1〜20質量部使用することが好ましい。
The release agent used in the present invention preferably has a liquid density at the melting point of the release agent of 0.70 g / cm 3 or more and 0.95 g / cm 3 or less from the viewpoint of low-temperature fixability, and 0.70 g. It is more preferable that it is not less than / cm 3 and not more than 0.85 g / cm 3 .
The melting point indicates a main endothermic peak temperature in a DSC curve measured according to ASTM D3418-82. Specifically, the measurement temperature range is 30 to 200 ° C., the temperature increase rate is 10 ° C./min, and the temperature is increased to 30 to 20 by the second temperature increase process in a normal temperature and humidity environment.
The DSC curve is obtained in the range of 0 ° C., and is the value of the main endothermic peak temperature in the obtained DSC curve.
The release agent is preferably used in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the resin constituting the toner.

前記離型剤を用いて得られた離型剤粒子分散液中における離型剤粒子の、レーザー回折/散乱式粒度分布測定装置で測定された体積分布基準の50%粒径は、0.05μm以上0.40μm以下であり、かつ、0.80μm以上の離型剤が1体積%以下である。好ましくは、体積分布基準の50%粒径が、0.07μm以上0.30μm以下であり、かつ、0.80μm以上の離型剤が0.1体積%以下である。
0.80μm以上の離型剤が1体積%を超える場合、その粗粒が核となり、再凝集しや
すくなることで離型剤粒子分散液の保存安定性が低下するため好ましくない。また、体積分布基準の50%粒径が0.40μmを超える場合、離型剤がトナー表面に露出し易くなり、ブロッキング等の観点から好ましくない。
なお、上記体積分布基準の50%粒径及び0.80μm以上の離型剤の存在状態は、上
記分散装置の攪拌手段を用いた速度勾配を制御することで上記範囲に調節することが可能である。
The 50% particle size on the basis of volume distribution measured by a laser diffraction / scattering particle size distribution measuring device of the release agent particles in the release agent particle dispersion obtained using the release agent is 0.05 μm. The amount of the release agent is 0.40 μm or less and 0.80 μm or more in an amount of 1% by volume or less. Preferably, the 50% particle size based on volume distribution is 0.07 μm or more and 0.30 μm or less, and the release agent of 0.80 μm or more is 0.1% by volume or less.
When the amount of the release agent of 0.80 μm or more exceeds 1% by volume, the coarse particles serve as nuclei and are liable to re-aggregate, so that the storage stability of the release agent particle dispersion is lowered, which is not preferable. Further, when the 50% particle size based on the volume distribution exceeds 0.40 μm, the release agent is easily exposed on the toner surface, which is not preferable from the viewpoint of blocking and the like.
The presence state of the 50% particle size based on the volume distribution and the release agent of 0.80 μm or more can be adjusted to the above range by controlling the velocity gradient using the stirring means of the dispersing device. is there.

<本発明で用いられる界面活性剤>
本発明においては、離型剤を水中に微分散させるために界面活性剤を用いることができる。具体的には、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン界面活性剤;アミン塩型、4級アンモニウム塩型等のカチオン界面活性剤;ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等のノニオン界面活性剤などが挙げられる。前記界面活性剤は、1種単独で使用してもよいし、2種以上を併用してもよい。前記界面活性剤の水系媒体中における濃度は、0.1〜5質量%程度になるようにすることが好ましい。
<Surfactant used in the present invention>
In the present invention, a surfactant can be used to finely disperse the release agent in water. Specifically, anionic surfactants such as sulfate ester type, sulfonate type, phosphate ester type and soap type; cationic surfactants such as amine salt type and quaternary ammonium salt type; polyethylene glycol type, alkylphenol Nonionic surfactants such as ethylene oxide adducts and polyhydric alcohols can be used. The said surfactant may be used individually by 1 type, and may use 2 or more types together. The concentration of the surfactant in the aqueous medium is preferably about 0.1 to 5% by mass.

<本発明における離型剤粒子分散液の調製方法>
本発明において、離型剤粒子が分散された離型剤粒子分散液は、離型剤、界面活性剤、及び、水系媒体を少なくとも含有する離型剤混合液を、離型剤の融点以上に加熱しながら、剪断力を有する分散装置にて離型剤を分散し、O/Wエマルジョンを得る分散工程、及
び、得られたO/Wエマルジョンを離型剤の融点未満まで冷却する冷却工程を含む製造方
法で得られたものである。
なお、上記水系媒体とは、水を主要成分としている媒体を意味する。水系媒体の具体例としては、水そのもの、水にpH調整剤を添加したもの、水に有機溶剤を添加したものが
挙げられる。
<Method for Preparing Release Agent Particle Dispersion in the Present Invention>
In the present invention, the release agent particle dispersion in which the release agent particles are dispersed is such that the release agent mixed solution containing at least the release agent, the surfactant, and the aqueous medium exceeds the melting point of the release agent. Dispersing step of dispersing release agent in a dispersing device having shearing force while heating to obtain O / W emulsion, and cooling step of cooling the obtained O / W emulsion to below the melting point of the releasing agent It was obtained by the manufacturing method containing.
In addition, the said aqueous medium means the medium which has water as the main component. Specific examples of the aqueous medium include water itself, water added with a pH adjusting agent, and water added with an organic solvent.

<離型剤粒子分散液の分散工程>
上記分散工程では、離型剤、界面活性剤、及び、水系媒体を少なくとも含有する離型剤混合液を、離型剤の融点以上に加熱し、離型剤を液体の状態とし、水相−油相の二相系を形成させる。このとき、離型剤の融解による吸熱が起こる為、離型剤を完全に融解させる為には、融点の5℃以上の温度を目標に加熱することが好ましい。さらにその後、剪断力を有する分散装置を用いて、微細なO/Wエマルジョンを形成させることで、水系媒体中
への分散が可能となる。
<Dispersing step of release agent particle dispersion>
In the dispersion step, a release agent mixture containing at least a release agent, a surfactant, and an aqueous medium is heated to a temperature equal to or higher than the melting point of the release agent to bring the release agent into a liquid state, A two-phase system of oil phase is formed. At this time, an endotherm due to melting of the mold release agent occurs. Therefore, in order to completely melt the mold release agent, it is preferable to heat at a temperature of the melting point of 5 ° C. or higher. Furthermore, after that, by using a dispersing device having a shearing force, a fine O / W emulsion is formed, whereby dispersion in an aqueous medium becomes possible.

<離型剤粒子分散液の分散装置>
本発明で好ましく用いられる離型剤粒子分散液の分散装置について以下に説明するが、これに限定されない。
図1に、ジャケット付混合容器11、攪拌手段(ジャケット付回転剪断攪拌装置12)及び循環手段(循環ポンプ13)を備えた離型剤粒子分散液の分散装置の概略図を示す。
また、図2にジャケット付回転剪断攪拌装置12が有している剪断攪拌部位の詳細図を示す。
ジャケット付混合容器11にて加熱された離型剤、水及び界面活性剤の混合液は、循環ポンプ13を介してジャケット付回転剪断攪拌装置12が有している剪断攪拌部位(図2)にて剪断を受ける。ここで、剪断攪拌部位は、図2における攪拌羽根(ローター)21が回転し、更に、ローター21の外側に配置されているスクリーン22が、ローター21とは逆の方向に回転し、ローター21と、スクリーン22の間の微小な間隙であるクリアランス31において、剪断を受け、溶解した離型剤は微小な液滴として分散され、すなわち微細なO/Wエマルジョンを形成する。
<Dispersing device for release agent particle dispersion>
The dispersing device for the release agent particle dispersion preferably used in the present invention will be described below, but is not limited thereto.
FIG. 1 shows a schematic view of a dispersing device for a release agent particle dispersion liquid equipped with a mixing vessel 11 with a jacket, stirring means (rotating shear stirring apparatus with jacket 12) and circulating means (circulation pump 13).
Further, FIG. 2 shows a detailed view of the shearing stirring part of the jacketed rotary shearing stirring device 12.
The mixture of the release agent, water, and surfactant heated in the jacketed mixing vessel 11 passes through the circulation pump 13 to the shear stirring portion (FIG. 2) of the jacketed rotary shear stirring device 12. Subjected to shear. Here, in the shear stirring portion, the stirring blade (rotor) 21 in FIG. 2 rotates, and the screen 22 disposed outside the rotor 21 rotates in the direction opposite to the rotor 21, In the clearance 31, which is a minute gap between the screens 22, sheared and dissolved release agent is dispersed as minute droplets, that is, forms a fine O / W emulsion.

スクリーン22がローター21の回転方向と逆方向に回転するものである為、両者の相対的な回転数を上げることができ、離型剤粒子分散液へかかるせん断力を高めることができる。これにより、従来以上に、離型剤は微小な液滴を形成することが可能である為、微細なO/Wエマルジョンを形成することができる。
上記回転剪断攪拌装置において、回転するローターの周速とスクリーンの周速の和をx
m/sec、ローターとスクリーンのクリアランスをy mmとすると、x/y×1000sec−1でその速度勾配を表すことができる。
本発明においては、上記回転剪断攪拌装置を用いて、上記離型剤混合液を110000sec−1以上200000sec−1以下の速度勾配で回転剪断攪拌する。
特に、当該速度勾配は、ローターの外径が、1cm以上10cm未満の範囲においては150000sec−1以上200000sec−1以下が好ましく、ローターの外径が、10cm以上50cm以下の範囲においては110000sec−1以上150000sec−1以下であることが好ましい。上記速度勾配が小さすぎると、離型剤と水の二液の混合及び微分散が不十分であり、粗大凝集粒子の発生が起こりやすくなる。
ここで、上記周速の単位はm/secであり、以下の式で表される値である。
(式)周速(m/sec)=ローター外径(cm)/100×ローター回転数(rpm)/
60×π。
Since the screen 22 rotates in the direction opposite to the rotation direction of the rotor 21, the relative rotational speed of both can be increased, and the shearing force applied to the release agent particle dispersion can be increased. Thereby, since a mold release agent can form a fine droplet more than before, it can form a fine O / W emulsion.
In the above rotary shear stirring device, the sum of the peripheral speed of the rotating rotor and the peripheral speed of the screen is expressed as x.
If the clearance between the rotor and the screen is y mm, the velocity gradient can be expressed by x / y × 1000 sec −1 .
In the present invention, the release agent mixed solution is rotationally sheared and stirred at a speed gradient of 110000 sec −1 or more and 200000 sec −1 or less using the rotating shear stirrer.
In particular, the velocity gradient, the outer diameter of the rotor, preferably 150000Sec -1 or more 200000Sec -1 or less in 10cm below the range of 1 cm, the outer diameter of the rotor, 110000Sec -1 or more in 50cm below the range of 10cm It is preferably 150,000 sec −1 or less. If the velocity gradient is too small, mixing and fine dispersion of the two liquids of the release agent and water are insufficient, and coarse aggregated particles are likely to be generated.
Here, the unit of the peripheral speed is m / sec, which is a value represented by the following equation.
(Formula) peripheral speed (m / sec) = rotor outer diameter (cm) / 100 × rotor rotational speed (rpm) /
60 × π.

また、上記離型剤混合液は、上述のごとく特定の速度勾配で回転剪断攪拌され、かつ、循環手段(循環ポンプ13)を用いて、循環を繰り返し、離型剤が分散される。ジャケット付混合容器11とジャケット付剪断攪拌装置12との間の循環を繰り返すことで、容器内において上下の流動が促進され、液比重の小さい離型剤においても、均一にかつ効率よく離型剤を分散することができる。
上記回転剪断攪拌装置としては、上記特定の速度勾配を達成できれば特に限定されないが、例えば、クレアミックスW−モーション(エム・テクニック社製)を好適に用いるこ
とができる。
Further, the release agent mixed solution is rotationally sheared and stirred at a specific speed gradient as described above, and circulation is repeated using a circulation means (circulation pump 13) to disperse the release agent. By repeating the circulation between the jacketed mixing vessel 11 and the jacketed shear stirring device 12, the up and down flow is promoted in the vessel, and even in a release agent having a small liquid specific gravity, the release agent is uniformly and efficiently. Can be dispersed.
The rotary shear stirring device is not particularly limited as long as the specific velocity gradient can be achieved. For example, Claremix W-Motion (manufactured by M Technique) can be preferably used.

<離型剤粒子分散液の冷却工程>
本発明において、離型剤粒子分散液の冷却工程は、分散工程で得られたO/Wエマルジ
ョンを該離型剤の融点未満まで冷却する工程である。
冷却工程に使用する装置は、上記分散装置を用いて冷却しても良いし、上記分散装置とは異なる冷却装置に移した後に攪拌しながら冷却しても良い。また、O/Wエマルジョン
を抜き出しながら連続的に冷却しても良いし、バッチ式で冷却しても良い。
<Cooling step of release agent particle dispersion>
In the present invention, the cooling step of the release agent particle dispersion is a step of cooling the O / W emulsion obtained in the dispersion step to below the melting point of the release agent.
The apparatus used for the cooling step may be cooled using the dispersing apparatus, or may be cooled with stirring after being transferred to a cooling apparatus different from the dispersing apparatus. Moreover, it may cool continuously while extracting the O / W emulsion, or may be cooled in a batch manner.

上記離型剤粒子分散液の冷却工程において、冷却時の冷却速度は、O/Wエマルジョン
を5℃/分以上、より好ましくは8℃/分以上、の冷却速度で上記離型剤の融点未満まで、より好ましくは、上記離型剤の融点より10℃低い温度未満まで、さらに好ましくは上記離型剤の融点より30℃低い温度未満まで冷却することが好ましい。5℃/分未満の冷却速度で冷却した場合、不均一な分散状態で離型剤が冷却される場合がある。それが粗粒の発生を引き起こし、離型剤粒子が再凝集し易くなり、経時変化と共に粗粒が増加する傾向にある。その為、経時変化した離型剤粒子分散液を使用して作製したトナー粒子は粒度分布の劣化、画像安定性の劣化、ブロッキングを引き起こす可能性が高くなる。また、冷却速度の上限は、経済上有益な範囲であることが好ましい。
さらに冷却時には、離型剤粒子に過剰な剪断力が掛からないことが望ましい。離型剤粒子への過剰な剪断による離型剤粒子の変形、比表面積の増加を引き起こし、離型剤粒子が再凝集し易くなり、経時変化と共に粗粒が増加する可能性がある。
しかし、O/Wエマルジョンに必要最低限の流動状態が確保されなければ、分散工程で
形成した離型剤の微小な液滴が合一し、液液二相分離を引き起こし、離型剤粒子分散液を得ることが難しくなる傾向にある。その為、離型剤の融点未満に冷却するまでの間、O/
Wエマルジョンが安定化するのに必要な流動状態を確保することが好ましい。
In the cooling step of the release agent particle dispersion, the cooling rate during cooling is less than the melting point of the release agent at a cooling rate of 5 ° C./min or more, more preferably 8 ° C./min or more for the O / W emulsion. More preferably, it is preferable to cool to a temperature lower than 10 ° C. lower than the melting point of the release agent, more preferably to a temperature lower than 30 ° C. lower than the melting point of the release agent. When cooled at a cooling rate of less than 5 ° C./min, the release agent may be cooled in a non-uniform dispersion state. This causes the generation of coarse particles, the release agent particles tend to reaggregate, and the coarse particles tend to increase with time. Therefore, toner particles produced using a release agent particle dispersion that has changed over time are likely to cause deterioration in particle size distribution, image stability, and blocking. Moreover, it is preferable that the upper limit of a cooling rate is an economically useful range.
Furthermore, it is desirable that excessive shearing force is not applied to the release agent particles during cooling. This may cause deformation of the release agent particles due to excessive shearing to the release agent particles and increase in the specific surface area, and the release agent particles are likely to re-aggregate, and coarse particles may increase with time.
However, if the minimum required flow state is not secured in the O / W emulsion, the fine droplets of the release agent formed in the dispersion process coalesce, causing liquid-liquid two-phase separation, and releasing agent particle dispersion It tends to be difficult to obtain a liquid. Therefore, until it cools below the melting point of the release agent, O /
It is preferable to ensure a fluid state necessary for stabilizing the W emulsion.

上記分散装置を用いて冷却する場合、離型剤粒子に過剰な剪断力が掛けることなく、O/Wエマルジョンを安定化させるために必要な流動状態を確保する為に、回転剪断攪拌装
置の速度勾配は、20000sec−1以下で(より好ましくは10000sec−1以下で)離型剤の融点未満まで冷却することが好ましい。さらに、当該冷却工程では、攪拌手段の循環状態に対応して回転剪断攪拌装置の速度勾配を適切に付与することがより好ましく、循環状態が適切であり、必要な流動状態が確保されていれば、回転剪断攪拌装置は停止していても良い。
When cooling using the above dispersing device, the speed of the rotary shearing stirrer is sufficient to ensure the flow state necessary to stabilize the O / W emulsion without applying excessive shearing force to the release agent particles. The gradient is preferably 20000 sec −1 or less (more preferably 10000 sec −1 or less) and is cooled to below the melting point of the release agent. Furthermore, in the cooling step, it is more preferable to appropriately apply a speed gradient of the rotary shear stirring device corresponding to the circulation state of the stirring means, and the circulation state is appropriate and the necessary flow state is ensured. The rotary shear stirring device may be stopped.

また、上記冷却工程において、攪拌羽根を有する攪拌手段、攪拌手段が設置された容器を少なくとも有する冷却装置を用いて、離型剤の融点未満まで冷却することも好ましい態様である。
上記分散装置とは異なる冷却装置に移した後に攪拌しながら冷却する場合、均一かつ安定した離型剤粒子分散液を簡易に得るために、O/Wエマルジョンを安定化させる必要が
ある。その安定化に必要な流動状態を確保する為に、該冷却装置に対応して適切な周端速度を付与することがより好ましい。攪拌を停止してしまうと、分散工程で形成した離型剤の微小な液滴が合一し、液液二相分離を引き起こし、離型剤粒子分散液を簡易に得ることが困難な場合がある。
また、O/Wエマルジョンを抜き出しながら連続的に冷却する場合についても、O/Wエマルジョンを安定化させるために必要な流動状態を確保することが好ましい。
In the cooling step, it is also a preferable aspect to cool to below the melting point of the release agent by using a stirring device having a stirring blade and a cooling device having at least a container provided with the stirring device.
In the case of cooling with stirring after transferring to a cooling device different from the above dispersing device, it is necessary to stabilize the O / W emulsion in order to easily obtain a uniform and stable release agent particle dispersion. In order to ensure the flow state necessary for the stabilization, it is more preferable to provide an appropriate peripheral edge speed corresponding to the cooling device. If the stirring is stopped, the fine droplets of the release agent formed in the dispersion step coalesce, causing liquid-liquid two-phase separation, and it may be difficult to easily obtain the release agent particle dispersion. is there.
Moreover, also about the case where it cools continuously, extracting O / W emulsion, it is preferable to ensure a fluid state required in order to stabilize O / W emulsion.

<本発明のトナーの製造方法>
次に、本発明のトナーの製造方法に関して説明する。
本発明のトナーの製造方法は、樹脂粒子が分散された樹脂粒子分散液、着色剤粒子が分散された着色剤粒子分散液、及び、離型剤粒子が分散された離型剤粒子分散液を含む混合
液を調製する工程、調製された混合液に少なくとも含まれる樹脂粒子、着色剤粒子、及び、離型剤粒子を凝集し、凝集体粒子を形成する工程、凝集体粒子を加熱して融合する工程を包含することを特徴とする。
なお、本発明のトナー製造方法においては、上記混合液を調製する工程において、帯電制御粒子が分散された帯電制御粒子分散液をさらに添加することも可能である。
<Method for Producing Toner of the Present Invention>
Next, a method for producing the toner of the present invention will be described.
The toner production method of the present invention includes a resin particle dispersion in which resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, and a release agent particle dispersion in which release agent particles are dispersed. A step of preparing a mixed solution, a step of aggregating at least the resin particles, the colorant particles, and the release agent particles contained in the prepared mixed solution to form aggregate particles, and heating the aggregate particles for fusion Including the step of:
In the toner manufacturing method of the present invention, it is possible to further add a charge control particle dispersion liquid in which charge control particles are dispersed in the step of preparing the mixed liquid.

上記樹脂粒子分散液に用いられる樹脂としては、下記特性を有するトナーに適した樹脂であれば特に限定されない。
上記樹脂として、分子の末端、側鎖等に、水酸基、カルボキシル基、硫酸エステル基等を有する樹脂が好ましい。そのような樹脂としては、スチレン、パラクロロスチレン、α−メチルスチレン等のスチレン類、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸ラウリル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸ラウリル、メタクリル酸2−エチルヘキシル、アクリロニトリル、メタクリロニトリル等のビニル基系モノマー、ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル系モノマー、ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン系モノマー、及び、エチレン、プロピレン、ブタジエン等のポリオレフィン系モノマーからなる重合体またはこれらを2種以上組み合せて得られる共重合体またはこれらの混合物が挙げられる。また、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂等、非ビニル縮合系樹脂、あるいはこれらと上記ビニル系樹脂との混合物やこれらの共存下でビニル系単量体を重合する際に得られるグラフト重合体等を挙げることができる。これらの樹脂は、1種類単独で使用してもよいし、2種類以上を併用してもよい。
The resin used in the resin particle dispersion is not particularly limited as long as it is a resin suitable for a toner having the following characteristics.
As the resin, a resin having a hydroxyl group, a carboxyl group, a sulfate ester group, or the like at a molecular end, a side chain, or the like is preferable. Examples of such resins include styrenes such as styrene, parachlorostyrene, and α-methylstyrene, methyl acrylate, ethyl acrylate, n-propyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, Vinyl group monomers such as ethyl methacrylate, n-propyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, acrylonitrile and methacrylonitrile, vinyl ether monomers such as vinyl methyl ether and vinyl isobutyl ether, vinyl methyl ketone, vinyl It is obtained by combining a vinyl ketone monomer such as ethyl ketone and vinyl isopropenyl ketone and a polyolefin monomer such as ethylene, propylene and butadiene, or a combination of two or more thereof. Copolymers or mixtures thereof. In addition, epoxy resins, polyester resins, polyurethane resins, polyamide resins, cellulose resins, polyether resins, etc., non-vinyl condensation resins, or a mixture of these with the above vinyl resins or vinyl monomers in the presence of these resins The graft polymer obtained when superposing | polymerizing can be mentioned. These resins may be used alone or in combination of two or more.

また、樹脂粒子が分散された樹脂粒子分散液の調製方法としては、特に限定されず、公知の方法を用いることができる。
例えば、上記樹脂を構成するモノマーを、界面活性剤存在下で、水系媒体に分散し、過硫酸カリウムなどの水に可溶な重合開始剤を添加し、乳化重合を行うことで、樹脂粒子が分散された樹脂粒子分散液を調製することが可能である。上記樹脂を構成するモノマーの前記水系媒体に対する質量比は、0.1以上1.0以下であることが好ましい。
なお、後述する樹脂のガラス転移温度(Tg)は、JIS K7121に準拠して測定される物性値であり、該規格に記載されている中間点ガラス転移温度を意味するものである。
Moreover, it does not specifically limit as a preparation method of the resin particle dispersion liquid in which the resin particle was disperse | distributed, A well-known method can be used.
For example, the monomer constituting the resin is dispersed in an aqueous medium in the presence of a surfactant, a water-soluble polymerization initiator such as potassium persulfate is added, and emulsion polymerization is performed to obtain resin particles. It is possible to prepare a dispersed resin particle dispersion. The mass ratio of the monomer constituting the resin to the aqueous medium is preferably 0.1 or more and 1.0 or less.
In addition, the glass transition temperature (Tg) of resin mentioned later is a physical-property value measured based on JISK7121, and means the midpoint glass transition temperature described in this specification.

本発明で用いられる着色剤としては、以下の有機顔料または染料が好適に挙げられる。
シアン系の有機顔料または有機染料としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1、C.I.ピグメントブルー7、C.I.ピグメントブルー15、C.I.ピグメントブルー15:1、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー60、C.I.ピグメントブルー62、C.I.ピグメントブルー66等が挙げられる。
Preferred examples of the colorant used in the present invention include the following organic pigments or dyes.
As the cyan organic pigment or organic dye, copper phthalocyanine compounds and derivatives thereof, anthraquinone compounds, basic dye lake compounds, and the like can be used. Specifically, C.I. I. Pigment blue 1, C.I. I. Pigment blue 7, C.I. I. Pigment blue 15, C.I. I. Pigment blue 15: 1, C.I. I. Pigment blue 15: 2, C.I. I. Pigment blue 15: 3, C.I. I. Pigment blue 15: 4, C.I. I. Pigment blue 60, C.I. I. Pigment blue 62, C.I. I. And CI Pigment Blue 66.

マゼンタ系の有機顔料または有機染料としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物等が用いられる。具体的には、C.I.ピグメントレッド2、C.I.ピグメントレッド3、C.I.ピグメントレッド5、C.I.ピグメントレッド6、C.I.ピグメントレッド7、C.I.ピグメントバイオレット19、C.I.ピグメントレッド23、C.I.ピグメントレッド48:2、C.I.ピグメントレッド48:3、C.I.ピグメントレッド48:4、C.I.ピグメントレッド57:1、C.I.ピグメントレッド81:1、C.I.ピ
グメントレッド122、C.I.ピグメントレッド144、C.I.ピグメントレッド146、C.I.ピグメントレッド166、C.I.ピグメントレッド169、C.I.ピグメントレッド177、C.I.ピグメントレッド184、C.I.ピグメントレッド185、C.I.ピグメントレッド202、C.I.ピグメントレッド206、C.I.ピグメントレッド220、C.I.ピグメントレッド221、C.I.ピグメントレッド254等が挙げられる。
Examples of magenta organic pigments or organic dyes include condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinones, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, perylene compounds, and the like. Specifically, C.I. I. Pigment red 2, C.I. I. Pigment red 3, C.I. I. Pigment red 5, C.I. I. Pigment red 6, C.I. I. Pigment red 7, C.I. I. Pigment violet 19, C.I. I. Pigment red 23, C.I. I. Pigment red 48: 2, C.I. I. Pigment red 48: 3, C.I. I. Pigment red 48: 4, C.I. I. Pigment red 57: 1, C.I. I. Pigment red 81: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 144, C.I. I. Pigment red 146, C.I. I. Pigment red 166, C.I. I. Pigment red 169, C.I. I. Pigment red 177, C.I. I. Pigment red 184, C.I. I. Pigment red 185, C.I. I. Pigment red 202, C.I. I. Pigment red 206, C.I. I. Pigment red 220, C.I. I. Pigment red 221, C.I. I. And CI Pigment Red 254.

イエロー系の有機顔料または有機染料としては、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物等に代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12、C.I.ピグメントイエロー13、C.I.ピグメントイエロー14、C.I.ピグメントイエロー15、C.I.ピグメントイエロー17、C.I.ピグメントイエロー62、C.I.ピグメントイエロー74、C.I.ピグメントイエロー83、C.I.ピグメントイエロー93、C.I.ピグメントイエロー94、C.I.ピグメントイエロー95、C.I.ピグメントイエロー97、C.I.ピグメントイエロー109、C.I.ピグメントイエロー110、C.I.ピグメントイエロー111、C.I.ピグメントイエロー120、C.I.ピグメントイエロー127、C.I.ピグメントイエロー128、C.I.ピグメントイエロー129、C.I.ピグメントイエロー147、C.I.ピグメントイエロー151、C.I.ピグメントイエロー154、C.I.ピグメントイエロー155、C.I.ピグメントイエロー168、C.I.ピグメントイエロー174、C.I.ピグメントイエロー175、C.I.ピグメントイエロー176、C.I.ピグメントイエロー180、C.I.ピグメントイエロー181、C.I.ピグメントイエロー191、C.I.ピグメントイエロー194等が挙げられる。   As the yellow organic pigment or organic dye, compounds typified by condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, allylamide compounds, and the like are used. Specifically, C.I. I. Pigment yellow 12, C.I. I. Pigment yellow 13, C.I. I. Pigment yellow 14, C.I. I. Pigment yellow 15, C.I. I. Pigment yellow 17, C.I. I. Pigment yellow 62, C.I. I. Pigment yellow 74, C.I. I. Pigment yellow 83, C.I. I. Pigment yellow 93, C.I. I. Pigment yellow 94, C.I. I. Pigment yellow 95, C.I. I. Pigment yellow 97, C.I. I. Pigment yellow 109, C.I. I. Pigment yellow 110, C.I. I. Pigment yellow 111, C.I. I. Pigment yellow 120, C.I. I. Pigment yellow 127, C.I. I. Pigment yellow 128, C.I. I. Pigment yellow 129, C.I. I. Pigment yellow 147, C.I. I. Pigment yellow 151, C.I. I. Pigment yellow 154, C.I. I. Pigment yellow 155, C.I. I. Pigment yellow 168, C.I. I. Pigment yellow 174, C.I. I. Pigment yellow 175, C.I. I. Pigment yellow 176, C.I. I. Pigment yellow 180, C.I. I. Pigment yellow 181, C.I. I. Pigment yellow 191, C.I. I. And CI Pigment Yellow 194.

黒色着色剤としては、カーボンブラック、あるいは前記イエロー、マゼンタ及びシアン着色剤を用い黒色に調色されたものを利用することができる。   As the black colorant, carbon black, or a color toned to black using the yellow, magenta and cyan colorants can be used.

これらの着色剤は、単独または混合し、さらには固溶体の状態で用いることができる。
また、これら着色剤は、色相角、彩度、明度、耐光性、OHP透明性、トナーへの分散性の点から選択される。
上記着色剤は、樹脂100質量部に対し1〜20質量部添加して用いられる。
また、着色剤粒子が分散された着色剤粒子分散液の調製方法としては、特に限定されず、公知の方法を用いることができる。
例えば、上記着色剤を、界面活性剤存在下で、水系媒体にホモジナイザー等の分散機を用いて分散し、着色剤粒子が分散された着色剤粒子分散液を調製することが可能である。
These colorants can be used alone or in combination, and further in a solid solution state.
These colorants are selected from the viewpoints of hue angle, saturation, lightness, light resistance, OHP transparency, and dispersibility in toner.
The colorant is used by adding 1 to 20 parts by mass with respect to 100 parts by mass of the resin.
Moreover, it does not specifically limit as a preparation method of the coloring agent particle dispersion liquid in which coloring agent particles were disperse | distributed, A well-known method can be used.
For example, it is possible to prepare a colorant particle dispersion in which the colorant particles are dispersed by dispersing the colorant in an aqueous medium using a disperser such as a homogenizer in the presence of a surfactant.

上記帯電制御粒子が分散された帯電制御粒子分散液を得るための、帯電制御剤としては、例えば、4級アンモニウム塩化合物、ニグロシン系化合物、アルミ、鉄、クロム、亜鉛、ジルコニウム等の錯体からなる化合物等が挙げられる。なお、当該帯電制御剤としては、凝集時や融合時の安定性に影響するイオン強度の制御と廃水再利用の観点から、水に溶解しにくい素材のものが好ましい。
上記帯電制御剤は、帯電性のさらなる向上の観点から樹脂100質量部に対して0.1〜5質量部使用することが好ましい。
また、帯電制御粒子が分散された帯電制御粒子分散液の調製方法としては、特に限定されず、公知の方法を用いることができる。
例えば、上記帯電制御剤を、界面活性剤存在下で、水系媒体にホモジナイザー等の分散機を用いて分散し、帯電制御粒子が分散された帯電制御粒子分散液を調製することが可能である。
The charge control agent for obtaining a charge control particle dispersion in which the charge control particles are dispersed is, for example, a complex such as a quaternary ammonium salt compound, a nigrosine compound, aluminum, iron, chromium, zinc, or zirconium. Compounds and the like. The charge control agent is preferably made of a material that is difficult to dissolve in water from the viewpoint of controlling ionic strength that affects the stability at the time of aggregation or fusion and recycling of wastewater.
The charge control agent is preferably used in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of further improving the chargeability.
The method for preparing the charge control particle dispersion in which the charge control particles are dispersed is not particularly limited, and a known method can be used.
For example, it is possible to prepare a charge control particle dispersion in which the charge control particles are dispersed by dispersing the charge control agent in an aqueous medium using a disperser such as a homogenizer in the presence of a surfactant.

本発明のトナーの製造方法を更に詳細に説明するが、下記方法に限定されない。
<凝集工程>
上記凝集工程は、樹脂粒子が分散された樹脂粒子分散液、着色剤粒子が分散された着色剤粒子分散液、離型剤粒子が分散された離型剤粒子分散液、及び必要に応じて帯電制御粒子が分散された帯電制御粒子分散液を含む混合液を調製し、調製された混合液に含まれる樹脂粒子、着色剤粒子、離型剤粒子及び帯電制御粒子を凝集し、凝集体粒子を形成する工程である。当該凝集粒子は、例えばpH調整剤、凝集剤、安定剤を混合液中に添加混合し、温度、機械的動力等を適宜加えることにより該混合液中に形成することができる。
上記pH調整剤としては、アンモニア、水酸化ナトリウム等のアルカリ;硝酸、クエン酸等の酸があげられる。上記凝集剤としては、ナトリウム、カリウム等の1価の金属塩;カルシウム、マグネシウム等の2価の金属塩;鉄、アルミニウム等の3価の金属塩等;メタノール、エタノール、プロパノール等のアルコール類があげられる。上記安定剤としては、主に界面活性剤そのものまたはそれを含有する水系媒体などが挙げられる。
上記凝集剤等の添加・混合は、混合液中に含まれる樹脂微粒子のガラス転移温度(Tg)以下の温度で行うことが好ましい。この温度条件下で添加・混合を行うと、凝集が安定した状態で進行する。上記凝集剤等の混合は、公知の混合装置、ホモジナイザー、ミキサー等を用いて行うことができる。
ここで形成される凝集体粒子の凝集状態は、光学顕微鏡で確認する。凝集体粒子の生成が確認できた後、後述するコールター法による粒度分布解析にて平均粒径を測定する。このとき、重量平均粒径(D4)は、特に制限はないが、通常、得ようとするトナーの重量平均粒径(D4)と同じ程度になるように制御するとよい。制御は、例えば、温度と攪拌混合の条件とを適宜設定・変更することにより容易に行うことができる。以上の凝集工程において、トナーの重量平均粒径(D4)とほぼ同じ平均粒径を有する凝集体粒子が形成され、凝集粒子を分散させてなる凝集粒子分散液が調製される。
The method for producing the toner of the present invention will be described in more detail, but is not limited to the following method.
<Aggregation process>
The aggregation step includes a resin particle dispersion in which resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, a release agent particle dispersion in which release agent particles are dispersed, and charging as necessary. A mixture liquid containing a charge control particle dispersion liquid in which control particles are dispersed is prepared, and resin particles, colorant particles, release agent particles, and charge control particles contained in the prepared liquid mixture are aggregated to form aggregate particles. It is a process of forming. The agglomerated particles can be formed in the mixed solution by, for example, adding and mixing a pH adjusting agent, a flocculant, and a stabilizer in the mixed solution, and appropriately adding temperature, mechanical power, and the like.
Examples of the pH adjuster include alkalis such as ammonia and sodium hydroxide; acids such as nitric acid and citric acid. Examples of the flocculant include monovalent metal salts such as sodium and potassium; divalent metal salts such as calcium and magnesium; trivalent metal salts such as iron and aluminum; and alcohols such as methanol, ethanol and propanol. can give. Examples of the stabilizer mainly include a surfactant itself or an aqueous medium containing the surfactant.
The addition / mixing of the aggregating agent and the like is preferably performed at a temperature not higher than the glass transition temperature (Tg) of the resin fine particles contained in the mixed solution. When addition and mixing are performed under this temperature condition, aggregation proceeds in a stable state. The aggregating agent and the like can be mixed using a known mixing device, homogenizer, mixer or the like.
The aggregation state of the aggregate particles formed here is confirmed with an optical microscope. After confirming the formation of aggregate particles, the average particle size is measured by particle size distribution analysis by the Coulter method described later. At this time, the weight average particle diameter (D4) is not particularly limited, but it is usually preferable to control the weight average particle diameter (D4) to be approximately the same as the weight average particle diameter (D4) of the toner to be obtained. Control can be easily performed, for example, by appropriately setting and changing the temperature and the stirring and mixing conditions. In the above aggregation step, aggregate particles having an average particle diameter substantially the same as the weight average particle diameter (D4) of the toner are formed, and an aggregate particle dispersion liquid in which the aggregate particles are dispersed is prepared.

<融合工程>
上記融合工程は、上記凝集体粒子を加熱して融合する工程である。
融合工程に入る前に、凝集体粒子間の融着を防ぐため、上記pH調整剤、界面活性剤等を適宜投入することができる。
加熱の温度としては、凝集体粒子に含まれる樹脂のガラス転移温度(Tg)の温度から樹脂の分解温度の間であればよい。
融合の時間としては、加熱の温度が高ければ短い時間で足り、加熱の温度が低ければ長い時間が必要である。即ち、融合の時間は、加熱の温度に依存するので一概に規定することはできないが、一般的には30分〜10時間である。
本発明においては、融合工程の終了後に得られたトナー粒子を、適切な条件で洗浄、ろ過、乾燥等することにより、トナー粒子を得ることが好ましい。更に、得られたトナー粒子の表面に、シリカ、アルミナ、チタニア、炭酸カルシウム等の無機粒体や、ビニル系樹脂、ポリエステル樹脂、シリコーン樹脂等の樹脂粒子を、乾燥状態で剪断力を印加して添加してもよい。これらの無機粒体や樹脂粒子は、流動性助剤やクリーニング助剤等の外添剤として機能する。
<Fusion process>
The fusion step is a step of heating and aggregating the aggregate particles.
Before entering the fusing step, the pH adjusting agent, surfactant and the like can be appropriately added to prevent fusion between the aggregate particles.
The heating temperature may be between the glass transition temperature (Tg) of the resin contained in the aggregate particles and the decomposition temperature of the resin.
As the fusion time, a short time is sufficient if the heating temperature is high, and a long time is necessary if the heating temperature is low. That is, the fusion time depends on the temperature of heating and cannot be defined unconditionally, but is generally 30 minutes to 10 hours.
In the present invention, it is preferable to obtain toner particles by washing, filtering, drying, etc., toner particles obtained after completion of the fusing step under suitable conditions. Further, a shearing force is applied to the surface of the obtained toner particles by applying inorganic particles such as silica, alumina, titania, calcium carbonate, and resin particles such as vinyl resin, polyester resin, and silicone resin in a dry state. It may be added. These inorganic particles and resin particles function as external additives such as fluidity aids and cleaning aids.

以下に、本発明における物性測定方法を説明する。
<樹脂又は樹脂粒子のテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)の測定>
樹脂又は樹脂粒子のTHF可溶分のGPCにより測定される分子量分布及び重量平均分子量(Mw)等は以下のように求められる。
40℃のヒートチャンバ中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラヒドロフラン(THF)を毎分1mlの流速で流し、THF試料溶液を約100μl注入して測定する。試料の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。検量線作成用の標準ポリスチレン試料としては、例えば、東ソー社製或
いは、昭和電工社製の分子量が1×10〜1×10程度のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。検出器にはRI(屈折率)検出器を用いる。カラムとしては、市販のポリスチレンジェルカラムを複数本組み合わせるのが良く、例えば昭和電工社製のshodex GPC KF−801、802、803、804、805、806、807、800Pの組み合わせや、東ソー社製のTSKgelG1000H(HXL)、G2000H(HXL)、G3000H(HXL)、G4000H(HXL)、G5000H(HXL)、G6000H(HXL)、G7000H(HXL)、TSKguardcolumnの組み合わせが挙げられる。
試料は以下のようにして作製する。
樹脂又は樹脂粒子をテトラヒドロフラン(THF)中に入れ、数時間放置した後、十分振とうし、THFと良く混ぜ(試料の合一体がなくなるまで)、更に12時間以上静置する。この時THF中への放置時間が24時間以上となるようにする。その後、サンプル処理フィルター(ポアサイズ0.45〜0.5μm、例えば、マイショリディスクH−25−5:東ソー社製、エキクロディスク25CR:ゲルマン・サイエンス・ジャパン社製などが利用できる)を通過させたものを、GPCの試料とする。試料濃度は、樹脂成分が0.5〜5mg/mlとなるように調整する。
Below, the physical property measuring method in this invention is demonstrated.
<Measurement of Weight Average Molecular Weight (Mw) Measured by Gel Permeation Chromatography (GPC) of Resin or Resin Particles in Tetrahydrofuran (THF)>
The molecular weight distribution and weight average molecular weight (Mw) measured by GPC of the THF soluble content of the resin or resin particles are determined as follows.
The column is stabilized in a heat chamber at 40 ° C., and tetrahydrofuran (THF) as a solvent is allowed to flow through the column at this temperature at a flow rate of 1 ml / min, and about 100 μl of THF sample solution is injected and measured. In measuring the molecular weight of a sample, the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of a calibration curve prepared from several types of monodisperse polystyrene standard samples and the number of counts. As a standard polystyrene sample for preparing a calibration curve, for example, a standard polystyrene sample having a molecular weight of about 1 × 10 2 to 1 × 10 7 manufactured by Tosoh Corporation or Showa Denko is used. Is appropriate. An RI (refractive index) detector is used as the detector. As the column, it is preferable to combine a plurality of commercially available polystyrene gel columns. For example, a combination of shodex GPC KF-801, 802, 803, 804, 805, 806, 807, 800P manufactured by Showa Denko, Examples include combinations of TSKgel G1000H (HXL), G2000H (HXL), G3000H (HXL), G4000H (HXL), G5000H (HXL), G6000H (HXL), G7000H (HXL), and TSKguardcolumn.
The sample is prepared as follows.
The resin or resin particles are placed in tetrahydrofuran (THF), allowed to stand for several hours, then shaken well, mixed well with THF (until the sample is no longer integrated), and allowed to stand for an additional 12 hours or longer. At this time, the standing time in THF is set to be 24 hours or more. Thereafter, a sample processing filter (pore size 0.45 to 0.5 μm, for example, Mysori Disc H-25-5: manufactured by Tosoh Corporation, Excro Disc 25CR: manufactured by Gelman Science Japan Co., Ltd., etc. can be used) is passed. This is used as a GPC sample. The sample concentration is adjusted so that the resin component is 0.5 to 5 mg / ml.

<離型剤粒子等の微粒子の粒度分布測定>
離型剤粒子等の微粒子の粒度分布は、レーザー回折/散乱式粒度分布測定装置(LA−
950:堀場製作所社製)を用い、該装置の操作マニュアルに従い測定する。
具体的には、上記測定装置の試料導入部で、透過率が測定範囲内(70〜95%)になるように、測定試料を調製し、体積分布を測定した。本発明においては、離型剤粒子等の粒径は、体積分布基準の50%粒径を用いる。なお、体積分布基準の50%粒径は、体積分布基準の累積50%に相当する粒子径(メジアン径)である。
また、0.80μm以上の離型剤粒子の存在割合(体積%)は、体積分布基準の演算結果に対し、0.80μm以上の累積頻度%値を読み取る方法で求める。
<Measurement of particle size distribution of fine particles such as release agent particles>
The particle size distribution of fine particles such as release agent particles is measured by a laser diffraction / scattering particle size distribution analyzer (LA-
950: manufactured by HORIBA, Ltd.) and measurement is performed according to the operation manual of the apparatus.
Specifically, the measurement sample was prepared and the volume distribution was measured at the sample introduction part of the measurement apparatus so that the transmittance was within the measurement range (70 to 95%). In the present invention, the 50% particle size based on volume distribution is used as the particle size of the release agent particles and the like. The 50% particle size based on the volume distribution is a particle size (median diameter) corresponding to a cumulative 50% based on the volume distribution.
Further, the existence ratio (volume%) of the release agent particles of 0.80 μm or more is obtained by a method of reading the cumulative frequency% value of 0.80 μm or more with respect to the calculation result of the volume distribution standard.

<トナー粒子の個数平均粒径(D1)及び重量平均粒径(D4)の測定>
トナー粒子の個数平均粒径(D1)及び重量平均粒径(D4)はコールター法による粒度分布解析にて測定する。測定装置として、コールターカウンターTA−II或いはコールターマルチサイザーII(コールター社製)を用い、該装置の操作マニュアルに従い測定する。電解液は、1級塩化ナトリウムを用いて、約1%塩化ナトリウム水溶液を調製する。例えば、ISOTON−II(コールターサイエンティフィックジャパン社製)が使用できる。具体的な測定方法としては、電解水溶液100〜150ml中に分散剤として、界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を、0.1〜5ml加え、さらに測定試料(トナー粒子)を2〜20mg加える。試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行う。得られた分散処理液を、アパーチャーとして100μmアパーチャーを装着した上記測定装置により、2.00μm以上のトナー粒子の体積、個数を測定してトナー粒子の体積分布と個数分布とを算出する。それから、トナー粒子の個数分布から求めた個数平均粒径(D1)と、トナー粒子の体積分布から求めた重量基準のトナー粒子の重量平均粒径(D4)(各チャンネルの中央値をチャンネル毎の代表値とする)を求める。
上記チャンネルとしては、2.00〜2.52μm;2.52〜3.17μm;3.17〜4.00μm;4.00〜5.04μm;5.04〜6.35μm;6.35〜8.00μm;8.00〜10.08μm;10.08〜12.70μm;12.70〜16.00μm;16.00〜20.20μm;20.20〜25.40μm;25.40〜32.00μm;32.00〜40.30μmの13チャンネルを用いる。
<Measurement of Number Average Particle Size (D1) and Weight Average Particle Size (D4) of Toner Particles>
The number average particle diameter (D1) and the weight average particle diameter (D4) of the toner particles are measured by particle size distribution analysis by the Coulter method. A Coulter Counter TA-II or Coulter Multisizer II (manufactured by Coulter, Inc.) is used as a measuring device, and measurement is performed according to the operation manual of the device. About 1% sodium chloride aqueous solution is prepared using 1st grade sodium chloride as electrolyte solution. For example, ISOTON-II (manufactured by Coulter Scientific Japan) can be used. Specifically, 0.1 to 5 ml of a surfactant (preferably alkylbenzene sulfonate) is added as a dispersant in 100 to 150 ml of an electrolytic aqueous solution, and 2 to 20 mg of a measurement sample (toner particles) is further added. Add. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes. The volume and number distribution of the toner particles are calculated by measuring the volume and number of toner particles having a diameter of 2.00 μm or more with the above-described measuring apparatus equipped with a 100 μm aperture as the aperture of the obtained dispersion treatment liquid. Then, the number average particle diameter (D1) obtained from the number distribution of the toner particles and the weight average particle diameter (D4) of the toner particles based on the weight obtained from the volume distribution of the toner particles (the median value of each channel is determined for each channel). As a representative value).
The channels include: 2.00 to 2.52 μm; 2.52 to 3.17 μm; 3.17 to 4.00 μm; 4.00 to 5.04 μm; 5.04 to 6.35 μm; 6.35 to 8 8.00 to 10.08 μm; 10.08 to 12.70 μm; 12.70 to 16.00 μm; 16.00 to 20.20 μm; 20.20 to 25.40 μm; 25.40 to 32.00 μm Use 13 channels from 32.00 to 40.30 μm.

<離型剤の液密度の測定>
メスフラスコ中に精秤した離型剤を入れ、融点まで加熱する。離型剤が液体となったと
ころでメスフラスコの容量を読み取り、下記式を用いて離型剤の液密度を求める。
(式)離型剤の液密度[g/cm
=離型剤の質量[g]/ 液体時離型剤の容量[cm
<Measurement of liquid density of release agent>
Place the precisely weighed release agent in the volumetric flask and heat to the melting point. When the release agent becomes liquid, the volume of the volumetric flask is read, and the liquid density of the release agent is obtained using the following formula.
(Formula) Liquid density of release agent [g / cm 3 ]
= Mass of release agent [g] / Capacity of release agent in liquid [cm 3 ]

<離型剤の融点の測定>
離型剤の融点は、ASTM D3418−82に準じて測定されたDSC曲線における
主体吸熱ピーク温度を示す。具体的には、離型剤の融点は、DSC822(メトラートレド社製)を用い、測定温度範囲を30〜200℃、昇温速度を10℃/minとし、常温
常湿環境下における2回目の昇温過程によって温度30〜200℃の範囲におけるDSC曲線を得、得られたDSC曲線における主体吸熱ピーク温度である。
<Measurement of melting point of release agent>
The melting point of the release agent indicates a main endothermic peak temperature in a DSC curve measured according to ASTM D3418-82. Specifically, the melting point of the release agent is DSC822 (manufactured by METTLER TOLEDO), the measurement temperature range is 30 to 200 ° C., the heating rate is 10 ° C./min, and the second time in a normal temperature and humidity environment. The DSC curve in the temperature range of 30 to 200 ° C. is obtained by the temperature raising process, and is the main endothermic peak temperature in the obtained DSC curve.

<樹脂粒子のガラス転移温度の測定>
樹脂粒子のガラス転移温度(Tg)は、JIS K7121に準拠して測定される物性値であり、該規格に記載されている中間点ガラス転移温度を意味するものである。
<Measurement of glass transition temperature of resin particles>
The glass transition temperature (Tg) of the resin particles is a physical property value measured in accordance with JIS K7121, and means the midpoint glass transition temperature described in the standard.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されない。尚、以下の配合における部数は特に説明が無い場合は質量部である。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples. In addition, the number of parts in the following composition is part by mass unless otherwise specified.

以下の実施例で用いられる離型剤の種類及び特性は以下の通りである。
離型剤A:高級脂肪族アルコールワックス(日本精蝋社製:パラコール、融点73℃、液密度0.77g/cm
離型剤B:エステルワックス(ベヘン酸ベヘニル、融点75℃、液密度0.80g/c

離型剤C:パラフィンワックス(日本精蝋社製:HNP−51、融点78℃、液密度0.77g/cm
離型剤D:カルナバワックス(融点82℃、液密度0.80g/cm
The types and characteristics of the release agent used in the following examples are as follows.
Mold release agent A: higher aliphatic alcohol wax (manufactured by Nippon Seiwa Co., Ltd .: Paracol, melting point 73 ° C., liquid density 0.77 g / cm 3 )
Release agent B: ester wax (behenyl behenate, melting point 75 ° C., liquid density 0.80 g / c
m 3 )
Release agent C: Paraffin wax (manufactured by Nippon Seiwa Co., Ltd .: HNP-51, melting point 78 ° C., liquid density 0.77 g / cm 3 )
Mold release agent D: Carnauba wax (melting point 82 ° C., liquid density 0.80 g / cm 3 )

<実施例1>
[トナー粒子1の作製]
(離型剤粒子分散液1の調製)
・離型剤A 100質量部
・アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 880質量部
(分散工程)
以上を図1に示したジャケット付混合容器11に投入した後、90℃に加熱し、循環しながらローター外径が3cm、クリアランスが0.3mmの剪断攪拌部位にて、ローター回転数19000rpm、スクリーン回転数19000rpm、速度勾配199000sec−1の条件にて攪拌し、60分間分散処理した。
(冷却工程)
60分間の分散処理の後、引き続きローター回転数1000rpm、スクリーン回転数0rpm、速度勾配5200sec−1、冷却速度10℃/minの条件にて40℃まで冷却することで、離型剤粒子分散液1を得た。
離型剤粒子分散液1をレーザー回折/散乱式粒度分布測定装置(LA−950:堀場製
作所社製)を用い測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.15μmであり、また、0.80μm以上の離型剤粒子(粗大粒子)は0.01体積%未満であった。
調製直後の離型剤粒子分散液1と、調整後2ヶ月経過の離型剤粒子分散液1について、400メッシュ金網にてろ過した後、金網上を観察したところ、特に粗粒は観察されなかった。結果を表1に示す。
<Example 1>
[Preparation of Toner Particles 1]
(Preparation of release agent particle dispersion 1)
-Release agent A 100 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass-Ion-exchanged water 880 parts by mass (dispersing step)
After the above was put into the jacketed mixing vessel 11 shown in FIG. 1, it was heated to 90 ° C. and circulated at a shear stirring site where the rotor outer diameter was 3 cm and the clearance was 0.3 mm, the rotor rotation speed was 19000 rpm, the screen The mixture was stirred under the conditions of a rotational speed of 19000 rpm and a speed gradient of 199000 sec −1 and dispersed for 60 minutes.
(Cooling process)
After the dispersion treatment for 60 minutes, the release agent particle dispersion liquid 1 was continuously cooled to 40 ° C. under the conditions of a rotor rotation speed of 1000 rpm, a screen rotation speed of 0 rpm, a speed gradient of 5200 sec −1 , and a cooling speed of 10 ° C./min. Got.
The release agent particle dispersion 1 was measured using a laser diffraction / scattering particle size distribution analyzer (LA-950: manufactured by HORIBA, Ltd.), and a 50% particle size (median diameter) based on the volume distribution of the release agent particles. Was 0.15 μm, and release agent particles (coarse particles) of 0.80 μm or more were less than 0.01% by volume.
The release agent particle dispersion 1 immediately after the preparation and the release agent particle dispersion 1 after 2 months from the preparation were filtered through a 400 mesh wire mesh, and then the wire mesh was observed. No coarse particles were observed. It was. The results are shown in Table 1.

(樹脂粒子分散液1の調製)
・スチレン 82.6質量部
・n−ブチルアクリレート 9.2質量部
・アクリル酸 1.3質量部
・ヘキサンジオールアクリレート 0.4質量部
・n−ラウリルメルカプタン 3.2質量部
(以上和光純薬社製)
以上を混合し溶解した油相と、ネオゲンRK(第一工業製薬社製)1.5質量部をイオン交換水120質量部に溶解した水相を、フラスコ中に混合、分散し、さらに10分間ゆっくりと混合した後、これに過硫酸カリウム(和光純薬社製)0.15質量部を溶解したイオン交換水5質量部を投入した。窒素置換を十分行なった後、該フラスコ内を攪拌しながら内容物が70℃になるまでオイルバスで加熱し、6時間そのまま乳化重合を継続した。その後反応液を室温まで冷却し、樹脂粒子分散液1を調製した。この樹脂粒子分散液1における粒度分布を、レーザー回折/散乱式粒度分布測定装置(LA−950:堀場製作
所社製)を用いて測定したところ、含まれる樹脂粒子の体積分布基準の50%粒径(メジアン径)は、0.2μmであり、また1μmを超える粗大粒子は観察されなかった
(Preparation of resin particle dispersion 1)
-Styrene 82.6 parts by mass-n-butyl acrylate 9.2 parts by mass-Acrylic acid 1.3 parts by mass-Hexanediol acrylate 0.4 parts by mass-n-lauryl mercaptan 3.2 parts by mass (Wako Pure Chemical Industries, Ltd.) Made)
The oil phase obtained by mixing and dissolving the above and the water phase obtained by dissolving 1.5 parts by mass of Neogen RK (Daiichi Kogyo Seiyaku Co., Ltd.) in 120 parts by mass of ion-exchanged water are mixed and dispersed in the flask, and further for 10 minutes. After slowly mixing, 5 parts by mass of ion-exchanged water in which 0.15 parts by mass of potassium persulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved was added thereto. After sufficiently purging with nitrogen, the inside of the flask was stirred and heated in an oil bath until the content reached 70 ° C., and emulsion polymerization was continued for 6 hours. Thereafter, the reaction solution was cooled to room temperature to prepare a resin particle dispersion 1. The particle size distribution in the resin particle dispersion 1 was measured using a laser diffraction / scattering type particle size distribution measuring device (LA-950: manufactured by Horiba, Ltd.). (Median diameter) is 0.2 μm, and coarse particles exceeding 1 μm were not observed.

(着色剤粒子分散液1の調製)
・シアン顔料 100質量部
(大日精化社製:Pigment Blue 15:3)
・アニオン界面活性剤(第一工業製薬社製:ネオゲンRK) 15質量部
・イオン交換水 885質量部
以上を混合し、ホモジナイザー(IKA社製:ウルトラタラックス)を用いて約1時間分散した。この着色剤粒子分散液1における粒度分布を、レーザー回折/散乱式粒度分布
測定装置(LA−950:堀場製作所社製)を用いて測定したところ、含まれる着色剤粒子の体積分布基準の50%粒径(メジアン径)は、0.2μmであり、また1μmを超える粗大粒子は観察されなかった。
(Preparation of Colorant Particle Dispersion 1)
Cyan pigment 100 parts by mass (Daiichi Seika Co., Ltd .: Pigment Blue 15: 3)
-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 15 parts by mass-Ion-exchanged water 885 parts by mass The above were mixed and dispersed for about 1 hour using a homogenizer (manufactured by IKA: Ultra Turrax). When the particle size distribution in this colorant particle dispersion 1 was measured using a laser diffraction / scattering type particle size distribution measuring device (LA-950: manufactured by Horiba, Ltd.), it was 50% of the volume distribution standard of the colorant particles contained. The particle diameter (median diameter) was 0.2 μm, and no coarse particles exceeding 1 μm were observed.

(帯電制御粒子分散液1の調製)
・ジアルキルサリチル酸の金属化合物 20質量部
(帯電制御剤、オリエント化学工業社製:ボントロンE−84)
・アニオン性界面活性剤 2質量部
(第一工業製薬社製:ネオゲンSC)
・イオン交換水 78質量部
以上を混合し、ホモジナイザー(IKA社製:ウルトラタラックス)を用いて分散した。この帯電制御粒子分散液1における粒度分布をレーザー回折/散乱式粒度分布測定装置
(LA−950:堀場製作所社製)を用いて測定したところ、含まれる帯電制御粒子の体積分布基準の50%粒径(メジアン径)は、0.2μmであり、また1μmを超える粗大粒子は観察されなかった。
(Preparation of charge control particle dispersion 1)
20 parts by mass of a metal compound of dialkyl salicylic acid (charge control agent, manufactured by Orient Chemical Industries, Ltd .: Bontron E-84)
-Anionic surfactant 2 parts by mass (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC)
-Ion exchange water 78 mass parts The above was mixed, and it disperse | distributed using the homogenizer (the product made by IKA: Ultra Turrax). The particle size distribution in the charge control particle dispersion 1 was measured using a laser diffraction / scattering particle size distribution measuring device (LA-950: manufactured by Horiba, Ltd.). The diameter (median diameter) was 0.2 μm, and coarse particles exceeding 1 μm were not observed.

(混合液調製工程)
・樹脂粒子分散液1 360質量部
・着色剤粒子分散液1 50質量部
・離型剤粒子分散液1 70質量部
以上、調製直後の分散液を、攪拌装置、冷却管、温度計を装着した1リットルのセパラブルフラスコに投入し攪拌した。この混合液を、1N−水酸化カリウムを用いてpH=5.2に調整した。
(凝集工程)
この混合液に凝集剤として、10%塩化ナトリウム水溶液150質量部を滴下し、加熱
用オイルバス中でフラスコ内を攪拌しながら57℃まで加熱した。この温度の時、後述する樹脂粒子分散液2の3質量部と上記帯電制御剤粒子分散液1の10質量部を加えた。50℃で1時間保持した後、光学顕微鏡にて観察したところ、凝集体粒子の生成が確認された。続いてコールターマルチサイザーII(コールター社製)にて重量平均粒径(D4)を測定したところ、4.9μmであった。
(融合工程)
その後、上記混合液にアニオン製界面活性剤(第一工業製薬社製:ネオゲンSC)3質量部を更に追加した後、ステンレス製フラスコを密閉し、磁力シールを用いて攪拌を継続しながら105℃まで加熱し、3時間保持した。そして、冷却後、反応生成物をろ過し、イオン交換水で十分に洗浄した後、乾燥させることにより、トナー粒子1を得た。
(Mixed liquid preparation process)
-Resin particle dispersion 1 360 parts by weight-Colorant particle dispersion 1 50 parts by weight-Release agent particle dispersion 1 70 parts by weight The dispersion immediately after preparation was equipped with a stirrer, a condenser, and a thermometer. The mixture was put into a 1 liter separable flask and stirred. The mixture was adjusted to pH = 5.2 using 1N potassium hydroxide.
(Aggregation process)
To this mixed solution, 150 parts by mass of a 10% sodium chloride aqueous solution was added dropwise as a flocculant, and the flask was heated to 57 ° C. while stirring in the heating oil bath. At this temperature, 3 parts by mass of resin particle dispersion 2 described later and 10 parts by mass of charge control agent particle dispersion 1 were added. After maintaining at 50 ° C. for 1 hour, observation with an optical microscope confirmed the formation of aggregate particles. Subsequently, when the weight average particle diameter (D4) was measured by Coulter Multisizer II (manufactured by Coulter, Inc.), it was 4.9 μm.
(Fusion process)
Thereafter, 3 parts by mass of an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen SC) was further added to the above mixed solution, and then the stainless steel flask was sealed and 105 ° C. while stirring was continued using a magnetic seal. And heated for 3 hours. Then, after cooling, the reaction product was filtered, washed thoroughly with ion exchange water, and then dried to obtain toner particles 1.

[トナー粒子1の評価]
得られたトナー粒子1をコールターカウンターTA−II(コールター社製)にて測定したところ、D4が5.2μm、D4/D1が1.15であった。また、透過型電子顕微
鏡にてトナー粒子1の断面を観察したところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子1の表面状態を観察すると、トナー粒子1の表面へのワックス状物の露出はわずかであり、遊離しているものは見られなかった。
[Evaluation of Toner Particles 1]
The obtained toner particles 1 were measured by Coulter Counter TA-II (manufactured by Coulter Co.). As a result, D4 was 5.2 μm and D4 / D1 was 1.15. Further, when the cross section of the toner particle 1 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 1 was observed with a scanning electron microscope, the exposure of the wax-like material on the surface of the toner particles 1 was slight, and no free particles were observed.

[離型剤粒子分散液1の安定性確認]
また、調製後2ヶ月経過した離型剤粒子分散液1を使用して、上記と同様に混合液調製工程、凝集工程、融合工程を行い、トナー粒子を製造したが、調製直後の離型剤粒子分散液1を使用した場合と同様の特性を有するトナー粒子が得られた。
[Confirmation of stability of release agent particle dispersion 1]
In addition, using the release agent particle dispersion 1 that has passed 2 months after the preparation, the mixture liquid preparation step, the aggregation step, and the fusion step were performed in the same manner as described above to produce toner particles. Toner particles having the same characteristics as when the particle dispersion 1 was used were obtained.

[トナー1の作製及びその評価]
得られたトナー粒子1について、トナー粒子100質量部に、BET法で測定した比表面積が200m/gである疎水化処理されたシリカ微粉体1.8質量部をヘンシェルミキサー(三井鉱山社製)で乾式混合してシアントナー1とした。
[Production and Evaluation of Toner 1]
About 100 parts by mass of toner particles 1 obtained, 1.8 parts by mass of hydrophobized silica fine powder having a specific surface area measured by the BET method of 200 m 2 / g was added to Henschel mixer (Mitsui Mining Co., Ltd.). ) And dry-mixed to obtain cyan toner 1.

(画像安定性評価)
得られたシアントナー1について、画像安定性評価を行った。画像形成装置として、レーザービームプリンター(キヤノン社製:LBP−2160)の定着オイル塗布機構を省いた改造機を用いた。このプリンターのプロセスカートリッジにシアントナー1を投入し、転写材として複写機用普通紙(75g/m)を用い、単色モードにて印字面積比率4
%の文字画像を28枚(A4サイズ)/分のプリントアウト速度にて10,000枚分を
プリントアウトした後、画像濃度と帯電不良による画像カブリを評価した。その結果、10,000枚目の画像濃度、画像カブリ抑制はプリント初期と同等であり良好であった。
(Image stability evaluation)
The obtained cyan toner 1 was evaluated for image stability. As the image forming apparatus, a modified machine in which a fixing oil application mechanism of a laser beam printer (manufactured by Canon Inc .: LBP-2160) is omitted is used. The cyan toner 1 is put into the process cartridge of this printer, the plain paper for copying machine (75 g / m 2 ) is used as a transfer material, and the printing area ratio is 4 in the monochrome mode.
After printing out 10,000 character images at a printout speed of 28 (A4 size) / min, image fogging and image fogging due to poor charging were evaluated. As a result, the image density on the 10,000th sheet and the image fog suppression were the same as in the initial stage of printing, and were good.

(ブロッキング性評価)
上記シアントナー1を、50℃に温調された恒温槽中に24時間静置し、ブロッキングの程度を評価した。その結果、ブロッキングは発生しなかった。
(Blocking evaluation)
The cyan toner 1 was allowed to stand for 24 hours in a thermostatic chamber adjusted to 50 ° C., and the degree of blocking was evaluated. As a result, no blocking occurred.

(定着性評価)
画像安定性評価で用いたLBP−2160改造機を使用して、複写機用普通紙(75g/m)上に未定着画像を形成した。当該普通紙(記録材)上に形成した未定着画像につ
いて、レーザービームプリンター(キヤノン社製:LBP−2510)の定着器を用い、プロセススピードと定着温度をコントロールできるように改造して定着試験を行った。定着試験は、常温常湿下、プロセススピードを100mm/秒に設定し、120℃〜220℃の範囲で未定着画像を定着させたときのオフセットの様子を目視にて評価した。その結果、120℃で十分な定着性を示し、210℃までオフセットは発生せず、良好な定着性を示した。これら評価の結果を表2に示す。
(Fixability evaluation)
An unfixed image was formed on plain paper for copying machines (75 g / m 2 ) using the LBP-2160 modified machine used in the image stability evaluation. For the unfixed image formed on the plain paper (recording material), the fixing test of the laser beam printer (Canon: LBP-2510) is used to modify the process speed and fixing temperature so that the process speed and fixing temperature can be controlled. went. In the fixing test, the process speed was set to 100 mm / second under normal temperature and normal humidity, and the state of offset when the unfixed image was fixed in the range of 120 ° C. to 220 ° C. was visually evaluated. As a result, sufficient fixability was exhibited at 120 ° C., and no offset occurred up to 210 ° C., indicating good fixability. Table 2 shows the results of these evaluations.

<実施例2>
[トナー粒子2の作製]
(離型剤粒子分散液2の調製)
上記離型剤粒子分散液1の調製の、分散工程における条件をローター回転数18000rpm、スクリーン回転数18000rpm、速度勾配188500sec−1、処理時間10分に変更し、冷却工程における条件をローター回転数0rpm、スクリーン回転数0rpm、速度勾配0sec−1、冷却速度20℃/minに変更した以外は、上記離型剤粒子分散液1の調製と同様にして、離型剤粒子分散液2を得た。この離型剤粒子分散液2を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.29μmであり、また、0.80μm以上の粗大粒子は0.01体積%未満であった。
調製直後の離型剤粒子分散液2と、調製後2ヶ月経過した離型剤粒子分散液2について、400メッシュ金網にてろ過した後、金網上を観察したところ、特に粗粒は観察されなかった。結果を表1に示す。
<Example 2>
[Preparation of Toner Particles 2]
(Preparation of release agent particle dispersion 2)
In the preparation of the release agent particle dispersion 1, the conditions in the dispersion process were changed to a rotor rotation speed of 18000 rpm, a screen rotation speed of 18000 rpm, a speed gradient of 188500 sec −1 , a treatment time of 10 minutes, and the cooling process conditions were changed to a rotor rotation speed of 0 rpm. A release agent particle dispersion 2 was obtained in the same manner as in the preparation of the release agent particle dispersion 1, except that the screen rotation speed was 0 rpm, the speed gradient was 0 sec −1 , and the cooling rate was 20 ° C./min. The release agent particle dispersion 2 was measured in the same manner as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.29 μm. Coarse particles of 80 μm or more were less than 0.01% by volume.
About the release agent particle dispersion 2 immediately after the preparation and the release agent particle dispersion 2 which has passed 2 months after the preparation, after filtering through a 400 mesh wire mesh, the wire mesh was observed, and no coarse particles were observed. It was. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液2に変更する以外は、実施例1と同様にして、トナー粒子2を調製した。   Toner particles 2 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 2 in the mixed solution preparation step of [Production of toner particles 1].

[トナー粒子2の評価]
得られたトナー粒子2を実施例1と同様に測定したところ、D4が5.5μm、D4/
D1が1.16であった。また、透過型電子顕微鏡にてトナー粒子2の断面を観察したところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子2の表面状態を観察すると、トナー粒子2の表面へのワックス状物の露出はわずかであり、遊離しているものは見られなかった。
[Evaluation of Toner Particles 2]
The obtained toner particles 2 were measured in the same manner as in Example 1. As a result, D4 was 5.5 μm, D4 /
D1 was 1.16. Further, when the cross section of the toner particles 2 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 2 was observed with a scanning electron microscope, the exposure of the wax-like material on the surface of the toner particles 2 was slight, and no free particles were observed.

[離型剤粒子分散液2の安定性確認]
また、調製後2ヶ月経過した離型剤粒子分散液2を使用して、実施例1と同様に混合液調製工程、凝集工程、融合工程を行い、トナー粒子を製造したが、調製直後の離型剤粒子分散液2を使用した場合と同様の特性を有するトナー粒子が得られた。
[Confirmation of stability of release agent particle dispersion 2]
In addition, using the release agent particle dispersion 2 that has passed 2 months after preparation, the mixture liquid preparation step, the aggregation step, and the fusion step were performed in the same manner as in Example 1 to produce toner particles. Toner particles having characteristics similar to those obtained when the mold agent particle dispersion 2 was used were obtained.

[トナー2の作製及びその評価]
得られたトナー粒子2について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、実施例1と同様に良好な結果であった。又、実施例1と同様に定着性評価を行った結果、120℃で十分な定着性を示し、210℃までオフセットは発生せず、良好な定着性を示した。
結果を表2に示す。
[Production and Evaluation of Toner 2]
With respect to the obtained toner particles 2, a toner was prepared in the same manner as in Example 1, and the same image stability evaluation and blocking property evaluation as in Example 1 were performed. As a result, the same results as in Example 1 were obtained. . Further, as a result of evaluating the fixing property in the same manner as in Example 1, the fixing property was sufficient at 120 ° C., no offset was generated up to 210 ° C., and good fixing property was shown.
The results are shown in Table 2.

<実施例3>
[トナー粒子3の作製]
(離型剤粒子分散液3の調製)
上記離型剤粒子分散液2の調製の、離型剤Aを離型剤Bに変更し、分散工程における条件をローター回転数15000rpm、スクリーン回転数15000rpm、速度勾配157100sec−1に変更し、冷却工程において、O/Wエマルジョンを前記分散装置から直径0.06mのプロペラ型攪拌羽根、冷却用ジャケットを備えた容器に移し、プロペラ型攪拌機の回転数を300rpm、冷却速度8℃/minにて冷却した以外は、上記離型剤粒子分散液2の調製と同様にして、離型剤粒子分散液3を得た。この離型剤粒子分散液3を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.27μmであり、また、0.80μm以上の粗大粒子は0.01体積%未満であった。
調製直後の離型剤粒子分散液3と、調製後2ヶ月経過した離型剤粒子分散液3について、400メッシュ金網にてろ過した後、金網上を観察したところ、特に粗粒は観察されなかった。結果を表1に示す。
<Example 3>
[Preparation of Toner Particle 3]
(Preparation of release agent particle dispersion 3)
In the preparation of the release agent particle dispersion 2, the release agent A is changed to the release agent B, and the conditions in the dispersion step are changed to a rotor rotation speed of 15000 rpm, a screen rotation speed of 15000 rpm, and a speed gradient of 157100 sec −1 and cooling. In the process, the O / W emulsion is transferred from the dispersing device to a vessel equipped with a propeller type stirring blade having a diameter of 0.06 m and a cooling jacket, and cooled at a rotation speed of the propeller type stirrer at 300 rpm and a cooling rate of 8 ° C./min. Except for the above, release agent particle dispersion 3 was obtained in the same manner as in the preparation of release agent particle dispersion 2. The release agent particle dispersion 3 was measured by the same method as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.27 μm. Coarse particles of 80 μm or more were less than 0.01% by volume.
About the release agent particle dispersion 3 immediately after the preparation and the release agent particle dispersion 3 which has passed 2 months after the preparation, after filtering through a 400 mesh wire mesh, the wire mesh was observed and no coarse particles were observed. It was. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液3に変更する以外は、実施例1と同様にして、トナー粒子3を調製した。 Toner particles 3 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 3 in the mixed solution preparation step of [Production of toner particles 1].

[トナー粒子3の評価]
得られたトナー粒子3を実施例1と同様に測定したところ、D4が5.1μm、D4/
D1が1.17であった。また、透過型電子顕微鏡にてトナー粒子3の断面を観察したところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子3の表面状態を観察すると、トナー粒子3の表面へのワックス状物の露出はわずかであり、遊離しているものは見られなかった。
[Evaluation of Toner Particle 3]
The obtained toner particles 3 were measured in the same manner as in Example 1. As a result, D4 was 5.1 μm, D4 /
D1 was 1.17. Further, when the cross section of the toner particles 3 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 3 was observed with a scanning electron microscope, the exposure of the wax-like material on the surface of the toner particles 3 was slight, and no free particles were observed.

[離型剤粒子分散液3の安定性確認]
また、調製後2ヶ月経過した離型剤粒子分散液3を使用して、実施例1と同様に混合液調製工程、凝集工程、融合工程を行い、トナー粒子を製造したが、調製直後の離型剤粒子分散液3を使用した場合と同様の特性を有するトナー粒子が得られた。
[Confirmation of stability of release agent particle dispersion 3]
In addition, using the release agent particle dispersion 3 that has passed two months after the preparation, toner mixture was produced by performing the mixed solution preparation step, the aggregation step, and the fusion step in the same manner as in Example 1. Toner particles having the same characteristics as those obtained when the mold agent particle dispersion 3 was used were obtained.

[トナー3の作製及びその評価]
得られたトナー粒子3について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、実施例1と同様に良好な結果であった。又、実施例1と同様に定着性評価を行った結果、130℃で十分な定着性を示し、220℃までオフセットは発生せず、良好な定着性を示した。結果を表2に示す。
[Production and Evaluation of Toner 3]
With respect to the obtained toner particles 3, a toner was prepared in the same manner as in Example 1, and the same image stability evaluation and blocking property evaluation as in Example 1 were performed. As a result, the same results as in Example 1 were obtained. . Further, as a result of performing the fixing property evaluation in the same manner as in Example 1, sufficient fixing property was shown at 130 ° C., no offset was generated up to 220 ° C., and good fixing property was shown. The results are shown in Table 2.

<実施例4>
[トナー粒子4の作製]
(離型剤粒子分散液4の調製)
上記離型剤粒子分散液2の調製の、離型剤Aを離型剤Cに変更し、分散工程における条件をローター回転数13000rpm、スクリーン回転数13000rpm、速度勾配136100sec−1に変更し、冷却工程において、ローター回転数1000rpm、スクリーン回転数0rpm、速度勾配5200sec−1、冷却速度15℃/minにて冷却した以外は、上記離型剤粒子分散液2の調製と同様にして、離型剤粒子分散液4を得た。この離型剤粒子分散液4を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.25μmであり、また、0.80μm以上の粗大粒子は0.01体積%未満であった。
調製直後の離型剤粒子分散液4と、調整後2ヶ月経過した離型剤粒子分散液4について、400メッシュ金網にてろ過した後、金網上を観察したところ、特に粗粒は観察されなかった。結果を表1に示す。
<Example 4>
[Preparation of Toner Particles 4]
(Preparation of release agent particle dispersion 4)
In the preparation of the release agent particle dispersion 2, the release agent A is changed to the release agent C, and the conditions in the dispersion process are changed to a rotor rotation speed of 13000 rpm, a screen rotation speed of 13000 rpm, a speed gradient of 136100 sec −1 and cooling. In the process, a release agent was prepared in the same manner as in the preparation of the release agent particle dispersion 2 except that cooling was performed at a rotor rotation speed of 1000 rpm, a screen rotation speed of 0 rpm, a speed gradient of 5200 sec −1 , and a cooling speed of 15 ° C./min. A particle dispersion 4 was obtained. The release agent particle dispersion 4 was measured in the same manner as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.25 μm. Coarse particles of 80 μm or more were less than 0.01% by volume.
About the release agent particle dispersion 4 immediately after the preparation and the release agent particle dispersion 4 which has been adjusted for 2 months, after filtering through a 400 mesh wire net, when the wire mesh is observed, no coarse particles are observed. It was. The results are shown in Table 1.

(樹脂粒子分散液2の調製)
ポリオキシエチレン(2)−2,2−ビス(4−ヒドロキシフェニル)プロパン68質量部、イソフタル酸16質量部、テレフタル酸16質量部、ジブチル錫オキシド0.03
質量部をフラスコに仕込み、窒素雰囲気下で230℃にて24時間反応を続けてポリエステル樹脂Aを得た。
・ポリエステル樹脂A 200質量部
・テトラヒドロフラン(和光純薬社製) 400質量部
・アニオン性乳化剤 10質量部
(ネオゲンRK、第一工業製薬社製)
前記成分を混合した後、イオン交換水250質量部を添加後、超音波洗浄機(本田電子
社製、W−113)28kHzで60分間分散し、次いで高圧衝撃式分散機アルティマイザー(スギノマシン社製、HJP30006)を用いて200MPaで分散を行なった。
分散終了後、エバポレータにてテトラヒドロフランを除去することで、樹脂粒子の体積分布基準の50%粒径(メジアン径)が0.25μm、ガラス転移温度が60℃、重量平均分子量(Mw)が12,000である樹脂粒子分散液2を調製した。
(Preparation of resin particle dispersion 2)
68 parts by mass of polyoxyethylene (2) -2,2-bis (4-hydroxyphenyl) propane, 16 parts by mass of isophthalic acid, 16 parts by mass of terephthalic acid, 0.03 of dibutyltin oxide
A mass part was charged in a flask, and the reaction was continued at 230 ° C. for 24 hours under a nitrogen atmosphere to obtain a polyester resin A.
-Polyester resin A 200 parts by mass-Tetrahydrofuran (manufactured by Wako Pure Chemical Industries) 400 parts by mass-Anionic emulsifier 10 parts by mass (Neogen RK, Daiichi Kogyo Seiyaku Co., Ltd.)
After mixing the above components, 250 parts by mass of ion-exchanged water was added, followed by dispersion for 60 minutes at 28 kHz in an ultrasonic cleaning machine (Honda Electronics, W-113), and then a high-pressure impact disperser Ultimateizer (Sugino Machine) Dispersion was performed at 200 MPa using HJP30006.
After completion of the dispersion, tetrahydrofuran is removed by an evaporator, so that the 50% particle size (median diameter) of the resin particles based on volume distribution is 0.25 μm, the glass transition temperature is 60 ° C., and the weight average molecular weight (Mw) is 12, Resin particle dispersion 2 having a molecular weight of 000 was prepared.

[トナー粒子1の作製]の混合液調製工程において、樹脂粒子分散液1を樹脂粒子分散液2に変更し、離型剤粒子分散液1を離型剤粒子分散液4に変更する以外は、実施例1と同様にして、トナー粒子4を調製した。   In the mixed liquid preparation step of [Production of toner particles 1], except that the resin particle dispersion 1 is changed to the resin particle dispersion 2 and the release agent particle dispersion 1 is changed to the release agent particle dispersion 4. In the same manner as in Example 1, toner particles 4 were prepared.

[トナー粒子4の評価]
得られたトナー粒子4を実施例1と同様に測定したところ、D4が5.8μm、D4/
D1が1.15であった。また、透過型電子顕微鏡にてトナー粒子4の断面を観察したところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子4の表面状態を観察すると、トナー粒子4の表面へのワックス状物の露出はわずかであり、遊離しているものは見られなかった。
[Evaluation of Toner Particles 4]
The obtained toner particles 4 were measured in the same manner as in Example 1. As a result, D4 was 5.8 μm, D4 /
D1 was 1.15. Further, when the cross section of the toner particles 4 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 4 was observed with a scanning electron microscope, the exposure of the wax-like material on the surface of the toner particles 4 was slight, and no free particles were observed.

[離型剤粒子分散液4の安定性確認]
また、調製後2ヶ月経過した離型剤粒子分散液4を使用して、実施例1と同様に混合液調製工程、凝集工程、融合工程を行い、トナー粒子を製造したが、調製直後の離型剤粒子分散液4を使用した場合と同様の特性を有するトナー粒子が得られた。
[Confirmation of stability of release agent particle dispersion 4]
Further, using the release agent particle dispersion 4 that has passed 2 months after the preparation, the mixture liquid preparation step, the aggregation step, and the fusion step were performed in the same manner as in Example 1 to produce toner particles. Toner particles having characteristics similar to those obtained when the mold agent particle dispersion 4 was used were obtained.

[トナー4の作製及びその評価]
得られたトナー粒子4について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、実施例1と同様に良好な結果であった。又、実施例1と同様に定着性評価を行った結果、130℃で十分な定着性を示し、220℃までオフセットは発生せず、良好な定着性を示した。結果を表2に示す。
[Production and Evaluation of Toner 4]
With respect to the obtained toner particles 4, a toner was prepared in the same manner as in Example 1, and the same image stability evaluation and blocking evaluation as in Example 1 were performed. As a result, the same results as in Example 1 were obtained. . Further, as a result of performing the fixing property evaluation in the same manner as in Example 1, sufficient fixing property was shown at 130 ° C., no offset was generated up to 220 ° C., and good fixing property was shown. The results are shown in Table 2.

<実施例5>
[トナー粒子5の作製]
(離型剤粒子分散液5の調製)
上記離型剤粒子分散液2の調製の、離型剤Aを離型剤Dに変更し、分散工程における条件をローター回転数17000rpm、スクリーン回転数16000rpm、速度勾配172800sec−1、冷却工程における条件をローター回転数2000rpm、スクリーン回転数1000rpm、速度勾配15700sec−1、冷却速度5℃/minに変更した以外は、上記離型剤粒子分散液2の調製と同様にして、離型剤粒子分散液5を得た。この離型剤粒子分散液5を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.35μmであり、また、0.80μm以上の粗大粒子は0.2体積%であった。
調製直後の離型剤粒子分散液5と、調整後2ヶ月経過したの離型剤粒子分散液5について、400メッシュ金網にてろ過した後、金網上を観察したところ、特に粗粒は観察されなかった。結果を表1に示す。
<Example 5>
[Preparation of Toner Particles 5]
(Preparation of release agent particle dispersion 5)
In the preparation of the release agent particle dispersion 2, the release agent A is changed to the release agent D, and the conditions in the dispersion process are the rotor rotation speed 17000 rpm, the screen rotation speed 16000 rpm, the speed gradient 172800 sec −1 , and the cooling process conditions. Release agent particle dispersion liquid in the same manner as in the preparation of the release agent particle dispersion liquid 2 except that the rotor rotation speed is 2000 rpm, the screen rotation speed is 1000 rpm, the speed gradient is 15700 sec −1 , and the cooling speed is 5 ° C./min. 5 was obtained. The release agent particle dispersion 5 was measured in the same manner as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.35 μm. Coarse particles of 80 μm or more were 0.2% by volume.
About the release agent particle dispersion 5 immediately after the preparation and the release agent particle dispersion 5 which has been adjusted for 2 months, after filtration through a 400 mesh wire mesh, the wire mesh is observed, particularly coarse particles are observed. There wasn't. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液5に変更する以外は、実施例1と同様にして、トナー粒子5を調製した。   Toner particles 5 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 5 in the mixed solution preparation step of [Production of toner particles 1].

[トナー粒子5の評価]
得られたトナー粒子5を実施例1と同様に測定したところ、D4が5.2μm、D4/
D1が1.24であった。また、透過型電子顕微鏡にてトナー粒子5の断面を観察したところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子5の表面
状態を観察すると、トナー粒子5の表面への顔料およびワックス状物の露出は観察されたが、遊離しているものは見られなかった。
[Evaluation of Toner Particles 5]
The obtained toner particles 5 were measured in the same manner as in Example 1. As a result, D4 was 5.2 μm, D4 /
D1 was 1.24. Further, when the cross section of the toner particles 5 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 5 was observed with a scanning electron microscope, exposure of pigments and wax-like materials to the surface of the toner particles 5 was observed, but no free particles were observed.

[離型剤粒子分散液5の安定性確認]
また、調製後2ヶ月経過した離型剤粒子分散液5を使用して、実施例1と同様に混合液調製工程、凝集工程、融合工程を行い、トナー粒子を製造したが、調製直後の離型剤粒子分散液5を使用した場合と同様の特性を有するトナー粒子が得られた。
[Confirmation of stability of release agent particle dispersion 5]
In addition, using the release agent particle dispersion 5 that has passed two months after the preparation, toner mixture was manufactured by performing the mixed solution preparation step, the aggregation step, and the fusion step in the same manner as in Example 1. Toner particles having the same characteristics as those obtained when the mold agent particle dispersion 5 was used were obtained.

[トナー5の作製及びその評価]
得られたトナー粒子5について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、10,000枚目で若干の画像濃度低下、画像カブリが観察されたこと以外は実施例1と同様に良好な結果であった。又、実施例1と同様に定着性評価を行った結果、140℃で十分な定着性を示し、210℃までオフセットは発生せず、良好な定着性を示した。
[Production and Evaluation of Toner 5]
For the obtained toner particles 5, a toner was prepared in the same manner as in Example 1, and image stability evaluation and blocking property evaluation were performed in the same manner as in Example 1. As a result, a slight decrease in image density was observed at the 10,000th sheet. The results were good as in Example 1 except that image fogging was observed. Further, as a result of evaluating the fixability in the same manner as in Example 1, sufficient fixability was shown at 140 ° C., no offset occurred up to 210 ° C., and good fixability was shown.

<実施例6>
[トナー粒子6の作製]
(離型剤粒子分散液6の調製)
上記離型剤粒子分散液2の調製の、分散工程における条件をローター回転数11000rpm、スクリーン回転数10000rpm、速度勾配110000sec−1、冷却工程における条件を冷却速度10℃/minに変更した以外は、上記離型剤粒子分散液2の調製と同様にして、離型剤粒子分散液6を得た。この離型剤粒子分散液6を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.39μmであり、また、0.80μm以上の粗大粒子は0.7体積%であった。
調製直後の離型剤粒子分散液6と、調整後2ヶ月経過した離型剤粒子分散液6について、400メッシュ金網にてろ過した後、金網上を観察したところ、特に粗粒は観察されなかった。結果を表1に示す。
<Example 6>
[Preparation of Toner Particle 6]
(Preparation of release agent particle dispersion 6)
Except for changing the conditions in the dispersion step of the preparation of the release agent particle dispersion 2 to a rotor rotation speed of 11000 rpm, a screen rotation speed of 10000 rpm, a speed gradient of 110000 sec −1 and a cooling process condition of 10 ° C./min. In the same manner as in the preparation of the release agent particle dispersion 2, the release agent particle dispersion 6 was obtained. The release agent particle dispersion 6 was measured by the same method as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.39 μm. Coarse particles of 80 μm or more were 0.7% by volume.
About the release agent particle dispersion 6 immediately after the preparation and the release agent particle dispersion 6 which has been adjusted for 2 months, after filtering through a 400 mesh wire mesh, the wire mesh was observed, and no coarse particles were observed. It was. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液6に変更する以外は、実施例1と同様にして、トナー粒子6を調製した。   Toner particles 6 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 6 in the mixed solution preparation step of [Production of toner particles 1].

[トナー粒子6の評価]
得られたトナー粒子6を実施例1と同様に測定したところ、D4が5.4μm、D4/
D1が1.27であった。また、透過型電子顕微鏡にてトナー粒子6の断面を観察したところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子6の表面状態を観察すると、トナー粒子6の表面への顔料およびワックス状物の露出は観察されたが、遊離しているものは見られなかった。
[Evaluation of Toner Particles 6]
The obtained toner particles 6 were measured in the same manner as in Example 1. As a result, D4 was 5.4 μm, D4 /
D1 was 1.27. Further, when the cross section of the toner particle 6 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 6 was observed with a scanning electron microscope, exposure of pigments and wax-like materials to the surface of the toner particles 6 was observed, but no free particles were observed.

[離型剤粒子分散液6の安定性確認]
また、調製後2ヶ月経過した離型剤粒子分散液6を使用して、実施例1と同様に混合液調製工程、凝集工程、融合工程を行い、トナー粒子を製造したが、調製直後の離型剤粒子分散液6を使用した場合と同様の特性を有するトナー粒子が得られた。
[Confirmation of stability of release agent particle dispersion 6]
In addition, using the release agent particle dispersion 6 after 2 months from the preparation, the mixture liquid preparation step, the aggregation step, and the fusion step were performed in the same manner as in Example 1 to produce toner particles. Toner particles having characteristics similar to those obtained when the mold agent particle dispersion 6 was used were obtained.

[トナー6の作製及びその評価]
得られたトナー粒子6について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、10,000枚目で若干の画像濃度低下、画像カブリが観察されたこと以外は実施例1と同様に良好な結果であった。又、実施例1と同様に定着性評価を行った結果、120℃で十分な定着性を示し、180℃までオフセットは発生せず、良好な定着性を示した。
[Production and Evaluation of Toner 6]
For the obtained toner particles 6, a toner was prepared in the same manner as in Example 1, and image stability evaluation and blocking property evaluation were performed in the same manner as in Example 1. As a result, a slight decrease in image density was observed at the 10,000th sheet. The results were good as in Example 1 except that image fogging was observed. Further, as a result of evaluating the fixability in the same manner as in Example 1, it showed sufficient fixability at 120 ° C., and no offset occurred up to 180 ° C., indicating good fixability.

<実施例7>
[トナー粒子7及び8の作製]
(離型剤粒子分散液7の調製)
上記離型剤粒子分散液2の調製の、冷却工程における条件を冷却速度3℃/minに変更した以外は、上記離型剤粒子分散液2の調製と同様にして、離型剤粒子分散液7を得た。この、離型剤粒子分散液7を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.36μmであり、また、0.80μm以上の粗大粒子は0.6体積%であった。
調製直後の離型剤粒子分散液7、調整後1ヶ月経過した離型剤粒子分散液7、調整後2ヶ月経過した離型剤粒子分散液7について、400メッシュ金網にてろ過した後、金網上を観察したところ、調製直後、調整後1ヶ月のサンプルについては、特に粗粒は観察されなかったが、調整後2ヶ月のサンプルについては、粗粒が確認された。結果を表1に示す。
<Example 7>
[Production of Toner Particles 7 and 8]
(Preparation of release agent particle dispersion 7)
The release agent particle dispersion 2 was prepared in the same manner as the release agent particle dispersion 2 except that the condition in the cooling step for the preparation of the release agent particle dispersion 2 was changed to a cooling rate of 3 ° C./min. 7 was obtained. When the release agent particle dispersion 7 was measured by the same method as in Example 1, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.36 μm, and 0 Coarse particles of 80 μm or more were 0.6% by volume.
The release agent particle dispersion 7 immediately after the preparation, the release agent particle dispersion 7 after one month has passed after the adjustment, and the release agent particle dispersion 7 after two months have passed after the adjustment, after filtering through a 400 mesh wire mesh, When the above was observed, no coarse particles were observed especially for the samples immediately after preparation and for 1 month after adjustment, but for the samples for 2 months after adjustment, coarse particles were confirmed. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液7に変更する以外は、実施例1と同様にして、トナー粒子7を調製した。また、[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を調整後2ヶ月経過した離型剤粒子分散液7に変更する以外は、実施例1と同様にして、トナー粒子8を調製した。   Toner particles 7 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 7 in the mixed solution preparation step of [Production of toner particles 1]. Further, in the mixed liquid preparation step of [Production of Toner Particles 1], the same procedure as in Example 1 was performed except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 7 that had passed 2 months after the preparation. Toner particles 8 were prepared.

[トナー粒子7の評価]
得られたトナー粒子7を実施例1と同様に測定したところ、D4が5.5μm、D4/
D1が1.24であった。また、透過型電子顕微鏡にてトナー粒子7の断面を観察したところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子7の表面状態を観察すると、トナー粒子7の表面への顔料およびワックス状物の露出は観察されたが、遊離しているものは見られなかった。
[Evaluation of Toner Particles 7]
The obtained toner particles 7 were measured in the same manner as in Example 1. As a result, D4 was 5.5 μm, D4 /
D1 was 1.24. Further, when the cross section of the toner particles 7 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 7 was observed with a scanning electron microscope, exposure of the pigment and wax-like material to the surface of the toner particles 7 was observed, but no free particles were observed.

[離型剤粒子分散液7の安定性確認]
また、調整後1ヶ月経過した離型剤粒子分散液7を使用して、実施例1と同様に混合液調製工程、凝集工程、融合工程を行い、トナー粒子を製造したが、調製直後の離型剤粒子分散液7を使用した場合と同様の特性を有するトナー粒子が得られた。
[Confirmation of stability of release agent particle dispersion 7]
In addition, using the release agent particle dispersion liquid 7 months after the preparation, a mixed liquid preparation step, an aggregation step, and a fusion step were performed in the same manner as in Example 1 to produce toner particles. Toner particles having characteristics similar to those obtained when the mold agent particle dispersion 7 was used were obtained.

[トナー粒子8の評価]
一方、得られたトナー粒子8を実施例1と同様に測定したところ、D4が6.5μm、D4/D1が1.41であった。また、透過型電子顕微鏡にてトナー粒子8の断面を観察
したところ離型剤が一部表面に露出していた。更に、走査型電子顕微鏡にてトナー粒子8の表面状態を観察すると、トナー粒子8の表面へのワックス状物の露出が確認され、遊離しているワックス状物質が観察された。
[Evaluation of Toner Particles 8]
On the other hand, the obtained toner particles 8 were measured in the same manner as in Example 1. As a result, D4 was 6.5 μm and D4 / D1 was 1.41. Further, when the cross section of the toner particles 8 was observed with a transmission electron microscope, a part of the release agent was exposed on the surface. Further, when the surface state of the toner particles 8 was observed with a scanning electron microscope, the exposure of the wax-like material on the surface of the toner particles 8 was confirmed, and a free wax-like substance was observed.

[トナー7及び8の作製、並びにその評価]
得られたトナー粒子7及び8について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った。その結果、トナー7については10,000枚目で若干の画像濃度低下、画像カブリが観察されたこと以外は実施例1と同様に良好な結果であったが、トナー8については、8,000枚目で若干の画像濃度低下、画像カブリが観察され、力を加えると容易に分散するものの、ブロッキングが発生した。又、トナー7について、実施例1と同様に定着性評価を行った結果、120℃で十分な定着性を示し、180℃までオフセットは発生せず、良好な定着性を示した。
[Production of Toners 7 and 8 and Evaluation thereof]
For the obtained toner particles 7 and 8, a toner was prepared in the same manner as in Example 1, and image stability evaluation and blocking evaluation were performed in the same manner as in Example 1. As a result, the toner 7 was as good as Example 1 except that a slight decrease in image density and image fogging were observed on the 10,000th sheet. A slight decrease in image density and image fogging were observed on the first sheet, and when force was applied, it was easily dispersed, but blocking occurred. The toner 7 was evaluated for fixability in the same manner as in Example 1. As a result, sufficient fixability was exhibited at 120 ° C., no offset was generated up to 180 ° C., and good fixability was exhibited.

<実施例8>
[トナー粒子9及び10の作製]
(離型剤粒子分散液8の調製)
上記離型剤粒子分散液2の調製の、冷却工程における条件をローター回転数2000rpm、スクリーン回転数2000rpm、速度勾配20900sec−1に変更した以外は、上記離型剤粒子分散液2の調製と同様にして、離型剤粒子分散液8を得た。この離型剤粒子分散液8を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.31μmであり、また、0.80μm以上の粗大粒子は0.3体積%であった。
調製直後の離型剤粒子分散液8、調整後1ヶ月経過した離型剤粒子分散液8、調整後2ヶ月経過した離型剤粒子分散液8について、400メッシュ金網にてろ過した後、金網上を観察したところ、調製直後、調整後1ヶ月のサンプルについては、特に粗粒は観察されなかったが、調整後2ヶ月のサンプルについては、粗粒が確認された。結果を表1に示す。
<Example 8>
[Production of Toner Particles 9 and 10]
(Preparation of release agent particle dispersion 8)
The preparation of the release agent particle dispersion 2 was the same as the preparation of the release agent particle dispersion 2 except that the conditions in the cooling step were changed to a rotor rotation speed of 2000 rpm, a screen rotation speed of 2000 rpm, and a speed gradient of 20900 sec −1. Thus, a release agent particle dispersion 8 was obtained. The release agent particle dispersion 8 was measured by the same method as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.31 μm. Coarse particles of 80 μm or more were 0.3% by volume.
The release agent particle dispersion 8 immediately after the preparation, the release agent particle dispersion 8 that has passed for 1 month after the adjustment, and the release agent particle dispersion 8 that has passed 2 months after the adjustment are filtered through a 400 mesh wire mesh, and then the wire mesh. When the above was observed, no coarse particles were observed especially for the samples immediately after preparation and for 1 month after adjustment, but for the samples for 2 months after adjustment, coarse particles were confirmed. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液8に変更する以外は、実施例1と同様にして、トナー粒子9を調製した。また、[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を調整後2ヶ月経過した離型剤粒子分散液8に変更する以外は、実施例1と同様にして、トナー粒子10を調製した。   Toner particles 9 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 8 in the mixed liquid preparation step of [Production of toner particles 1]. Further, in the mixed liquid preparation step of [Production of Toner Particles 1], the same procedure as in Example 1 was performed, except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 8 that had passed 2 months after adjustment. Toner particles 10 were prepared.

[トナー粒子9の評価]
得られたトナー粒子9を実施例1と同様に測定したところ、D4が5.3μm、D4/
D1が1.21であった。また、透過型電子顕微鏡にてトナー粒子9の断面を観察したところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子9の表面状態を観察すると、トナー粒子9の表面への顔料およびワックス状物の露出は観察されたが、遊離しているものは見られなかった。
[Evaluation of Toner Particles 9]
The obtained toner particles 9 were measured in the same manner as in Example 1. As a result, D4 was 5.3 μm, D4 /
D1 was 1.21. Further, when the cross section of the toner particles 9 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 9 was observed with a scanning electron microscope, exposure of pigments and wax-like materials to the surface of the toner particles 9 was observed, but no free particles were observed.

[離型剤粒子分散液8の安定性確認]
また、調整後1ヶ月経過した離型剤粒子分散液8を使用して、実施例1と同様に混合液調製工程、凝集工程、融合工程を行い、トナー粒子を製造したが、調製直後の離型剤粒子分散液8を使用した場合と同様の特性を有するトナー粒子が得られた。
[Confirmation of stability of release agent particle dispersion 8]
In addition, using the release agent particle dispersion 8 that has passed one month after the adjustment, the mixed liquid preparation step, the aggregation step, and the fusion step were performed in the same manner as in Example 1 to produce toner particles. Toner particles having characteristics similar to those obtained when the mold agent particle dispersion 8 was used were obtained.

[トナー粒子10の評価]
一方、得られたトナー粒子10を実施例1と同様に測定したところ、D4が6.6μm、D4/D1が1.45であった。また、透過型電子顕微鏡にてトナー粒子10の断面を
観察したところ離型剤が一部表面に露出していた。更に、走査型電子顕微鏡にてトナー粒子10の表面状態を観察すると、トナー粒子10の表面へのワックス状物の露出が確認され、遊離しているワックス状物質が観察された。
[Evaluation of Toner Particles 10]
On the other hand, the obtained toner particles 10 were measured in the same manner as in Example 1. As a result, D4 was 6.6 μm and D4 / D1 was 1.45. Further, when the cross section of the toner particles 10 was observed with a transmission electron microscope, a part of the release agent was exposed on the surface. Further, when the surface state of the toner particles 10 was observed with a scanning electron microscope, the exposure of the wax-like material on the surface of the toner particles 10 was confirmed, and the free wax-like substance was observed.

[トナー9及び10の作製、並びにその評価]
得られたトナー粒子9及び10について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った。その結果、トナー9については10,000枚目で若干の画像濃度低下、画像カブリが観察されたこと以外は実施例1と同様に良好な結果であったが、トナー10については、8,000枚目で若干の画像濃度低下、画像カブリが観察され、力を加えると容易に分散するものの、ブロッキングが発生した。又、トナー9について、実施例1と同様に定着性評価を行った結果、120℃で十分な定着性を示し、190℃までオフセットは発生せず、良好な定着性を示した。
[Production and Evaluation of Toners 9 and 10]
For the obtained toner particles 9 and 10, a toner was prepared in the same manner as in Example 1, and image stability evaluation and blocking evaluation were performed in the same manner as in Example 1. As a result, the toner 9 was as good as in Example 1 except that a slight decrease in image density and image fogging were observed on the 10,000th sheet. A slight decrease in image density and image fogging were observed on the first sheet, and when force was applied, it was easily dispersed, but blocking occurred. The toner 9 was evaluated for fixability in the same manner as in Example 1. As a result, sufficient fixability was exhibited at 120 ° C., no offset occurred up to 190 ° C., and good fixability was exhibited.

<実施例9>
[トナー粒子11及び12の作製]
(離型剤粒子分散液9の調製)
上記離型剤粒子分散液2の調製の、冷却工程における条件をローター回転数3000rpm、スクリーン回転数3000rpm、速度勾配31400sec−1に変更した以外は、上記離型剤粒子分散液2の調製と同様にして、離型剤粒子分散液9を得た。この離型剤粒子分散液9を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.38μmであり、また、0.80μm以上の粗大粒子は0.6体積%であった。
調製直後の離型剤粒子分散液9、調整後1ヶ月経過した離型剤粒子分散液9について、400メッシュ金網にてろ過した後、金網上を観察したところ、調製直後のサンプルについては、特に粗粒は観察されなかったが、調整後1ヶ月のサンプルについては、粗粒が確認された。結果を表1に示す。
<Example 9>
[Production of Toner Particles 11 and 12]
(Preparation of release agent particle dispersion 9)
The preparation of the release agent particle dispersion 2 is the same as the preparation of the release agent particle dispersion 2 except that the conditions in the cooling step are changed to a rotor rotation speed of 3000 rpm, a screen rotation speed of 3000 rpm, and a speed gradient of 31400 sec- 1. Thus, a release agent particle dispersion 9 was obtained. The release agent particle dispersion 9 was measured by the same method as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.38 μm. Coarse particles of 80 μm or more were 0.6% by volume.
About the release agent particle dispersion 9 immediately after the preparation, and the release agent particle dispersion 9 after one month has passed after the adjustment, after filtering through a 400 mesh wire mesh, the wire mesh was observed. Coarse particles were not observed, but coarse particles were confirmed for the sample for 1 month after adjustment. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液9に変更する以外は、実施例1と同様にして、トナー粒子11を調製した。また、[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を調整後1ヶ月経過した離型剤粒子分散液9に変更する以外は、実施例1と同様にして、トナー粒子12を調製した。   Toner particles 11 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 9 in the mixed liquid preparation step of [Production of toner particles 1]. Further, in the mixed liquid preparation step of [Production of Toner Particles 1], the same procedure as in Example 1 was performed, except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 9 that had passed one month after adjustment. Toner particles 12 were prepared.

[トナー粒子11の評価]
得られたトナー粒子11を実施例1と同様に測定したところ、D4が5.2μm、D4/D1が1.25であった。また、透過型電子顕微鏡にてトナー粒子11の断面を観察し
たところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子11の表面状態を観察すると、トナー粒子11の表面への顔料およびワックス状物の露出は観察されたが、遊離しているものは見られなかった。
[Evaluation of Toner Particles 11]
The obtained toner particles 11 were measured in the same manner as in Example 1. As a result, D4 was 5.2 μm and D4 / D1 was 1.25. Further, when the cross section of the toner particles 11 was observed with a transmission electron microscope, the dispersibility of the release agent was good. Further, when the surface state of the toner particles 11 was observed with a scanning electron microscope, exposure of the pigment and wax-like material to the surface of the toner particles 11 was observed, but no free particles were observed.

[トナー粒子12の評価]
一方、得られたトナー粒子12を実施例1と同様に測定したところ、D4が6.4μm、D4/D1が1.46であった。また、透過型電子顕微鏡にてトナー粒子12の断面を
観察したところ離型剤が一部表面に露出していた。更に、走査型電子顕微鏡にてトナー粒子12の表面状態を観察すると、トナー粒子12の表面へのワックス状物の露出が確認され、遊離しているワックス状物質が観察された。
[Evaluation of Toner Particles 12]
On the other hand, when the obtained toner particles 12 were measured in the same manner as in Example 1, D4 was 6.4 μm and D4 / D1 was 1.46. Further, when the cross section of the toner particles 12 was observed with a transmission electron microscope, a part of the release agent was exposed on the surface. Furthermore, when the surface state of the toner particles 12 was observed with a scanning electron microscope, the exposure of the wax-like material on the surface of the toner particles 12 was confirmed, and the free wax-like substance was observed.

[トナー11及び12の作製、並びにその評価]
得られたトナー粒子11及び12について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った。その結果、トナー11については10,000枚目で若干の画像濃度低下、画像カブリが観察されたこと以外は実施例1と同様に良好な結果であったが、トナー12については、8,000枚目で若干の画像濃度低下、画像カブリが観察され、力を加えると容易に分散するものの、ブロッキングが発生した。又、トナー11について、実施例1と同様に定着性評価を行った結果、120℃で十分な定着性を示し、180℃までオフセットは発生せず、良好な定着性を示した。
[Production and Evaluation of Toners 11 and 12]
For the obtained toner particles 11 and 12, a toner was prepared in the same manner as in Example 1, and image stability evaluation and blocking evaluation were performed in the same manner as in Example 1. As a result, the toner 11 was as good as in Example 1 except that a slight decrease in image density and image fogging were observed on the 10,000th sheet. A slight decrease in image density and image fogging were observed on the first sheet, and when force was applied, it was easily dispersed, but blocking occurred. The toner 11 was evaluated for fixability in the same manner as in Example 1. As a result, sufficient fixability was exhibited at 120 ° C., no offset was generated up to 180 ° C., and good fixability was exhibited.

<比較例1>
[トナー粒子の作製]
(離型剤粒子分散液10の調製)
・離型剤A 100質量部
・アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 880質量部
以上を高圧ホモジナイザー(SMT社製:ゴーリンホモジナイザーLAB2000)にて90℃に加熱し、20パス相当の分散処理したところ、二層分離が確認された。当該分散処理液を15℃/minの冷却速度にて40℃以下まで冷却して、離型剤粒子分散液10を得た。この離型剤粒子分散液10を実施例1と同様の方法にて測定したところ、離型
剤粒子の体積分布基準の50%粒径(メジアン径)は8.9μmであった。
調製直後の離型剤粒子分散液10について、400メッシュ金網にてろ過した後、金網上を観察したところ、粗粒が確認された。結果を表1に示す。
<Comparative Example 1>
[Production of toner particles]
(Preparation of release agent particle dispersion 10)
-Release agent A 100 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass-Ion-exchanged water 880 parts by mass The above is a high-pressure homogenizer (SMT: Gorin homogenizer LAB2000). When heated to 90 ° C. and subjected to a dispersion treatment corresponding to 20 passes, two-layer separation was confirmed. The dispersion treatment liquid was cooled to 40 ° C. or lower at a cooling rate of 15 ° C./min to obtain a release agent particle dispersion liquid 10. When the release agent particle dispersion 10 was measured by the same method as in Example 1, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 8.9 μm.
The release agent particle dispersion 10 immediately after the preparation was filtered through a 400 mesh wire mesh and then observed on the wire mesh, whereby coarse particles were confirmed. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液10に変更する以外は、実施例1と同様にして、トナー粒子の調製を試みたが、凝集粒子形成時に10μm以上の粗大粒子が発生した。   Preparation of toner particles was attempted in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 10 in the mixed solution preparation step of [Production of toner particles 1]. However, coarse particles of 10 μm or more were generated during the formation of aggregated particles.

<比較例2>
[トナー粒子13の作製]
(離型剤粒子分散液11の調製)
・離型剤A 100質量部
・アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 880質量部
以上をホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて分散したところ、若干の粗大粒子が確認された。続いて高圧ホモジナイザー(SMT社製:ゴーリンホモジナイザーLAB2000)にて90℃に加熱し、20パス相当の分散処理した後、15℃/minの冷却速度にて40℃以下まで冷却し、離型剤粒子分散液11を得た。この離型剤粒子分散液11を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.32μmであり、また、0.80μm以上の粗大粒子は3.2体積%であった。
調製直後の離型剤粒子分散液11について、400メッシュ金網にてろ過した後、金網上を観察したところ、粗粒が確認された。結果を表1に示す。
<Comparative Example 2>
[Preparation of Toner Particles 13]
(Preparation of release agent particle dispersion 11)
-Release agent A 100 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass-Ion-exchanged water 880 parts by mass The above was used with a homogenizer (IKA: Ultra Turrax T50). As a result, some coarse particles were confirmed. Subsequently, the mixture was heated to 90 ° C. with a high-pressure homogenizer (manufactured by SMT: Gorin homogenizer LAB2000), dispersed for 20 passes, cooled to 40 ° C. or less at a cooling rate of 15 ° C./min, and release agent particles. Dispersion 11 was obtained. The release agent particle dispersion 11 was measured by the same method as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.32 μm. Coarse particles of 80 μm or more were 3.2% by volume.
The release agent particle dispersion 11 immediately after the preparation was filtered through a 400 mesh wire mesh and then observed on the wire mesh, whereby coarse particles were confirmed. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液11に変更する以外は、実施例1と同様にして、トナー粒子13を調製した。   Toner particles 13 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 11 in the mixed liquid preparation step of [Production of toner particles 1].

[トナー粒子13の評価]
得られたトナー粒子13を実施例1と同様に測定したところ、D4が5.2μm、D4/D1が1.31であった。また、透過型電子顕微鏡にてトナー粒子13の断面を観察し
たところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子13の表面状態を観察すると、トナー粒子13の表面へのワックス状物の露出はわずかであるが、遊離しているワックス状物質が観察された。
[Evaluation of Toner Particles 13]
The obtained toner particles 13 were measured in the same manner as in Example 1. As a result, D4 was 5.2 μm and D4 / D1 was 1.31. Further, when the cross section of the toner particles 13 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 13 was observed with a scanning electron microscope, the wax-like substance exposed to the surface of the toner particles 13 was slightly observed, but a free wax-like substance was observed.

[トナー13の作製及びその評価]
得られたトナー粒子13について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、ブロッキングは発生しなかったが、8,000枚目で若干の画像濃度低下、画像カブリが観察された。又、トナー13について、実施例1と同様に定着性評価を行った結果、120℃で十分な定着性を示したが、170℃でオフセットが発生した。
[Production and Evaluation of Toner 13]
With respect to the obtained toner particles 13, a toner was prepared in the same manner as in Example 1, and image stability evaluation and blocking property evaluation were performed in the same manner as in Example 1. As a result, no blocking occurred. A slight decrease in image density and image fogging were observed with the eyes. The toner 13 was evaluated for fixability in the same manner as in Example 1. As a result, sufficient fixability was exhibited at 120 ° C., but offset occurred at 170 ° C.

<比較例3>
[トナー粒子14の作製]
(離型剤粒子分散液12の調製)
・離型剤A 100質量部
・アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 880質量部
以上をクレアミックス(エム・テクニック社製、CLM-0.8S、クリアランス0.
3mm)を用いて、循環させることなく90℃に加熱し、ローター回転数17100rpm、速度勾配134300sec−1の条件にて攪拌し、10分間分散処理した後、ロー
ター回転数0rpm、スクリーン回転数0rpm、速度勾配0sec−1、冷却速度20℃/minの冷却条件にて40℃以下まで冷却し、離型剤粒子分散液12を得た。この離型剤粒子分散液12には、若干の粗大粒子が観察された。得られた離型剤粒子分散液12を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は2.1μmであった。
調製直後の離型剤粒子分散液12について、400メッシュ金網にてろ過した後、金網上を観察したところ、粗粒が確認された。結果を表1に示す。
<Comparative Example 3>
[Production of Toner Particles 14]
(Preparation of release agent particle dispersion 12)
-Release agent A 100 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass-Ion-exchanged water 880 parts by mass CLEAMIX (M Technique Co., Ltd., CLM-0. 8S, clearance 0.
3 mm), and heated to 90 ° C. without circulation, stirred under the conditions of a rotor rotation speed of 17100 rpm and a speed gradient of 134300 sec −1 , dispersed for 10 minutes, and then rotor rotation speed 0 rpm, screen rotation speed 0 rpm, The release agent particle dispersion liquid 12 was obtained by cooling to 40 ° C. or lower under a cooling condition of a speed gradient of 0 sec −1 and a cooling rate of 20 ° C./min. In this release agent particle dispersion 12, some coarse particles were observed. The obtained release agent particle dispersion 12 was measured by the same method as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 2.1 μm.
The release agent particle dispersion 12 immediately after the preparation was filtered through a 400 mesh wire mesh, and then observed on the wire mesh, whereby coarse particles were confirmed. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液12に変更する以外は、実施例1と同様にして、トナー粒子14を調製した。   Toner particles 14 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 12 in the mixed liquid preparation step of [Production of toner particles 1].

[トナー粒子14の評価]
得られたトナー粒子14を実施例1と同様に測定したところ、D4が7.6μm、D4/D1が1.42であった。また、透過型電子顕微鏡にてトナー粒子14の断面を観察し
たところ離型剤が一部表面に露出していた。更に、走査型電子顕微鏡にてトナー粒子14の表面状態を観察するとトナー粒子14の表面へのワックス状物の露出が観察され、遊離しているワックス状物がみられた。
[Evaluation of Toner Particles 14]
The obtained toner particles 14 were measured in the same manner as in Example 1. As a result, D4 was 7.6 μm and D4 / D1 was 1.42. Further, when the cross section of the toner particles 14 was observed with a transmission electron microscope, a part of the release agent was exposed on the surface. Further, when the surface state of the toner particles 14 was observed with a scanning electron microscope, exposure of the wax-like material to the surface of the toner particles 14 was observed, and a free wax-like material was observed.

[トナー14の作製及びその評価]
得られたトナー粒子14について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、5,000枚目で若干の画像濃度低下、画像カブリが観察され、力を加えても分散しないブロッキングが発生した。又、トナー14について、実施例1と同様に定着性評価を行った結果、130℃で十分な定着性を示したが、150℃でオフセットが発生した。
[Production and Evaluation of Toner 14]
For the obtained toner particles 14, a toner was prepared in the same manner as in Example 1, and the same image stability evaluation and blocking property evaluation as in Example 1 were performed. Image fogging was observed, and blocking that did not disperse even when force was applied occurred. The toner 14 was evaluated for fixability in the same manner as in Example 1. As a result, sufficient fixability was exhibited at 130 ° C., but offset occurred at 150 ° C.

<比較例4>
[トナー粒子15の作製]
(離型剤粒子分散液13の調製)
上記離型剤粒子分散液12の調製の、分散工程における条件をローター回転数13000rpm、速度勾配102100sec−1に変更した以外は、上記離型剤粒子分散液12の調製と同様にして、離型剤粒子分散液13を得た。この離型剤粒子分散液13を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は3.1μmであった。
調製直後の離型剤粒子分散液13について、400メッシュ金網にてろ過した後、金網上を観察したところ、粗粒が確認された。結果を表1に示す。
<Comparative example 4>
[Preparation of Toner Particles 15]
(Preparation of release agent particle dispersion 13)
The release agent particle dispersion 12 was prepared in the same manner as the release agent particle dispersion 12 except that the conditions in the dispersion step were changed to a rotor rotational speed of 13000 rpm and a speed gradient of 102100 sec- 1. Agent particle dispersion 13 was obtained. The release agent particle dispersion 13 was measured by the same method as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 3.1 μm.
The release agent particle dispersion 13 immediately after the preparation was filtered through a 400 mesh wire mesh and then observed on the wire mesh, whereby coarse particles were confirmed. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液13に変更する以外は、実施例1と同様にして、トナー粒子15を調製した。   Toner particles 15 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 13 in the mixed solution preparation step of [Production of toner particles 1].

[トナー粒子15の評価]
得られたトナー粒子15を実施例1と同様に測定したところ、D4が7.8μm、D4/D1が1.48であった。また、透過型電子顕微鏡にてトナー粒子15の断面を観察し
たところ離型剤が一部表面に露出していた。更に、走査型電子顕微鏡にてトナー粒子15の表面状態を観察するとトナー粒子15の表面へのワックス状物の露出が観察され、遊離しているワックス状物がみられた。
[Evaluation of Toner Particles 15]
The obtained toner particles 15 were measured in the same manner as in Example 1. As a result, D4 was 7.8 μm and D4 / D1 was 1.48. Further, when the cross section of the toner particles 15 was observed with a transmission electron microscope, a part of the release agent was exposed on the surface. Further, when the surface state of the toner particles 15 was observed with a scanning electron microscope, exposure of the wax-like material to the surface of the toner particles 15 was observed, and a free wax-like material was observed.

[トナー15の作製及びその評価]
得られたトナー粒子15について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、5,000枚目で若干の画像濃度低下、画像カブリが観察され、力を加えても分散しないブロッキングが発生した。又、ト
ナー15について、実施例1と同様に定着性評価を行った結果、130℃で十分な定着性を示したが、150℃でオフセットが発生した。
[Production and Evaluation of Toner 15]
For the obtained toner particles 15, a toner was prepared in the same manner as in Example 1, and the same image stability evaluation and blocking property evaluation as in Example 1 were performed. Image fogging was observed, and blocking that did not disperse even when force was applied occurred. The toner 15 was evaluated for fixability in the same manner as in Example 1. As a result, sufficient fixability was exhibited at 130 ° C., but offset occurred at 150 ° C.

<比較例5>
[トナー粒子16の作製]
(離型剤粒子分散液14の調製)
・離型剤A 100質量部
・アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 880質量部
以上を、キャビトロン(ユーロテック社製、CD−1010)を用いて、81〜94℃に加熱し、周速40m/sの条件にて攪拌し、10パス処理した後、100℃/minの
冷却速度にて40℃以下まで冷却し、離型剤粒子分散液14を得た。この離型剤粒子分散液14を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は1.8μmであった。
調製直後の離型剤粒子分散液14について、400メッシュ金網にてろ過した後、金網上を観察したところ、粗粒が確認された。結果を表1に示す。
<Comparative Example 5>
[Preparation of Toner Particles 16]
(Preparation of release agent particle dispersion 14)
-Release agent A 100 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass-Ion-exchanged water 880 parts by mass Cavitron (Eurotech, CD-1010) And heated to 81-94 ° C., stirred at a peripheral speed of 40 m / s, treated for 10 passes, cooled to 40 ° C. or less at a cooling rate of 100 ° C./min, and release agent particle dispersion Liquid 14 was obtained. When the release agent particle dispersion 14 was measured by the same method as in Example 1, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 1.8 μm.
The release agent particle dispersion 14 immediately after the preparation was filtered through a 400 mesh wire mesh and then observed on the wire mesh, whereby coarse particles were confirmed. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液14に変更する以外は、実施例1と同様にして、トナー粒子16を調製した。   Toner particles 16 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 14 in the mixed liquid preparation step of [Production of toner particles 1].

[トナー粒子16の評価]
得られたトナー粒子16を実施例1と同様に測定したところ、D4が7.9μm、D4/D1が1.52であった。また、透過型電子顕微鏡にてトナー粒子16の断面を観察し
たところ離型剤が一部表面に露出していた。更に、走査型電子顕微鏡にてトナー粒子16の表面状態を観察するとトナー粒子16の表面へのワックス状物の露出が観察され、遊離しているワックス状物がみられた。
[Evaluation of Toner Particles 16]
The obtained toner particles 16 were measured in the same manner as in Example 1. As a result, D4 was 7.9 μm and D4 / D1 was 1.52. Further, when the cross section of the toner particles 16 was observed with a transmission electron microscope, a part of the release agent was exposed on the surface. Further, when the surface state of the toner particles 16 was observed with a scanning electron microscope, exposure of the wax-like material to the surface of the toner particles 16 was observed, and a free wax-like material was observed.

[トナー16の作製及びその評価]
得られたトナー粒子16について、実施例1と同様にトナーを作製し、実施例1と同様の画像安定性評価、ブロッキング性評価を行った結果、8,000枚目で若干の画像濃度低下、画像カブリが観察され、力を加えても分散しないブロッキングが発生した。又、トナー16について、実施例1と同様に定着性評価を行った結果、120℃で十分な定着性を示したが、160℃でオフセットが発生した。
[Production and Evaluation of Toner 16]
For the obtained toner particles 16, a toner was prepared in the same manner as in Example 1, and image stability evaluation and blocking evaluation were performed in the same manner as in Example 1. Image fogging was observed, and blocking that did not disperse even when force was applied occurred. The toner 16 was evaluated for fixability in the same manner as in Example 1. As a result, sufficient fixability was exhibited at 120 ° C., but offset occurred at 160 ° C.

<比較例6>
[トナー粒子17の作製]
(離型剤粒子分散液15の調製)
上記離型剤粒子分散液2の調製の、分散工程における条件をローター回転数10000rpm、スクリーン回転数9000rpm、速度勾配99500sec−1、冷却工程における条件を冷却速度10℃/minに変更した以外は、上記離型剤粒子分散液2の調製と同様にして、離型剤粒子分散液15を得た。この離型剤粒子分散液15を実施例1と同様の方法にて測定したところ、離型剤粒子の体積分布基準の50%粒径(メジアン径)は0.54μmであり、また、0.80μm以上の粗大粒子は2.2体積%であった。
調製直後の離型剤粒子分散液15について、400メッシュ金網にてろ過した後、金網上を観察したところ、粗粒が確認された。結果を表1に示す。
<Comparative Example 6>
[Preparation of Toner Particles 17]
(Preparation of release agent particle dispersion 15)
Except for the preparation of the release agent particle dispersion 2, the conditions in the dispersion process were changed to a rotor rotation speed of 10000 rpm, a screen rotation speed of 9000 rpm, a speed gradient of 99500 sec −1 , and the cooling process conditions were changed to a cooling speed of 10 ° C./min. In the same manner as the preparation of the release agent particle dispersion 2, the release agent particle dispersion 15 was obtained. The release agent particle dispersion 15 was measured in the same manner as in Example 1. As a result, the 50% particle size (median diameter) of the release agent particles based on the volume distribution was 0.54 μm. Coarse particles of 80 μm or more were 2.2% by volume.
The release agent particle dispersion 15 immediately after the preparation was filtered through a 400 mesh wire mesh and then observed on the wire mesh, whereby coarse particles were confirmed. The results are shown in Table 1.

[トナー粒子1の作製]の混合液調製工程において、離型剤粒子分散液1を離型剤粒子分散液15に変更する以外は、実施例1と同様にして、トナー粒子17を調製した。   Toner particles 17 were prepared in the same manner as in Example 1 except that the release agent particle dispersion 1 was changed to the release agent particle dispersion 15 in the mixed liquid preparation step of [Production of toner particles 1].

[トナー粒子17の評価]
得られたトナー粒子17を実施例1と同様に測定したところ、D4が6.8μm、D4/D1が1.36であった。また、透過型電子顕微鏡にてトナー粒子17の断面を観察し
たところ、離型剤の分散度は良好であった。更に、走査型電子顕微鏡にてトナー粒子17の表面状態を観察するとトナー粒子17の表面へのワックス状物の露出が観察され、遊離しているワックス状物がみられた。
[Evaluation of Toner Particles 17]
The obtained toner particles 17 were measured in the same manner as in Example 1. As a result, D4 was 6.8 μm and D4 / D1 was 1.36. Further, when the cross section of the toner particles 17 was observed with a transmission electron microscope, the degree of dispersion of the release agent was good. Further, when the surface state of the toner particles 17 was observed with a scanning electron microscope, exposure of the wax-like material to the surface of the toner particles 17 was observed, and a free wax-like material was observed.

[トナー17の作製及びその評価]
得られたトナー粒子17について、実施例1と同様にトナーを作製し、実施例1と同様に画像安定性評価、ブロッキング性評価を行った結果、ブロッキングは発生しなかったが、8,000枚目で若干の画像濃度低下、画像カブリが観察された。又、トナー17について、実施例1と同様に定着性評価を行った結果、120℃で十分な定着性を示したが、170℃でオフセットが発生した。
[Production and Evaluation of Toner 17]
With respect to the obtained toner particles 17, a toner was prepared in the same manner as in Example 1. As a result of performing image stability evaluation and blocking property evaluation in the same manner as in Example 1, blocking did not occur. A slight decrease in image density and image fogging were observed with the eyes. The toner 17 was evaluated for fixability in the same manner as in Example 1. As a result, sufficient fixability was exhibited at 120 ° C., but offset occurred at 170 ° C.

Figure 2009276512
Figure 2009276512

Figure 2009276512
Figure 2009276512

但し、表2の記号の意味を以下に示す。
(画像安定性の評価)
◎:画像濃度、画像カブリ抑制はプリント初期と同等であり良好であった。
○:10,000枚目で若干の画像濃度低下、画像カブリが観察された。
△:8,000枚目で若干の画像濃度低下、画像カブリが観察された。
×:5,000枚目で若干の画像濃度低下、画像カブリが観察された。
However, the meanings of the symbols in Table 2 are shown below.
(Evaluation of image stability)
A: Image density and image fog suppression were the same as in the initial stage of printing and were good.
A: A slight decrease in image density and image fogging were observed on the 10,000th sheet.
Δ: A slight decrease in image density and image fogging were observed on the 8,000th sheet.
X: Some decrease in image density and image fogging were observed on the 5,000th sheet.

(ブロッキング性の評価)
○:ブロッキングが発生しない
△:ブロッキングが発生するが、力を加えると容易に分散する。
×:ブロッキングが発生し、力を加えても分散しない。
(Evaluation of blocking properties)
○: Blocking does not occur Δ: Blocking occurs but disperses easily when force is applied.
X: Blocking occurs and does not disperse even when force is applied.

離型剤粒子分散液の分散装置の概略図を示す。1 is a schematic view of a dispersing device for a release agent particle dispersion. FIG. 剪断攪拌部位の詳細図を示す。A detailed view of the shear stirring site is shown.

符号の説明Explanation of symbols

11:ジャケット付混合容器
12:攪拌手段(ジャケット付回転剪断攪拌装置)
13:循環手段(循環ポンプ)
21:攪拌羽根(ローター)
22:スクリーン
31:クリアランス
41:ノズル
11: Mixing vessel with jacket 12: Stirring means (rotating shear stirring device with jacket)
13: Circulation means (circulation pump)
21: Stirrer blade (rotor)
22: Screen 31: Clearance 41: Nozzle

Claims (7)

樹脂粒子が分散された樹脂粒子分散液、着色剤粒子が分散された着色剤粒子分散液、及び、離型剤粒子が分散された離型剤粒子分散液を含む混合液を調製する工程、調製された混合液に少なくとも含まれる樹脂粒子、着色剤粒子、及び、離型剤粒子を凝集し、凝集体粒子を形成する工程、前記凝集体粒子を加熱して融合する工程を包含する静電荷像現像用トナーの製造方法であって、
前記離型剤粒子が分散された離型剤粒子分散液は、離型剤、界面活性剤、及び、水系媒体を少なくとも含有する離型剤混合液を、前記離型剤の融点以上に加熱しながら、剪断力を有する分散装置にて前記離型剤を分散し、O/Wエマルジョンを得る分散工程、及び、
得られたO/Wエマルジョンを前記離型剤の融点未満まで冷却する冷却工程を含む製造方
法で得られたものであり、
前記分散装置が、回転する攪拌羽根と前記攪拌羽根の周囲に前記攪拌羽根と逆方向に回転するスクリーンを少なくとも有する攪拌手段、前記攪拌手段が設置された容器、及び、前記容器に対して前記離型剤混合液を導入及び排出を繰り返して循環させるための循環手段を少なくとも有する分散装置であり、
前記分散工程は、前記分散装置の攪拌手段を用いて前記離型剤混合液を110000sec−1以上200000sec−1以下の速度勾配で回転剪断攪拌し、かつ、前記分散装置の循環手段を用いて前記離型剤混合液を循環して前記離型剤を分散する工程を含み、
前記離型剤粒子分散液中における離型剤粒子の、レーザー回折/散乱式粒度分布測定装
置で測定された体積分布基準の50%粒径が、0.05μm以上0.40μm以下であり、かつ、0.80μm以上の離型剤粒子が1体積%以下であることを特徴とするトナーの製造方法。
A step of preparing a mixed solution including a resin particle dispersion in which resin particles are dispersed, a colorant particle dispersion in which colorant particles are dispersed, and a release agent particle dispersion in which release agent particles are dispersed. An electrostatic charge image including a step of aggregating at least resin particles, colorant particles, and release agent particles contained in the mixed liquid to form aggregate particles, and heating and aggregating the aggregate particles A method for producing a developing toner, comprising:
The release agent particle dispersion in which the release agent particles are dispersed is obtained by heating a release agent mixed solution containing at least a release agent, a surfactant, and an aqueous medium to a temperature equal to or higher than the melting point of the release agent. However, a dispersion step of dispersing the release agent in a dispersion device having shearing force to obtain an O / W emulsion, and
The obtained O / W emulsion is obtained by a production method including a cooling step of cooling to below the melting point of the release agent,
The dispersing device includes at least a stirring blade that rotates and a screen that rotates around the stirring blade in a direction opposite to the stirring blade, a container in which the stirring device is installed, and the separation with respect to the container. A dispersing device having at least a circulating means for circulating the mold mixture liquid repeatedly by introducing and discharging;
In the dispersion step, the release agent mixed solution is rotationally sheared and stirred at a speed gradient of 110000 sec −1 or more and 200000 sec −1 or less using the stirring means of the dispersion apparatus, and the circulation means of the dispersion apparatus is used to Circulating the release agent mixture to disperse the release agent,
The 50% particle size on the basis of volume distribution measured by a laser diffraction / scattering particle size distribution measuring device of the release agent particles in the release agent particle dispersion is from 0.05 μm to 0.40 μm, and A toner manufacturing method, wherein 0.80 μm or more of release agent particles is 1% by volume or less.
前記冷却工程において、O/Wエマルジョンを5℃/分以上の冷却速度で前記離型剤の
融点未満まで冷却することを特徴とする請求項1に記載のトナーの製造方法。
2. The toner production method according to claim 1, wherein, in the cooling step, the O / W emulsion is cooled to a temperature lower than the melting point of the release agent at a cooling rate of 5 ° C./min or more.
前記冷却工程において、前記分散装置の攪拌手段を用いてO/Wエマルジョンを200
00sec−1以下の速度勾配で回転剪断攪拌し、かつ、前記分散装置の循環手段を用いてO/Wエマルジョンを循環して冷却することを特徴とする請求項1または2に記載のト
ナーの製造方法。
In the cooling step, an O / W emulsion is made into 200 using the stirring means of the dispersing device.
3. The toner production according to claim 1, wherein the rotary shearing stirring is performed at a speed gradient of 00 sec −1 or less, and the O / W emulsion is circulated and cooled by using a circulation unit of the dispersing device. Method.
冷却工程において、攪拌羽根を有する攪拌手段、前記攪拌手段が設置された容器を少なくとも有する冷却装置を用いて、前記離型剤の融点未満まで冷却することを特徴とする請求項1または2に記載のトナーの製造方法。   3. The cooling process according to claim 1, wherein in the cooling step, cooling is performed to below the melting point of the release agent by using a stirring device having a stirring blade and a cooling device having at least a container in which the stirring device is installed. Toner production method. 前記離型剤の融点が40℃以上120℃以下であることを特徴とする請求項1乃至4のいずれか1項に記載のトナーの製造方法。   5. The toner production method according to claim 1, wherein the release agent has a melting point of 40 ° C. or more and 120 ° C. or less. 前記離型剤の融点における液体密度が0.70g/cm以上0.95g/cm以下であることを特徴とする請求項1乃至5のいずれか1項に記載のトナーの製造方法。 6. The toner production method according to claim 1, wherein a liquid density at a melting point of the release agent is 0.70 g / cm 3 or more and 0.95 g / cm 3 or less. 前記離型剤が高級脂肪族アルコールであることを特徴とする請求項1乃至6のいずれか1項に記載のトナーの製造方法。   The toner production method according to claim 1, wherein the release agent is a higher aliphatic alcohol.
JP2008126985A 2008-05-14 2008-05-14 Method for producing toner for developing electrostatic image Expired - Fee Related JP5294696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126985A JP5294696B2 (en) 2008-05-14 2008-05-14 Method for producing toner for developing electrostatic image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126985A JP5294696B2 (en) 2008-05-14 2008-05-14 Method for producing toner for developing electrostatic image

Publications (2)

Publication Number Publication Date
JP2009276512A true JP2009276512A (en) 2009-11-26
JP5294696B2 JP5294696B2 (en) 2013-09-18

Family

ID=41442020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126985A Expired - Fee Related JP5294696B2 (en) 2008-05-14 2008-05-14 Method for producing toner for developing electrostatic image

Country Status (1)

Country Link
JP (1) JP5294696B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312086A (en) * 1997-05-13 1998-11-24 Canon Inc Production of electrostatic charge image developing toner
JPH112922A (en) * 1997-06-10 1999-01-06 Fuji Xerox Co Ltd Manufacturing method of toner for developing electrostatic charge image, toner manufactured by the method and image forming method using the toner
JP2006221023A (en) * 2005-02-14 2006-08-24 Canon Inc Method for manufacturing toner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312086A (en) * 1997-05-13 1998-11-24 Canon Inc Production of electrostatic charge image developing toner
JPH112922A (en) * 1997-06-10 1999-01-06 Fuji Xerox Co Ltd Manufacturing method of toner for developing electrostatic charge image, toner manufactured by the method and image forming method using the toner
JP2006221023A (en) * 2005-02-14 2006-08-24 Canon Inc Method for manufacturing toner

Also Published As

Publication number Publication date
JP5294696B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5616788B2 (en) Aqueous dispersion of resin fine particles, method for producing aqueous dispersion of resin fine particles, and method for producing toner particles
JP5230435B2 (en) Method for producing aqueous dispersion of resin fine particles, aqueous dispersion of resin fine particles, method for producing toner, and toner
JP3661544B2 (en) Toner for developing electrostatic image, method for producing the same, developer, and image forming method
JP4730112B2 (en) Electrostatic charge developing toner, electrostatic charge developer, and method for producing electrostatic charge developing toner
KR101227818B1 (en) Method for Producing Toner, Toner, and Method for Forming Image
JP4033096B2 (en) Toner for electrostatic image development
JP5025959B2 (en) Method for producing toner for electrophotography
JP6167949B2 (en) Method for producing toner for developing electrostatic image and image forming method
JP2007178669A (en) Method for manufacturing toner
JP4910843B2 (en) Toner manufacturing method and toner
JP2007052399A (en) Method of manufacturing toner, toner and image forming method
JP5294696B2 (en) Method for producing toner for developing electrostatic image
JP4670732B2 (en) Toner manufacturing method, toner and image forming method
KR101261636B1 (en) Method for Producing Toner, Toner, and Method for Forming Image
JP2006337995A (en) Method of manufacturing toner, toner, and image forming method
JP4572802B2 (en) Toner manufacturing method, toner and image forming method
JP2022147741A (en) Method for manufacturing toner for electrostatic charge image development, and toner for electrostatic charge image development
JP6171854B2 (en) Toner for electrostatic image development
JP2011065144A (en) Method of manufacturing toner
JP2013210574A (en) Toner for electrostatic charge image development
JP2009198986A (en) Method for manufacturing toner
JP5863450B2 (en) Method for producing emulsion aggregation toner
JP4572803B2 (en) Toner manufacturing method, toner and image forming method
JP2005249848A (en) Release agent for manufacture of toner, colorant for manufacture of toner, and electrostatic charge image developing toner obtained by using them and manufacturing method therefor
JP2011102855A (en) Method for producing electrophotographic toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R151 Written notification of patent or utility model registration

Ref document number: 5294696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees