JP2009276227A - Flowmeter, and line for flow-rate measurement used therefor - Google Patents

Flowmeter, and line for flow-rate measurement used therefor Download PDF

Info

Publication number
JP2009276227A
JP2009276227A JP2008128413A JP2008128413A JP2009276227A JP 2009276227 A JP2009276227 A JP 2009276227A JP 2008128413 A JP2008128413 A JP 2008128413A JP 2008128413 A JP2008128413 A JP 2008128413A JP 2009276227 A JP2009276227 A JP 2009276227A
Authority
JP
Japan
Prior art keywords
pipe
flow
curved
flow rate
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008128413A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sekine
良浩 関根
Seiichi Furusawa
誠一 古沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2008128413A priority Critical patent/JP2009276227A/en
Publication of JP2009276227A publication Critical patent/JP2009276227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To set a route for sweeping equally a flow-rate distribution in a pipe section, and to accurately perform flow rate measurement reflecting the flow-rate distribution in the pipe section. <P>SOLUTION: This flowmeter 1 has a line 3 for measuring the flow rate formed by combining the first curved line part 36 and the second curved line part 37, each having a mutually reverse curved swelling direction. When a fluid passes the first curved line part 36 and the second curved line part 37, a flow-rate distribution in an axial section receives forcibly each mutually reverse deflection. A propagation route SW, extending over both curved line parts, is set in the crossing state at least once of the interval between a first sidewall part 33 inner surface and a second sidewall part 34 inner surface in the deflected direction DD, and flow-rate measurement input is performed along the propagation route SW, to thereby enable flow-rate measurements, while a flow-rate distribution deliberately added is added in the flow direction. As a result, averaged flow measurement that accurately reflects the overall flow-velocity distribution becomes possible. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は流量計及びそれに用いる流量計測用管路に関する。   The present invention relates to a flow meter and a flow rate measuring line used therefor.

特開2004−251653号公報JP 2004-251653 A 特許第3528347号Japanese Patent No. 3528347

従来、都市ガスや水などの流量を計測するための超音波流量計が知られている。その際の測定原理として、一般には「伝搬時間差法」が用いられる。これは、流路の流体流れ方向上流側及び下流側に一対の超音波送受信部を設け、それら超音波送受信部間の超音波送受信方向を交互に切り替えるとともに、上流側超音波送受信部から発信された超音波ビームが下流側超音波送受信部に到達するまでの時間(順方向伝播時間)と、下流側超音波送受信部から発信された超音波ビームが上流側超音波送受信部に到達するまでの時間(逆方向伝播時間)とを計測して、両者の時間差から流路を流れる流体の平均流速度及び流量を求めるものである(例えば、特許文献1)。   Conventionally, an ultrasonic flowmeter for measuring a flow rate of city gas or water is known. In general, a “propagation time difference method” is used as a measurement principle at that time. This is provided with a pair of ultrasonic transmission / reception units upstream and downstream in the fluid flow direction of the flow path, alternately switching the ultrasonic transmission / reception direction between the ultrasonic transmission / reception units, and transmitted from the upstream ultrasonic transmission / reception unit. The time until the ultrasonic beam reaches the downstream ultrasonic transmission / reception unit (forward propagation time) and the time until the ultrasonic beam transmitted from the downstream ultrasonic transmission / reception unit reaches the upstream ultrasonic transmission / reception unit Time (reverse propagation time) is measured, and the average flow velocity and flow rate of the fluid flowing through the flow path are obtained from the time difference between the two (for example, Patent Document 1).

ところで、上記のような超音波流量計においては、流量計測用管路内の流れは、管路形状に応じた特有の三次元分布となる。しかし、従来の超音波流量計では、この三次元的な流れ分布を詳細に考慮した計測方法がほとんど提案されておらず、計測誤差を招きやすい欠点があった。例えば、特許文献2においては、仕切り壁を用いて管中央部分のみで測定する流量計が開示されている。しかし、管壁に沿う低流速領域と管中央の高流速領域との間では、層流から乱流に遷移しつつ相当量の流速変化があり、管中央部分のみで流量を代表させれば誤差が大きくなることは自明である。また、管壁領域と管中央領域とで個別に流量測定を行なっても、個々の領域では断面内流速分布をもれなく掃引する計測にはなっておらず、誤差要因となることに変わりはない。   By the way, in the ultrasonic flowmeter as described above, the flow in the flow rate measuring pipe has a unique three-dimensional distribution corresponding to the pipe shape. However, the conventional ultrasonic flowmeter has not been proposed with any measurement method considering the three-dimensional flow distribution in detail, and has a drawback that it easily causes measurement errors. For example, Patent Document 2 discloses a flow meter that measures only at the center portion of a pipe using a partition wall. However, there is a considerable amount of flow velocity change between laminar flow and turbulent flow between the low flow velocity region along the tube wall and the high flow velocity region in the center of the tube. It is obvious that becomes larger. Further, even if the flow rate measurement is performed separately in the tube wall region and the tube center region, the measurement of sweeping the flow velocity distribution in the cross section is not completed in each region, and it remains an error factor.

本発明の課題は、管断面内流速分布を的確に反映した流量計測が可能な流量計と、それに用いる流量計測用管路とを提供することにある。   An object of the present invention is to provide a flow meter capable of accurately measuring a flow velocity distribution in a pipe cross section and a flow rate measuring pipe used therefor.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の流量計は、
流体入口と流体出口とを有する管路として構成され、該管路内にて被測定流体を流体入口から流体出口に向けて流通させたときの該管路の軸断面内の流速分布において、流量ピーク位置が管路中心線から軸断面内の予め定められた第一方向に偏って生ずるよう管形状が定められた第一流速分布偏向部と、流量ピーク位置が管路中心線から軸断面内において第一方向と反対の第二方向に偏って生ずるよう管形状が定められた第二流速分布偏向部とが流れ方向上流側に第一流速分布偏向部が位置するように配置されるとともに、流量計測経路が、管路規定平面への投影にて偏向方向における第一側壁部内面と第二側壁部内面との間を少なくとも1回横断するよう第一流速分布偏向部と第二流速分布偏向部とにまたがって定められた流量計測用管路と、
測定経路に沿って、予め定められた流量測定入力を行なう流量測定入力手段と、
該流量測定入力に対する流量応答情報を検出する流量応答情報検出手段と、
を有することを特徴とする。
In order to solve the above problems, the flowmeter of the present invention is:
The flow rate distribution in the axial cross section of the pipe is configured as a pipe having a fluid inlet and a fluid outlet, and the fluid to be measured is circulated from the fluid inlet to the fluid outlet in the pipe. A first flow velocity distribution deflector having a pipe shape whose peak position is offset from a pipe center line in a predetermined first direction in the axial cross section, and a flow peak position within the axial cross section from the pipe center line. And the second flow velocity distribution deflecting portion whose tube shape is determined so as to be biased in the second direction opposite to the first direction is arranged so that the first flow velocity distribution deflecting portion is located on the upstream side in the flow direction, The first flow velocity distribution deflection unit and the second flow velocity distribution deflection so that the flow rate measurement path traverses at least one time between the inner surface of the first side wall portion and the inner surface of the second side wall portion in the deflection direction by projection onto the pipe defining plane. Flow measurement pipes that are defined across ,
A flow rate measurement input means for performing a predetermined flow rate measurement input along the measurement path;
Flow rate response information detecting means for detecting flow rate response information for the flow rate measurement input;
It is characterized by having.

また、本発明の流量計測用管路は、上記本発明の流量計に使用され、流体入口と流体出口とを有する管路として構成され、該管路内にて被測定流体を流体入口から流体出口に向けて流通させたときの該管路の軸断面内の流速分布において、流量ピーク位置が管路中心線から軸断面内の予め定められた第一方向に偏って生ずるよう管形状が定められた第一流速分布偏向部と、流量ピーク位置が管路中心線から軸断面内において第一方向と反対の第二方向に偏って生ずるよう管形状が定められた第二流速分布偏向部とが流れ方向上流側に第一流速分布偏向部が位置するように配置されるとともに、流量計測経路が、管路規定平面への投影にて偏向方向における第一側壁部内面と第二側壁部内面との間を少なくとも1回横断するよう第一流速分布偏向部と第二流速分布偏向部とにまたがって定められたことを特徴とする。   The flow rate measuring line of the present invention is used in the flowmeter of the present invention and is configured as a line having a fluid inlet and a fluid outlet, and the fluid to be measured is fluidized from the fluid inlet in the pipe. In the flow velocity distribution in the axial cross section of the pipe when flowing toward the outlet, the pipe shape is determined so that the flow rate peak position is offset from the pipe center line in the first predetermined direction in the axial cross section. And a second flow velocity distribution deflecting portion whose pipe shape is determined such that a flow rate peak position is generated in a second direction opposite to the first direction in the axial cross section from the pipe center line. Are arranged so that the first flow velocity distribution deflection portion is located upstream in the flow direction, and the flow rate measurement path is projected onto the pipe defining plane and the first side wall inner surface and the second side wall inner surface in the deflection direction. The first flow velocity distribution bias Wherein the parts and defined across the second flow velocity distribution deflecting unit.

本発明の流量計の特徴部をなすのは、管路の軸断面内の流速分布において、流量ピーク位置が管路中心線から軸断面内の予め定められた第一方向に偏って生ずるよう管形状が定められた第一流速分布偏向部と、流量ピーク位置が管路中心線から軸断面内において第一方向と反対の第二方向に偏って生ずるよう管形状が定められた第二流速分布偏向部とを設けた点にある。これら第一流速分布偏向部と第二流速分布偏向部とを流体が通過する際に、その軸断面内流速分布が互いに逆向きの偏向を強制的に受けるので、流速分布に対し流れ方向に作為的かつ安定な変化をもたらすことができる。そして、偏向方向における第一側壁部内面と第二側壁部内面との間を少なくとも1回横断する形で両流速分布偏向部にまたがる流量計測経路を設定し、該流量計測経路に沿って流量測定入力を行なうことで、作為的に加えられた流速分布を流れ方向に掃引しつつ流量測定を行なうことができる。その結果、全流速分布を的確に反映した平均化した流れの計測が可能となり、例えば、流路の壁部近傍域と中央域とで流れ形態に差があるにもかかわらず(流量小→流量大、層流→乱流)、補正等も不要で、高精度で安定した流量計測が実現する。   The flow meter of the present invention is characterized by the fact that in the flow velocity distribution in the axial cross section of the pipe, the flow peak position is generated with a deviation from the pipe center line in a predetermined first direction in the axial cross section. A first flow velocity distribution deflecting portion having a defined shape, and a second flow velocity distribution having a pipe shape so that the flow rate peak position is offset from the pipe center line in a second direction opposite to the first direction in the axial section. It is in the point which provided the deflection | deviation part. When the fluid passes through the first flow velocity distribution deflection section and the second flow velocity distribution deflection section, the flow velocity distribution in the axial section is forcibly subjected to deflections in opposite directions. Changes can be brought about. Then, a flow rate measurement path that spans both flow velocity distribution deflection parts is set so as to cross between the inner surface of the first side wall part and the second side wall part in the deflection direction at least once, and the flow rate measurement is performed along the flow rate measurement path. By performing the input, it is possible to measure the flow rate while sweeping the artificially added flow velocity distribution in the flow direction. As a result, it is possible to measure an averaged flow that accurately reflects the total flow velocity distribution. For example, although there is a difference in the flow form between the area near the wall of the flow path and the central area (low flow → low flow Large, laminar flow → turbulent flow), correction, etc. are not required, and highly accurate and stable flow measurement is realized.

流量測定入力手段は、測定経路をなす超音波伝播経路に沿って流体に対し測定用超音波を送信する超音波送信手段とすることができ、流量応答情報検出手段は、超音波伝播経路に沿って伝播する測定用超音波を応答情報として受信する超音波受信手段とすることができる。超音波ビームは指向性が高く、波形拡散によるロスも小さいので、高精度の流量測定が可能であり、特に都市ガスやLPガスなどのガス流量測定に好適に採用できる。しかし、流量測定入力手段は超音波送受信手段に限らず、例えば、熱線流量計への適用が可能であり、この場合、流体と接する形で測定経路内に張り渡された電熱線が流量測定入力手段を構成する。   The flow rate measurement input means can be an ultrasonic transmission means for transmitting a measurement ultrasonic wave to the fluid along the ultrasonic propagation path forming the measurement path, and the flow rate response information detection means is along the ultrasonic propagation path. The ultrasonic wave receiving means for receiving the measurement ultrasonic wave propagating as response information can be provided. Since the ultrasonic beam has high directivity and small loss due to waveform diffusion, it is possible to measure the flow rate with high accuracy, and it can be suitably used particularly for measuring the gas flow rate of city gas or LP gas. However, the flow rate measurement input means is not limited to the ultrasonic transmission / reception means, and can be applied to, for example, a hot wire flow meter. In this case, the heating wire stretched in the measurement path in contact with the fluid is the flow measurement input. Configure the means.

流量計測用管路は、管路中心線の流体入口側端点から流体出口側端点に至る全長の二分点を管路中心点として定めたとき、管路の全体形状が、当該管路中心点に関して点対称となるように定めておくとよい。これにより、流れ方向に沿った流速分布変化が管路中心点に関して対称となり、流路軸断面内の流速分布を平均化した流量計測の信頼度をより高めることができる。   When the pipe line for flow rate measurement is defined as the pipe center point at the bisection point of the entire length from the fluid inlet side end point to the fluid outlet side end point of the pipe center line, the overall shape of the pipe line is related to the pipe center point. It is good to set it to be point-symmetric. Thereby, the flow velocity distribution change along the flow direction becomes symmetric with respect to the pipe center point, and the reliability of the flow rate measurement obtained by averaging the flow velocity distribution in the channel axis cross section can be further increased.

第一流速分布偏向部と第二流速分布偏向部とは、湾曲内周側にて湾曲外周側よりも流速が大となるよう、湾曲膨出方向がそれぞれ第二方向及び第一方向に設定された第一及び第二の湾曲管路部として構成できる。流速分布偏向部を湾曲管路部として構成することで、連続の原理により湾曲外周側と内周側とで流速差が必然的に生ずることを利用して、流速分布をスムーズに偏向させることができる。   The first flow velocity distribution deflecting unit and the second flow velocity distribution deflecting unit have the curved bulging direction set to the second direction and the first direction, respectively, so that the flow velocity is larger on the curved inner peripheral side than on the curved outer peripheral side. The first and second curved pipe sections can be configured. By configuring the flow velocity distribution deflecting section as a curved pipe section, it is possible to smoothly deflect the flow velocity distribution by utilizing the fact that a flow velocity difference inevitably occurs between the curved outer peripheral side and the inner peripheral side based on the principle of continuity. it can.

第一及び第二の湾曲管路部は予め定められた管路規定平面に沿って二次元配列することができる。つまり、全ての湾曲管路部の湾曲方向を同一平面(管路規定平面)上に設定することにより、流量計測用管路のレイアウトが平面化し、省スペース化に寄与する。流量計測用管路は、第一湾曲管路部と第二湾曲管路部とを1つずつ含む構成としてもよいし、複数個ずつ含むようにしてもよい。いずれの場合も、第一湾曲管路部と第二湾曲管路部とを各々互いに同数含むように構成すれば、流速分布を各方向へ均等に偏向でき、平均化した流量計測の信頼度をさらに高めることができる。なお、第一湾曲管路部と第二湾曲管路部とは、流路に沿って、流体入口に最も近い配列端を第一湾曲管路部が占め、流体出口に最も近い配列端を第二湾曲管路部が占めるように配置しておくとよい。第一湾曲管路部と第二湾曲管路部とを1つずつ含む構成であれば、流体入口に近い側に位置するものを第一湾曲管路部、流体出口に近い側に位置するものを第二湾曲管路部と定義する。一方、第一湾曲管路部と第二湾曲管路部とを各々複数含む場合は、それら第一湾曲管路部と第二湾曲管路部とを流路に沿って交互に直列配置することにより、流速分布を流れ方向に沿って周期的に偏向することができる。   The first and second curved pipe sections can be two-dimensionally arranged along a predetermined pipe defining plane. That is, by setting the bending direction of all the curved pipe sections on the same plane (pipe definition plane), the layout of the flow rate measuring pipes is flattened, contributing to space saving. The flow rate measurement pipe line may be configured to include one first curved pipe line part and one second curved pipe line part, or may include a plurality of each. In either case, if the first curved pipe section and the second curved pipe section are configured to include the same number, the flow velocity distribution can be evenly deflected in each direction, and the reliability of the averaged flow measurement can be improved. It can be further increased. The first curved conduit portion and the second curved conduit portion occupy the arrangement end closest to the fluid inlet along the flow path by the first curved conduit portion, and the array end closest to the fluid outlet is the first end. It is good to arrange so that a double curved pipe part may occupy. If the configuration includes one each of the first curved pipeline portion and the second curved pipeline portion, the one located near the fluid inlet is located near the first curved pipeline portion and the fluid outlet. Is defined as the second curved duct section. On the other hand, in the case of including a plurality of first curved conduit portions and second curved conduit portions, the first curved conduit portions and the second curved conduit portions are alternately arranged in series along the flow path. Thus, the flow velocity distribution can be periodically deflected along the flow direction.

湾曲偏向の効果を一様に発現させるためには、流量計測用管路は流れ方向にて軸断面積が一様となるように構成することが望ましい。また、湾曲管部材は、管路規定平面上において管路中心線の曲率半径が互いに等しい円弧状管部材として構成することができる。このような円弧状管部材は、湾曲管部材内にて流速分布偏向効果を流路方向に一様に発現させることができ、該円弧状管部材の組み合わせにより、流量計測用管路全体の流れ方向に沿った流速分布偏向仕様も容易にかつ自由に設計することができる。   In order to achieve the effect of bending deflection uniformly, it is desirable that the flow rate measuring conduit is configured so that the axial cross-sectional area is uniform in the flow direction. Further, the curved pipe member can be configured as an arcuate pipe member having the same radius of curvature of the pipe center line on the pipe defining plane. Such an arcuate tube member can uniformly produce the flow velocity distribution deflection effect in the flow channel direction in the curved tube member, and the flow of the entire flow rate measuring pipeline can be achieved by combining the arcuate tube members. The flow velocity distribution deflection specification along the direction can also be designed easily and freely.

また、流量計測用管路は、互いに鏡映反転した形状関係にある等価な湾曲管部材からなる第一及び第二の湾曲管路部の対を少なくとも1つ含むものとして構成できる。第一湾曲管路部及び第二湾曲管路部が、互いに鏡映反転した等価な湾曲管部材となることで、2つの湾曲部材は裏表の相違のみで同一部材として構成できるので、パーツの共有化や設計の簡略化に寄与し、設計自由度も向上する。また、管路を流れる流体の流速分布をより安定にかつ正確に偏向でき、流速分布変化の流れ方向に沿った対称性がさらに向上する結果、流路軸断面内の流速分布を平均化した流量計測の信頼度をさらに高めることができる。   Further, the flow rate measurement pipe line can be configured to include at least one pair of first and second curved pipe line parts made of equivalent curved pipe members having a shape relationship that is mirror-inverted. Since the first curved pipe section and the second curved pipe section are equivalent curved pipe members that are mirror-inverted with each other, the two curved members can be configured as the same member with only the difference between the front and back sides. This contributes to simplification of design and design, and also improves the degree of freedom of design. In addition, the flow velocity distribution of the fluid flowing through the pipeline can be deflected more stably and accurately, and the symmetry along the flow direction of the flow velocity distribution change is further improved. Measurement reliability can be further increased.

第一湾曲管路部と第二湾曲管路部との対を結合する他の管路部材は直管部材とすることができる。第一湾曲管路部と第二湾曲管路部との接続区間に上記のような直管部を挿入することで、超音波送受信部の取付けスペースの確保が容易となり、設計自由度を高めることができる。   The other pipe member that couples the pair of the first bent pipe section and the second bent pipe section can be a straight pipe member. By inserting the straight pipe section as described above into the connection section between the first curved pipe section and the second curved pipe section, it becomes easy to secure the installation space for the ultrasonic transmission / reception section and increase the degree of freedom in design. Can do.

また、管路中心線の流体入口側端点から流体出口側端点に至る全長の二分点を管路中心点として定めたとき、該管路中心点に関し、互いに鏡映反転した形状関係にある第一湾曲管路部と第二湾曲管路部との対を互いに点対称となる位置関係で配置することができる。これにより、管路規定平面上にて管路中心点を通りかつ偏向方向と直交する基準流れ方向を考えたとき、該基準流れ方向に関する流速分布の対称性がさらに向上し、流路軸断面内の流速分布を平均化した流量計測の信頼度をさらに高めることができる。   Further, when the bisection point of the entire length from the fluid inlet side end point to the fluid outlet side end point of the pipe center line is determined as the pipe center point, the pipe center point has a shape relationship that is mirror-inverted with respect to each other. A pair of the curved conduit portion and the second curved conduit portion can be disposed in a positional relationship that is point-symmetric with each other. As a result, when considering the reference flow direction passing through the pipe center point on the pipe defining plane and orthogonal to the deflection direction, the symmetry of the flow velocity distribution with respect to the reference flow direction is further improved, The reliability of the flow rate measurement that averages the flow velocity distribution of can be further increased.

この場合、管路中心線で見たときの流体入口位置が、管路規定平面上にて偏向方向に管路中心点から遠ざかるよう所定距離だけオフセットして位置し、同じく管路中心線で見たときの流体出口位置が偏向方向にて流体入口位置と逆向きに等距離オフセットして位置するように構成できる。流体入口位置と流体出口位置とを管路中心点から逆向きに等距離オフセットさせることで、流量計測用管路の対称性を損ねることなく流速分布の偏向特性をそのオフセット量に応じて微調整でき、ひいては流量計測精度のさらなる適正化を図ることができる。   In this case, the fluid inlet position when viewed from the pipeline center line is offset by a predetermined distance so as to move away from the pipeline center point in the deflection direction on the pipeline regulation plane, and also viewed from the pipeline center line. The fluid outlet position at this time can be configured to be offset at an equal distance in the direction opposite to the fluid inlet position in the deflection direction. By offsetting the fluid inlet position and fluid outlet position at the same distance from the pipe center point in the opposite direction, fine adjustment of the deflection characteristics of the flow velocity distribution according to the offset amount without losing the symmetry of the flow measurement pipe As a result, the flow rate measurement accuracy can be further optimized.

また、第一湾曲管路部の流体入口側の端に、流体入口から流入する流体を、第一湾曲管路部の流入端へ向け方向変換しつつ導く導入管路部を結合することができる。また、第二湾曲管路部の流体出口側の端に、流体を流体出口に向け方向変換しつつ導く導出管路部を結合することができる。これにより、既設配管への流量計測用管路の取付自由度を向上できる。流体の流体入口への流入方向と流体出口からの流出方向とは、管路規定平面上にて偏向方向と直交する向きに定めておくことが、湾曲した測定配管を既設配管上に組み込む際にスペース上有利である。   In addition, an introduction conduit portion that guides the fluid flowing from the fluid inlet to the end of the first curved conduit portion while changing the direction toward the inflow end of the first curved conduit portion can be coupled to the end of the first curved conduit portion. . In addition, a lead-out conduit portion that guides the fluid while changing the direction of the fluid toward the fluid outlet can be coupled to the end of the second curved conduit portion on the fluid outlet side. Thereby, the freedom degree of attachment of the pipe for flow measurement to existing piping can be improved. The inflow direction of the fluid to the fluid inlet and the outflow direction from the fluid outlet should be determined in a direction perpendicular to the deflection direction on the pipe regulation plane. Space is advantageous.

湾曲管路部の軸断面は長方形とすることができる。この場合、湾曲方向を長方形の長辺とすることができる。長方形軸断面の長辺方向に湾曲させることは、管路幅が管路高さよりも肉薄となる流路構造となることを意味し、管路幅の取付けスペースに制約がある流路に対応しやすくなる。この場合、管路幅が管路高さよりも肉薄となる矩形断面を有した前後配管に接続することで、例えばS字管路の対称性を損ねることなく各湾曲管路部で点線対称な流速分布を確保できる。さらに、軸断面のアスペクト比を大きくする事で、管路内を流れる流体の分布を三次元流から二次元流へ近づけることができ、断面長辺方向の流速分布を一様に制御しやすくなる。また、点対称に形成されたS字状管路の場合は、管路規定平面上にて管路中心点を通りかつ偏向方向と直交する基準流れ方向を考えたとき、該基準流れ方向に関する流速分布の対称性をより向上できる。   The axial cross section of the curved pipe section can be rectangular. In this case, the bending direction can be a long side of the rectangle. Curving in the direction of the long side of the rectangular axial cross section means that the pipe width becomes thinner than the pipe height, and it corresponds to the flow path where the installation space of the pipe width is limited. It becomes easy. In this case, by connecting to the front and rear pipes having a rectangular cross-section where the pipe width is thinner than the pipe height, for example, the flow velocity is symmetric with respect to each curved pipe portion without losing the symmetry of the S-shaped pipe line. Distribution can be secured. Furthermore, by increasing the aspect ratio of the axial section, the distribution of the fluid flowing in the pipe can be made closer to the two-dimensional flow from the three-dimensional flow, and the flow velocity distribution in the cross-sectional long side direction can be easily controlled uniformly. . Further, in the case of an S-shaped pipe formed symmetrically with respect to a point, when a reference flow direction passing through the pipe center point and orthogonal to the deflection direction on the pipe defining plane is considered, the flow velocity relating to the reference flow direction Distribution symmetry can be further improved.

また、湾曲管路部の短辺方向に湾曲方向を設定することも可能である。長方形状軸断面の短辺方向に湾曲させることは、管路幅が管路高さよりも大きい扁平広幅な流路構造となることを意味し、管路高さ方向の取付けスペースに制約のある流路に対応しやすくなる。また、軸断面のアスペクト比を大きくする事で、管路内を流れる流体の分布を三次元流から二次元流へ近づけることができ、断面長辺方向の流速分布を一様に制御しやすくなる。また、点対称に形成されたS字状管路の場合は、基準流れ方向に関する流速分布の対称性をより向上できる。   It is also possible to set the bending direction in the direction of the short side of the bending duct. Curving in the direction of the short side of the rectangular shaft section means a flat and wide flow path structure in which the pipe width is larger than the pipe height, and there are restrictions on the installation space in the pipe height direction. It becomes easy to correspond to the road. In addition, by increasing the aspect ratio of the axial section, the distribution of the fluid flowing in the pipe can be made closer to the two-dimensional flow from the three-dimensional flow, and the flow velocity distribution in the cross-section long side direction can be easily controlled uniformly. . Further, in the case of the S-shaped pipe formed symmetrically, the symmetry of the flow velocity distribution with respect to the reference flow direction can be further improved.

次に、本発明の流量計測用管路は、流体入口につながる入口側主管路と、流体出口につながる出口側主管路とを有し、それら入口側主管路と出口側主管路との間に、入口側主管路から分岐して出口側主管路に統合されるとともに、各々第一流速分布偏向部と第二流速分布偏向部とが直列混在する形で配置された分岐管路部が複数並列に挿入された構造とすることができる。並列な複数の分岐管路部に流れを分解することで、大流量ないし高流速の配管の場合、分岐管路部により流速を縮小でき、測定精度の向上や測定に要する消費電力の低減を図ることができる。この場合、複数の分岐管路部は、管軸断面積、管長及び管路形状を互いに等価に定めておくと、流速を流速分布も含めて相似ないしこれに近い形で縮小でき、測定精度のさらなる向上に寄与する。   Next, the flow rate measuring pipe of the present invention has an inlet-side main pipe connected to the fluid inlet and an outlet-side main pipe connected to the fluid outlet, and between the inlet-side main pipe and the outlet-side main pipe. , Branching from the inlet-side main pipe and integrated into the outlet-side main pipe, and a plurality of branch pipe sections each arranged in such a way that the first flow velocity distribution deflection section and the second flow velocity distribution deflection section are mixed in series. It is possible to have a structure inserted in By disassembling the flow into multiple branch pipes in parallel, the flow speed can be reduced by the branch pipe for large flow rates or high flow speeds, improving measurement accuracy and reducing power consumption for measurement. be able to. In this case, if the branch pipe cross-sectional area, the pipe length, and the pipe shape are determined to be equivalent to each other, the flow velocity can be reduced in a similar or close manner including the flow velocity distribution, and the measurement accuracy can be reduced. Contributes to further improvement.

本発明に係る流量計の実施形態を、図面を参照しつつ説明する。
図1は、本発明の流量計を、一般住宅用ガスメータ等として用いられる超音波流量計として構成した実施例を示している。この超音波流量計1には、被測定流体GFの流路を形成する流路形成部3と流路形成部3に対し被測定流体GFの流通方向において互いに異なる位置に設けられ、一方が被測定流体GFへの測定用超音波の送出側となり、他方が該測定用超音波の受信側となるように機能するとともに、各々測定用超音波として、予め定められた向きへの指向性を有する超音波ビームSWを送出可能な対をなす超音波送受信部2a,2bとを備えている。流路形成部3は例えば金属製である。各超音波送受信部2a,2bに組み込まれた超音波送振動子は、流路形成部3の壁部とその外面に一体化された振動子取付部2gとを斜めに貫通する形で流路と連通するように形成された振動子配置孔2h内に配置される。そして、振動子取付部2gの超音波ビーム放出面は、振動子配置孔2hの内周面と、流路形成部3の壁部内面の該振動子配置孔2h側への延長面との間で三角形状の流体淀み空間2dを形成している。
An embodiment of a flow meter according to the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment in which the flow meter of the present invention is configured as an ultrasonic flow meter used as a general residential gas meter or the like. The ultrasonic flowmeter 1 is provided at a position different from each other in the flow direction of the fluid GF to be measured with respect to the flow passage forming portion 3 and the flow passage forming portion 3 that form the flow path of the fluid GF to be measured. While functioning so that the measurement ultrasonic wave is sent to the measurement fluid GF and the other is the measurement ultrasonic wave reception side, each of the measurement ultrasonic waves has directivity in a predetermined direction. A pair of ultrasonic transmission / reception units 2a and 2b capable of transmitting the ultrasonic beam SW is provided. The flow path forming unit 3 is made of metal, for example. The ultrasonic transmission transducer incorporated in each ultrasonic transmission / reception unit 2a, 2b is a flow path that obliquely penetrates the wall portion of the flow path forming unit 3 and the transducer mounting unit 2g integrated on the outer surface thereof. Are arranged in the vibrator arrangement hole 2h formed so as to communicate with each other. The ultrasonic beam emission surface of the transducer mounting portion 2g is between the inner peripheral surface of the transducer arrangement hole 2h and the extension surface of the inner surface of the flow path forming portion 3 toward the transducer arrangement hole 2h. Thus, a triangular fluid stagnation space 2d is formed.

流路形成部3は超音波送受信部2a,2bとともに流量計本体を構成し、該流量計本体と制御回路部1Eとにより超音波流量計1の全体が構成されている。制御回路部1Eは、対をなす超音波送受信部2a,2bを、流路上流側に位置する上流側超音波送受信部2a側が送信側となり、流路下流側に位置する下流側超音波送受信部2b側が受信側となる第一駆動モードと、その逆となる第二駆動モードとの間で切替可能に駆動する超音波駆動機構4を有する。   The flow path forming unit 3 constitutes a flow meter main body together with the ultrasonic transmission / reception units 2a and 2b, and the entire ultrasonic flow meter 1 is constituted by the flow meter main body and the control circuit unit 1E. The control circuit unit 1E includes a pair of ultrasonic transmission / reception units 2a and 2b. The upstream ultrasonic transmission / reception unit 2a located on the upstream side of the flow channel serves as the transmission side, and the downstream ultrasonic transmission / reception unit located on the downstream side of the flow channel. It has an ultrasonic drive mechanism 4 that is switchably driven between a first drive mode in which the 2b side is the receiving side and a second drive mode that is the opposite.

超音波流量計1の流量測定用の流路3Pには、流量測定用ガス(流体)が図示の流れ方向に流通している。流路3Pには、流れ方向下流側に下流側超音波送受信部2bが設けられ、流れ方向上流側に上流側超音波送受信部2aが設けられている。これらの超音波送受信部2a,2bは圧電振動子などからなる超音波振動子を有した超音波トランスデューサであり、駆動電圧の印加により超音波ビームを送出する超音波送出機能と、超音波ビームの受信により電気信号(受信信号)を出力する超音波受信機能とを複合して備えるものである。測定用の超音波ビームは、流路内にて超音波送受信部2a,2b間に定在波を生じないよう、所定波数以下のパルス状に送出される。   A flow rate measurement gas (fluid) flows in the flow direction shown in the flow rate measurement flow path 3P of the ultrasonic flowmeter 1. In the flow path 3P, a downstream ultrasonic transmission / reception unit 2b is provided on the downstream side in the flow direction, and an upstream ultrasonic transmission / reception unit 2a is provided on the upstream side in the flow direction. These ultrasonic transmission / reception units 2a and 2b are ultrasonic transducers having an ultrasonic transducer such as a piezoelectric transducer, and have an ultrasonic transmission function for transmitting an ultrasonic beam by applying a drive voltage, It is combined with an ultrasonic wave reception function that outputs an electrical signal (reception signal) upon reception. The ultrasonic beam for measurement is sent out in a pulse shape having a predetermined wave number or less so as not to generate a standing wave between the ultrasonic transmission / reception units 2a and 2b in the flow path.

制御回路部1Eには、前述の超音波駆動機構4と周辺回路ブロック7〜11が設けられている。超音波駆動機構4は、送信部5、受信部6及び切替部4sを有する。送信部5は、超音波送受信部2a,2bに対して駆動信号を入力するための回路である。受信部6はスイッチ等から構成され、このスイッチを切り替えることにより、前述の駆動モードの切替がなされる。この受信部6の切替制御は切替部4sにより行われる。増幅部7は、受信部6により受信された超音波を所定の増幅率で増幅し、増幅された超音波変換信号をマスク時間設定部8に入力する。マスク時間設定部8は、ノイズ対策のため、超音波素子2aまたは2bより超音波を送出してから、流路3を伝搬される超音波が到達しない最低の時間を設けるものである。また、ゼロクロスポイント検出部9は、受信した超音波波形に含まれる特定順位波(例えば、第3波)のゼロクロスポイントを検出するものである。時間計測部10は、第一駆動モードでの、上流側超音波送受信部2aから発信された超音波ビームSWが下流側超音波送受信部2bに到達するまでの順方向伝播時間と、第二駆動モードにおける下流側超音波送受信部2bから発信された超音波ビームSWが上流側超音波送受信部2aに到達するまでの逆方向伝播時間とを計測するものである。また、演算部11は、上記の順方向伝播時間と逆方向伝播時間との時間差から、流路3Pを流れる流体の平均流速度及び流量を計算する。   The control circuit unit 1E is provided with the ultrasonic drive mechanism 4 and the peripheral circuit blocks 7 to 11 described above. The ultrasonic drive mechanism 4 includes a transmission unit 5, a reception unit 6, and a switching unit 4s. The transmission unit 5 is a circuit for inputting drive signals to the ultrasonic transmission / reception units 2a and 2b. The receiving unit 6 includes a switch or the like, and the drive mode is switched by switching the switch. The switching control of the receiving unit 6 is performed by the switching unit 4s. The amplifying unit 7 amplifies the ultrasonic wave received by the receiving unit 6 with a predetermined amplification factor, and inputs the amplified ultrasonic conversion signal to the mask time setting unit 8. The mask time setting unit 8 provides a minimum time during which the ultrasonic wave propagated through the flow path 3 does not reach after the ultrasonic wave is transmitted from the ultrasonic element 2a or 2b for noise countermeasures. Moreover, the zero cross point detection part 9 detects the zero cross point of the specific order wave (for example, 3rd wave) contained in the received ultrasonic waveform. The time measuring unit 10 includes a forward propagation time until the ultrasonic beam SW transmitted from the upstream ultrasonic transmission / reception unit 2a reaches the downstream ultrasonic transmission / reception unit 2b, and the second drive in the first drive mode. In this mode, the backward propagation time until the ultrasonic beam SW transmitted from the downstream ultrasonic transmission / reception unit 2b reaches the upstream ultrasonic transmission / reception unit 2a is measured. Moreover, the calculating part 11 calculates the average flow velocity and flow volume of the fluid which flow through the flow path 3P from the time difference between said forward propagation time and reverse propagation time.

図2に示すように、流量計測用管路3は本発明特有の立体形状を有するものとして構成されている。すなわち、流量計測用管路3は、長方形軸断面を有するとともに管長方向における各端に流体入口31と流体出口32とを有する。そして、図3に示すように、長方形軸断面の隣接二辺の第一辺Kを法線とする仮想的な管路規定平面DPへの投影にて管路中心線Oが二次元的に屈曲した形状を有する。具体的には、管路規定平面DP上における長方形軸断面の隣接二辺の第二辺J(この実施形態では長方形の短辺)と平行な向きを偏向方向DDと定義したとき、該偏向方向DDに沿って湾曲膨出方向が互いに逆向きに定められた第一湾曲管路部36と第二湾曲管路部37とが隣接配置されている(流れ方向上流側に位置するものを第一湾曲管路部36である)。   As shown in FIG. 2, the flow rate measuring line 3 is configured to have a three-dimensional shape unique to the present invention. That is, the flow rate measuring pipe 3 has a rectangular axial cross section and has a fluid inlet 31 and a fluid outlet 32 at each end in the pipe length direction. Then, as shown in FIG. 3, the pipe center line O is two-dimensionally bent by projection onto the virtual pipe defining plane DP with the first side K of the two adjacent sides of the rectangular axis cross section as a normal line. Has the shape. Specifically, when a direction parallel to the second side J of the two adjacent sides of the rectangular axis cross section on the pipe defining plane DP (in this embodiment, a rectangular short side) is defined as the deflection direction DD, the deflection direction A first curved conduit portion 36 and a second curved conduit portion 37 whose curved bulge directions are determined to be opposite to each other along DD are disposed adjacent to each other (the first one located upstream in the flow direction). A curved conduit portion 36).

図2に示すように、第一及び第二の超音波送受信部2a,2bは、超音波伝播経路SWの両端にて流量計測用管路3の壁部それぞれ取り付けられ、該流量計測用管路3を流れる流体に対し測定用超音波を伝播経路SWに沿って送受信する。その伝播経路SWは、管路規定平面DPへの投影において、偏向方向DDにおける第一側壁部33の内面と第二側壁部34の内面との間を横断するように、第一湾曲管路部36と第二湾曲管路部37とにまたがって定められている。   As shown in FIG. 2, the first and second ultrasonic transmission / reception units 2a and 2b are respectively attached to the walls of the flow rate measurement line 3 at both ends of the ultrasonic wave propagation path SW. 3 is transmitted and received along the propagation path SW. The propagation path SW is projected to the pipe defining plane DP so as to cross between the inner surface of the first side wall part 33 and the inner surface of the second side wall part 34 in the deflection direction DD. 36 and the second curved conduit portion 37.

第一湾曲管路部36と第二湾曲管路部37とは直接隣接する形で結合され、S字状管路部を形成している。具体的には、図3に示すように、管路中心線O(管路内流線の各位置の接線方向を法線とする管路断面を考え、個々の管路断面の幾何学的重心位置を結んで得られる線を管路中心線Oとして定める)の、流体入口31側端点から流体出口32側端点に至る全長の二分点を管路中心点Zとして定めたとき、管路の全体形状が、当該管路中心点Zに関して点対称となるように定められている。第一湾曲管路部36と第二湾曲管路部37とは、管路規定平面DPへの正射投影において、接続終端側における管路中心線Oの接線方向が互いに一致する位置関係にて配置されている。各湾曲管路部36,37の湾曲内面形状は円筒面状とされている。つまり、各湾曲管路部36,37は、管路規定平面上において管路中心線の曲率半径が互いに等しい円弧状管部材として構成されている。   The first curved conduit portion 36 and the second curved conduit portion 37 are coupled in a directly adjacent manner to form an S-shaped conduit portion. Specifically, as shown in FIG. 3, a pipe center line O (a pipe cross section whose normal is the tangent direction of each position of the pipe internal stream line is considered, and the geometric center of gravity of each pipe cross section is considered. When the bisection point of the entire length from the end point on the fluid inlet 31 side to the end point on the fluid outlet 32 side is determined as the pipe center point Z, the line obtained by connecting the positions is defined as the pipe center line O). The shape is determined so as to be point-symmetric with respect to the pipe center point Z. In the orthographic projection onto the pipe defining plane DP, the first curved pipe section 36 and the second curved pipe section 37 are in a positional relationship in which the tangent directions of the pipe center line O on the connection end side coincide with each other. Has been placed. The curved inner surface shape of each curved pipe section 36, 37 is a cylindrical surface. In other words, each of the curved pipe sections 36 and 37 is configured as an arcuate pipe member having the same radius of curvature of the pipe center line on the pipe defining plane.

また、第一湾曲管路部36及び第二湾曲管路部37は、互いに鏡映反転した立体形状関係にある等価な湾曲管部をなす。両管路部は溶接等により一体不可分に結合することもできるし、図4及び図5に示すように、鏡映反転関係にある個別の湾曲管部材として形成し、これを機械的な締結手段にて結合し一体化することもできる。図4及び図5では、第一湾曲管路部36及び第二湾曲管路部37の各接続端に結合用のフランジ36f,37fを形成し、図示しないパッキンを介してボルト締結した構造とされている。   Moreover, the 1st curved pipe part 36 and the 2nd curved pipe part 37 comprise the equivalent curved pipe part in the solid | 3D shape relationship which mutually mirror-inverted. Both pipe sections can be inseparably connected by welding or the like, and as shown in FIGS. 4 and 5, they are formed as individual curved pipe members having a mirror reversal relationship, which are mechanical fastening means. Can be combined and integrated. 4 and 5, coupling flanges 36 f and 37 f are formed at the connection ends of the first curved conduit portion 36 and the second curved conduit portion 37, and bolted via packing (not shown). ing.

また、第一湾曲管路部36の流体入口側の端には、流体入口31から流入する流体を、第一湾曲管路部36の流入端へ向け方向変換しつつ導く導入管路部38が一体に形成されている。また、第二湾曲管路部37の流体出口側の端には、該流出端から流出する流体を、流体出口32に向け方向変換しつつ導く導出管路部39が一体に形成されている。流体の流体入口31への流入方向と流体出口32からの流出方向とは、管路規定平面DP上にて偏向方向DDと直交する向き(以下、基準流れ方向Xという)に定められている。   In addition, an introduction pipe section 38 that guides the fluid flowing in from the fluid inlet 31 to the end of the first curved pipe section 36 while changing the direction toward the inflow end of the first curved pipe section 36 is provided at the end of the first curved pipe section 36 on the fluid inlet side. It is integrally formed. In addition, a lead-out conduit portion 39 that guides the fluid flowing out from the outflow end while changing the direction toward the fluid outlet 32 is integrally formed at the end of the second curved conduit portion 37 on the fluid outlet side. The inflow direction of the fluid to the fluid inlet 31 and the outflow direction from the fluid outlet 32 are determined in a direction (hereinafter referred to as a reference flow direction X) orthogonal to the deflection direction DD on the pipe defining plane DP.

導入管路部38に形成される流体入口31と、導出管路部39に形成される流体出口32とはいずれも長方形状の開口断面を有し、長方形状の軸断面を有した配管が接続される。ただし、図7に示すように、導入管路部38と導出管路部39の軸断面形状を、一般的な既設配管と接続可能な円形軸断面形状に構成し、かつ、長方形状の軸断面を有した第一湾曲管路部36及び第二湾曲管路部37とは別体形成して、該第一湾曲管路部36及び第二湾曲管路部37に対し締結結合(ここではフランジ結合)する構成とすることも可能である。   Both the fluid inlet 31 formed in the inlet pipe section 38 and the fluid outlet 32 formed in the outlet pipe section 39 have a rectangular opening cross section, and a pipe having a rectangular axial section is connected. Is done. However, as shown in FIG. 7, the axial cross-sectional shapes of the introduction pipe line portion 38 and the lead-out pipe line portion 39 are configured to have a circular axial cross-sectional shape that can be connected to a general existing pipe, and the rectangular axial cross-section shape. Are formed separately from the first curved conduit portion 36 and the second curved conduit portion 37, and are fastened to the first curved conduit portion 36 and the second curved conduit portion 37 (here, flanges). It is also possible to adopt a configuration of combining them.

流量計測用管路3は流れ方向にて軸断面積が一様となるように構成されている。第一湾曲管路部36及び第二湾曲管路部37の各湾曲方向(偏向方向DD)は長方形軸断面の短辺J方向に設定されている。矩形断面の短辺J方向に湾曲させつつ断面のアスペクト比を大きくする事で、管路内を流れる流体の分布を三次元流から二次元流へ近づけることができ、断面長辺K方向の流速分布を一様に制御しやすくなる。   The flow rate measuring pipe 3 is configured to have a uniform axial cross-sectional area in the flow direction. Each bending direction (deflection direction DD) of the 1st bending duct part 36 and the 2nd bending duct part 37 is set to the short side J direction of a rectangular-axis cross section. By increasing the aspect ratio of the cross section while curving in the short side J direction of the rectangular cross section, the distribution of the fluid flowing in the pipe can be made closer to the two dimensional flow, and the flow velocity in the long side K direction of the cross section It becomes easy to control the distribution uniformly.

図2に示すように、流量計測用管路3に対し超音波送受信部2a,2bは、流量計測用管路3の矩形軸断面の第一辺K側、すなわち、第一湾曲管路部36及び第二湾曲管路部37に係る湾曲面側を形成する主対向壁部33,34の一方に第一超音波送受信部2aを、他方に第二超音波送受信部2bを取り付けている。具体的には、主対向壁部33,34のうち、第一湾曲管路部36の頂点部にて湾曲外周側に位置するものを第一主壁部33、第二湾曲管路部37の頂点部にて湾曲外周側に位置するものを第二主壁部34として、第一超音波送受信部2aは、第一主壁部33に対し、第一湾曲管路部36の頂点部よりも流体流れ方向における上流側に取り付けられている。また、第二超音波送受信部2bは、第二主壁部34に対し、第二湾曲管路部37の頂点部よりも流体流れ方向における下流側に取り付けられている。   As shown in FIG. 2, the ultrasonic transmission / reception units 2 a and 2 b with respect to the flow rate measuring line 3 are on the first side K side of the rectangular axis cross section of the flow rate measuring line 3, that is, the first curved line 36. And the 1st ultrasonic transmission / reception part 2a is attached to one side of the main opposing wall parts 33 and 34 which form the curved surface side which concerns on the 2nd bending duct part 37, and the 2nd ultrasonic transmission / reception part 2b is attached to the other. Specifically, among the main opposing wall portions 33 and 34, those located on the curved outer peripheral side at the apex portion of the first curved conduit portion 36 are the first main wall portion 33 and the second curved conduit portion 37. The first ultrasonic transmission / reception unit 2 a is located on the curved outer peripheral side at the apex portion as the second main wall portion 34, and the first ultrasonic transmission / reception unit 2 a is more than the apex portion of the first curved duct portion 36 with respect to the first main wall portion 33. It is attached upstream in the fluid flow direction. In addition, the second ultrasonic transmission / reception unit 2 b is attached to the second main wall 34 on the downstream side in the fluid flow direction with respect to the apex of the second curved conduit 37.

図5に示すように、各超音波送受信部2a,2bは各主対向壁部33,34の幅方向(流量計測用管路3の第一辺方向:長方形軸断面の長辺Kの方向)のほぼ中央に取り付けられている。つまり、超音波送受信部2a,2bは流量計測用管路3の第一辺方向にて同じ位置に取り付けられている。また、図2に示すように、超音波送受信の向きは、第一湾曲管路部36及び第二湾曲管路部37の各湾曲頂点部での流線接線方向とほぼ平行である。図3において、伝播経路SWは、基準流れ方向Xにて第一湾曲管路部36及び第二湾曲管路部37の各湾曲頂点部36p,37pの間にて、第二主壁部33内面の第一反射点36rと、第一主壁部34内面の第一反射点37rとでそれぞれ1回ずつ反射を生ずるようになっている。従って、第一反射点36rと第二反射点37rとの間は無反射伝播経路が形成されている。   As shown in FIG. 5, each ultrasonic transmission / reception part 2a, 2b is the width direction of each main opposing wall part 33, 34 (the 1st side direction of the flow-measurement pipe line 3: the direction of the long side K of a rectangular-axis cross section). It is attached to the center of the. That is, the ultrasonic transmission / reception units 2 a and 2 b are attached at the same position in the first side direction of the flow rate measuring pipe 3. In addition, as shown in FIG. 2, the direction of ultrasonic transmission / reception is substantially parallel to the streamline tangential direction at each curved vertex of the first curved conduit portion 36 and the second curved conduit portion 37. In FIG. 3, the propagation path SW is the inner surface of the second main wall portion 33 between the curved vertex portions 36 p and 37 p of the first curved conduit portion 36 and the second curved conduit portion 37 in the reference flow direction X. The first reflection point 36r and the first reflection point 37r on the inner surface of the first main wall 34 are each reflected once. Accordingly, a non-reflection propagation path is formed between the first reflection point 36r and the second reflection point 37r.

図3に示すように、第一湾曲管路部36の湾曲膨出方向を該偏向方向DDの第一側、第二湾曲管路部37の湾曲膨出方向を同じく第二側と定義すると、偏向方向DD被測定流体を流体入口31から流体出口32に向けて流通させたとき、該管路の軸断面内流速分布は、第一湾曲管路部36では流量ピーク位置が偏向方向DDにおける第二側に偏って生じ、第二湾曲管路部37では流量ピーク位置が同じく第一側に偏って生じる。   As shown in FIG. 3, if the curved bulging direction of the first curved conduit portion 36 is defined as the first side of the deflection direction DD and the curved bulging direction of the second curved conduit portion 37 is defined as the second side, Deflection direction DD When the fluid to be measured is circulated from the fluid inlet 31 toward the fluid outlet 32, the flow velocity distribution in the axial cross section of the pipe is the flow peak position in the first curved pipe section 36 in the deflection direction DD. In the second curved pipe section 37, the flow rate peak position is also biased to the first side.

つまり、第一湾曲管路部36と第二湾曲管路部37とは湾曲膨出方向が逆になっていることで、流体が通過する際に軸断面内流速分布が互いに逆向きの偏向を強制的に受け、流速分布は流れ方向に沿って作為的かつ安定に変化する。つまり、第一湾曲管路部36から第二湾曲管路部37へ通過する流体の、流れ方向に沿った各断面位置(ξ1〜ξ9)での偏向方向DD(流路高さ方向:長方形軸断面の短辺Jの方向)における流速分布は、図示のごとく連続的に変化する。   In other words, the first curved conduit portion 36 and the second curved conduit portion 37 have opposite curved bulging directions, so that the flow velocity distribution in the axial cross section is deflected in the opposite directions when the fluid passes. Forcibly, the flow velocity distribution changes artificially and stably along the flow direction. That is, the deflection direction DD (flow path height direction: rectangular axis) at each cross-sectional position (ξ1 to ξ9) along the flow direction of the fluid passing from the first curved conduit portion 36 to the second curved conduit portion 37. The flow velocity distribution in the direction of the short side J of the cross section changes continuously as shown in the figure.

このような流路内を測定用超音波は、断面毎に偏向方向DDにおける通過位置を変えながら通過するので、流れ方向に連続的に変化する分布を掃引して積分的に平均化しながら流量計測がなされる。例えば、無反射直結区間では、各湾曲部材の逆向きに偏った流速分布が流れ方向に半分ずつ掃引・計測され、結果として全流速分布を掃引する計測が可能となり、全流速分布を的確に反映した平均化した流れの計測が可能となり、例えば、流路の壁部近傍域と中央域とで流れ形態に差があるにもかかわらず(流量小→流量大、層流→乱流)、補正等も不要で、高精度で安定した流量計測が実現する。また、一湾曲管路部36と第二湾曲管路部37とが管路中心点Zに関して点対称なS字状管路部を形成することにより、各湾曲管路部での流速分布の偏向状態を対称な関係に近づけることができ、偏った流れの全分布に対する計測精度が向上する。   Since ultrasonic waves for measurement pass through such a channel while changing the passing position in the deflection direction DD for each cross section, the flow rate measurement is performed while sweeping the distribution continuously changing in the flow direction and averaging the sweeping distribution. Is made. For example, in the non-reflective direct connection section, the flow velocity distribution biased in the opposite direction of each curved member is swept and measured in half in the flow direction, and as a result, measurement that sweeps the entire flow velocity distribution is possible, and the total flow velocity distribution is accurately reflected The averaged flow can be measured, for example, even though there is a difference in the flow configuration between the wall vicinity and the center of the flow path (low flow → high flow, laminar flow → turbulent flow). Etc. is not required, and highly accurate and stable flow rate measurement is realized. In addition, the one curved pipe section 36 and the second curved pipe section 37 form an S-shaped pipe section that is point-symmetric with respect to the pipe center point Z, so that the flow velocity distribution in each curved pipe section is deflected. The state can be brought close to a symmetric relationship, and the measurement accuracy for the entire distribution of the biased flow is improved.

図3において無反射直結区間QRの各反射点R,Q(図2では36r,37r)付近では、壁面摩擦による流量損失が湾曲による流れ偏向により補償され、偏向を受けない流路を用いた測定の場合の流速分布(断面ξ5の分布に近い)と比較して、壁面近傍に対応する両肩部での測定上の損失が抑制され、該損失に対する補正等が不要ないし軽減できるようになる。また、各反射点Rの上流側の区間においては、短辺J方向に係る流速分布のうち第一主壁部33内面側の半分が、また、反射点Qの下流側の区間においては同じく第二主壁部34内面側の半分がそれぞれ掃引されるが、各区間で対応する壁部内面側に流速分布が偏向しているため、壁面摩擦による流量損失の補償に同様に貢献している。   In FIG. 3, in the vicinity of each reflection point R, Q (36r, 37r in FIG. 2) of the non-reflection direct connection section QR, the flow loss due to the wall friction is compensated by the flow deflection due to the curve, and the measurement is performed using the flow path that does not receive the deflection. Compared with the flow velocity distribution (close to the distribution of the cross section ξ5) in this case, the measurement loss at both shoulders corresponding to the vicinity of the wall surface is suppressed, and correction or the like for the loss can be unnecessary or reduced. Further, in the section on the upstream side of each reflection point R, half of the flow velocity distribution in the short side J direction on the inner surface side of the first main wall portion 33 is the same, and in the section on the downstream side of the reflection point Q, the same. Half of the inner surface side of the two main wall portions 34 is swept, but the flow velocity distribution is deflected toward the inner surface side of the corresponding wall portion in each section, thus contributing to the compensation of the flow loss due to the wall friction.

なお、図6に示すように、接続終端側における管路中心線Oの接線方向が互いに一致するように配置された第一湾曲管路部36と第二湾曲管路部37との間に、該接線方向に沿って直管部40を配置することも可能である。第一湾曲管路部36と第二湾曲管路部37との接続区間に上記のような直管部40を挿入することで、対称な流速分布となる超音波伝播区間が増加し、計測精度を高めることができる。また、直管部40の挿入により超音波送受信部2a,2bの取付けスペースの確保が容易となり、設計自由度を高めることができる。図6においては、直管部40の前後にて各湾曲管路部36,37の内面で1回ずつ反射しつつ、直管部40内では無反射直結区間となる超音波伝播経路が形成されるように、該直管部40の上流端側に第一超音波送受信部2aが、下流端側に第二超音波送受信部2bが取り付けられている。超音波伝播経路の向きを直管部40内の流線方向に近づけることができ、流速ベクトルとほぼ同方向に伝播する同相超音波信号の送受信効率が高められる結果、流量計測精度をより向上させることができる。   As shown in FIG. 6, between the first curved pipeline portion 36 and the second curved pipeline portion 37 that are arranged so that the tangential directions of the pipeline center line O on the connection end side coincide with each other, It is also possible to arrange the straight pipe portion 40 along the tangential direction. By inserting the straight pipe section 40 as described above into the connection section between the first curved pipe section 36 and the second curved pipe section 37, the ultrasonic propagation section having a symmetric flow velocity distribution is increased, and the measurement accuracy is increased. Can be increased. Moreover, the insertion space of the straight pipe portion 40 makes it easy to secure the installation space for the ultrasonic transmission / reception portions 2a and 2b, and the degree of design freedom can be increased. In FIG. 6, an ultrasonic wave propagation path serving as a non-reflection direct connection section is formed in the straight pipe portion 40 while being reflected once by the inner surface of each curved pipe portion 36, 37 before and after the straight pipe portion 40. As shown, the first ultrasonic transmission / reception unit 2a is attached to the upstream end side of the straight pipe portion 40, and the second ultrasonic transmission / reception unit 2b is attached to the downstream end side. The direction of the ultrasonic propagation path can be made closer to the streamline direction in the straight pipe section 40, and the transmission / reception efficiency of the in-phase ultrasonic signal propagating in substantially the same direction as the flow velocity vector is increased, thereby improving the flow measurement accuracy. be able to.

次に、図8に示すように、流量計測用管路3は、矩形軸断面の偏向方向DD(湾曲膨出方向)をなす第二辺を、長方形の長辺Kに設定することも可能である。管路規定平面DPの法線方向を管路幅方向、偏向方向DDを管路高さ方向と定義したとき、流路断面が矩形形状で矩形断面の長辺K方向に湾曲させることは、管路幅が管路高さよりも肉薄となる流路構造となることを意味し、管路幅の取付けスペースに制約がある流路に対応しやすくなる。矩形断面の長辺K方向に湾曲させつつ断面のアスペクト比を大きくする事で、管路内を流れる流体の分布を三次元流から二次元流へ近づけることができ、断面長辺K方向の流速分布を一様に制御しやすくなる。また、超音波伝播距離の比較的短い無反射直線区間での計測を行なうだけで全流速分布を捕らえることができるので、超音波トランスデューサの駆動電圧や超音波受信信号の増幅利得を低減することが可能となり、省電力化を図ることができる。   Next, as shown in FIG. 8, in the flow rate measuring pipe 3, the second side forming the deflection direction DD (curved bulging direction) of the rectangular axial section can be set to the long side K of the rectangle. is there. When the normal direction of the pipe defining plane DP is defined as the pipe width direction and the deflection direction DD is defined as the pipe height direction, the flow path cross section is rectangular and the long side K of the rectangular cross section is curved in the long side K direction. This means that the channel width is thinner than the channel height, and it is easy to deal with channels with restrictions on the installation space of the channel width. By increasing the aspect ratio of the cross section while curving in the long side K direction of the rectangular cross section, the distribution of the fluid flowing in the pipe can be made closer to the two dimensional flow, and the flow velocity in the long side K direction of the cross section It becomes easy to control the distribution uniformly. In addition, since the total flow velocity distribution can be captured simply by performing measurements in a non-reflective straight section where the ultrasonic propagation distance is relatively short, the drive voltage of the ultrasonic transducer and the amplification gain of the ultrasonic reception signal can be reduced. This makes it possible to save power.

図8においては、各超音波送受信部2a,2bの基準流れ方向Xにおける取付位置及取付角度を、伝播経路SWが無反射直結区間のみとなるように、すなわち、壁部内面での反射が生じないように定めている。各軸断面の超音波通過位置は、通過位置偏向方向DDにおける第一側壁部33の内面と第二側壁部34の内面との間で長辺K方向に掃引されることとなる。図9に示すように、第一湾曲管路部36及び第二湾曲管路部37を鏡映反転関係にある個別の湾曲管部材として形成し、これを機械的な締結手段にて結合し一体化することができる(ここでは、図4及び図5と同様に、第一湾曲管路部36及び第二湾曲管路部37の各接続端に結合用のフランジ36f,37fを形成し、図示しないパッキンを介してボルト締結した構造としている)。   In FIG. 8, the attachment positions and the attachment angles in the reference flow direction X of the ultrasonic transmission / reception units 2a and 2b are set so that the propagation path SW is only in the non-reflection direct connection section, that is, reflection on the inner surface of the wall portion occurs. It is determined not to. The ultrasonic wave passing position of each axial section is swept in the long side K direction between the inner surface of the first side wall 33 and the inner surface of the second side wall 34 in the passing position deflection direction DD. As shown in FIG. 9, the first curved pipe section 36 and the second curved pipe section 37 are formed as individual curved pipe members having a mirror reversal relationship, and these are joined together by mechanical fastening means. (Here, as in FIG. 4 and FIG. 5, coupling flanges 36f and 37f are formed at the connection ends of the first curved conduit portion 36 and the second curved conduit portion 37, respectively. It has a structure that is bolted through a non-packing).

また、図10に示すように、図6と同様の直管部材40を、接続終端側における管路中心線Oの接線方向が互いに一致するように配置された第一湾曲管路部36と第二湾曲管路部37との間に、該接線方向に沿って配置することが可能である。各超音波送受信部2a,2bの基準流れ方向Xにおける取付位置は、第一湾曲管路部36及び第二湾曲管路部37の各湾曲頂点部36p,37pの間に設定され、伝播経路SWが無反射直結区間のみとなるように構成されている。   Further, as shown in FIG. 10, a straight pipe member 40 similar to that in FIG. 6 includes a first curved pipe section 36 and a first curved pipe section 36 arranged so that the tangent directions of the pipe center line O on the connection terminal side coincide with each other. It is possible to arrange | position along the said tangent direction between the two curved pipe line parts 37. FIG. The attachment positions of the ultrasonic transmission / reception units 2a and 2b in the reference flow direction X are set between the curved apex portions 36p and 37p of the first curved conduit portion 36 and the second curved conduit portion 37, and the propagation path SW. Is configured to have only a non-reflection direct connection section.

次に、図11〜図15は、軸断面が円形の流量計測用管路の例を示すものである(超音波伝播経路SWと超音波送受信部2a,2bの位置も一例を図示しているが、これに限定されるものではない)。該流量計測用管路3においては、第一湾曲管路部36と第二湾曲管路部37とはそれぞれ半円弧状に構成され、管路中心点Zにて直結されている。第一湾曲管路部36の流体入口側の端には、偏向方向に配置された直管部140が接続され、さらに、四分円弧状の方向転換用管路部136と、入口直管部138とからなる導入管路部38が接続されている。また、第二湾曲管路部37の流体出口側の端には、偏向方向に配置された直管部140が接続され、さらに、四分円弧状の方向転換用管路部136と、出口直管部139とからなる導出管路部39が接続されている。   Next, FIGS. 11 to 15 show an example of a flow rate measuring pipe having a circular axial cross section (the positions of the ultrasonic wave propagation path SW and the ultrasonic wave transmitting / receiving units 2a and 2b are also shown as an example. But is not limited to this). In the flow rate measurement pipe 3, the first curved pipe section 36 and the second curved pipe section 37 are each formed in a semicircular arc shape and are directly connected at the pipe center point Z. A straight pipe part 140 arranged in the deflection direction is connected to the end of the first curved pipe part 36 on the fluid inlet side, and further, a quadrant arc-shaped direction changing pipe part 136 and an inlet straight pipe part. An introduction pipe line portion 38 made of 138 is connected. In addition, a straight pipe portion 140 arranged in the deflection direction is connected to the end of the second curved pipe portion 37 on the fluid outlet side, and further, a quadrant arc-shaped direction changing pipe portion 136 and a straight outlet portion are provided. A lead-out conduit section 39 including a pipe section 139 is connected.

図11の流量計測用管路3は、管路中心線Oで見たときの流体入口31の位置が、管路規定平面DP上にて偏向方向DDに管路中心点Zから遠ざかるよう所定距離δだけオフセットし、同じく管路中心線Oで見たときの流体出口32の位置が偏向方向DDにて流体入口31位置と逆向きに等距離δだけオフセットしている。流体入口31と流体出口32とを管路中心点Zから逆向きに等距離オフセットさせることで、流量計測用管路3の対称性を損ねることなく流速分布の偏向特性をそのオフセット量δに応じて微調整でき、ひいては流量計測精度のさらなる適正化を図ることができる。図12に示すように、オフセット量δは、第一湾曲管路部36の流体入口側の端、及び、第二湾曲管路部37の流体出口側の端にそれぞれ接続された、偏向方向の直管部140,140の各長さにより調整可能である。   The flow rate measuring pipe 3 in FIG. 11 has a predetermined distance so that the position of the fluid inlet 31 when viewed from the pipe center line O is away from the pipe center point Z in the deflection direction DD on the pipe defining plane DP. Similarly, the position of the fluid outlet 32 when viewed from the pipe center line O is offset by the same distance δ in the deflection direction DD in the direction opposite to the position of the fluid inlet 31. By offsetting the fluid inlet 31 and the fluid outlet 32 at equal distances from the pipe center point Z in the opposite direction, the deflection characteristic of the flow velocity distribution can be adjusted according to the offset amount δ without losing the symmetry of the flow rate measuring pipe 3. Can be finely adjusted, and as a result, the flow measurement accuracy can be further optimized. As shown in FIG. 12, the offset amount δ is in the deflection direction connected to the fluid inlet side end of the first curved conduit portion 36 and the fluid outlet side end of the second curved conduit portion 37, respectively. Adjustment is possible according to the length of the straight pipe portions 140 and 140.

なお、図13は、直管部140,140を省略するとともに、第一湾曲管路部36及び方向転換用管路部136の入口側末端と、第二湾曲管路部37及び方向転換用管路部137の出口側末端をそれぞれ一部切り欠くことにより、オフセット量δをゼロに設定した例である。   In FIG. 13, the straight pipe portions 140 and 140 are omitted, and the inlet side ends of the first curved pipe section 36 and the direction changing pipe section 136, the second curved pipe section 37 and the direction changing pipe. This is an example in which the offset amount δ is set to zero by partially cutting out the outlet side ends of the path portion 137.

他方、図14は、第一湾曲管路部36と第二湾曲管路部37との間に直管部40をさらに追加配置した例を示すものである。直管部40の配置により、管路中心点Zは該直管部40の内部に移動する。管路中心点Zに対する流体入口31及び流体出口32の偏向方向のオフセット量δは、第一湾曲管路部36の流体入口側の端、及び、第二湾曲管路部37の流体出口側の端にそれぞれ接続された直管部140,140の各長さをLとし、第一湾曲管路部36と第二湾曲管路部37との間の直管部40の長さをL0としたとき、L−(1/2)L0にて決定される。また、この実施形態では、L=L0に定められており、管路中心線Oで見たときの流体入口31と第二湾曲管路部37の湾曲頂点に対応する軸断面の中心位置、さらに、管路中心線Oで見たときの流体出口32と第一湾曲管路部36の湾曲頂点に対応する軸断面の中心位置とが互いに等しくなっている。   On the other hand, FIG. 14 shows an example in which a straight pipe part 40 is additionally arranged between the first curved pipe part 36 and the second curved pipe part 37. Due to the arrangement of the straight pipe portion 40, the pipe center point Z moves to the inside of the straight pipe portion 40. The amount of offset δ in the deflection direction of the fluid inlet 31 and the fluid outlet 32 with respect to the pipe center point Z is the fluid inlet side end of the first curved pipe section 36 and the fluid outlet side of the second curved pipe section 37. Each length of the straight pipe sections 140 and 140 connected to the ends is L, and the length of the straight pipe section 40 between the first curved pipe section 36 and the second curved pipe section 37 is L0. Is determined by L- (1/2) L0. Further, in this embodiment, L = L0 is set, and the center position of the axial cross section corresponding to the curved apex of the fluid inlet 31 and the second curved pipe section 37 when viewed from the pipe center line O, The fluid outlet 32 and the central position of the axial cross section corresponding to the curved vertex of the first curved pipeline section 36 when viewed along the pipeline center line O are equal to each other.

なお、図11、図12及び図14では流体入口31が偏向方向DDの第二側にオフセットし、流体出口32が偏向方向DDの第一側にオフセットしているが、図3のごとく、これと逆にオフセットすることも可能である。   11, 12 and 14, the fluid inlet 31 is offset to the second side in the deflection direction DD and the fluid outlet 32 is offset to the first side in the deflection direction DD. However, as shown in FIG. It is also possible to offset in reverse.

次に、図6においては、第一湾曲管路部36、直管部40及び第二湾曲管路部37を独立した3つの管路部品として構成され、締結により一体結合されていたが、図15に示すように、これらを一体不可分のS字管ブロック130として構成することも可能である。このようなS字管ブロック130は、締結結合が必要となるのが前後の配管部21,22との接続部においてのみであり、組立工程の簡略化を図ることができる。図15ではS字管ブロック130の軸断面形状は長方形状であるが、図16に示すように、楕円状(あるいは円状)軸断面のS字管ブロック130を形成することも可能である。また、第一湾曲管路部36及び第二湾曲管路部37を円弧状に湾曲させる以外に、図17に示すように、折れ線状に屈曲させた擬似湾曲形態を採用することも可能である。   Next, in FIG. 6, the first curved pipe section 36, the straight pipe section 40, and the second curved pipe section 37 are configured as three independent pipe parts and are integrally coupled by fastening. As shown in FIG. 15, it is also possible to configure these as an inseparable S-shaped tube block 130. In such an S-shaped tube block 130, fastening connection is required only at the connection portion with the front and rear piping portions 21 and 22, and the assembly process can be simplified. In FIG. 15, the axial cross-sectional shape of the S-shaped tube block 130 is rectangular, but as shown in FIG. 16, it is also possible to form an S-shaped tube block 130 having an elliptical (or circular) axial cross section. Further, in addition to the first curved conduit portion 36 and the second curved conduit portion 37 being curved in an arc shape, it is also possible to adopt a pseudo-curved form that is bent in a polygonal line shape as shown in FIG. .

また、図18及び図19に示すように、複数個の第一湾曲管路部36と第二湾曲管路部37とを直列結合した流量計測用管路3を構成することも可能である(超音波伝播経路SWと超音波送受信部2a,2bの位置も一例を図示しているが、これに限定されるものではない)。図18は軸断面形状を長方形とした例であり、図19は軸断面形状を円形とした例である。いずれにおいても、第一湾曲管路部36と第二湾曲管路部37とは半円弧状であり、流体入口31側に第一湾曲管路部36を位置させ、流体出口32側に第二湾曲管路部37を位置させ、互いに同数が交互に配置されている。   Further, as shown in FIGS. 18 and 19, it is also possible to configure a flow rate measuring conduit 3 in which a plurality of first curved conduit portions 36 and second curved conduit portions 37 are connected in series ( The positions of the ultrasonic propagation path SW and the ultrasonic transmission / reception units 2a and 2b are also shown as an example, but are not limited thereto. 18 shows an example in which the axial cross-sectional shape is rectangular, and FIG. 19 shows an example in which the axial cross-sectional shape is circular. In any case, the first curved conduit portion 36 and the second curved conduit portion 37 have a semicircular arc shape, the first curved conduit portion 36 is positioned on the fluid inlet 31 side, and the second curved conduit portion 36 is on the fluid outlet 32 side. The curved conduit portions 37 are positioned, and the same number is alternately arranged.

また、図18と図19では、いずれの第一湾曲管路部36及び第二湾曲管路部37も互いに直結されていたが、図20に示すごとく、他の管部材を間に介在させることもできる。図20では、流体入口31側の第一湾曲管路部36及び第二湾曲管路部37の対の間に偏向方向の直管部140が介挿されている。また、流体入口31側の第一湾曲管路部36及び第二湾曲管路部37の対と、流体出口32側の第一湾曲管路部36及び第二湾曲管路部37の対とは、3つの直管部を方向転換させつつ鉤状に連結した管アセンブリ140’を介して接続されている。   Moreover, in FIG. 18 and FIG. 19, although both the 1st curved pipeline part 36 and the 2nd curved pipeline part 37 were mutually connected directly, as shown in FIG. 20, it interposes another pipe member between them. You can also. In FIG. 20, a straight pipe part 140 in the deflection direction is interposed between a pair of the first curved pipe part 36 and the second curved pipe part 37 on the fluid inlet 31 side. In addition, a pair of the first curved pipeline portion 36 and the second curved pipeline portion 37 on the fluid inlet 31 side and a pair of the first curved pipeline portion 36 and the second curved pipeline portion 37 on the fluid outlet 32 side are. The three straight pipe portions are connected via a pipe assembly 140 'connected in a bowl shape while changing the direction.

次に、図21〜図24に示すように、流量計測用管路3は、流体入口31につながる入口側主管路238と、流体出口32につながる出口側主管路239とを有し、それら入口側主管路238と出口側主管路239との間に、入口側主管路238から分岐して出口側主管路239に統合されるとともに、各々第一湾曲管路部(第一流速分布偏向部)36と第二湾曲管路部(第二流速分布偏向部)37とが直列混在する形で配置された分岐管路部201が複数並列に挿入された構造とすることができる。主管路238,239での全流量が複数の分岐管路部201の部分流れに分解され、大流量ないし高流速の配管においても個々の分岐管路部201では流速が縮小されるから、乱流等も生じにくくなり、測定精度の向上を図ることができる。また、測定に要する消費電力も低減(例えば、超音波出力)できる場合がある。   Next, as shown in FIGS. 21 to 24, the flow rate measuring pipe 3 has an inlet-side main pipe 238 connected to the fluid inlet 31 and an outlet-side main pipe 239 connected to the fluid outlet 32. Between the side main pipe line 238 and the outlet side main pipe line 239, it is branched from the inlet side main pipe line 238 and integrated into the outlet side main pipe line 239, and each of the first curved pipe line parts (first flow velocity distribution deflecting part). 36 and the second curved pipe section (second flow velocity distribution deflecting section) 37 may be structured such that a plurality of branch pipe sections 201 arranged in series are inserted in parallel. Since the total flow rate in the main pipelines 238 and 239 is decomposed into partial flows of a plurality of branch pipeline portions 201, the flow velocity is reduced in each branch pipeline portion 201 even in a high flow rate or high flow rate pipe. Etc. are less likely to occur, and the measurement accuracy can be improved. In some cases, power consumption required for measurement can be reduced (for example, ultrasonic output).

図21においては分岐管路部201の総数は2であり、管軸断面積、管長及び管路形状が互いに等価に定められている。具体的には、各分岐管路部201は、各管路幅が、主管路238,239の管路幅の1/2であり、管路高さは主管路238,239に等しい。また、各分岐管路部201は、それぞれ半円弧状の第一湾曲管路部36と第二湾曲管路部37とを1対ずつ含むとともに、その湾曲方向(偏向方向)と直交する向きに並列配置されている(なお、2つの分岐管路部201は湾曲の位相が互いに反転している)。図23は、各分岐管路部201の第一湾曲管路部36と第二湾曲管路部37の対の前後に、各湾曲管路部36,37よりも角張った形状の接続屈曲部236,237を配置した例である。   In FIG. 21, the total number of branch pipe sections 201 is 2, and the pipe axis cross-sectional area, pipe length, and pipe shape are determined to be equivalent to each other. Specifically, each branch pipe portion 201 has a pipe width that is ½ of the pipe width of the main pipe lines 238 and 239, and the pipe height is equal to the main pipe lines 238 and 239. Each branch duct section 201 includes a pair of semicircular arc-shaped first curved duct section 36 and second curved duct section 37, and in a direction orthogonal to the bending direction (deflection direction). They are arranged in parallel (note that the two branch pipe sections 201 have their curvature phases reversed from each other). FIG. 23 shows a connecting bent portion 236 having a shape that is more angular than the curved conduit portions 36, 37 before and after the pair of the first curved conduit portion 36 and the second curved conduit portion 37 of each branch conduit portion 201. , 237 are arranged.

一方、図22においては、各分岐管路部201は、各管路幅及び管路高さが主管路238,239に等しく、それぞれ第一湾曲管路部(第一流速分布偏向部)36と第二湾曲管路部(第二流速分布偏向部)37とを1対ずつ含むとともに、その湾曲方向(偏向方向)に並列配置されている(なお、2つの分岐管路部201は湾曲の位相が互いに同相である)。また、図24は、同様の分岐管路部201を3組設けた例である。   On the other hand, in FIG. 22, each branch pipe section 201 has the same pipe width and pipe height as the main pipe lines 238 and 239, and the first curved pipe section (first flow velocity distribution deflecting section) 36 and A pair of second curved pipe sections (second flow velocity distribution deflecting sections) 37 are included and arranged in parallel in the bending direction (deflection direction) (note that the two branch pipe sections 201 are in a phase of curvature). Are in phase with each other). FIG. 24 shows an example in which three sets of similar branch pipe sections 201 are provided.

本発明の流量計測用管路においては、流速分布偏向部は湾曲管路部に限定されるものではない。例えば図25に示す例では、流体入口31と流体出口32とを有する一体のボックス430の内部を、流路隔壁431,432により蛇行形態に仕切ることで、第一流速分布偏向部及び第二流速分布偏向部として機能する第一屈曲流通路436及び第二屈曲流通路437を形成している。   In the flow rate measuring pipe of the present invention, the flow velocity distribution deflecting section is not limited to the curved pipe section. For example, in the example shown in FIG. 25, the inside of the integral box 430 having the fluid inlet 31 and the fluid outlet 32 is partitioned in a meandering manner by the flow partition walls 431 and 432, so that the first flow velocity distribution deflection unit and the second flow velocity A first bent flow passage 436 and a second bent flow passage 437 functioning as a distribution deflection portion are formed.

また、流量測定入力手段は超音波送受信手段に限らず、例えば、図26に示すように、流体と接する形で測定経路内に張り渡された電熱線451とすることも可能である。例えば、簡便な方法としては、電熱線451を一定電流で駆動したとき、流量の増減に伴い電熱線451の温度すなわち電気抵抗値が変化するので、該電熱線451の両端電圧をモニタリングすることで流量を測定できる。また、進んだ方法としては、電熱線451を組み込んだホイートストンブリッジと、該電熱線451の通電駆動制御回路とを含む流速解析回路を設け、流速が変化した場合もブリッジ平衡が維持されるように電熱線451の駆動電流をフィードバック制御する方式を例示できる。その駆動電流は流速と一義的な関係を有しているので、流速信号として取り出すことができる。ただし、いずれも測定原理自体は公知なので、さらなる詳細な説明は略する。   Further, the flow rate measurement input means is not limited to the ultrasonic transmission / reception means. For example, as shown in FIG. 26, it is also possible to use a heating wire 451 stretched in the measurement path in contact with the fluid. For example, as a simple method, when the heating wire 451 is driven at a constant current, the temperature of the heating wire 451, that is, the electrical resistance value changes as the flow rate increases or decreases, so the voltage across the heating wire 451 is monitored. The flow rate can be measured. As an advanced method, a flow rate analysis circuit including a Wheatstone bridge incorporating a heating wire 451 and an energization drive control circuit for the heating wire 451 is provided so that the bridge equilibrium is maintained even when the flow rate changes. A method for feedback control of the drive current of the heating wire 451 can be exemplified. Since the drive current has a unique relationship with the flow velocity, it can be extracted as a flow velocity signal. However, since the measurement principle itself is publicly known, further detailed explanation is omitted.

また、図27は、本発明で採用可能な長方形軸断面のS字状流量計測用管路について、左列が長方形断面の短辺方向に偏向方向を設定した場合の、右列が同じく長辺方向に偏向方向を設定した場合の流速分布シミュレーション結果を二次元マッピングして示すものであり、流速の早い箇所ほど濃度が大きくなるように表示されている。左列及び右列とも、下に位置するマッピング結果ほど流量が大きい条件でのシミュレーション結果を示している。流速が大きくなるほど大流量領域が湾曲内側にシフトしていることがわかる。   FIG. 27 shows the S-shaped flow rate measuring pipe having a rectangular axial cross section that can be used in the present invention, where the left column has the same long side when the deflection direction is set in the short side direction of the rectangular cross section. The flow velocity distribution simulation result when the deflection direction is set in the direction is shown by two-dimensional mapping, and is displayed so that the concentration becomes higher as the flow velocity is higher. Both the left column and the right column show the simulation results under the condition that the lower the mapping result is, the larger the flow rate is. It can be seen that the large flow rate region shifts to the inside of the curve as the flow velocity increases.

本発明の一実施形態に係る超音波流量計の全体構成例を示すブロック図。The block diagram which shows the example of whole structure of the ultrasonic flowmeter which concerns on one Embodiment of this invention. 本発明の流量計に使用する流量計測用管路の第一例を示す図。The figure which shows the 1st example of the pipe line for flow measurement used for the flowmeter of this invention. 図2の流量計測用管路の作用説明図。FIG. 3 is a diagram for explaining the operation of the flow rate measurement pipe in FIG. 2. 図2の流量計測用管路の部品構成例を示す側面図。The side view which shows the components structural example of the flow-measurement pipe line of FIG. 同じく斜視図。Similarly perspective view. 本発明の流量計に使用する流量計測用管路の第二例を示す図。The figure which shows the 2nd example of the pipe line for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第三例を示す図。The figure which shows the 3rd example of the pipe for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第四例を示す図。The figure which shows the 4th example of the pipe for flow measurement used for the flowmeter of this invention. 図8の流量計測用管路の部品構成例を示す側面図。The side view which shows the example of a component structure of the pipe for flow measurement of FIG. 本発明の流量計に使用する流量計測用管路の第五例を示す図。The figure which shows the 5th example of the pipe for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第六例を示す図。The figure which shows the 6th example of the flow-measurement pipe line used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第七例を示す図。The figure which shows the 7th example of the pipe for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第八例を示す図。The figure which shows the 8th example of the conduit for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第九例を示す図。The figure which shows the 9th example of the pipe line for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十例を示す図。The figure which shows the 10th example of the flow-measurement pipe line used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十一例を示す図。The figure which shows the 11th example of the conduit for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十二例を示す図。The figure which shows the 12th example of the conduit for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十三例を示す図。The figure which shows the 13th example of the conduit for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十四例を示す図。The figure which shows the 14th example of the conduit for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十五例を示す図。The figure which shows the 15th example of the flow-measurement pipe line used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十六例を示す図。The figure which shows the 16th example of the pipe for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十七例を示す図。The figure which shows the 17th example of the conduit for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十八例を示す図。The figure which shows the 18th example of the flow-measurement pipe line used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第十九例を示す図。The figure which shows the 19th example of the conduit for flow measurement used for the flowmeter of this invention. 本発明の流量計に使用する流量計測用管路の第二十例を示す図。The figure which shows the 20th example of the flow-measurement pipe line used for the flowmeter of this invention. 本発明の一実施形態を示す熱式流量計の模式図。The schematic diagram of the thermal type flow meter which shows one Embodiment of this invention. 本発明の流量計に使用する流量計測用管路の流速分布シミュレーション結果を示す図。The figure which shows the flow-velocity distribution simulation result of the pipe for flow measurement used for the flowmeter of this invention.

符号の説明Explanation of symbols

1 流量計
GF 被測定流体
2a,2b 超音波送受信部(流量測定入力手段)
2d 流体淀み空間
3 流量計測用管路
3P 流路
3W 導波空間
4 超音波駆動機構
31 流体入口
32 流体出口
33,34 主対向壁部
36 第一湾曲管路部(第一流速分布偏向部)
37 第二湾曲管路部(第二流速分布偏向部)
40 直管部
201 分岐管路部
451 電熱線(流量測定入力手段)
O 管路中心線
DP 管路規定平面
DD 偏向方向
1 Flowmeter GF Fluid to be measured 2a, 2b Ultrasonic transceiver (flow measurement input means)
2d Fluid stagnation space 3 Pipe for measuring flow rate 3P Flow path 3W Waveguide space 4 Ultrasonic drive mechanism 31 Fluid inlet 32 Fluid outlet 33, 34 Main opposing wall 36 First curved pipe (first flow velocity distribution deflector)
37 Second curved pipe section (second flow velocity distribution deflecting section)
40 Straight pipe section 201 Branch pipe section 451 Heating wire (flow rate measurement input means)
O Pipe center line DP Pipe regulation plane DD Deflection direction

Claims (20)

流体入口と流体出口とを有する管路として構成され、該管路内にて被測定流体を前記流体入口から流体出口に向けて流通させたときの該管路の軸断面内の流速分布において、流量ピーク位置が管路中心線から前記軸断面内の予め定められた第一方向に偏って生ずるよう管形状が定められた第一流速分布偏向部と、前記流量ピーク位置が前記管路中心線から前記軸断面内において前記第一方向と反対の第二方向に偏って生ずるよう管形状が定められた第二流速分布偏向部とが流れ方向上流側に前記第一流速分布偏向部が位置するように配置されるとともに、流量計測経路が、前記管路規定平面への投影にて前記偏向方向における第一側壁部内面と第二側壁部内面との間を少なくとも1回横断するよう前記第一流速分布偏向部と前記第二流速分布偏向部とにまたがって定められた流量計測用管路と、
前記測定経路に沿って、予め定められた流量測定入力を行なう流量測定入力手段と、
該流量測定入力に対する流量応答情報を検出する流量応答情報検出手段と、
を有することを特徴とする流量計。
In the flow velocity distribution in the axial cross section of the pipe when the fluid to be measured is circulated from the fluid inlet toward the fluid outlet in the pipe, the pipe is configured as a pipe having a fluid inlet and a fluid outlet. A first flow velocity distribution deflecting portion having a pipe shape determined so that a flow rate peak position is offset from a pipe center line in a predetermined first direction in the axial cross section; and the flow peak position is the pipe center line The first flow velocity distribution deflecting portion is located upstream of the second flow velocity distribution deflecting portion whose tube shape is determined so as to be biased in the second direction opposite to the first direction in the axial cross section. And the first flow rate measurement path crosses at least once between the inner surface of the first side wall portion and the inner surface of the second side wall portion in the deflection direction by projection onto the pipe defining plane. Flow velocity distribution deflector and second flow velocity distribution A flow rate measuring conduit defined across the direction unit,
A flow rate measurement input means for performing a predetermined flow rate measurement input along the measurement path,
Flow rate response information detecting means for detecting flow rate response information for the flow rate measurement input;
A flow meter characterized by comprising:
前記流量測定入力手段は、前記測定経路をなす超音波伝播経路に沿って前記流体に対し測定用超音波を送信する超音波送信手段であり、
前記流量応答情報検出手段は、前記超音波伝播経路に沿って伝播する前記測定用超音波を前記応答情報として受信する超音波受信手段を有する請求項1記載の流量計。
The flow rate measurement input means is an ultrasonic transmission means for transmitting ultrasonic waves for measurement to the fluid along an ultrasonic wave propagation path forming the measurement path,
The flowmeter according to claim 1, wherein the flow rate response information detection unit includes an ultrasonic wave reception unit that receives the measurement ultrasonic wave propagating along the ultrasonic wave propagation path as the response information.
請求項1又は請求項2に記載の流量計に使用され、流体入口と流体出口とを有する管路として構成され、該管路内にて被測定流体を前記流体入口から流体出口に向けて流通させたときの該管路の軸断面内の流速分布において、流量ピーク位置が管路中心線から前記軸断面内の予め定められた第一方向に偏って生ずるよう管形状が定められた第一流速分布偏向部と、前記流量ピーク位置が前記管路中心線から前記軸断面内において前記第一方向と反対の第二方向に偏って生ずるよう管形状が定められた第二流速分布偏向部とが流れ方向上流側に前記第一流速分布偏向部が位置するように配置されるとともに、流量計測経路が、前記管路規定平面への投影にて前記偏向方向における第一側壁部内面と第二側壁部内面との間を少なくとも1回横断するよう前記第一流速分布偏向部と前記第二流速分布偏向部とにまたがって定められたことを特徴とする流量計測用管路。   It is used for the flowmeter according to claim 1 or 2, and is configured as a pipe line having a fluid inlet and a fluid outlet, and the fluid to be measured flows from the fluid inlet to the fluid outlet in the pipe. In the flow velocity distribution in the axial cross section of the pipe line when the pipe shape is formed, the first pipe shape is determined so that the flow peak position is offset from the pipe center line in a predetermined first direction in the axial cross section. A flow velocity distribution deflecting section, and a second flow velocity distribution deflecting section whose tube shape is determined so that the flow rate peak position is generated in a second direction opposite to the first direction in the axial section from the pipe center line. Is arranged such that the first flow velocity distribution deflecting unit is located on the upstream side in the flow direction, and the flow rate measuring path is projected onto the pipe defining plane and the inner surface of the first side wall part and the second in the deflecting direction. Cross at least once between the inside of the side wall Flow rate measuring conduit, characterized in that a defined across said first flow velocity distribution deflecting portion and the second flow velocity distribution deflection unit as. 前記管路中心線の前記流体入口側端点から前記流体出口側端点に至る全長の二分点を管路中心点として定めたとき、前記管路の全体形状が、当該管路中心点に関して点対称となるように定められている請求項3記載の流量計測用管路。   When the bisection point of the full length from the fluid inlet side end point of the pipe center line to the fluid outlet side end point is determined as the pipe center point, the entire shape of the pipe line is point-symmetric with respect to the pipe center point. The flow rate measuring conduit according to claim 3, which is defined as follows. 前記第一流速分布偏向部と前記第二流速分布偏向部とは、湾曲内周側にて湾曲外周側よりも流速が大となるよう、湾曲膨出方向がそれぞれ前記第二方向及び前記第一方向に設定された第一及び第二の湾曲管路部からなる請求項3又は請求項4に記載の流量計測用管路。   The first flow velocity distribution deflection unit and the second flow velocity distribution deflection unit have a curved bulging direction in the second direction and the first direction so that the flow velocity is larger on the curved inner circumferential side than on the curved outer circumferential side. The flow rate measuring conduit according to claim 3 or 4, comprising first and second curved conduit portions set in a direction. 前記第一及び第二の湾曲管路部が予め定められた管路規定平面に沿って二次元配列されてなる請求項5記載の流量計測用管路。   6. The flow rate measuring pipe according to claim 5, wherein the first and second curved pipe sections are two-dimensionally arranged along a predetermined pipe defining plane. 前記第一湾曲管路部と前記第二湾曲管路部とを互いに同数含み、それら第一湾曲管路部と第二湾曲管路部とが前記流路に沿って、前記流体入口に最も近い配列端を前記第一湾曲管路部が占め、前記流体出口に最も近い配列端を前記第二湾曲管路部が占めるように配置されてなる請求項5又は請求項6に記載の流量計測用管路。   The first curved conduit portion and the second curved conduit portion include the same number, and the first curved conduit portion and the second curved conduit portion are closest to the fluid inlet along the flow path. The flow rate measuring device according to claim 5 or 6, wherein the first curved pipe line portion occupies an array end, and the second curved pipe section occupies an array end closest to the fluid outlet. Pipeline. 前記第一湾曲管路部と前記第二湾曲管路部とを各々複数含み、それら第一湾曲管路部と第二湾曲管路部とが前記流路に沿って交互に直列配置されてなる請求項7記載の流量計測用管路。   A plurality of the first curved pipeline sections and the second curved pipeline sections are included, and the first curved pipeline sections and the second curved pipeline sections are alternately arranged in series along the flow path. The flow rate measuring conduit according to claim 7. 前記湾曲管部材は、各々管長方向に一様な軸断面積を有する請求項8記載の流量計測用管路。   The flow rate measuring pipe according to claim 8, wherein each of the curved pipe members has a uniform axial cross-sectional area in a pipe length direction. 前記湾曲管部材は、前記管路規定平面上において管路中心線の曲率半径が互いに等しい円弧状管部材とされる請求項9記載の流量計測用管路。   10. The flow rate measuring pipe according to claim 9, wherein the curved pipe member is an arcuate pipe member having a radius of curvature of a pipe center line equal to each other on the pipe defining plane. 互いに鏡映反転した形状関係にある等価な湾曲管部材からなる前記第一及び第二の湾曲管路部の対を少なくとも1つ含む請求項7ないし請求項10のいずれか1項に記載の流量計測用管路。   The flow rate according to any one of claims 7 to 10, comprising at least one pair of the first and second curved pipe sections made of equivalent curved pipe members that are mirror-reversed in shape relation with each other. Measuring pipeline. 前記第一湾曲管路部と前記第二湾曲管路部との前記対が直接又は他の管路部材を介して結合したS字状管路部を形成する請求項11記載の流量計測用管路。   12. The flow rate measuring pipe according to claim 11, wherein the pair of the first curved pipe section and the second curved pipe section forms an S-shaped pipe section joined directly or through another pipe member. Road. 前記第一湾曲管路部と前記第二湾曲管路部との前記対を結合する前記他の管路部材が直管部材である請求項12記載の流量計測用管路。   13. The flow rate measuring conduit according to claim 12, wherein the other conduit member that couples the pair of the first curved conduit portion and the second curved conduit portion is a straight pipe member. 前記管路中心線の前記流体入口側端点から前記流体出口側端点に至る全長の二分点を管路中心点として定めたとき、該管路中心点に関し、互いに鏡映反転した形状関係にある前記第一湾曲管路部と前記第二湾曲管路部との前記対が互いに点対称となる位置関係で配置されてなる請求項12又は請求項13に記載の流量計測用管路。   When a bisection point of the entire length from the fluid inlet side end point of the pipe center line to the fluid outlet side end point is determined as a pipe center point, the pipe center points are in a shape relationship that is mirror-inverted with respect to each other. 14. The flow rate measurement conduit according to claim 12, wherein the pair of the first curved conduit portion and the second curved conduit portion is disposed in a positional relationship that is point-symmetric with each other. 前記路規定平面上の前記第一方向において、前記管路中心線で見たときの前記流体入口位置が前記管路中心点から所定距離だけオフセットして位置し、同じく前記第二方向において、前記管路中心線で見たときの前記流体出口位置が前記管路中心点から前記流体入口位置と等距離オフセットして位置する請求項14記載の流量計測用管路。   In the first direction on the path defining plane, the fluid inlet position when viewed from the pipe centerline is offset by a predetermined distance from the pipe center point, and also in the second direction, 15. The flow rate measuring pipe according to claim 14, wherein the fluid outlet position when viewed from a pipe center line is located at an equal distance offset from the fluid inlet position from the pipe center point. 前記第一湾曲管路部の前記流体入口に最も近く配置されたものの流入端側に、前記流体入口から流入する前記流体を、前記第一湾曲管路部の流入端へ向け方向変換しつつ導く導入管路部材が結合され、
前記第二湾曲管路部の前記流体出口に最も近く配置されたものの流出端側に、該流出端から流出する前記流体を、前記流体出口に向け方向変換しつつ導く導出管路部材が結合されている請求項7ないし請求項15のいずれか1項に記載の流量計測用管路。
The fluid flowing in from the fluid inlet is guided to the inflow end side of the first curved conduit portion, which is disposed closest to the fluid inlet, while changing the direction toward the inflow end of the first curved conduit portion. The inlet line member is joined,
An outlet pipe member that guides the fluid flowing out from the outflow end to the fluid outlet while being redirected is coupled to an outflow end side of the second curved pipe section that is disposed closest to the fluid outlet. The flow rate measuring conduit according to any one of claims 7 to 15.
前記湾曲管路部の軸断面が長方形であり、湾曲方向が該長方形の長辺である請求項5ないし請求項16のいずれか1項に記載の流量計測用管路。   17. The flow rate measurement pipe according to claim 5, wherein an axial cross section of the curved pipe section is a rectangle, and a bending direction is a long side of the rectangle. 前記湾曲管路部の軸断面が長方形であり、湾曲方向が該長方形の短辺である請求項5ないし請求項16のいずれか1項に記載の流量計測用管路。   17. The flow rate measurement pipe according to claim 5, wherein an axial cross section of the curved pipe section is a rectangle, and a bending direction is a short side of the rectangle. 前記流体入口につながる入口側主管路と、前記流体出口につながる出口側主管路とを有し、それら入口側主管路と出口側主管路との間に、前記入口側主管路から分岐して前記出口側主管路に統合されるとともに、各々前記第一流速分布偏向部と前記第二流速分布偏向部とが直列混在する形で配置された分岐管路部が複数並列に挿入されてなる請求項1ないし請求項18のいずれか1項に記載の流量計測用管路。   An inlet-side main pipeline connected to the fluid inlet and an outlet-side main pipeline connected to the fluid outlet, and branching from the inlet-side main pipeline between the inlet-side main pipeline and the outlet-side main pipeline A plurality of branch pipe sections, which are integrated in the outlet main pipe and are arranged in such a manner that the first flow velocity distribution deflection section and the second flow velocity distribution deflection section are mixed in series with each other, are inserted in parallel. 19. A flow rate measuring conduit according to any one of claims 1 to 18. 複数の前記分岐管路部は、管軸断面積、管長及び管路形状が互いに等価に定められている請求項19記載の流量計測用管路。   The flow measurement pipe according to claim 19, wherein the plurality of branch pipe sections have a pipe axis cross-sectional area, a pipe length, and a pipe shape that are determined to be equivalent to each other.
JP2008128413A 2008-05-15 2008-05-15 Flowmeter, and line for flow-rate measurement used therefor Pending JP2009276227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008128413A JP2009276227A (en) 2008-05-15 2008-05-15 Flowmeter, and line for flow-rate measurement used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008128413A JP2009276227A (en) 2008-05-15 2008-05-15 Flowmeter, and line for flow-rate measurement used therefor

Publications (1)

Publication Number Publication Date
JP2009276227A true JP2009276227A (en) 2009-11-26

Family

ID=41441792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128413A Pending JP2009276227A (en) 2008-05-15 2008-05-15 Flowmeter, and line for flow-rate measurement used therefor

Country Status (1)

Country Link
JP (1) JP2009276227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526642A (en) * 2019-03-16 2021-10-07 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter especially for gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526642A (en) * 2019-03-16 2021-10-07 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter especially for gas
JP7085027B2 (en) 2019-03-16 2022-06-15 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter for gas

Similar Documents

Publication Publication Date Title
US5717145A (en) Detector for an ultrasonic flow meter
EP3268701B1 (en) Hybrid sensing ultrasonic flowmeter
US8701501B2 (en) Ultrasonic flowmeter
JP5559239B2 (en) Coriolis flow meter
US7946187B2 (en) Mass flowmeter
JP2002520583A (en) Multi-code flow meter
JP2009276226A (en) Ultrasonic flowmeter
JP2009276227A (en) Flowmeter, and line for flow-rate measurement used therefor
JP2010066068A (en) Ultrasonic flow meter
EP2278280A1 (en) Device and method for determining a flow characteristic of a fluid in a conduit
JP2935944B2 (en) Ultrasonic flow meter unit
JPH10239125A (en) Ultrasonic flowmeter
CN112629604A (en) Fluid measuring device
JP4188386B2 (en) Ultrasonic flow meter
JP2000065613A (en) Ultrasonic flowmeter
JP4485648B2 (en) Ultrasonic flow meter
JP3953617B2 (en) Ultrasonic flow meter
CN218002613U (en) Flow channel structure of multi-channel gas ultrasonic flowmeter
JP4453341B2 (en) Ultrasonic flow meter
JP2001208585A (en) Flowmeter
US20210096009A1 (en) Ultrasonic flow meter path layout configuration
JP3383576B2 (en) Pulsation absorption structure of flow meter
CN109425401B (en) Fluid flow tube, sensor assembly, and coriolis mass flowmeter
JP4007861B2 (en) Ultrasonic flow meter
JP3217021B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120927