JP2009275184A - Styrenic resin composition for plate-like extruded foam, and method for producing it - Google Patents

Styrenic resin composition for plate-like extruded foam, and method for producing it Download PDF

Info

Publication number
JP2009275184A
JP2009275184A JP2008130052A JP2008130052A JP2009275184A JP 2009275184 A JP2009275184 A JP 2009275184A JP 2008130052 A JP2008130052 A JP 2008130052A JP 2008130052 A JP2008130052 A JP 2008130052A JP 2009275184 A JP2009275184 A JP 2009275184A
Authority
JP
Japan
Prior art keywords
molecular weight
resin composition
plate
average molecular
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008130052A
Other languages
Japanese (ja)
Other versions
JP5813909B2 (en
Inventor
Kohei Nishino
広平 西野
Kazuhiro Yoshioka
和広 好岡
Michihide Ozawa
道秀 小沢
Yasuo Yamaguchi
泰生 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2008130052A priority Critical patent/JP5813909B2/en
Publication of JP2009275184A publication Critical patent/JP2009275184A/en
Application granted granted Critical
Publication of JP5813909B2 publication Critical patent/JP5813909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a styrenic resin composition suitable for production of plate-like extruded foam excellent in extrusion foamability and mechanical strength during production of plate-like extruded foam especially using a hydrocarbon-based foaming agent, and a method for producing it. <P>SOLUTION: Using a styrenic resin composition having a particular range of fluidity (melt mass flow rate) and a melt-tension value, as well as a particular range of weight-average molecular weight (Mw), molecular weight distribution (Mw/Mn, Mz/Mw) enables production of plate-like foam excellent in mechanical strength. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、機械的強度に優れたスチレン系板状押出発泡体の製造が可能で、押出発泡性にも優れた板状押出発泡体用スチレン系樹脂組成物及びその製造方法に関わる。   The present invention relates to a styrene resin composition for a plate-like extruded foam that is capable of producing a styrene-based extruded foam having excellent mechanical strength and is also excellent in extrusion foamability, and a method for producing the same.

スチレン系樹脂組成物からなる板状押出発泡体は、優れた断熱性及び機械的強度を有することから、一般建築物等の床材や壁材、天井材、畳の心材など様々な分野で使用されている。   Plate-like extruded foam made of styrene resin composition has excellent heat insulation and mechanical strength, so it can be used in various fields such as flooring for general buildings, wall materials, ceiling materials, and tatami core materials. Has been.

スチレン系樹脂組成物の押出発泡体の製造方法としては、従来より様々な方法が用いられているが、一般にはスチレン系樹脂組成物を押出機で加熱溶融混練した後、発泡剤を添加し、冷却させ、これを低圧雰囲気下に押出発泡させて製造する方法が採用されている。また発泡剤としては、従来よりフロン系発泡剤が用いられてきたが(特許文献1)、近年の環境問題から炭化水素系発泡剤を使用する割合が増えており、炭化水素系発泡剤に適したスチレン系樹脂組成物が求められている。
特開平10−182870号公報
As a method for producing an extruded foam of a styrenic resin composition, various methods have been conventionally used. Generally, after a styrene resin composition is heated and melt-kneaded with an extruder, a foaming agent is added, A method of manufacturing by cooling and extrusion foaming in a low-pressure atmosphere is adopted. In addition, fluorocarbon foaming agents have been conventionally used as foaming agents (Patent Document 1), but the proportion of the use of hydrocarbon foaming agents has increased due to recent environmental problems, and is suitable for hydrocarbon foaming agents. There is a need for a styrenic resin composition.
Japanese Patent Laid-Open No. 10-182870

本発明は、特に炭化水素系発泡剤を使用した板状押出発泡体の製造において、押出発泡性に優れ、機械的強度に優れた板状押出発泡体を製造することに適したスチレン系樹脂組成物及びその製造方法を提供することを目的としている。   The present invention is a styrenic resin composition suitable for producing a plate-like extruded foam excellent in extrusion foamability and mechanical strength, particularly in the production of a plate-like extruded foam using a hydrocarbon-based foaming agent. The object is to provide a product and a method of manufacturing the product.

本発明は、上記目的を達成するため、鋭意研究を進めたところ、
1.200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が1.0〜6.0g/10分で、200℃で測定した溶融張力値が11〜19gfで、重量平均分子量(Mw)が25万〜40万で、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が3.5〜8.0、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.0であることを特徴とする板状押出発泡体用スチレン系樹脂組成物。
2.スチレン系樹脂組成物中の残存スチレンモノマー及び重合溶媒の総量が250μg/g以下であることを特徴とする1項に記載の板状押出発泡体用スチレン系樹脂組成物。
3.重合溶媒としてエチルベンゼンを2〜10質量%使用し、スチレンモノマーの連続ラジカル重合を行うに当たり、重合開始剤として2,2−ビス(4,4−t−ブチルパーオキシシクロヘキシル)プロパンをスチレンモノマーに対して質量基準で100〜500ppm添加し、ポリマー濃度が35〜50質量%に達するまでは1〜2基からなる完全混合槽型反応器を直列に接続した工程にて100〜120℃の温度で生成するポリマーの重量平均分子量(Mw)が45万〜65万となるよう重合を行い、次いでポリマー濃度が70〜90%に達するまでは150℃〜210℃の温度でZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.0となるよう重合を行うことを特徴とする1〜2項のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物の製造方法。
4.連続ラジカル重合で得られたスチレン系樹脂と未反応スチレンモノマー及び重合溶媒を除去する脱揮工程において、加熱器付きの真空脱揮槽を直列に2段接続したものを用い、1段目の真空脱揮槽での樹脂温度は220〜260℃に調整し出口の未反応スチレンモノマーと重合溶媒の合計量が0.2質量%以下となるよう真空度を6.0kPa以下に調整し、1段目の真空脱揮槽を出たポリマー溶液に対して0.2〜2.0質量%の水を添加し、動的又は静的混合機にて水を分散し、真空度を0.5〜3.0kPaの範囲に調整した2段目の真空脱揮槽に導入し脱揮処理することを特徴とする1〜3項のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物の製造方法。
5.1〜2項のいずれか1項に記載のスチレン系樹脂組成物を発泡押出し、密度が10〜50kg/mであることを特徴とする板状押出発泡体の製造方法。
6.5項に記載の製造方法によって得られる板状押出発泡体。
The present invention has been intensively studied to achieve the above object,
1. Melt mass flow rate (MFR) measured under conditions of 200 ° C. and 49 N load is 1.0 to 6.0 g / 10 min, melt tension value measured at 200 ° C. is 11 to 19 gf, and weight average molecular weight ( Mw) is 250,000 to 400,000, the ratio (Mw / Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) is 3.5 to 8.0, Z average molecular weight (Mz) and weight average molecular weight ( The ratio (Mz / Mw) of Mw) is 2.2 to 3.0, and the styrene-based resin composition for plate-like extruded foams.
2. 2. The styrene resin composition for a plate-like extruded foam according to 1, wherein the total amount of residual styrene monomer and polymerization solvent in the styrene resin composition is 250 μg / g or less.
3. When performing continuous radical polymerization of styrene monomer using 2 to 10% by mass of ethylbenzene as a polymerization solvent, 2,2-bis (4,4-t-butylperoxycyclohexyl) propane is used as a polymerization initiator with respect to the styrene monomer. 100 to 500 ppm is added on a mass basis, and it is produced at a temperature of 100 to 120 ° C. in a process in which 1 or 2 complete mixing tank reactors are connected in series until the polymer concentration reaches 35 to 50% by mass. Polymerization is performed so that the weight average molecular weight (Mw) of the polymer is 450,000 to 650,000, and then the Z average molecular weight (Mz) and weight are maintained at a temperature of 150 to 210 ° C. until the polymer concentration reaches 70 to 90%. 3. The polymerization according to any one of items 1 to 2, wherein the polymerization is performed such that the ratio (Mz / Mw) of the average molecular weight (Mw) is 2.2 to 3.0. Method for producing a plate-shaped extruded foams styrene resin composition.
4). In the devolatilization step to remove the styrenic resin, unreacted styrene monomer and polymerization solvent obtained by continuous radical polymerization, a vacuum devolatilization tank with a heater connected in two stages in series is used as the first stage vacuum The resin temperature in the devolatilization tank is adjusted to 220 to 260 ° C., and the degree of vacuum is adjusted to 6.0 kPa or less so that the total amount of unreacted styrene monomer and polymerization solvent at the outlet is 0.2% by mass or less. 0.2 to 2.0 mass% of water is added to the polymer solution exiting the vacuum devolatilization tank of the eye, and the water is dispersed by a dynamic or static mixer, and the degree of vacuum is 0.5 to The styrene resin composition for a plate-like extruded foam according to any one of 1 to 3, which is introduced into a second-stage vacuum devolatilization tank adjusted to a range of 3.0 kPa and devolatilized. Manufacturing method.
5. A method for producing a plate-like extruded foam, wherein the styrenic resin composition according to any one of items 1 to 2 is foam-extruded and the density is 10 to 50 kg / m 3 .
A plate-like extruded foam obtained by the production method according to 6.5.

本発明のスチレン系樹脂組成物を用いることで、機械的強度に優れた板状押出発泡体を製造することが可能となり、押出発泡性にも優れる。   By using the styrenic resin composition of the present invention, a plate-like extruded foam having excellent mechanical strength can be produced, and the extrusion foamability is also excellent.

本発明が対象とするスチレン系樹脂組成物の200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)は、1.0〜6.0g/10分であり、好ましくは2.0〜4.0g/10分である。6.0g/10分を超えると樹脂粘度の不足により、発泡性が悪くなり、圧縮強度等の機械的強度も低下する。逆に、1.0g/10分未満となるとスチレン系樹脂組成物の樹脂粘度が上がりすぎ、板状押出発泡体の押出し生産性が低下するため好ましくない。スチレン系樹脂組成物の200℃、49N荷重の条件によるメルトマスフローレイトは、JIS K−7210に基づき測定した。スチレン系樹脂組成物のメルトマスフローレイトは溶融時の流動性を表すパラメータであるが、分子量や分子量分布の制御によって調整することができる。また、重合過程や脱揮工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)やホワイトオイル等の各種添加剤成分、残存スチレンモノマー及び重合溶媒等の低分子量成分は、可塑剤的な効果があることから、メルトマスフローレイトを高める影響がある。   The melt mass flow rate (MFR) measured under the conditions of 200 ° C. and 49 N load of the styrene resin composition targeted by the present invention is 1.0 to 6.0 g / 10 minutes, preferably 2.0 to 4.0 g / 10 min. If it exceeds 6.0 g / 10 min, the foaming property is deteriorated due to insufficient resin viscosity, and the mechanical strength such as compressive strength is also lowered. On the other hand, if it is less than 1.0 g / 10 minutes, the resin viscosity of the styrene-based resin composition is excessively increased, and the extrusion productivity of the plate-like extruded foam is unfavorable. The melt mass flow rate under the conditions of 200 ° C. and 49 N load of the styrene resin composition was measured based on JIS K-7210. The melt mass flow rate of the styrene-based resin composition is a parameter indicating the fluidity at the time of melting, but can be adjusted by controlling the molecular weight and the molecular weight distribution. In addition, various additive components such as styrene oligomer (styrene dimer, styrene trimer) and white oil that are by-produced in the polymerization process and devolatilization process, low molecular weight components such as residual styrene monomer and polymerization solvent are effective as plasticizers. Because of this, there is an effect of increasing the melt mass flow rate.

本発明が対象とするスチレン系樹脂組成物の200℃で測定した溶融張力値は11〜19gfで、好ましくは13〜19gfである。溶融張力値が11gf未満であると、板状押出発泡体を製造する際の発泡性が悪化し、連続気泡が増えるなどの悪影響がある。また、板状押出発泡体の圧縮強度が低下する。溶融張力値が19gfを超えるとスチレン系樹脂組成物の生産性が著しく低下する。溶融張力値は、東洋精機製「キャピログラフ1B型」を使用し、バレル温度200℃、バレル径9.55mm、キャピラリー長さ:L=10mm、キャピラリー径:D=1mm(L/D=10)、バレル内の押出し速度10mm/分にて樹脂を押出し、荷重測定部をダイから60cm下方にセットし、キャピラリーより流出してきたストランド状の樹脂を巻き取り器にセットし、巻き取り線速度を4m/分から200m/分まで、1分間に20m/分の割合で巻き取り線速度を上昇していき、ストランドが破断するまでの荷重を測定する。巻き取り線速度を上げていくと荷重は上昇し、一定の変動幅に安定するが、荷重に変動幅があるため、荷重が安定してから破断するまでの範囲を平均化し、溶融張力値とした。また、ストランドが破断したときの巻き取り線速度を糸切れ速度(m/分)とした。溶融張力値は、スチレン系樹脂組成物の溶融時の弾性的な性質を表すパラメータでであるが、分子量や分子量分布の制御によって調整することができ、分子量を高くするほど溶融張力値を高めることができる。しかしながら、単に分子量を上げるだけでは同時にメルトマスフローレイトが下がりすぎてしまい、板状押出発泡体の生産性が低下してしまう。メルトマスフローレイトを維持したまま溶融張力値を高めるには分子量分布を広くする方法があり、具体的には、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が3.5〜8.0、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.0の範囲とすることで本発明のメルトマスフローレイトと溶融張力値のバランスを達成することが可能となる。また、重合過程や脱揮工程で副生成するスチレンオリゴマー(スチレンダイマー、スチレントリマー)やホワイトオイル等の各種添加剤成分、残存スチレンモノマー及び重合溶媒等の低分子量成分は、可塑剤的な効果があることから、溶融張力値を下げる効果がある。   The melt tension value measured at 200 ° C. of the styrene resin composition targeted by the present invention is 11 to 19 gf, preferably 13 to 19 gf. When the melt tension value is less than 11 gf, the foaming properties at the time of producing a plate-like extruded foam deteriorate, and there are adverse effects such as an increase in open cells. Moreover, the compressive strength of the plate-like extruded foam decreases. When the melt tension value exceeds 19 gf, the productivity of the styrene resin composition is remarkably lowered. The melt tension value uses “Capillograph 1B type” manufactured by Toyo Seiki, barrel temperature 200 ° C., barrel diameter 9.55 mm, capillary length: L = 10 mm, capillary diameter: D = 1 mm (L / D = 10), The resin is extruded at an extrusion speed of 10 mm / min in the barrel, the load measuring part is set 60 cm below the die, the strand-shaped resin flowing out from the capillary is set in the winder, and the winding line speed is 4 m / min. From 1 minute to 200 m / min, the winding linear velocity is increased at a rate of 20 m / min per minute, and the load until the strand breaks is measured. As the winding line speed is increased, the load increases and stabilizes to a certain fluctuation range, but since the load has a fluctuation range, the range from when the load stabilizes until it breaks is averaged, and the melt tension value did. The winding line speed when the strand broke was defined as the thread break speed (m / min). The melt tension value is a parameter that represents the elastic properties of the styrene resin composition at the time of melting, but can be adjusted by controlling the molecular weight and molecular weight distribution, and the higher the molecular weight, the higher the melt tension value. Can do. However, simply increasing the molecular weight will cause the melt mass flow rate to decrease at the same time, reducing the productivity of the plate-like extruded foam. In order to increase the melt tension value while maintaining the melt mass flow rate, there is a method of widening the molecular weight distribution. Specifically, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 3 The melt mass flow rate and the melt tension of the present invention are such that the ratio (Mz / Mw) of Z-average molecular weight (Mz) to weight-average molecular weight (Mw) is in the range of 2.2 to 3.0. It is possible to achieve a balance of values. In addition, various additive components such as styrene oligomer (styrene dimer, styrene trimer) and white oil that are by-produced in the polymerization process and devolatilization process, low molecular weight components such as residual styrene monomer and polymerization solvent are effective as plasticizers. Therefore, there is an effect of lowering the melt tension value.

本発明が対象とするスチレン系樹脂組成物の重量平均分子量(Mw)は、25万〜40万であり、好ましくは27万〜37万であり、更に好ましくは30万〜35万である。また、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は3.5〜8.0、好ましくは4.0〜6.0である。また、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は2.2〜3.0で、好ましくは2.3〜2.8ある。重量平均分子量(Mw)及びMw/Mn、Mz/Mwが上記範囲外であると、本発明のメルトマスフローレイトと溶融張力値のバランスを達成することができない。
本発明における重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)を用いて、次の条件で測定した。
GPC機種:昭和電工株式会社製Shodex GPC−101
カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED−B
移動相:テトラヒドロフラン
試料濃度:0.2質量%
温度:オーブン40℃、注入口35℃、検出器35℃
検出器:示差屈折計
本発明の分子量は、単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
The weight average molecular weight (Mw) of the styrene resin composition targeted by the present invention is 250,000 to 400,000, preferably 270,000 to 370,000, and more preferably 300,000 to 350,000. Moreover, the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 3.5 to 8.0, preferably 4.0 to 6.0. The ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 2.2 to 3.0, preferably 2.3 to 2.8. When the weight average molecular weight (Mw), Mw / Mn, and Mz / Mw are out of the above ranges, the balance between the melt mass flow rate of the present invention and the melt tension value cannot be achieved.
The weight average molecular weight (Mw), Z average molecular weight (Mz), and number average molecular weight (Mn) in the present invention were measured under the following conditions using gel permeation chromatography (GPC).
GPC model: Shodex GPC-101 manufactured by Showa Denko KK
Column: Polymer Laboratories PLgel 10 μm MIXED-B
Mobile phase: Tetrahydrofuran Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: Differential refractometer The molecular weight of the present invention is calculated as the molecular weight in terms of polystyrene by calculating the molecular weight at each elution time from the elution curve of monodisperse polystyrene.

本発明が対象とするスチレン系樹脂組成物の分子量は、スチレンをラジカル重合する際の反応温度、滞留時間、重合開始剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって制御することができる。分子量については、低温度で重合を行うなど、重合速度を抑えることで高分子量化することができるが、それだけでは効率が悪く、重合開始剤として、多官能の有機過酸化物を使用することが好ましく、2,2−ビス(4,4−t−ブチルパーオキシシクロヘキシル)プロパンが好適に使用することができる。また、逆に高温度で重合を行うなど重合速度を高めることで低分子量化することができるが、重合速度をより高めるために単官能の有機過酸化物を使用してもよい。また、連鎖移動剤を添加することにより低分子量化することもできる。重合方法については商業的に連続重合であることが好ましく、スチレンモノマーの濃度が高い重合前半は、分子量を高めるという点で完全混合槽型の反応器を使用したほうが有利である。分子量分布を表す、Mw/Mn及びMz/Mwの制御については、重合前半部分で高分子量成分を生成し、重合後半部分で低分子量成分を生成することによって分子量分布を広めることができる。   The molecular weight of the styrene resin composition targeted by the present invention is controlled by the reaction temperature, residence time, type and amount of polymerization initiator used in radical polymerization of styrene, type and amount of solvent used during polymerization, and the like. be able to. The molecular weight can be increased by suppressing the polymerization rate, such as by performing polymerization at a low temperature, but it is not efficient by itself, and a polyfunctional organic peroxide can be used as a polymerization initiator. Preferably, 2,2-bis (4,4-t-butylperoxycyclohexyl) propane can be suitably used. On the other hand, the molecular weight can be lowered by increasing the polymerization rate such as by performing polymerization at a high temperature, but a monofunctional organic peroxide may be used in order to further increase the polymerization rate. Further, the molecular weight can be lowered by adding a chain transfer agent. The polymerization method is preferably a commercially continuous polymerization, and in the first half of the polymerization where the concentration of styrene monomer is high, it is more advantageous to use a complete mixing tank type reactor in terms of increasing the molecular weight. Regarding the control of Mw / Mn and Mz / Mw representing the molecular weight distribution, the molecular weight distribution can be broadened by generating a high molecular weight component in the first half of the polymerization and generating a low molecular weight component in the second half of the polymerization.

本発明のスチレン系樹脂組成物の製造方法については、スチレンモノマーの連続ラジカル重合であることが好ましく、重合溶媒としてエチルベンゼンを2〜10質量%使用することが好ましい。また、エチルベンゼンの代わりにトルエンを使用してもよい。また、重合開始剤として4官能タイプの有機過酸化物である2,2−ビス(4,4−t−ブチルパーオキシシクロヘキシル)プロパンをスチレンモノマーに対して質量基準で、100〜500ppm添加し、ポリマー濃度が35〜50質量%に達するまでは1〜2基からなる完全混合槽型反応器を直列に接続した工程にて100〜120℃の温度で、生成するポリマーの重量平均分子量(Mw)が45〜60万となるよう重合を行うことが好ましい。次に、ポリマー濃度が70〜90%に達するまでは150℃〜210℃の温度でZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.0となるよう重合を行うことが好ましい。この際、反応器の型式について特に制限はないが、プラグフロー型反応器または完全混合槽型反応器とプラグフロー型反応器の組み合わせなどを使用することができる。また、プラグフロー型反応器の場合、流れ方向に温度勾配がつくので、反応器の中間部分以降で150℃〜210℃となるよう制御すればよく、入口付近は150℃未満でもかまわない。   About the manufacturing method of the styrene-type resin composition of this invention, it is preferable that it is continuous radical polymerization of a styrene monomer, and it is preferable to use 2-10 mass% of ethylbenzene as a polymerization solvent. Further, toluene may be used in place of ethylbenzene. Further, 2,2-bis (4,4-t-butylperoxycyclohexyl) propane, which is a tetrafunctional type organic peroxide as a polymerization initiator, is added in an amount of 100 to 500 ppm based on the weight of the styrene monomer, Until the polymer concentration reaches 35 to 50% by mass, the weight average molecular weight (Mw) of the polymer produced at a temperature of 100 to 120 ° C. in a process in which 1 or 2 complete mixing tank reactors are connected in series It is preferable to carry out the polymerization so as to be 45 to 600,000. Next, the ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 2.2 to 3.0 at a temperature of 150 to 210 ° C. until the polymer concentration reaches 70 to 90%. Polymerization is preferably performed so that At this time, the type of the reactor is not particularly limited, but a plug flow reactor or a combination of a complete mixing tank reactor and a plug flow reactor can be used. In the case of a plug flow reactor, since a temperature gradient is formed in the flow direction, the temperature may be controlled to be 150 ° C. to 210 ° C. after the middle portion of the reactor, and the vicinity of the inlet may be less than 150 ° C.

本発明のスチレン系樹脂組成物の残存スチレンモノマー及び重合溶媒の総量は、250μg/g以下であることが好ましく、更に好ましくは150μg/g以下である。スチレン系樹脂組成物中の残存スチレンモノマー及び重合溶媒の総量が多いと、得られる板状押出発泡体に臭気等の問題が生じる場合があり、極力低減することが好ましい。
本発明における残存スチレンモノマー及び重合溶媒の量は、樹脂組成物500mgを、内部標準物質としてシクロペンタノールを含むDMF10mlに溶解し、ガスクロマトグラフィーを用いて以下の条件で測定した。
ガスクロマトグラフ:HP−5890(ヒューレットパッカード社製)
カラム:HP−WAX、0.25mm×30m、膜厚0.5μm
インジェクション温度:220℃
カラム温度:60℃〜150℃、10℃/min
ディテクター温度:220℃
スプリット比:30/1
残存スチレンモノマー及び重合溶媒は、脱揮工程の構成及び脱揮工程の運転条件により、低減することができる。
The total amount of residual styrene monomer and polymerization solvent in the styrene-based resin composition of the present invention is preferably 250 μg / g or less, more preferably 150 μg / g or less. When the total amount of residual styrene monomer and polymerization solvent in the styrene-based resin composition is large, problems such as odor may occur in the obtained plate-like extruded foam, and it is preferable to reduce as much as possible.
The amount of the residual styrene monomer and the polymerization solvent in the present invention was measured under the following conditions using gas chromatography by dissolving 500 mg of the resin composition in 10 ml of DMF containing cyclopentanol as an internal standard substance.
Gas chromatograph: HP-5890 (manufactured by Hewlett-Packard Company)
Column: HP-WAX, 0.25 mm × 30 m, film thickness 0.5 μm
Injection temperature: 220 ° C
Column temperature: 60 ° C to 150 ° C, 10 ° C / min
Detector temperature: 220 ° C
Split ratio: 30/1
The residual styrene monomer and the polymerization solvent can be reduced by the configuration of the devolatilization step and the operating conditions of the devolatilization step.

連続ラジカル重合でスチレン系樹脂の製造を行った場合、得られたスチレン系樹脂と未反応スチレンモノマー及び重合溶媒を除去する脱揮工程が必要であるが、加熱器付きの真空脱揮槽を直列に2段接続したものを用いることが好ましい。また、1段目の真空脱揮槽での樹脂温度は220〜260℃に調整し出口の未反応スチレンモノマーと重合溶媒の合計量が0.2質量%以下となるよう真空度を6.0kPa以下に調整し、1段目の真空脱揮槽を出たポリマー溶液に対して0.2〜2.0質量%の水を添加し、動的又は静的混合機にて水を分散し、真空度0.5〜3.0kPaの範囲に調整した2段目の真空脱揮槽に導入し、脱揮処理することが好ましい。なお、1段目の真空脱揮槽出口で添加する水は2段目の真空脱揮槽に入ったところでガス化するが、この際、発泡により脱揮界面が増え、脱揮効率が上がると考えられる。1段目の真空脱揮槽出口の未反応スチレンモノマーと重合溶媒の合計量(A)と1段目出口で添加する水の濃度(B)について、BとAの比、B/Aは1〜30であることが好ましく、4〜20であることがより好ましい。   When a styrene resin is produced by continuous radical polymerization, a devolatilization step is required to remove the obtained styrene resin, unreacted styrene monomer and polymerization solvent, but a vacuum devolatilization tank with a heater is connected in series. It is preferable to use one connected in two stages. In addition, the resin temperature in the first-stage vacuum devolatilization tank is adjusted to 220 to 260 ° C., and the degree of vacuum is 6.0 kPa so that the total amount of unreacted styrene monomer and polymerization solvent at the outlet is 0.2 mass% or less. Adjust to the following, 0.2 to 2.0 mass% of water is added to the polymer solution exiting the first-stage vacuum devolatilization tank, and the water is dispersed in a dynamic or static mixer, It is preferable to introduce into a second-stage vacuum devolatilization tank adjusted to a vacuum degree of 0.5 to 3.0 kPa and perform devolatilization. The water added at the outlet of the first-stage vacuum devolatilization tank is gasified when it enters the second-stage vacuum devolatilization tank. At this time, if the devolatilization interface increases due to foaming, the devolatilization efficiency increases. Conceivable. Regarding the total amount (A) of unreacted styrene monomer and polymerization solvent at the first stage vacuum devolatilization tank outlet and the concentration of water added at the first stage outlet (B), the ratio of B to A, B / A is 1 It is preferable that it is -30, and it is more preferable that it is 4-20.

脱揮工程を経た溶融樹脂は、ギヤーポンプ等で造流工程へ移送される。造粒工程では、多孔ダイよりストランド状に溶融樹脂を押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット形状に加工される。   The molten resin that has undergone the devolatilization process is transferred to the flow forming process by a gear pump or the like. In the granulation step, the molten resin is extruded in a strand form from a porous die and processed into a pellet shape by a cold cut method, an air hot cut method, or an underwater hot cut method.

本発明の重合方法では、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン以外に、必要に応じて重合開始剤、連鎖移動剤を使用することができる。重合開始剤として、有機化酸化物、例えば過酸化ベンゾイル、t−ブチルパーオキシベンゾネート、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−2−エチルヘキサノエート、ポリエーテルテトラキス(t−ブチルパーオキシカーボネート)、エチル−3,3−ジ(t−ブチルパーオキシ)ブチレート、t−ブチルパーオキシイソブチレート等が挙げられる。連鎖移動剤としては、例えば、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α−メチルスチレンダイマー及びテルピノーレン等を使用できる。   In the polymerization method of the present invention, a polymerization initiator and a chain transfer agent can be used as necessary in addition to 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane. As polymerization initiators, organic oxides such as benzoyl peroxide, t-butylperoxybenzoate, 1,1-di (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy)- 3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl carbonate, dicumyl peroxide, t-butylcumyl peroxide, t-butylperoxyacetate, t-butylperoxy-2-ethylhexanoate, poly Examples include ether tetrakis (t-butyl peroxycarbonate), ethyl-3,3-di (t-butylperoxy) butyrate, t-butylperoxyisobutyrate, and the like. As the chain transfer agent, for example, aliphatic mercaptan, aromatic mercaptan, pentaphenylethane, α-methylstyrene dimer, terpinolene and the like can be used.

本発明が対象とするスチレン系樹脂組成物には、必要に応じて、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の金属石鹸類、ステアリン酸、エチレンビスステアリルアミド等を内部潤滑剤或いは外部潤滑剤として使用してもよい。また、ホワイトオイル等の可塑剤成分を添加することもできるが、耐熱性が低下する。また、押出機内での熱劣化抑制のため、酸化防止剤を添加することもできる。   In the styrenic resin composition targeted by the present invention, a metal soap such as zinc stearate, calcium stearate, magnesium stearate, stearic acid, ethylene bisstearyl amide or the like is used as an internal lubricant or external lubrication as necessary. It may be used as an agent. Moreover, although plasticizer components, such as white oil, can also be added, heat resistance falls. In addition, an antioxidant may be added to suppress thermal deterioration in the extruder.

本発明のスチレン系樹脂組成物は、特に押出成形にて板状押出発泡体を製造することに適している。板状押出発泡体は、スチレン系樹脂組成物を加熱溶融した後、発泡剤を注入して混錬した後、発泡最適温度に調整して低圧雰囲気下(通常大気圧)に押出発泡させることにより製造することができる。発泡剤を注入する際の圧力は特に制限するものではなく、押出機などの内圧より高い圧力でガス化しなければよい。また、本発明が対象とする板状押出発泡体は、建築用断熱材や保冷庫用または保冷車用断熱材としての断熱性、曲げ強度及び圧縮強度の観点から、密度は10〜50kg/mの範囲であり、厚みは10〜150mmであることが好ましい。 The styrenic resin composition of the present invention is particularly suitable for producing a plate-like extruded foam by extrusion molding. The plate-like extruded foam is obtained by heating and melting a styrene resin composition, injecting a foaming agent, kneading, and adjusting the foaming optimum temperature to extrusion foaming in a low-pressure atmosphere (usually atmospheric pressure). Can be manufactured. The pressure at the time of injecting the blowing agent is not particularly limited, and the gas may be not gasified at a pressure higher than the internal pressure of an extruder or the like. In addition, the plate-like extruded foam targeted by the present invention has a density of 10 to 50 kg / m from the viewpoint of heat insulation, bending strength and compressive strength as a heat insulating material for buildings, a cold storage or a cold insulation vehicle. 3 and the thickness is preferably 10 to 150 mm.

また、板状押出発泡体を製造する際には、難燃剤を使用することができ、発泡核剤としてシリカ、タルクや炭酸カルシウム等の無機充填剤を必要に応じて用いることができる。発泡体の密度、発泡倍率や平均気泡径は発泡剤量や発泡核剤量を調整することで変化させることができる。さらに、本発明の効果を阻害しない範囲で、酸化防止剤、可塑剤、滑剤、染顔料、帯電防止剤などを添加することもできる。発泡剤としては公知のもの、例えば、プロパン、ブタン、ペンタン、ヘキサン等の低級炭化水素、ジメチルエーテル、ジエチルエーテルなどのエーテル類、ジメチルケトン、メチルエチルケトンなどのケトン類、メタノール、エタノール、プロピルアルコールなどのアルコール類、トリクロロモノフルオルメタンや塩化メチル等のハロゲン化炭化水素、炭酸ガス、水等の無機ガスなど任意の発泡剤を単独または混合して用いることができるが、低級炭化水素を主成分とすることが好ましい。難燃剤としては公知のものが使用でき、ヘキサブロモシクロドデカン、ジブロモネオペンチルグリコール、デカブロモジフェニルオキサイド、テトラブロモビスフェノールA、テトラブロモフタル酸ジオール、テトラブロモフェノール、ポリペンタブロモベンジルアクリレート等の臭素系難燃剤、リン酸グアニール尿素、ポリフォスファゼン、リン酸アンモニウム、ポリリン酸アンモニウム、赤リン等のリン系難燃剤が挙げられる。   Moreover, when manufacturing a plate-like extrusion foam, a flame retardant can be used and inorganic fillers, such as a silica, a talc, and a calcium carbonate, can be used as a foaming nucleating agent as needed. The density, expansion ratio, and average cell diameter of the foam can be changed by adjusting the amount of the foaming agent and the amount of the foam nucleating agent. Furthermore, an antioxidant, a plasticizer, a lubricant, a dye / pigment, an antistatic agent, and the like can be added as long as the effects of the present invention are not impaired. Known blowing agents such as lower hydrocarbons such as propane, butane, pentane and hexane, ethers such as dimethyl ether and diethyl ether, ketones such as dimethyl ketone and methyl ethyl ketone, alcohols such as methanol, ethanol and propyl alcohol Arbitrary foaming agents such as halogenated hydrocarbons such as trichloromonofluoromethane and methyl chloride, inorganic gases such as carbon dioxide and water can be used alone or in combination, but the main component is lower hydrocarbons It is preferable. Known flame retardants can be used, such as hexabromocyclododecane, dibromoneopentyl glycol, decabromodiphenyl oxide, tetrabromobisphenol A, tetrabromophthalic acid diol, tetrabromophenol, polypentabromobenzyl acrylate, etc. Examples of the flame retardant include phosphoric flame retardants such as phosphoric acid guanene urea, polyphosphazene, ammonium phosphate, ammonium polyphosphate, and red phosphorus.

本発明のスチレン系樹脂組成物は発泡押出性に優れ、得られる板状押出発泡体用の機械的強度も優れるため、特に押出成形による板状押出発泡体の製造に好適である。   The styrene-based resin composition of the present invention is excellent in foam extrudability and excellent in mechanical strength for the obtained plate-like extruded foam, and is particularly suitable for producing a plate-like extruded foam by extrusion molding.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

(スチレン系樹脂組成物PS−1〜PS−8の製造方法)
完全混合型撹拌槽である第1反応器と第2反応器及び静的混合器付プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成した。各反応器の容量は、第1反応器を39リットル、第2反応器を39リットル、第3反応器を16リットルとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。重合開始剤は、第1反応器の入口で表1に記載の添加濃度(原料スチレンに対する質量基準の濃度)となるように原料溶液に添加混合した。表1に記載の重合開始剤はそれぞれ次の通りである。
重合開始剤−1 :2,2−ビス(4,4−t−ブチルパーオキシシクロヘキシル)プロパン(日本油脂株式会社製パーテトラAを使用した。)
なお、第3反応器では、流れの方向に沿って温度勾配をつけ、中間部分、出口部分で表1の温度となるよう調整した。
続いて、第3反応器より連続的に取り出した重合体を含む溶液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、表1に記載の樹脂温度となるよう予熱器の温度を調整し、表1に記載の圧力に調整することで、未反応スチレン及びエチルベンゼンを分離した後、多孔ダイよりストランド状に押し出しして、コールドカット方式にて、ストランドを冷却および切断しペレット化した。なお、PS−1〜4は実施例に使用し、PS−5〜8は比較例に使用した。
(Method for producing styrene resin compositions PS-1 to PS-8)
The polymerization reactor was configured by connecting in series a first reactor that was a complete mixing tank, a second reactor, and a third reactor that was a plug flow reactor with a static mixer. The capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor. A raw material solution was prepared with the raw material composition described in Table 1, and the raw material solution was continuously supplied to the first reactor at a flow rate described in Table 1. The polymerization initiator was added to and mixed with the raw material solution at the inlet of the first reactor so as to have the addition concentration shown in Table 1 (concentration based on mass relative to the raw styrene). The polymerization initiators described in Table 1 are as follows.
Polymerization initiator-1: 2,2-bis (4,4-t-butylperoxycyclohexyl) propane (Pertetra A manufactured by NOF Corporation was used.)
In the third reactor, a temperature gradient was provided along the flow direction, and the temperature in Table 1 was adjusted at the intermediate part and the outlet part.
Subsequently, the solution containing the polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater constituted by two stages in series, and the preheater was adjusted to the resin temperature shown in Table 1. By adjusting the temperature and adjusting to the pressure shown in Table 1, unreacted styrene and ethylbenzene are separated and then extruded into a strand form from a perforated die, and the strand is cooled and cut by a cold cut method. Pelletized. PS-1 to 4 were used in Examples, and PS-5 to 8 were used in Comparative Examples.

Figure 2009275184
Figure 2009275184

得られたスチレン系樹脂組成物の特性を表2に示す。また、実施例における測定方法を以下に示す。   Table 2 shows the characteristics of the obtained styrene-based resin composition. Moreover, the measuring method in an Example is shown below.

メタノール可溶分は質量Pの樹脂組成物をメチルエチルケトンに溶解し、該溶液をメチルエチルケトンに対し30倍量のメタノール中に投入してメタノール不溶分を沈殿させ、ろ過してメタノール不溶分を取り出した後、70℃で15時間乾燥し、20分間デシケータ中で冷却した後、乾燥した沈殿物の質量Nを測定し、次式によって求めることができる。
メタノール可溶分(質量%)=(P−N)/P×100
The methanol-soluble component is obtained by dissolving a resin composition having a mass P in methyl ethyl ketone, adding the solution into methanol 30 times the amount of methyl ethyl ketone, precipitating the methanol-insoluble component, and filtering out the methanol-insoluble component. After drying at 70 ° C. for 15 hours and cooling in a desiccator for 20 minutes, the mass N of the dried precipitate can be measured and determined by the following equation.
Methanol-soluble content (mass%) = (P−N) / P × 100

発泡体密度(kg/m)は、発泡体の重量(kg)と発泡体の体積(m)より算出した(発泡体密度=発泡体重量/発泡体体積)。 The foam density (kg / m 3 ) was calculated from the weight (kg) of the foam and the volume (m 3 ) of the foam (foam density = foam weight / foam volume).

発泡体の気泡径は、板状押出発泡体の断面を顕微鏡により観察し、気泡径の測定を行った。また、同時に次の基準に従い発泡性の判定を行った。
○:気泡のサイズが均一で独立している。
△:気泡のサイズがやや不均一で、一部連続した気泡が存在する。
×:気泡のサイズが不均一で、一部連続した気泡がやや多く存在する。
The cell diameter of the foam was measured by observing the cross section of the plate-like extruded foam with a microscope. At the same time, foamability was determined according to the following criteria.
○: The bubble size is uniform and independent.
(Triangle | delta): The bubble size is somewhat non-uniform | heterogenous and a part continuous bubble exists.
X: The bubble size is non-uniform, and some continuous bubbles are present.

発泡体の圧縮強度は、製造後2週間経過した発泡体より、JIS K 7220に準じた方法で測定した。   The compressive strength of the foam was measured by a method according to JIS K 7220 from the foam after 2 weeks of production.

(実施例1〜4、比較例1〜4)
表2に記載されたスチレン系樹脂組成物100質量部に対して、ヘキサブロモシクロヘキサンを4質量部、気泡調整剤としてタルクを0.5質量部添加した後ブレンドし、得られた混合物を40mm径の単軸押出機(シリンダー温度200℃)に供給し、溶融混合した後、発泡剤としてブタンガス5質量部を圧入した。その後、65mm径の単軸押出機に移送し、出口の樹脂温度が130℃となるよう冷却し、押出機の先端に厚さ2mm、幅方向40mmの長方形断面のスリットを有するダイより押出して、厚さ約40mmの板状の発泡体を製造した。それぞれの組成物について、表2の発泡体密度及び気泡径となるよう、発泡剤量や気泡調整剤の量を調整した。得られた発泡体の発泡性、圧縮強度を表2に示す。
(Examples 1-4, Comparative Examples 1-4)
4 parts by mass of hexabromocyclohexane and 0.5 parts by mass of talc as a bubble regulator are added to 100 parts by mass of the styrene-based resin composition described in Table 2, and then blended. Was supplied to a single screw extruder (cylinder temperature 200 ° C.), melted and mixed, and then 5 parts by mass of butane gas was press-fitted as a blowing agent. Thereafter, it is transferred to a 65 mm diameter single-screw extruder, cooled so that the resin temperature at the outlet becomes 130 ° C., and extruded from a die having a rectangular cross-section slit of 2 mm in thickness and 40 mm in the width direction at the tip of the extruder, A plate-like foam having a thickness of about 40 mm was produced. About each composition, the quantity of the foaming agent and the quantity of the bubble regulator were adjusted so that it might become the foam density of Table 2, and a bubble diameter. Table 2 shows the foamability and compressive strength of the obtained foam.

Figure 2009275184
Figure 2009275184

実施例のスチレン系樹脂組成物を用いることで、圧縮強度に優れた板状押出発泡体を得ることができる。また、押出時の発泡性にも優れることから、安定した板状押出発泡体の製造が可能となる。   By using the styrenic resin composition of the example, a plate-like extruded foam excellent in compressive strength can be obtained. Moreover, since it is excellent also in the foamability at the time of extrusion, the manufacture of the stable plate-like extrusion foam becomes possible.

本発明のスチレン系樹脂組成物を用いることで、圧縮強度に優れた板状押出発泡体を得ることでき、発泡性にも優れることから、板状押出発泡体の用途に適している。また、本発明のスチレン系樹脂組成物の製造方法により、低コストで板状押出発泡体用途に適したスチレン系樹脂組成物を製造することが可能となる。   By using the styrenic resin composition of the present invention, a plate-like extruded foam excellent in compressive strength can be obtained, and since the foamability is also excellent, it is suitable for the use of a plate-like extruded foam. In addition, the method for producing a styrene resin composition of the present invention makes it possible to produce a styrene resin composition suitable for plate-like extruded foam applications at low cost.

実施例で用いたスチレン系樹脂組成物PS−1及びPS−3、比較例で用いたスチレン系樹脂組成物PS−6及びPS−8のゲルパーミエーションクロマトグラフィー(GPC)測定によって得られた分子量分布を比較する図である。Molecular weights obtained by gel permeation chromatography (GPC) measurement of the styrene resin compositions PS-1 and PS-3 used in the examples and the styrene resin compositions PS-6 and PS-8 used in the comparative examples. It is a figure which compares distribution.

重合工程の1構成例を説明する図である。It is a figure explaining one structural example of a superposition | polymerization process.

重合工程の1構成例を説明する図である。It is a figure explaining one structural example of a superposition | polymerization process.

重合工程の1構成例を説明する図である。It is a figure explaining one structural example of a superposition | polymerization process.

脱揮工程の1構成例を説明する図である。It is a figure explaining 1 structural example of a devolatilization process.

Claims (6)

200℃、49N荷重の条件にて測定したメルトマスフローレイト(MFR)が1.0〜6.0g/10分で、200℃で測定した溶融張力値が11〜19gfで、重量平均分子量(Mw)が25万〜40万で、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が3.5〜8.0、Z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.0であることを特徴とする板状押出発泡体用スチレン系樹脂組成物。   The melt mass flow rate (MFR) measured at 200 ° C. under a load of 49 N is 1.0 to 6.0 g / 10 min, the melt tension value measured at 200 ° C. is 11 to 19 gf, and the weight average molecular weight (Mw) Is 250,000 to 400,000, the ratio (Mw / Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) is 3.5 to 8.0, Z average molecular weight (Mz) and weight average molecular weight (Mw) The styrene-based resin composition for plate-like extruded foams, wherein the ratio (Mz / Mw) is 2.2 to 3.0. スチレン系樹脂組成物中の残存スチレンモノマー及び重合溶媒の総量が250μg/g以下であることを特徴とする請求項1に記載の板状押出発泡体用スチレン系樹脂組成物。   The total amount of residual styrene monomer and polymerization solvent in the styrene-based resin composition is 250 µg / g or less, and the styrene-based resin composition for plate-like extruded foam according to claim 1. 重合溶媒としてエチルベンゼンを2〜10質量%使用し、スチレンモノマーの連続ラジカル重合を行うに当たり、重合開始剤として2,2−ビス(4,4−t−ブチルパーオキシシクロヘキシル)プロパンをスチレンモノマーに対して質量基準で100〜500ppm添加し、ポリマー濃度が35〜50質量%に達するまでは1〜2基からなる完全混合槽型反応器を直列に接続した工程にて100〜120℃の温度で生成するポリマーの重量平均分子量(Mw)が45万〜65万となるよう重合を行い、次いでポリマー濃度が70〜90%に達するまでは150℃〜210℃の温度でZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が2.2〜3.0となるよう重合を行うことを特徴とする請求項1〜2のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物の製造方法。   When performing continuous radical polymerization of styrene monomer using 2 to 10% by mass of ethylbenzene as a polymerization solvent, 2,2-bis (4,4-t-butylperoxycyclohexyl) propane is used as a polymerization initiator with respect to the styrene monomer. 100 to 500 ppm is added on a mass basis, and it is produced at a temperature of 100 to 120 ° C. in a process in which 1 or 2 complete mixing tank reactors are connected in series until the polymer concentration reaches 35 to 50% by mass. Polymerization is performed so that the weight average molecular weight (Mw) of the polymer is 450,000 to 650,000, and then the Z average molecular weight (Mz) and weight are maintained at a temperature of 150 to 210 ° C. until the polymer concentration reaches 70 to 90%. The polymerization is performed such that the ratio (Mz / Mw) of the average molecular weight (Mw) is 2.2 to 3.0. Method for producing a plate-shaped extruded foams styrene resin composition of the mounting. 連続ラジカル重合で得られたスチレン系樹脂と未反応スチレンモノマー及び重合溶媒を除去する脱揮工程において、加熱器付きの真空脱揮槽を直列に2段接続したものを用い、1段目の真空脱揮槽での樹脂温度は220〜260℃に調整し出口の未反応スチレンモノマーと重合溶媒の合計量が0.2質量%以下となるよう真空度を6.0kPa以下に調整し、1段目の真空脱揮槽を出たポリマー溶液に対して0.2〜2.0質量%の水を添加し、動的又は静的混合機にて水を分散し、真空度を0.5〜3.0kPaの範囲に調整した2段目の真空脱揮槽に導入し脱揮処理することを特徴とする請求項1〜3のいずれか1項に記載の板状押出発泡体用スチレン系樹脂組成物の製造方法。   In the devolatilization step to remove the styrenic resin, unreacted styrene monomer and polymerization solvent obtained by continuous radical polymerization, a vacuum devolatilization tank with a heater connected in two stages in series is used as the first stage vacuum The resin temperature in the devolatilization tank is adjusted to 220 to 260 ° C., and the degree of vacuum is adjusted to 6.0 kPa or less so that the total amount of unreacted styrene monomer and polymerization solvent at the outlet is 0.2% by mass or less. 0.2 to 2.0 mass% of water is added to the polymer solution exiting the vacuum devolatilization tank of the eye, and the water is dispersed in a dynamic or static mixer, and the degree of vacuum is 0.5 to It introduce | transduces into the 2nd step | paragraph vacuum devolatilization tank adjusted to the range of 3.0 kPa, and devolatilizes, The styrene resin for plate-like extrusion foam of any one of Claims 1-3 characterized by the above-mentioned. A method for producing the composition. 請求項1〜2のいずれか1項に記載のスチレン系樹脂組成物を発泡押出し、密度が10〜50kg/mであることを特徴とする板状押出発泡体の製造方法。 A method for producing a plate-like extruded foam, wherein the styrenic resin composition according to claim 1 is foam-extruded and has a density of 10 to 50 kg / m 3 . 請求項5に記載の製造方法によって得られる板状押出発泡体。   A plate-like extruded foam obtained by the production method according to claim 5.
JP2008130052A 2008-05-16 2008-05-16 Method for producing styrene resin composition for plate-like extruded foam and method for producing plate-like extruded foam Active JP5813909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130052A JP5813909B2 (en) 2008-05-16 2008-05-16 Method for producing styrene resin composition for plate-like extruded foam and method for producing plate-like extruded foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130052A JP5813909B2 (en) 2008-05-16 2008-05-16 Method for producing styrene resin composition for plate-like extruded foam and method for producing plate-like extruded foam

Publications (2)

Publication Number Publication Date
JP2009275184A true JP2009275184A (en) 2009-11-26
JP5813909B2 JP5813909B2 (en) 2015-11-17

Family

ID=41440897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130052A Active JP5813909B2 (en) 2008-05-16 2008-05-16 Method for producing styrene resin composition for plate-like extruded foam and method for producing plate-like extruded foam

Country Status (1)

Country Link
JP (1) JP5813909B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019829A (en) * 2012-07-20 2014-02-03 Ps Japan Corp Styrene-based resin composition for tabular extrusion foaming
JP2016150979A (en) * 2015-02-17 2016-08-22 フクビ化学工業株式会社 Abs resin foam and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209902A (en) * 1988-08-29 1990-08-21 Dainippon Ink & Chem Inc Volatile matter remover for polymerization solution and process for removing volatile matter using the same
JPH06157636A (en) * 1992-07-27 1994-06-07 Novacor Chem Sa Method of reduction of residual volatile matter in polymer
JPH1121311A (en) * 1997-07-02 1999-01-26 Idemitsu Petrochem Co Ltd Method of removal of volatile matter in polymer
JPH1149822A (en) * 1997-08-01 1999-02-23 Denki Kagaku Kogyo Kk Styrene-based resin and its foam
JP2005239951A (en) * 2004-02-27 2005-09-08 Toyo Styrene Co Ltd Method for producing aromatic vinyl compound-based polymer
JP2005281475A (en) * 2004-03-30 2005-10-13 Toyo Styrene Co Ltd Styrene polymer and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209902A (en) * 1988-08-29 1990-08-21 Dainippon Ink & Chem Inc Volatile matter remover for polymerization solution and process for removing volatile matter using the same
JPH06157636A (en) * 1992-07-27 1994-06-07 Novacor Chem Sa Method of reduction of residual volatile matter in polymer
JPH1121311A (en) * 1997-07-02 1999-01-26 Idemitsu Petrochem Co Ltd Method of removal of volatile matter in polymer
JPH1149822A (en) * 1997-08-01 1999-02-23 Denki Kagaku Kogyo Kk Styrene-based resin and its foam
JP2005239951A (en) * 2004-02-27 2005-09-08 Toyo Styrene Co Ltd Method for producing aromatic vinyl compound-based polymer
JP2005281475A (en) * 2004-03-30 2005-10-13 Toyo Styrene Co Ltd Styrene polymer and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019829A (en) * 2012-07-20 2014-02-03 Ps Japan Corp Styrene-based resin composition for tabular extrusion foaming
JP2016150979A (en) * 2015-02-17 2016-08-22 フクビ化学工業株式会社 Abs resin foam and manufacturing method therefor

Also Published As

Publication number Publication date
JP5813909B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5255726B2 (en) Styrenic resin foam molding
KR101357378B1 (en) Flame-retardant expandable styrene resin composition
JP5160957B2 (en) Styrenic resin composition for plate-like extruded foam and method for producing the same
JP2013082932A5 (en)
KR101371899B1 (en) Expandable beads, molded body using the same, and production method for molded body
JP5565240B2 (en) Composite resin foamed particles and method for producing the same, and method for producing foamable composite resin particles
JP5234724B2 (en) Styrene resin composition and method for producing foamed sheet
JP2006290922A (en) Styrene-based resin composition foam
CN111032755A (en) Flame-retardant expandable styrene resin composition
JP5813909B2 (en) Method for producing styrene resin composition for plate-like extruded foam and method for producing plate-like extruded foam
JP4570504B2 (en) Method for producing extruded polystyrene resin foam
JP6099495B2 (en) Flame retardant melt kneaded material and method for producing polystyrene resin extruded foam using the same
JP2009029871A (en) Styrenic resin composition and method for producing foamed sheet
JP2009029873A (en) Styrenic resin composition and method for producing foamed sheet
JP2015013938A (en) Flame retardant melted mixture and production method of polystyrene resin foam using the same
JP5405888B2 (en) Flame retardant foamed styrene resin composition
JP6203973B1 (en) Heat-resistant styrene resin composition, foam sheet, and food container
JP2019210439A (en) Styrenic resin composition for extrusion foaming, foam sheet, container, and tabular foam
JP5234723B2 (en) Method for producing styrene resin foam sheet
JP5913918B2 (en) Styrene resin composition for highly branched plate-like extruded foam
JP2014074080A (en) Styrenic resin, extrusion foamed sheet and its molded article
JP2018009055A (en) Method for producing high-strength modified polyphenylene ether resin extruded foamed sheet for deep drawing, method for producing deep-drawn high-strength molded article, high-strength modified polyphenylene ether resin extruded foamed sheet for deep drawing and deep-drawn high-strength foamed molded article
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
WO2023171330A1 (en) Bead foam body and foam particles, and manufacturing methods therfor
WO2024043103A1 (en) Method for producing foam beads, amorphous resin foam beads, crystalline resin foam beads and foam molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140411

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150917

R150 Certificate of patent or registration of utility model

Ref document number: 5813909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250