JP2009274950A - Method for preparing molecular hypochlorous acid solution - Google Patents
Method for preparing molecular hypochlorous acid solution Download PDFInfo
- Publication number
- JP2009274950A JP2009274950A JP2009153605A JP2009153605A JP2009274950A JP 2009274950 A JP2009274950 A JP 2009274950A JP 2009153605 A JP2009153605 A JP 2009153605A JP 2009153605 A JP2009153605 A JP 2009153605A JP 2009274950 A JP2009274950 A JP 2009274950A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- hypochlorous acid
- ions
- exchange resin
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、安定な分子状次亜塩素酸溶液を調製する技術に関するものである。より詳細には、次亜塩素酸塩溶液に含まれる金属イオンを水素イオンで置換し、塩素イオンを水酸イオンで置換することにより安定な分子状次亜塩素酸溶液を調製する技術に関するものである。 The present invention relates to a technique for preparing a stable molecular hypochlorous acid solution. More specifically, the present invention relates to a technique for preparing a stable molecular hypochlorous acid solution by replacing metal ions contained in a hypochlorite solution with hydrogen ions and replacing chlorine ions with hydroxide ions. is there.
次亜塩素酸ナトリウムをはじめとする次亜塩素酸塩溶液は長年に亘って、かつ幅広い分野で利用されてきた、全世界で最も使用量の多い殺菌剤である。中でも次亜塩素酸ナトリウムが使用されている分野は食品の生産、流通、提供のほとんどの分野をはじめ、水道施設、廃水処理、遊泳プール、温泉、公衆浴場、医療、介護、農漁業、一般家庭と枚挙に暇がない。それらの需要を賄うために日本国内における年間出荷量は約100万トンで、全世界ではその数十倍の出荷量があると推定される。 Hypochlorite solutions such as sodium hypochlorite are the most used fungicides in the world for many years and in a wide range of fields. In particular, sodium hypochlorite is used in most areas of food production, distribution and provision, as well as water supply facilities, wastewater treatment, swimming pools, hot springs, public baths, medical care, nursing care, agriculture and fisheries, and general households. I have no time to enumerate. In order to meet these demands, the annual shipment amount in Japan is about 1 million tons, and it is estimated that the worldwide shipment amount is several tens of times.
そのように極めて広範囲に利用されている次亜塩素酸塩溶液であるが、これまでいくつかの問題が指摘されてきた。その一つがトリハロメタンの生成である。トリハロメタンはアルカリ性の塩素剤が有機物と接触したときに発生することが確認されており、トリハロメタンの一種クロロホルムが低濃度でも発癌作用があることが知られてから世界的な問題となっている。これを重要視する一部の国では食品や飲用水への使用が制限されている。 Although it is a hypochlorite solution that is used in such a wide range, several problems have been pointed out so far. One of them is the generation of trihalomethane. Trihalomethane has been confirmed to be generated when an alkaline chlorinating agent comes into contact with organic matter, and has become a global problem since it is known that a kind of trihalomethane, chloroform, has carcinogenic activity even at low concentrations. In some countries where this is important, the use of food and drinking water is restricted.
第二の問題点は臭素酸や塩素酸の問題である。臭素酸は次亜塩素酸ナトリウムの原料である食塩の不純物に由来するものであるが、塩素酸は次亜塩素酸塩自体の不均化分解によって発生するもので、いずれも人体に有毒であることから、近年水道法とその関連法規に上限濃度が設定された。塩素酸の生成反応には幾つかの加速要因が知られているが、その一つは次亜塩素酸塩の濃度で、濃度に比例して生成速度が高くなる。又、含まれる挟雑物の塩あるいは重金属が反応を促進することも知られている。 The second problem is that of bromic acid and chloric acid. Bromic acid is derived from the impurities of sodium chloride, the raw material of sodium hypochlorite, but chloric acid is generated by disproportionation decomposition of hypochlorite itself, both of which are toxic to the human body. Therefore, in recent years, the upper limit concentration was set in the Water Supply Law and related laws and regulations. Several acceleration factors are known for the chloric acid production reaction, one of which is the hypochlorite concentration, and the production rate increases in proportion to the concentration. It is also known that the contained salt or heavy metal contained in the mixture accelerates the reaction.
第三の問題点は殺菌力不足である。次亜塩素酸塩溶液は他の殺菌剤に比し幅広い微生物に効果があることが広範囲に利用されている理由の一つではあるが、細菌芽胞に対しては実用的な効果は無く、又結核菌に対しては1000ppm以上の高濃度でないと効果が見られないなどの弱点もある。1000ppmの次亜塩素酸塩溶液は人や対象及び環境に対する悪影響が極めて大きく、使用目的に大きな制限がある。この原因は次亜塩素酸塩溶液が強アルカリ性であることから、次亜塩素酸根のほとんどが次亜塩素酸イオンとして存在するためである。次亜塩素酸塩溶液の殺菌効果のほとんどは、含まれる分子状次亜塩素酸に負っているが、液性がアルカリ性になってイオン化すると殺菌力、特に殺菌速度が大幅に減衰してしまうのである。それを補うために高濃度で使用されているが、前述の通り高濃度使用による各種の弊害も起きている。例えば対象物の損傷、異臭の原因、有害物の発生、肌荒れ、廃水処理への障碍、環境汚染等々である。 The third problem is insufficient sterilization power. One of the reasons why hypochlorite solutions are widely used is that they are effective against a wide range of microorganisms compared to other fungicides, but they have no practical effect on bacterial spores. For tuberculosis bacteria, there is also a weak point that the effect is not seen unless the concentration is higher than 1000 ppm. A 1000 ppm hypochlorite solution has extremely large adverse effects on people, objects and the environment, and has a great limitation on the purpose of use. This is because the hypochlorite solution is strongly alkaline, so most of the hypochlorite radicals exist as hypochlorite ions. Most of the bactericidal effects of hypochlorite solutions are borne by the molecular hypochlorous acid contained, but when the liquid becomes alkaline and ionizes, the bactericidal power, especially the bactericidal speed, is greatly attenuated. is there. In order to compensate for this, it is used at a high concentration, but as described above, various problems due to the use of the high concentration have also occurred. For example, damage to objects, causes of strange odors, generation of harmful substances, rough skin, obstacles to wastewater treatment, environmental pollution, and the like.
最後の問題は、塩を含有していることに起因している。次亜塩素酸塩の中で代表的な次亜塩素酸ナトリウム溶液は、次亜塩素酸イオンのカウンターイオンとしてのナトリウムイオンの他に、副生物の食塩及び原料の水酸化ナトリウムを含んでいる。次亜塩素酸ナトリウムは放置しておくだけで分解し、食塩となったり、不均化反応により塩素酸に変化するが、前述の通り食塩はその反応を促進することが知られている。又、ナトリウムと遊離塩素が共存すると金属を発錆する作用が強くなり、金属の表面で乾燥される時濃縮され、ステンレスのような耐蝕材であっても錆を生ずることがある。又、室内殺菌や加湿あるいは除臭の目的で噴霧使用されると、塩が蓄積し、室内の塩汚染や電気製品の故障の原因にもなる。 The last problem is due to the salt content. A typical sodium hypochlorite solution among hypochlorites contains by-product sodium chloride and raw material sodium hydroxide in addition to sodium ions as counter ions of hypochlorite ions. It is known that sodium hypochlorite decomposes only by leaving it to become salt or changes to chloric acid by disproportionation reaction, but as described above, salt promotes the reaction. In addition, when sodium and free chlorine coexist, the action of rusting the metal becomes stronger, and it is concentrated when dried on the surface of the metal, and even a corrosion resistant material such as stainless steel may cause rust. Moreover, when sprayed for the purpose of indoor sterilization, humidification, or deodorization, salt accumulates, causing indoor salt contamination and electrical product failure.
さらに、もし次亜塩素酸塩が塩を含んでいないと、塩の残留を嫌う産業での利用も可能になる。次亜塩素酸は元々極めて強力な酸化剤であるので、その酸化力を使用して汚れや不純物を除去する目的に利用できるのである。しかし、これまでは必然的に塩が含まれていたためそれらの用途には利用できなかった。従って、純粋な次亜塩素酸溶液ができれば、用途領域はさらに拡大されることが予想される。 Furthermore, if the hypochlorite does not contain salt, it can be used in industries that dislike salt residue. Hypochlorous acid is originally an extremely strong oxidizing agent, and can be used for the purpose of removing dirt and impurities using its oxidizing power. However, until now, the salt was inevitably contained, so that it could not be used for these purposes. Therefore, if a pure hypochlorous acid solution is made, it is expected that the application area will be further expanded.
このような次亜塩素酸塩の欠点を補う目的でいろいろな工夫がなされてきた。中でも、次亜塩素酸ナトリウム溶液に各種の酸を添加してpHを下げ、分子状次亜塩素酸の存在比率を上げることによって殺菌力を高める方法は古くから行われており、専用の装置も多数市販されている。しかし、この方法では、確かに殺菌力の増強はなされるが、中に含まれるナトリウムはそのまま残存しているので塩類による弊害は解消できない。さらに、次亜塩素酸ナトリウム溶液と酸を混合するという、危険な禁忌工程があるため不慮の事故が少なからず報告されている。 Various ideas have been made for the purpose of compensating for the drawbacks of hypochlorite. Above all, the method of increasing the bactericidal power by adding various acids to sodium hypochlorite solution to lower the pH and increasing the ratio of molecular hypochlorous acid has been performed for a long time. Many are commercially available. However, this method certainly enhances the bactericidal power, but the sodium contained therein remains as it is, so the harmful effects of salts cannot be solved. In addition, there have been a number of reports of accidents due to the dangerous contraindication process of mixing sodium hypochlorite solution and acid.
又、特許文献1には、次亜塩素酸塩の溶液又は次亜塩素酸塩溶液を希釈する水を、水素置換型イオン交換材でイオン交換処理することによって次亜塩素酸塩溶液のpHを下げる方法が示されている。しかし、この方法は単に次亜塩素酸塩溶液のpHを下げることのみが目的であり、結果としては前述の次亜塩素酸塩溶液に酸を加える方法と同様に、含まれる金属の大部分が残っている。又、この方法で次亜塩素酸塩溶液に含まれる一定以上の金属イオンを水素イオンで置換するとpHは極めて低くなり塩素ガスを発生して危険である。 Patent Document 1 discloses that the pH of a hypochlorite solution is obtained by subjecting a hypochlorite solution or water for diluting the hypochlorite solution to ion exchange treatment with a hydrogen-substituted ion exchange material. How to lower is shown. However, this method is only intended to lower the pH of the hypochlorite solution, and as a result, similar to the method of adding an acid to the hypochlorite solution described above, most of the contained metals are Remaining. Also, if a certain amount or more of metal ions contained in the hypochlorite solution is replaced with hydrogen ions by this method, the pH becomes extremely low and chlorine gas is generated, which is dangerous.
そこで、本発明が解決しようとする課題は、トリハロメタンや臭素酸の生成を最少とし、塩類を含有せず、高い殺菌力を持った分子状次亜塩素酸溶液を調製する技術及び分子状次亜塩素酸溶液を提供することである。 Therefore, the problem to be solved by the present invention is a technique for preparing a molecular hypochlorous acid solution that minimizes the production of trihalomethane and bromic acid, does not contain salts, and has high bactericidal activity, and molecular hypochlorous acid. It is to provide a chloric acid solution.
市販されている次亜塩素酸塩溶液は、次亜塩素酸塩の他に塩化物あるいは水酸化アルカリを常成分として含んでいる。次亜塩素酸塩溶液の液性を強アルカリ性にしているのは、次亜塩素酸イオンのカウンターイオンである金属イオンとアルカリ或いはアルカリ土類金属の水酸化物である。従って金属イオンを全て水素イオンで置換すればアルカリ性は解消され、乾燥した場合の残留塩も無くなる。しかし一方、塩に含まれていた塩素イオンはナトリウムイオンと置換された水素イオンと結びつき塩酸となる。そのために、水素イオン交換型陽イオン交換樹脂で処理しただけでは液性は強い酸性となり、次亜塩素酸分子は不安定になり塩素となって揮散する。 A commercially available hypochlorite solution contains chloride or alkali hydroxide as a normal component in addition to hypochlorite. What makes the liquidity of a hypochlorite solution strong alkalinity is a metal ion which is a counter ion of hypochlorite ion and a hydroxide of alkali or alkaline earth metal. Therefore, if all the metal ions are replaced with hydrogen ions, the alkalinity is eliminated and there is no residual salt when dried. On the other hand, chlorine ions contained in the salt are combined with hydrogen ions substituted for sodium ions to form hydrochloric acid. Therefore, the liquidity becomes strongly acidic only by treating with a hydrogen ion exchange type cation exchange resin, and hypochlorous acid molecules become unstable and volatilize as chlorine.
従って、次亜塩素酸を安定化するためには、その後水酸イオン交換型陰イオン交換樹脂で処理し溶液に残っている塩素イオンを水酸イオンで置換する必要がある。又、これらの処理によって、当初次亜塩素酸塩溶液に含まれていた挟雑イオンも全て除去されるので純粋な次亜塩素酸溶液が得られるのである。 Therefore, in order to stabilize hypochlorous acid, it is necessary to subsequently treat with a hydroxide ion exchange type anion exchange resin and replace chlorine ions remaining in the solution with hydroxide ions. Also, by these treatments, all of the interstitial ions originally contained in the hypochlorite solution are removed, so that a pure hypochlorous acid solution can be obtained.
これらのイオン交換処理は、陽イオン交換樹脂処理の後に陰イオン交換樹脂処理を行うことが重要である。当初次亜塩素酸塩溶液は強アルカリ性であるため、次亜塩素酸塩はイオン化しており、金属イオン、次亜塩素酸イオン、塩素イオン、水酸イオン等のイオンが存在する。この内、水素イオン交換型陽イオン交換樹脂で処理されると除去されるのは金属イオンのみである。ところが、もし最初に陰イオン交換樹脂で処理すると肝心な次亜塩素酸イオンが除去されてしまうのである。陽イオン交換樹脂で処理されると金属イオンが水素イオンと交換されるため液性は強酸性となり、処理後の溶液に含まれる化学種は分子状次亜塩素酸、水素イオン、塩素イオンに変化する。これを水酸イオン交換型陰イオン交換樹脂で処理すると塩素イオンが水酸イオンと置換され、水素イオンと反応して水となるため、溶液に残された化学種は分子状次亜塩素酸のみとなり、全ての処理が終了すると液性は弱酸性となる。このようにして純粋な分子状次亜塩素酸溶液が生成されることが確認されたので、課題を解決するための手段の各態様を以下のようにした。 In these ion exchange treatments, it is important to carry out the anion exchange resin treatment after the cation exchange resin treatment. Since the hypochlorite solution is initially strongly alkaline, the hypochlorite is ionized, and ions such as metal ions, hypochlorite ions, chlorine ions, and hydroxide ions are present. Of these, only metal ions are removed when treated with a hydrogen ion exchange type cation exchange resin. However, if it is first treated with an anion exchange resin, important hypochlorite ions are removed. When treated with a cation exchange resin, metal ions are exchanged for hydrogen ions, so the liquidity becomes strongly acidic, and the chemical species contained in the treated solution change to molecular hypochlorous acid, hydrogen ions, and chlorine ions. To do. When this is treated with a hydroxide ion exchange type anion exchange resin, chlorine ions are replaced with hydroxide ions, which react with hydrogen ions to become water, so the only remaining chemical species in the solution is molecular hypochlorous acid. When all the treatments are completed, the liquidity becomes weakly acidic. Thus, since it was confirmed that a pure molecular hypochlorous acid solution was produced | generated, each aspect of the means for solving a problem was made as follows.
まず、次亜塩素酸塩溶液を水素イオン交換型陽イオン交換樹脂で処理し、金属イオンを水素イオンで置換した後に、前記処理液を水酸イオン交換型陰イオン交換樹脂で処理し、塩素イオンを水酸イオンで置換することにより、分子状次亜塩素酸溶液を調製する方法を、課題を解決するための手段の第1の態様とした。 First, after treating a hypochlorite solution with a hydrogen ion exchange type cation exchange resin and replacing metal ions with hydrogen ions, the treatment solution is treated with a hydroxide ion exchange type anion exchange resin, The method of preparing a molecular hypochlorous acid solution by substituting with a hydroxide ion is the first aspect of the means for solving the problem.
又、第1の態様において、水素イオン交換型陽イオン交換樹脂で処理した後の溶液の一部を、水酸イオン交換型陰イオン交換樹脂で処理せずに、残部を水酸イオン交換型陰イオン交換樹脂で処理し、前記水酸イオン交換型陰イオン交換樹脂で処理しない溶液と前記水酸イオン交換型陰イオン交換樹脂で処理した溶液を混合する方法を、課題を解決するための手段の第2の態様とした。 In the first aspect, a part of the solution after the treatment with the hydrogen ion exchange type cation exchange resin is not treated with the hydroxide ion exchange type anion exchange resin, and the remaining part is treated with the hydroxide ion exchange type anion exchange resin. A method of mixing a solution treated with an ion exchange resin and not treated with the hydroxide ion exchange type anion exchange resin and a solution treated with the hydroxide ion exchange type anion exchange resin It was set as the 2nd aspect.
又、第1又は2の態様において、次亜塩素酸塩溶液を水素イオン交換型陽イオン交換樹脂で処理し、金属イオンを水素イオンで置換した後の溶液のpHが6.5以下、2.5以上であることを、課題を解決するための手段の第3の態様とした。 In the first or second aspect, the pH of the solution after treating the hypochlorite solution with a hydrogen ion exchange type cation exchange resin and replacing metal ions with hydrogen ions is 6.5 or less. It was set as the 3rd aspect of the means for solving a subject that it is 5 or more.
又、第1乃至2の何れかの態様において、次亜塩素酸塩溶液を水素イオン交換型陽イオン交換樹脂で処理し、金属イオンを水素イオンで置換した後に、前記処理液を水酸イオン交換型陰イオン交換樹脂で処理し、塩素イオンを水酸イオンで置換した後の処理液のpHが8以下4以上であることを、課題を解決するための手段の第4の態様とした。 In any one of the first and second embodiments, the hypochlorite solution is treated with a hydrogen ion exchange type cation exchange resin, the metal ions are replaced with hydrogen ions, and then the treatment liquid is subjected to a hydroxide ion exchange. It was set as the 4th aspect of the means for solving a problem that the pH of the process liquid after processing with a type | mold anion exchange resin and replacing chlorine ion with a hydroxide ion is 8 or less 4 or more.
又、第1乃至4の何れかの態様により得られた分子状次亜塩素酸溶液をさらに水で希釈し、分子状次亜塩素酸溶液を調製する方法を、課題を解決するための手段の第5の態様とした。 In addition, a method for preparing a molecular hypochlorous acid solution obtained by further diluting the molecular hypochlorous acid solution obtained by any one of the first to fourth aspects with water is a means for solving the problems. It was set as the 5th aspect.
又、第1乃至5の何れかの態様において、次亜塩素酸塩が次亜塩素酸ナトリウムであることを、課題を解決するための手段の第6の態様とした。 In any one of the first to fifth aspects, the hypochlorite is sodium hypochlorite as a sixth aspect of means for solving the problem.
そして、第1乃至6の何れかの態様により得られた分子状次亜塩素酸溶液を、課題を解決するための手段の第7の態様とした。 The molecular hypochlorous acid solution obtained according to any one of the first to sixth aspects is used as the seventh aspect of the means for solving the problem.
本発明による効果は以下の通りである。まず、次亜塩素酸塩溶液を水素イオン交換型陽イオン交換樹脂で処理し、金属イオンを水素イオンで置換した後に、前記処理液を水酸イオン交換型陰イオン交換樹脂で処理し、塩素イオンを水酸イオンで置換するとしたことにより、元々次亜塩素酸塩溶液に含まれている有効塩素を無駄にすることなく、含まれている金属イオンを除去し、所望の液性の遊離次亜塩素酸溶液を得ることができる。 The effects of the present invention are as follows. First, after treating a hypochlorite solution with a hydrogen ion exchange type cation exchange resin and replacing metal ions with hydrogen ions, the treatment solution is treated with a hydroxide ion exchange type anion exchange resin, Is replaced with hydroxide ions, so that the contained chlorine ions can be removed without wasting the effective chlorine originally contained in the hypochlorite solution, and the desired liquid free free hypochlorite can be removed. A chloric acid solution can be obtained.
又、水素イオン交換型陽イオン交換樹脂で処理した後の溶液の一部を、水酸イオン交換型陰イオン交換樹脂で処理せずに、残部を水酸イオン交換型陰イオン交換樹脂で処理し、前記水酸イオン交換型陰イオン交換樹脂で処理しない溶液と前記水酸イオン交換型陰イオン交換樹脂で処理した溶液を混合することにより、最終的に得られる分子状次亜塩素酸溶液のpHを適宜に調整することが可能になる。 In addition, a part of the solution after treatment with the hydrogen ion exchange type cation exchange resin is not treated with the hydroxide ion exchange type anion exchange resin, and the rest is treated with the hydroxide ion exchange type anion exchange resin. The pH of the molecular hypochlorous acid solution finally obtained by mixing the solution not treated with the hydroxide ion exchange type anion exchange resin and the solution treated with the hydroxide ion exchange type anion exchange resin Can be adjusted appropriately.
又、次亜塩素酸塩溶液を水素イオン交換型陽イオン交換樹脂で処理し、ナトリウムイオンを水素イオンで置換した後の溶液のpHを6.5以下、2.5以上としたことにより
生成した次亜塩素酸が、イオンあるいはガス状とならず分子状で存在し工程中で危険なガスが発生したり、揮散による損失も防げ、次工程における陰イオン交換によって交換樹脂への次亜塩素酸の吸着損失も防ぐことができる。
Further, the hypochlorite solution was produced by treating with a hydrogen ion exchange type cation exchange resin and replacing the sodium ions with hydrogen ions so that the pH of the solution was 6.5 or less and 2.5 or more. Hypochlorous acid exists in the form of molecules instead of ions or gases, and dangerous gas is generated in the process and loss due to volatilization can be prevented. Hypochlorous acid to the exchange resin by anion exchange in the next process Adsorption loss can also be prevented.
又、次亜塩素酸塩溶液を水素イオン交換型陽イオン交換樹脂で処理し、金属イオンを水素イオンで置換した後に、前記処理液を水酸イオン交換型陰イオン交換樹脂で処理し、塩素イオンを水酸イオンで置換した後の処理液のpHを8以下4以上としたことにより生成した次亜塩素酸がイオン化せず強い殺菌力を持った分子状で安定に存在する。 Further, after treating the hypochlorite solution with a hydrogen ion exchange type cation exchange resin and replacing metal ions with hydrogen ions, the treatment solution is treated with a hydroxide ion exchange type anion exchange resin to produce chlorine ions. Hypochlorous acid produced by setting the pH of the treatment solution after the substitution of hydroxide ions to 8 or less and 4 or more does not ionize and exists stably in a molecular form having strong bactericidal power.
又、得られた分子状次亜塩素酸溶液をさらに水で希釈し、分子状次亜塩素酸溶液を調製する方法としたことにより、生成された分子状次亜塩素酸溶液を希釈等の手間をかけずそのまま利用できるようにした。 In addition, the obtained molecular hypochlorous acid solution is further diluted with water to prepare the molecular hypochlorous acid solution. It can be used as it is without spending.
又、次亜塩素酸塩を次亜塩素酸ナトリウムとしたことにより、最も広範囲に流通している次亜塩素酸塩であるため、原料としての安定した入手が容易となり、液体であるため分子状次亜塩素酸溶液生成上の取り扱いの利便性が高まったことにより、生産の工業化を可能にした。 In addition, by using sodium hypochlorite as the hypochlorite, it is the most widely distributed hypochlorite, so it is easy to obtain a stable raw material, and since it is liquid, it is molecular. Increased convenience in handling hypochlorous acid solution production has made it possible to industrialize production.
そして、前記の何れかの方法により得られた分子状次亜塩素酸溶液を提供することにより、生成装置を必要とせず各種の目的に利用できるようにした。 Then, by providing a molecular hypochlorous acid solution obtained by any one of the methods described above, it can be used for various purposes without requiring a generating device.
本発明を実施する最少の設備は陰イオン交換筒、陽イオン交換筒、次亜塩素酸塩溶液供給手段、希釈水供給手段及び流路開閉手段及び混合攪拌手段で構成される。各部品の接液部材質には次亜塩素酸塩や塩素耐久性或いはアルカリ耐久性のある樹脂が勧められる。イオン交換樹脂はどのようなものでも利用できるが、樹脂材質は塩素に耐久性のあるものが長い間の使用に耐え便利である。イオン交換能が無くなったら常法により再生すれば繰り返し使用できる。イオン交換樹脂の再生には、この生成装置を利用してもよく別途再生設備を設置してもよい。 The minimum equipment for carrying out the present invention comprises an anion exchange cylinder, a cation exchange cylinder, a hypochlorite solution supply means, a dilution water supply means, a flow path opening / closing means and a mixing and stirring means. Hypochlorite, chlorine-resistant or alkali-resistant resins are recommended for the wetted parts of each part. Any ion exchange resin can be used, but a resin material that is durable to chlorine is convenient for long-term use. If the ion exchange capacity is lost, it can be used repeatedly if it is regenerated by a conventional method. For the regeneration of the ion exchange resin, this generating device may be used, or a separate regeneration facility may be installed.
本発明に用いる次亜塩素酸ナトリウム溶液等は食塩含量の低いものが望ましいが、それに限らずどのようなものでも利用は可能である。又、製造後日数の浅いものが望ましい。塩素濃度には特に制限は無い。生成する次亜塩素酸溶液の保存期間を長くする必要がある場合はpHは極力7近くに調整するのが望ましく、すぐに使用する場合は4から7の間で任意に調整すればよい。pHが4を下回ると塩素ガスの発生により効果の保存性低下や周囲への影響が予想されるので勧められない。 The sodium hypochlorite solution or the like used in the present invention preferably has a low salt content, but is not limited thereto, and any one can be used. Also, a product with a short number of days after production is desirable. There is no particular limitation on the chlorine concentration. When it is necessary to lengthen the storage period of the resulting hypochlorous acid solution, it is desirable to adjust the pH as close to 7 as possible, and when using it immediately, it may be arbitrarily adjusted between 4 and 7. If the pH is less than 4, it is not recommended because the generation of chlorine gas is expected to reduce the shelf life of the effect and affect the surroundings.
次に実施例を示す図1を用いて、分子状次亜塩素酸溶液の調製工程を詳細に説明する。原水は原水入り口1から装置内に供給される。原水供給配管には電磁弁2及び低流量弁3が配設されていて、原水の供給停止及び定量供給を制御する。供給された原水の一部は定量ポンプ4で次亜塩素酸塩溶液の希釈用に分流され、残部は分子状次亜塩素酸溶液の最終希釈に利用される。 Next, the preparation process of a molecular hypochlorous acid solution is demonstrated in detail using FIG. 1 which shows an Example. Raw water is supplied from the raw water inlet 1 into the apparatus. The raw water supply pipe is provided with a solenoid valve 2 and a low flow valve 3 to control the supply stop and quantitative supply of the raw water. A part of the supplied raw water is diverted by the metering pump 4 for diluting the hypochlorite solution, and the remainder is used for the final dilution of the molecular hypochlorous acid solution.
次亜塩素酸塩溶液の希釈用に分流された原水は、次亜塩素酸塩溶液タンク5に貯留され次亜塩素酸塩溶液ポンプ6で定量的に引き出される次亜塩素酸塩溶液と混合され、さらにスタティックミキサ7で均一に混合され、水素イオン交換型陽イオン交換樹脂の充填された陽イオン交換筒8に供給される。 The raw water diverted for diluting the hypochlorite solution is mixed with the hypochlorite solution stored in the hypochlorite solution tank 5 and quantitatively withdrawn by the hypochlorite solution pump 6. Further, the mixture is uniformly mixed by the static mixer 7 and supplied to the cation exchange cylinder 8 filled with the hydrogen ion exchange type cation exchange resin.
陽イオン交換筒では溶液に含まれる金属イオンが水素イオンで置換されるため、排出された溶液の液性は強酸性となっている。その一部はバイパス配管13から絞り弁14を経て最終希釈工程に供給される。残部は全て水酸イオン交換型陰イオン交換樹脂の充填された陰イオン交換筒9に供給される。陰イオン交換筒では溶液に含まれる塩素イオンが水酸イオンで置換されるため排出液の液性は概略中性になる。 In the cation exchange cylinder, metal ions contained in the solution are replaced with hydrogen ions, so that the liquidity of the discharged solution is strongly acidic. A part thereof is supplied from the bypass pipe 13 through the throttle valve 14 to the final dilution process. All the remainder is supplied to an anion exchange cylinder 9 filled with a hydroxide ion exchange type anion exchange resin. In the anion exchange cylinder, chlorine ions contained in the solution are replaced with hydroxide ions, so that the liquidity of the discharged liquid becomes substantially neutral.
陰イオン交換筒から排出された溶液は、陽イオン交換筒から直接排出された溶液と混合され、pHが調整され、さらに最終スタティックミキサ11で均一に混合され排出口12から排出される。排出口近くにはインライン型pH計15が配設されており、最終排出液のpHをチェックできるようになっている。 The solution discharged from the anion exchange tube is mixed with the solution directly discharged from the cation exchange tube, pH is adjusted, and the solution is uniformly mixed by the final static mixer 11 and discharged from the discharge port 12. An in-line type pH meter 15 is disposed near the discharge port so that the pH of the final discharged liquid can be checked.
この装置において、陽イオン交換樹脂にオルガノ社製AMBERJET1020Hを使用し、陰イオン交換樹脂には同社製AMBERJET4002Clを使用し、原水は限外濾過水を使い、6%の次亜塩素酸ナトリウム溶液を原料として処理した結果、pH6.5〜6.0、有効塩素濃度1000ppm前後の純粋な分子状次亜塩素酸溶液が毎時1トンで連続的に得られた。 In this equipment, AMBERJET1020H made by Organo is used for the cation exchange resin, AMBERJET4002Cl made by the company is used for the anion exchange resin, ultrafiltered water is used as raw water, and a 6% sodium hypochlorite solution is used as a raw material. As a result, a pure molecular hypochlorous acid solution having a pH of 6.5 to 6.0 and an effective chlorine concentration of about 1000 ppm was continuously obtained at 1 ton per hour.
本発明は塩類を含まない強い殺菌力の殺菌剤とその調整方法を提供する。この殺菌剤は食品産業、医療介護業界、上水処理、下水処理、公共浴場、遊泳プール、半導体産業、ビル空調等の分野で利用される。特に塩類の含有が問題になる用途に一層向いている。 The present invention provides a bactericidal agent having a strong bactericidal power not containing salts and a method for adjusting the bactericidal agent. This disinfectant is used in fields such as food industry, medical care industry, water treatment, sewage treatment, public bath, swimming pool, semiconductor industry, and building air conditioning. Particularly suitable for applications where the inclusion of salts is a problem.
1 原水入り口
2 電磁弁
3 定流量弁
4 希釈用定量ポンプ
5 次亜塩素酸塩溶液タンク
6 次亜塩素酸塩溶液定量ポンプ
7 スタティックミキサ
8 陽イオン交換筒
9 陰イオン交換筒
10 希釈水配管
11 スタティックミキサ
12 分子状次亜塩素酸溶液排出口
13 陽イオン交換液バイパス
14 絞り弁
15 pH計
1 Raw water inlet 2 Solenoid valve 3 Constant flow valve 4 Dilution metering pump 5 Hypochlorite solution tank 6 Hypochlorite solution metering pump 7 Static mixer 8 Cation exchange tube 9 Anion exchange tube 10 Dilution water piping 11 Static mixer 12 Molecular hypochlorous acid solution outlet 13 Cation exchange liquid bypass 14 Throttle valve 15 pH meter
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009153605A JP2009274950A (en) | 2009-06-29 | 2009-06-29 | Method for preparing molecular hypochlorous acid solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009153605A JP2009274950A (en) | 2009-06-29 | 2009-06-29 | Method for preparing molecular hypochlorous acid solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009274950A true JP2009274950A (en) | 2009-11-26 |
Family
ID=41440708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009153605A Withdrawn JP2009274950A (en) | 2009-06-29 | 2009-06-29 | Method for preparing molecular hypochlorous acid solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009274950A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011068521A (en) * | 2009-09-27 | 2011-04-07 | Bisansei Denkaisui Kenkyusho:Kk | Method for preparing molecular hypochlorous acid solution by ion exchange and molecular hypochlorous acid solution |
JP2011173858A (en) * | 2009-12-03 | 2011-09-08 | Tomita Pharmaceutical Co Ltd | Hypochlorous acid-based germicidal disinfectant, and method and apparatus for preparing the same |
WO2011135645A1 (en) * | 2010-04-26 | 2011-11-03 | エヴァテック株式会社 | Weakly acidic hypochlorous acid, and apparatus and process for production thereof |
JPWO2011136091A1 (en) * | 2010-04-26 | 2013-07-18 | エヴァテック株式会社 | Weakly acidic hypochlorous acid, and production apparatus and production method thereof |
JP2013144281A (en) * | 2012-01-16 | 2013-07-25 | Kobelco Eco-Maintenance Co Ltd | Supply device, device for manufacturing tap water including sodium hypochlorite, and method for manufacturing tap water including sodium hypochlorite |
JP2014043392A (en) * | 2010-04-26 | 2014-03-13 | Evatech Corp | Weakly acidic hypochlorous acid, and production device and production method therefor |
US11364263B2 (en) | 2012-02-17 | 2022-06-21 | Wiab Wafer Innovation Ab | Compositions and methods for aerodigestive treatment |
US11364262B2 (en) | 2012-02-17 | 2022-06-21 | Wiab Water Innovation Ab | Acetic acid and hypochlorous acid compositions for treatment of skin trauma |
US11452741B2 (en) | 2012-02-17 | 2022-09-27 | Wiab Water Innovation Ab | Compositions and methods for treating transient biofilms |
US11478507B2 (en) | 2012-02-17 | 2022-10-25 | Wiab Water Innovation Ab | Compositions and methods for treating biofilms |
US11484549B2 (en) | 2012-02-17 | 2022-11-01 | Wiab Water Innovation Ab | Compositions and methods for treating biofilms without inducing antimicrobial resistance |
US11492256B2 (en) | 2012-02-17 | 2022-11-08 | Wiab Water Innovation Ab | Compositions of hypochlorous acid and methods of manufacture thereof |
US11672825B2 (en) | 2012-02-17 | 2023-06-13 | Wiab Water Innovation Ab | Acetic acid and hypochlorous acid compositions for treatment of biofilms and wound care |
JP7368657B1 (en) * | 2022-07-08 | 2023-10-24 | 株式会社トクヤマ | Acidic hypochlorous acid water production equipment |
WO2024009609A1 (en) * | 2022-07-08 | 2024-01-11 | 株式会社トクヤマ | Device for producing acidic hypochlorous acid water |
US12115185B2 (en) | 2012-02-17 | 2024-10-15 | Wiab Water Innovation Ab | Compositions of hypochlorous acid and methods of manufacture thereof |
-
2009
- 2009-06-29 JP JP2009153605A patent/JP2009274950A/en not_active Withdrawn
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011068521A (en) * | 2009-09-27 | 2011-04-07 | Bisansei Denkaisui Kenkyusho:Kk | Method for preparing molecular hypochlorous acid solution by ion exchange and molecular hypochlorous acid solution |
JP2011173858A (en) * | 2009-12-03 | 2011-09-08 | Tomita Pharmaceutical Co Ltd | Hypochlorous acid-based germicidal disinfectant, and method and apparatus for preparing the same |
KR101768935B1 (en) * | 2010-04-26 | 2017-08-17 | 주식회사 케이앤씨디스플레이 | Weakly acidic hypochlorous acid, and apparatus and method for production there of |
WO2011136091A1 (en) | 2010-04-26 | 2011-11-03 | エヴァテック株式会社 | Weakly acidic hypochlorous acid, and apparatus and method for production thereof |
EP2565156A1 (en) * | 2010-04-26 | 2013-03-06 | Evatech Corporation | Weakly acidic hypochlorous acid, and apparatus and method for production thereof |
JPWO2011136091A1 (en) * | 2010-04-26 | 2013-07-18 | エヴァテック株式会社 | Weakly acidic hypochlorous acid, and production apparatus and production method thereof |
EP2565156A4 (en) * | 2010-04-26 | 2013-10-16 | Evatech Corp | Weakly acidic hypochlorous acid, and apparatus and method for production thereof |
JP2014043392A (en) * | 2010-04-26 | 2014-03-13 | Evatech Corp | Weakly acidic hypochlorous acid, and production device and production method therefor |
JP5692657B2 (en) * | 2010-04-26 | 2015-04-01 | エヴァテック株式会社 | Weakly acidic hypochlorous acid, and production apparatus and production method thereof |
WO2011135645A1 (en) * | 2010-04-26 | 2011-11-03 | エヴァテック株式会社 | Weakly acidic hypochlorous acid, and apparatus and process for production thereof |
JP2013144281A (en) * | 2012-01-16 | 2013-07-25 | Kobelco Eco-Maintenance Co Ltd | Supply device, device for manufacturing tap water including sodium hypochlorite, and method for manufacturing tap water including sodium hypochlorite |
US11364263B2 (en) | 2012-02-17 | 2022-06-21 | Wiab Wafer Innovation Ab | Compositions and methods for aerodigestive treatment |
US11364262B2 (en) | 2012-02-17 | 2022-06-21 | Wiab Water Innovation Ab | Acetic acid and hypochlorous acid compositions for treatment of skin trauma |
US11452741B2 (en) | 2012-02-17 | 2022-09-27 | Wiab Water Innovation Ab | Compositions and methods for treating transient biofilms |
US11478507B2 (en) | 2012-02-17 | 2022-10-25 | Wiab Water Innovation Ab | Compositions and methods for treating biofilms |
US11484549B2 (en) | 2012-02-17 | 2022-11-01 | Wiab Water Innovation Ab | Compositions and methods for treating biofilms without inducing antimicrobial resistance |
US11492256B2 (en) | 2012-02-17 | 2022-11-08 | Wiab Water Innovation Ab | Compositions of hypochlorous acid and methods of manufacture thereof |
US11672825B2 (en) | 2012-02-17 | 2023-06-13 | Wiab Water Innovation Ab | Acetic acid and hypochlorous acid compositions for treatment of biofilms and wound care |
US12115185B2 (en) | 2012-02-17 | 2024-10-15 | Wiab Water Innovation Ab | Compositions of hypochlorous acid and methods of manufacture thereof |
JP7368657B1 (en) * | 2022-07-08 | 2023-10-24 | 株式会社トクヤマ | Acidic hypochlorous acid water production equipment |
WO2024009609A1 (en) * | 2022-07-08 | 2024-01-11 | 株式会社トクヤマ | Device for producing acidic hypochlorous acid water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009274950A (en) | Method for preparing molecular hypochlorous acid solution | |
JP5237913B2 (en) | Preparation method of molecular hypochlorous acid solution by ion exchange and molecular hypochlorous acid solution | |
US10370273B2 (en) | Methods and compositions for treating water-containing systems | |
KR101706548B1 (en) | Bactericidal/algicidal method | |
CN205472645U (en) | Online production sodium hypochlorite's disinfection system | |
JP2010189393A (en) | Stabilized hypobromous acid solution | |
JP4603795B2 (en) | Method of sterilizing and cleaning a water supply system, in particular a water supply system in swimming and bathing pool facilities, and apparatus for carrying out the same | |
JP2016023134A (en) | Electrolysis system and method for generating biocide containing electron-deficient carrier fluid and chlorine dioxide | |
US20080006586A1 (en) | Method and apparatus for the production and delivery of monochloramine into water streams | |
CN214400748U (en) | A large-traffic electrolysis water equipment for beasts and birds plant | |
CN109380297A (en) | A kind of sanitary sewage disinfectant | |
Mezgebe et al. | Disinfection byproducts in drinking water: formation, characterization, control technologies | |
WO2007008543A2 (en) | Method and apparatus for the production and delivery of monochloramine into water streams | |
EP2797844B1 (en) | Process and combined plant of production of chlorine dioxide for water treatment through desinfection | |
Connell | Chlorination systems | |
Kireev et al. | Wastewater Treatment of Food Industry Using Electrochemically Generated Ferrates | |
Doñaque et al. | Chlorine Dioxide as Disinfectant for Pretreatment in Seawater Desalination Plants | |
Wang | Water chlorination and chloramination | |
Ibrahim et al. | Using Huwa-san as alternative disinfecting agent for water treatment | |
US20150125551A1 (en) | Method and apparatus for making stable acidic chlorinated solutions | |
García et al. | Presence of trihalomethanes in drinking water plants in Nicaragua | |
Rekhate et al. | Fenton Oxidation Process as Remedial Solution for Sewage Water | |
AU2002100447A4 (en) | Method and apparatus for water sanitisation | |
CN112093930A (en) | Method and equipment for preparing hypochlorous acid by combining gas-liquid synthesis with electrolysis method | |
CN111565570A (en) | Insect repellent and method and apparatus for producing hypochlorous acid aqueous solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100401 |
|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20120904 |