JP2009274916A - Silicon single crystal and production method of the same - Google Patents

Silicon single crystal and production method of the same Download PDF

Info

Publication number
JP2009274916A
JP2009274916A JP2008128120A JP2008128120A JP2009274916A JP 2009274916 A JP2009274916 A JP 2009274916A JP 2008128120 A JP2008128120 A JP 2008128120A JP 2008128120 A JP2008128120 A JP 2008128120A JP 2009274916 A JP2009274916 A JP 2009274916A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
boron
silicon
straight body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008128120A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kogure
康弘 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008128120A priority Critical patent/JP2009274916A/en
Publication of JP2009274916A publication Critical patent/JP2009274916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon single crystal which can effectively suppress the propagation of slip dislocations when the slip dislocations occur in the last half of a process for forming a straight body part or during a process for forming a tail part of a silicon single crystal; and to provide a production method of the same. <P>SOLUTION: In the last half of a process for forming a straight body part or during a process for forming a tail part of a silicon single crystal 5, boron is added into a silicon melt 3 so that the concentration of boron in the silicon single crystal 5 becomes not lower than 1.0×10<SP>19</SP>atoms/cm<SP>3</SP>. Thereby, the propagation of slip dislocations can be effectively suppressed without substantially causing an adverse effect on the straight body part of the single crystal being a product part. It is preferable that the addition amount of boron into the silicon melt 3 is adjusted within a range of 0.009-0.1 mass% in order to make the concentration of boron the concentration. Further, the boron concentration in the silicon single crystal 5 before addition of boron is set to 5.4×10<SP>18</SP>atoms/cm<SP>3</SP>or lower so as to avoid the effect by lowering of resistivity of the silicon single crystal accompanied by the increase of boron concentration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、活性層用ウェーハと支持基板用ウェーハを、絶縁膜を介さずに直接貼り合わせ、活性層用ウェーハを薄膜化することにより形成される、貼り合わせウェーハの製造方法及びその製造方法に関するものである。   The present invention relates to a method for manufacturing a bonded wafer, which is formed by directly bonding an active layer wafer and a support substrate wafer without using an insulating film, and reducing the thickness of the active layer wafer. Is.

半導体デバイスの製造に使用されるシリコンウエーハは、主にチョクラルスキー法(CZ法)により成長させた単結晶から採取される。CZ法とは、石英坩堝内に収容されたシリコンの原料融液に種結晶を漬け、種結晶及び石英坩堝を互いに逆方向に回転させながら種結晶を引き上げることにより、その下にシリコン(Si)の単結晶を成長させる方法である。   Silicon wafers used for manufacturing semiconductor devices are collected from single crystals grown mainly by the Czochralski method (CZ method). In the CZ method, a seed crystal is immersed in a silicon raw material melt accommodated in a quartz crucible, and the seed crystal is pulled up while rotating the seed crystal and the quartz crucible in opposite directions. This is a method for growing a single crystal.

また、CZ法によって製造されるシリコンウェーハは、デバイスチップの集積度向上に伴うチップ面積の拡大により大直径化が進んでおり、現在200mm(8インチ)〜300mm(12インチ)径の結晶でのデバイスプロセスの実操業化が進められている。しかし、ウェーハの大直径化によって、デバイスの歩留りは高くなる一方、大直径結晶や大容量の結晶成長方法においては、種結晶が融液に接触する際や、所望の長さに成長させた円筒形のシリコン単結晶の直胴部から直径を徐々に小さくしてテール部を円錐形にするテール部形成工程中に、スリップ転位が生じやすく、これが直胴部まで伝播するという問題があった。当然、スリップ転位が発生した部分については、製品として使用することができず、製品歩留まりが低下することから、現在に至るまで、スリップ転位の発生を防止する種々の方法が検討されている。   In addition, silicon wafers manufactured by the CZ method are becoming larger in diameter due to the expansion of the chip area due to the improvement in the degree of integration of device chips, and currently with crystals of 200 mm (8 inches) to 300 mm (12 inches) in diameter. Device processes are being put into practical use. However, as the diameter of the wafer increases, the device yield increases. On the other hand, in large-diameter crystals and large-capacity crystal growth methods, the seed crystal is in contact with the melt or the cylinder is grown to the desired length. During the tail portion forming process in which the diameter is gradually reduced from the straight body portion of the silicon single crystal having the shape to make the tail portion conical, slip dislocation is likely to occur, which propagates to the straight body portion. Of course, the portion where slip dislocation has occurred cannot be used as a product, and the product yield is lowered. Therefore, various methods for preventing the occurrence of slip dislocation have been studied until now.

上記スリップ転位の発生を抑制する方法として、特殊形状の種結晶を用いる単結晶成長方法が開示されている。例えば、特許文献1に示すように、種結晶の先端部を円錐形にしたり、特許文献2に示すように、凹凸形状を有する種結晶を用いることで、前記絞り部を作製することなくシリコン単結晶を成長させることができるため、スリップ転位の発生を抑制することができるという方法である。   As a method for suppressing the occurrence of slip dislocation, a single crystal growth method using a specially shaped seed crystal is disclosed. For example, as shown in Patent Document 1, the tip of the seed crystal is formed into a conical shape, or as shown in Patent Document 2, a seed crystal having a concavo-convex shape is used, so that the silicon single body is not produced. Since the crystal can be grown, the generation of slip dislocation can be suppressed.

ただし、特許文献1及び特許文献2の方法は、特殊形状の種結晶を用い、種結晶の加工には高度な技術を必要とするためコストが大きくなり、また、テール部形成工程中に発生するスリップ転位については考慮されていないため、直胴部形成工程の後半またはテール部形成工程中にスリップ転位が発生し、種結晶を交換して再度引き上げ作業をやり直さなければならず、依然として解決すべき課題は残されていた。   However, the methods of Patent Document 1 and Patent Document 2 use a specially-shaped seed crystal, and require high-level technology for processing the seed crystal, which increases the cost and occurs during the tail portion forming step. Since slip dislocation is not taken into consideration, slip dislocation occurs in the latter half of the straight body forming process or in the tail forming process, and the seed crystal must be exchanged and the pulling operation must be performed again. The challenges remained.

さらにまた、製品として有害なスリップ転位は、一般に異物や熱ショックが育成中の界面で生じた際の過剰な応力によって発生し、(111)面を滑るように伝播し、その伝播長さは、通常、スリップ転位が発生した部分におけるシリコン単結晶の直径と同じ長さとなる。そのため、前記特許文献の方法では、スリップ転位の発生を抑制するという点では効果があるものの、発生したスリップ転位に対してその伝播を抑制するという効果はないため、スリップ転位の伝播を抑制する手段についても開発する必要があった。
特開平4−104988号公報 特開2005−281068号公報
Furthermore, slip dislocations that are harmful as a product are generally caused by excessive stress when foreign matter or heat shock occurs at the growing interface, and propagate so as to slide on the (111) plane, and the propagation length is Usually, the length is the same as the diameter of the silicon single crystal in the portion where slip dislocation has occurred. Therefore, although the method of the above-mentioned patent document is effective in suppressing the occurrence of slip dislocation, there is no effect of suppressing the propagation of the generated slip dislocation, and therefore means for suppressing the propagation of slip dislocation. There was also a need to develop.
Japanese Patent Laid-Open No. 4-104988 JP-A-2005-28168

本発明の目的は、シリコン単結晶の直胴部形成工程の後半またはテール部形成工程中に、所定の処理を施すことにより、スリップ転位が発生した場合のスリップ転位の伝播について有効に抑制できるシリコン単結晶及びその製造方法を提供することにある。   An object of the present invention is to provide silicon that can effectively suppress propagation of slip dislocation when slip dislocation occurs by performing a predetermined treatment in the latter half of the straight body portion forming step of the silicon single crystal or in the tail portion forming step. The object is to provide a single crystal and a method for producing the same.

本発明者らは、上記の課題を解決するため検討を重ねた結果、通常、5.4×1018atoms/cm3以下である前記シリコン単結晶中のボロン濃度が、1.0×1019 atoms/cm3以上となるよう前記シリコン融液中にボロン(B)を添加することで、シリコン単結晶の降伏応力が増大し、スリップ転位の伝播を有効に抑制することが可能となり、また、前記ボロンの添加を、製品として実質的に使用されない単結晶のテール部の形成工程中に行うことで、ボロン添加によるシリコン単結晶の抵抗率低下という悪影響が製品となる単結晶の直胴部分に実質的に及ぶことなく、高い製品歩留まりでシリコン単結晶が製造可能であることを見出した。 As a result of repeated studies to solve the above problems, the present inventors have found that the boron concentration in the silicon single crystal, which is usually 5.4 × 10 18 atoms / cm 3 or less, is 1.0 × 10 19 atoms / cm 3. By adding boron (B) to the silicon melt so as to become the above, it becomes possible to increase the yield stress of the silicon single crystal and to effectively suppress the propagation of slip dislocations, and to add boron Is performed during the process of forming a tail portion of a single crystal that is not substantially used as a product, and the adverse effect of decreasing the resistivity of the silicon single crystal due to the addition of boron substantially reaches the straight body portion of the single crystal that is the product. Thus, it has been found that a silicon single crystal can be produced with a high product yield.

上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)坩堝内に所要量のシリコン原料を充填し加熱溶融してシリコン融液にする工程と、種結晶を前記融液へ浸した後に、前記種結晶を、融液の液温と引き上げ速度を調整して上方に引き上げながら所定の直径をもつシリコン単結晶の製品となる直胴部形成のため鉛直方向に所定の長さまで引き上げる直胴部形成工程と、シリコン単結晶の直径を徐々に小さくしてテール部を円錐形にするテール部形成工程とを有する、チョクラルスキー法によるシリコン単結晶の製造方法において、前記直胴部形成工程の後半またはテール部形成工程中に、前記シリコン単結晶中のボロン濃度が1.0×1019 atoms/cm3以上となるよう前記シリコン融液中にボロンを添加し、このボロン添加前の前記シリコン単結晶中のボロン濃度は5.4×1018atoms/cm3以下であることを特徴とするシリコン単結晶の製造方法。
In order to achieve the above object, the gist of the present invention is as follows.
(1) A step of filling a crucible with a required amount of silicon raw material and heating and melting it to form a silicon melt; after immersing the seed crystal in the melt, the temperature of the melt and the pulling speed of the seed crystal The straight body part forming step of pulling up to a predetermined length in the vertical direction to form a straight body part that becomes a silicon single crystal product having a predetermined diameter while adjusting upward and gradually reducing the diameter of the silicon single crystal And a tail portion forming step of making the tail portion conical, in the method for producing a silicon single crystal by the Czochralski method, in the latter half of the straight body portion forming step or during the tail portion forming step, the silicon single crystal Boron is added to the silicon melt so that the boron concentration in the silicon melt is 1.0 × 10 19 atoms / cm 3 or more, and the boron concentration in the silicon single crystal before the boron addition is 5.4 × 10 18 atoms / cm 3. Must be A method for producing a silicon single crystal characterized by the following.

(2)前記ボロンの添加量は、0.009〜0.1質量%であることを特徴とする上記(1)記載のシリコン単結晶の製造方法。 (2) The method for producing a silicon single crystal as described in (1) above, wherein the amount of boron added is 0.009 to 0.1% by mass.

(3)前記直胴部でのシリコン単結晶の直径は200mm以上であることを特徴とする上記(1)または(2)記載のシリコン単結晶の製造方法。 (3) The method for producing a silicon single crystal according to (1) or (2), wherein the diameter of the silicon single crystal in the straight body portion is 200 mm or more.

(4)製造したシリコン単結晶中のスリップ転位の長さが、スリップ転位の伝播開始位置でのシリコン単結晶直径の91%以下となることを特徴とする上記(1)、(2)または(3)記載のシリコン単結晶の製造方法。 (4) The length of slip dislocation in the produced silicon single crystal is not more than 91% of the diameter of the silicon single crystal at the propagation start position of slip dislocation, (1), (2) or ( 3) A method for producing a silicon single crystal according to the above.

(5)上記(1)〜(4)のいずれか1項記載のシリコン単結晶の製造方法により製造されたシリコン単結晶。 (5) A silicon single crystal produced by the method for producing a silicon single crystal according to any one of (1) to (4) above.

この発明によれば、シリコン単結晶の直胴部形成工程の後半またはテール部形成工程中に、前記直胴部形成工程の後半またはテール部形成工程中に、前記シリコン単結晶中のボロン濃度が1.0×1019 atoms/cm3以上となるよう前記シリコン融液中にボロンを添加し、このボロン添加前の前記シリコン単結晶中のボロン濃度は5.4×1018atoms/cm3以下であることにより、従来の方法と同様にスリップ転位の発生を抑制しつつ、スリップ転位が発生した場合のスリップ転位の伝播について有効に抑制することが可能となった。 According to the present invention, the boron concentration in the silicon single crystal is increased during the latter half of the straight body portion forming step or the tail portion forming step during the latter half of the straight body portion forming step or the tail portion forming step. Boron is added to the silicon melt so as to be 1.0 × 10 19 atoms / cm 3 or more, and the boron concentration in the silicon single crystal before this boron addition is 5.4 × 10 18 atoms / cm 3 or less. Thus, it is possible to effectively suppress the propagation of slip dislocation when slip dislocation occurs while suppressing the occurrence of slip dislocation as in the conventional method.

発明に従うシリコンウェーハの製造方法について図面を参照しながら説明する。   A method for producing a silicon wafer according to the invention will be described with reference to the drawings.

図1は、本発明の製造方法に用いる単結晶引き上げ装置を示し、図2は、本発明の製造方法によって製造されたシリコン単結晶を示す。本発明に従うチョクラルスキー法によるシリコン単結晶の製造方法は、図1に示す単結晶引き上げ装置を用いて、石英坩堝21及び黒鉛坩堝22からなる坩堝2内に所要量のシリコン原料を充填し、ヒーター10を用いて加熱溶融してシリコン融液3にする工程と、種結晶4を前記融液3へ浸した後に、前記種結晶4を、融液3の液温と引き上げ速度を調整して上方に引き上げながら所定の直径をもつシリコン単結晶5の製品となる直胴部13を鉛直方向に所定の長さまで引き上げる直胴部形成工程と、シリコン単結晶5の直径を徐々に小さくして円錐形のテール部14を形成するテール部形成工程とを有する製造方法である。   FIG. 1 shows a single crystal pulling apparatus used in the manufacturing method of the present invention, and FIG. 2 shows a silicon single crystal manufactured by the manufacturing method of the present invention. A method for producing a silicon single crystal by the Czochralski method according to the present invention is to fill a crucible 2 composed of a quartz crucible 21 and a graphite crucible 22 using a single crystal pulling apparatus shown in FIG. The process of heating and melting using the heater 10 to form the silicon melt 3 and the seed crystal 4 after immersing the seed crystal 4 in the melt 3, adjusting the liquid temperature and the pulling speed of the melt 3 A straight body portion forming step of pulling up the straight body portion 13 which is a product of the silicon single crystal 5 having a predetermined diameter while being pulled upward, to a predetermined length in the vertical direction, and the diameter of the silicon single crystal 5 is gradually reduced to form a cone. A tail portion forming step for forming a tail portion 14 of a shape.

ここで、前記チョクラルスキー法は、特にテール部形成工程中において、シリコン単結晶5の融液からの急激な切り離しや、結晶5の成長速度及び温度の変化によって、結晶5内の応力が過大となる場合、並びに、シリコン融液3内に存在する異物が結晶成長界面に取り込まれたときに成長を乱した場合に、前記シリコン単結晶5内にスリップ転位が発生し、この発生したスリップ転位が、その発生位置の直径と同じ長さだけ上方に転位が伝播するという問題があった。そのため、本発明者らは、直胴部の末端部分に伝播により生じる転位を抑制するための検討を行った。ところで、文献(T. Fukuda and A. Ohsawa、Proc. Of The 2nd Symp. on Defects in Si、Electrochemical Society、NJ、1991年、vol.91-9、p.173)には、ボロン添加により、ボロンが転位を固着し、その結果、降伏応力が増加することが示されている。そこで本発明者らは、このシリコン結晶と降伏応力のボロン濃度の関係(図3)に着目し、スリップ転位の発生を抑制しつつ、スリップ転位の伝播についても防止することができるシリコン単結晶の製造方法について鋭意研究を行った。その結果、前記ボロンの添加はシリコン結晶の抵抗率低下という悪影響を製品に及ぼすため、一部の低抵抗品を除き、一般的にシリコン単結晶中のボロン濃度は5.4×1018atoms/cm3以下とすることが必要であるが、製品として使用されない直胴部の末端部分(不良部分)またはテール部中に、ボロンを1.0×1019 atoms/cm3以上となるように前記シリコン融液中へ添加することで、製品部分である単結晶の直胴部には実質的に悪影響が及ぶことなくスリップ転位の伝播の有効な抑制が可能となることを見出した。 Here, in the Czochralski method, the stress in the crystal 5 is excessive due to the rapid separation of the silicon single crystal 5 from the melt and the growth rate and temperature change of the crystal 5, particularly during the tail portion forming step. And when the foreign matter existing in the silicon melt 3 is disturbed when the foreign matter is taken into the crystal growth interface, slip dislocation occurs in the silicon single crystal 5 and the generated slip dislocation occurs. However, there has been a problem that dislocations propagate upward by the same length as the diameter of the generation position. Therefore, the present inventors have studied to suppress dislocations caused by propagation at the end portion of the straight body portion. By the way, in the literature (T. Fukuda and A. Ohsawa, Proc. Of The 2nd Symp. On Defects in Si, Electrochemical Society, NJ, 1991, vol. 91-9, p. 173) Has been shown to anchor dislocations, resulting in an increase in yield stress. Therefore, the present inventors pay attention to the relationship between the silicon crystal and the boron concentration of the yield stress (FIG. 3), and suppress the occurrence of slip dislocation and also prevent the propagation of slip dislocation. We conducted intensive research on manufacturing methods. As a result, the addition of boron has the adverse effect of reducing the resistivity of the silicon crystal, so the boron concentration in the silicon single crystal is generally 5.4 × 10 18 atoms / cm 3 except for some low resistance products. Although it is necessary to make the following, boron is contained in the silicon melt so that it becomes 1.0 × 10 19 atoms / cm 3 or more in the end part (defective part) or tail part of the straight body part that is not used as a product. It has been found that the addition of to can effectively suppress the propagation of slip dislocation without substantially adversely affecting the straight body portion of the single crystal as the product portion.

そのため、ボロン添加前の前記シリコン単結晶5中のボロン濃度は5.4×1018atoms/cm3以下となるようにし、前記直胴部形成工程の後半またはテール部形成工程中に、前記シリコン単結晶5中のボロン濃度が1.0×1019 atoms/cm3以上となるよう前記シリコン融液3中にボロンを添加する必要がある。ここで、ボロン添加前の前記シリコン単結晶5中のボロン濃度を5.4×1018atoms/cm3以下としたのは、一般的な物性をもつシリコン単結晶のボロン濃度であるとともに、シリコン結晶の抵抗率低下の影響が出ないようにするためである。また、前記直胴部形成工程の後半とは、直胴部13の末端部位置から直胴部13の全体長さLの70〜100%の長さの領域にある部分をいう。図2に示すように、特に直胴部13の下部が品質不良部15となった段階でボロンの添加を行うことが、シリコン単結晶の有効利用の点で好ましい。なお、前記品質不良部15とは、品質に影響し、製品として払い出せない部位のことであり、例えば、熱履歴や故意に添加した不純物が濃化し、許容レベル以上になった直胴部13の一部等である。 Therefore, the boron concentration in the silicon single crystal 5 before boron addition is set to 5.4 × 10 18 atoms / cm 3 or less, and the silicon single crystal is formed in the latter half of the straight body portion forming step or the tail portion forming step. It is necessary to add boron to the silicon melt 3 so that the boron concentration in 5 becomes 1.0 × 10 19 atoms / cm 3 or more. Here, the boron concentration in the silicon single crystal 5 before the boron addition is set to 5.4 × 10 18 atoms / cm 3 or less is the boron concentration of the silicon single crystal having general physical properties and the silicon crystal. This is to prevent the influence of the decrease in resistivity. The latter half of the straight body portion forming step refers to a portion in a region having a length of 70 to 100% of the entire length L of the straight body portion 13 from the position of the end portion of the straight body portion 13. As shown in FIG. 2, it is preferable in terms of effective use of the silicon single crystal that boron is added particularly when the lower portion of the straight body portion 13 becomes the poor quality portion 15. The defective quality portion 15 is a portion that affects quality and cannot be dispensed as a product. For example, the thermal history and intentionally added impurities are concentrated, and the straight body portion 13 that has exceeded an allowable level is formed. Some of them.

また、前記シリコン単結晶5中のボロン濃度を1.0×1019 atoms/cm3とするために、前記融液3にボロンを添加し、前記融液3の濃度を調節する必要があるが、ボロンの前記シリコン融液3中の添加量は、0.009〜0.1質量%であることが好ましい。0.009質量%未満では、前記シリコン単結晶5中のボロン濃度を1.0×1019 atoms/cm3以上にすることができないためであり、0.1質量%超えでは、ボロン濃度が高すぎるため、シリコン融液内で溶質過多による組成的過冷却現象が生じ単結晶成長を阻害するからである。 Further, in order to set the boron concentration in the silicon single crystal 5 to 1.0 × 10 19 atoms / cm 3 , it is necessary to add boron to the melt 3 and adjust the concentration of the melt 3. Is preferably 0.009 to 0.1% by mass in the silicon melt 3. If it is less than 0.009% by mass, the boron concentration in the silicon single crystal 5 cannot be made 1.0 × 10 19 atoms / cm 3 or more. If it exceeds 0.1% by mass, the boron concentration is too high. This is because a compositional supercooling phenomenon due to excessive solute occurs and single crystal growth is inhibited.

さらに、融液3に対して0.009〜0.1質量%になるように計算された量のボロンは、図1に示すように、炉外から炉内へ通ずるパイプ状のドーパント供給装置6を用いて坩堝2内のシリコン融液3の表面またはシリコン融液3中に、タイミングを見て投下することが好ましい。前記ドーパント供給装置6とは、炉外にドーパント保持容器7及びドーパント投下管8を有し、運転中もボロンの充填、投下ができるように炉内とのアイソレーションバルブ9及びガスパージ機能(図示せず)を備えたものであり、手動または自動で、任意の投下タイミングに投下を行える装置である。   Further, the amount of boron calculated to be 0.009 to 0.1% by mass with respect to the melt 3 is crucible using a pipe-shaped dopant supply device 6 that leads from the outside of the furnace to the inside of the furnace as shown in FIG. It is preferable to drop it into the surface of the silicon melt 3 in 2 or into the silicon melt 3 with timing. The dopant supply device 6 includes a dopant holding vessel 7 and a dopant dropping tube 8 outside the furnace, and an isolation valve 9 and a gas purge function (not shown) are provided so that boron can be filled and dropped even during operation. 2), and can be dropped manually or automatically at any drop timing.

また、本発明による製造方法で製造した前記シリコン単結晶5の直胴部13における直径は、特に限定されることなく、製品の仕様等によっても異なるが、できるだけ大きいほうが本発明の効果が顕著であるため、200mm以上であることが好ましい。前記スリップ転位の伝播量は、通常はスリップ転位が発生した部分の直径とほぼ等しくなることが知られており、前記シリコン単結晶の直径が大きくなるほど発生したスリップ転位の伝播長さが長くなるため製品歩留まりの低下が大きくなることから、本発明によるスリップ転位の伝播抑止効果が有効に発揮されるためである。   In addition, the diameter of the straight body portion 13 of the silicon single crystal 5 manufactured by the manufacturing method according to the present invention is not particularly limited and varies depending on the product specifications and the like, but the effect of the present invention is more remarkable as large as possible. Therefore, it is preferably 200 mm or more. It is known that the propagation amount of the slip dislocation is usually almost equal to the diameter of the portion where the slip dislocation has occurred, and the propagation length of the slip dislocation that has occurred increases as the diameter of the silicon single crystal increases. This is because the product yield reduction is increased, and the effect of suppressing the propagation of slip dislocations according to the present invention is effectively exhibited.

さらに、前記ボロン添加によるスリップ転位の伝播抑止効果により、製造したシリコン単結晶中のスリップ転位の長さは、スリップ転位の伝播開始位置でのシリコン単結晶直径の91%以下とすることが可能となる。一般に、前記スリップ転位の伝播量は、スリップ転位伝播開始位置での直径と等しくなるが、本発明では、従来技術に比べ9%以上のスリップ転位の伝播抑制効果を有している。   Furthermore, due to the effect of inhibiting the propagation of slip dislocations by adding boron, the length of slip dislocations in the produced silicon single crystal can be 91% or less of the diameter of the silicon single crystal at the propagation start position of slip dislocations. Become. In general, the propagation amount of the slip dislocation is equal to the diameter at the slip dislocation propagation start position, but the present invention has an effect of suppressing the propagation of slip dislocation by 9% or more compared to the prior art.

上記のシリコン単結晶の製造方法によって、前記単結晶の直胴部分にまで伝播しがちな、スリップ転位の伝播を有効に抑制したシリコン単結晶を得ることができる。   By the above-described method for producing a silicon single crystal, it is possible to obtain a silicon single crystal in which propagation of slip dislocations, which tends to propagate to the straight body portion of the single crystal, is effectively suppressed.

なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

(実施例1〜7及び比較例1〜4)
評価用のサンプル1〜11(実施例1〜7及び比較例1〜4)については、以下の手順(1)〜(4)で作製した。
(1)坩堝内にシリコン原料を充填し炉内圧4.0×103Pa、アルゴンガス流量100slpmの雰囲気内で加熱溶融して約1420℃程度のシリコン融液を形成した。このときのシリコン融液中のボロン濃度は6.2×10−6質量%であった。
(2)その後、種結晶を前記融液へ浸し、種結晶の回転速度12rpm、坩堝の回転速度15rpm、引き上げ速度3〜4mm/minで同一雰囲気中種結晶を引き上げることにより絞り部を形成し、絞り部形成後、回転速度12〜15rpm、引き上げ速度0.5〜0.8mm/minで、シリコン単結晶の直径が200mmになるまで徐々に大きくしていき、ショルダー部を形成した。
(3)ショルダー部形成後、前記種結晶を炉内圧4.0×103〜8.0×103Pa、アルゴンガス流量50slpm、融液の液温を約1415℃、結晶の回転速度15rpm、坩堝の回転速度6〜10rpm、引き上げ速度を0.8〜0.6mm/minに調整しながら上方に引き上げ、直径200mm、長さ1.5mの直胴部を形成した。なお、融液中にボロンを添加する前の直胴部のボロン濃度は、9.0×1015atoms/cm3であった。
(4)直胴部形成後、ドーパント投下装置を用いて、融液中にボロンの添加を行い(サンプル1については添加せず)、添加後のシリコン単結晶中のボロン濃度が表1に示すような値となるようサンプルごとに調整した後、回転速度15rpm、引き上げ速度0.6〜1.0mm/minで、シリコン単結晶の直径を徐々に小さくしていき円錐形のテール部を形成してシリコン単結晶の評価用サンプル1〜11を製造した。
(Examples 1-7 and Comparative Examples 1-4)
About the samples 1-11 for evaluation (Examples 1-7 and Comparative Examples 1-4), it produced with the following procedures (1)-(4).
(1) The crucible was filled with a silicon raw material and heated and melted in an atmosphere with a furnace pressure of 4.0 × 10 3 Pa and an argon gas flow rate of 100 slpm to form a silicon melt of about 1420 ° C. At this time, the boron concentration in the silicon melt was 6.2 × 10 −6 mass%.
(2) Thereafter, the seed crystal is immersed in the melt, and the throttle part is formed by pulling up the seed crystal in the same atmosphere at a seed crystal rotation speed of 12 rpm, a crucible rotation speed of 15 rpm, and a pulling speed of 3 to 4 mm / min. After forming the throttle part, the shoulder part was formed by gradually increasing the diameter of the silicon single crystal to 200 mm at a rotational speed of 12 to 15 rpm and a pulling speed of 0.5 to 0.8 mm / min.
(3) After forming the shoulder portion, the seed crystal is subjected to a furnace internal pressure of 4.0 × 10 3 to 8.0 × 10 3 Pa, an argon gas flow rate of 50 slpm, a melt temperature of about 1415 ° C., a crystal rotation speed of 15 rpm, and a crucible rotation speed. While adjusting the pulling speed to 6 to 10 rpm and 0.8 to 0.6 mm / min, it was lifted upward to form a straight body portion having a diameter of 200 mm and a length of 1.5 m. The boron concentration in the straight body portion before adding boron to the melt was 9.0 × 10 15 atoms / cm 3 .
(4) After forming the straight body portion, boron is added to the melt using a dopant dropping device (sample 1 is not added), and the boron concentration in the silicon single crystal after addition is shown in Table 1. After adjusting for each sample so as to achieve such a value, the diameter of the silicon single crystal was gradually reduced at a rotational speed of 15 rpm and a pulling speed of 0.6 to 1.0 mm / min to form a conical tail portion. Crystal evaluation samples 1 to 11 were produced.

(評価方法)
上記で作製した各サンプルの、ボロン添加後のシリコン単結晶中のボロン濃度、及びスリップ転位伝播率{(スリップ転位の長さ/スリップ転位発生位置での単結晶の直径)×100%}を計測し、計測結果を表1に示す。さらに、各サンプルのボロン濃度とスリップ転位の伝播率(%)の関係をプロットし、その結果を図4に示す。
(Evaluation methods)
Measure the boron concentration in the silicon single crystal after boron addition and the slip dislocation propagation rate {(length of slip dislocation / diameter of single crystal at the slip dislocation occurrence location) × 100%} for each sample prepared above. The measurement results are shown in Table 1. Further, the relationship between the boron concentration of each sample and the propagation rate (%) of slip dislocation is plotted, and the result is shown in FIG.

Figure 2009274916
Figure 2009274916

表1の結果から、シリコン単結晶中のボロン濃度が1.0×1019(atoms/cm3)以上である実施例1〜7(サンプル5〜11)のスリップ転位伝播率(%)は、ボロン濃度が1.0×1019(atoms/cm3)未満である比較例1〜4(サンプル1〜4)に比べ伝播率が小さくなっており、製品歩留まりが向上した。また、実施例1〜7(サンプル5〜11)を比較した場合、ボロン濃度が高くなるほど、スリップ転位の伝播率が小さくなっていることがわかる。
また、図4の結果から、添加後の単結晶中のボロン濃度(atoms/cm3)が1.0×1019 atoms/cm3のときを境に、スリップ転位の伝播を抑制する効果が発揮できていることがわかる。
From the results in Table 1, the slip dislocation propagation rate (%) of Examples 1 to 7 (Samples 5 to 11) in which the boron concentration in the silicon single crystal is 1.0 × 10 19 (atoms / cm 3 ) or more is the boron concentration. Is smaller than 1.0 × 10 19 (atoms / cm 3 ), and the propagation rate is smaller than those of Comparative Examples 1 to 4 (Samples 1 to 4), and the product yield is improved. Moreover, when Examples 1-7 (samples 5-11) are compared, it turns out that the propagation rate of slip dislocation is so small that a boron concentration becomes high.
Further, from the result of FIG. 4, the effect of suppressing the propagation of slip dislocation can be exhibited at the boundary when the boron concentration (atoms / cm 3 ) in the single crystal after addition is 1.0 × 10 19 atoms / cm 3. I understand that.

この発明によれば、シリコン単結晶の直胴部形成工程の後半またはテール部形成工程中に、前記直胴部形成工程の後半またはテール部形成工程中に、前記シリコン単結晶中のボロン濃度が1.0×1019 atoms/cm3以上となるよう前記シリコン融液中にボロンを添加することにより、従来の方法と同様にスリップ転位の発生を抑制しつつ、スリップ転位が発生した場合のスリップ転位の伝播について有効に抑制することが可能になった。 According to the present invention, the boron concentration in the silicon single crystal is increased during the latter half of the straight body portion forming step or the tail portion forming step during the latter half of the straight body portion forming step or the tail portion forming step. By adding boron to the silicon melt so as to be 1.0 × 10 19 atoms / cm 3 or more, the occurrence of slip dislocation is suppressed while the occurrence of slip dislocation is suppressed as in the conventional method. Propagation can be effectively suppressed.

本発明の製造方法に用いる、単結晶引き上げ装置及びドーパメント投下装置の模式断面図を示す。The schematic cross section of a single crystal pulling apparatus and a doppler dropping apparatus used for the manufacturing method of this invention is shown. 本発明の製造方法により製造されたシリコン単結晶を示す正面図である。It is a front view which shows the silicon single crystal manufactured by the manufacturing method of this invention. シリコン結晶の降伏応力とボロン濃度との関係を示すグラフである。It is a graph which shows the relationship between the yield stress of a silicon crystal, and a boron concentration. 実施例及び比較例の各サンプルについての、単結晶中のボロン濃度(atoms/cm3)と、スリップ転位の伝播率(%)との関係を示したグラフである。It is the graph which showed the relationship between the boron concentration (atoms / cm < 3 >) in a single crystal, and the propagation rate (%) of a slip dislocation about each sample of an Example and a comparative example.

符号の説明Explanation of symbols

1 単結晶引き上げ装置
2 坩堝
3 シリコン融液
4 種結晶
5 シリコン単結晶
6 ドーパメント投下装置
7 ドーパメント保持容器
8 ドーパメント投下管
9 アイソレーションバルブ
10 ヒーター
11 絞り部
12 ショルダー部
13 直胴部
14 テール部
15 品質不良部
21 石英坩堝
22 黒鉛坩堝
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Crucible 3 Silicon melt 4 Seed crystal 5 Silicon single crystal 6 Dopment drop device 7 Dopment holding container 8 Dopment drop pipe 9 Isolation valve 10 Heater 11 Restriction part 12 Shoulder part 13 Straight body part 14 Tail part 15 Quality defective part 21 Quartz crucible 22 Graphite crucible

Claims (5)

坩堝内に所要量のシリコン原料を充填し加熱溶融してシリコン融液にする工程と、種結晶を前記融液へ浸した後に、前記種結晶を、融液の液温と引き上げ速度を調整して上方に引き上げながら所定の直径をもつシリコン単結晶の製品となる直胴部形成のため鉛直方向に所定の長さまで引き上げる直胴部形成工程と、シリコン単結晶の直径を徐々に小さくしてテール部を円錐形にするテール部形成工程とを有する、チョクラルスキー法によるシリコン単結晶の製造方法において、
前記直胴部形成工程の後半またはテール部形成工程中に、前記シリコン単結晶中のボロン濃度が1.0×1019 atoms/cm3以上となるよう前記シリコン融液中にボロンを添加し、このボロン添加前の前記シリコン単結晶中のボロン濃度は5.4×1018atoms/cm3以下であることを特徴とするシリコン単結晶の製造方法。
Filling the crucible with the required amount of silicon raw material and heating and melting it to form a silicon melt; after immersing the seed crystal in the melt, the temperature of the melt and the pulling speed are adjusted. To form a straight body part that becomes a silicon single crystal product having a predetermined diameter while being pulled upward, and a straight body part forming step of pulling up to a predetermined length in the vertical direction, and gradually reducing the diameter of the silicon single crystal In the method for producing a silicon single crystal by the Czochralski method, having a tail part forming step for making the part conical,
Boron is added to the silicon melt so that the boron concentration in the silicon single crystal is 1.0 × 10 19 atoms / cm 3 or more during the latter half of the straight body portion forming step or the tail portion forming step. A method for producing a silicon single crystal, wherein a boron concentration in the silicon single crystal before addition is 5.4 × 10 18 atoms / cm 3 or less.
前記ボロンの添加量は、0.009〜0.1質量%であることを特徴とする請求項1記載のシリコン単結晶の製造方法。   The method for producing a silicon single crystal according to claim 1, wherein the amount of boron added is 0.009 to 0.1 mass%. 前記直胴部でのシリコン単結晶の直径は200mm以上であることを特徴とする請求項1または2記載のシリコン単結晶の製造方法。   3. The method for producing a silicon single crystal according to claim 1, wherein the diameter of the silicon single crystal in the straight body portion is 200 mm or more. 製造したシリコン単結晶中のスリップ転位の長さが、スリップ転位の伝播開始位置でのシリコン単結晶直径の91%以下となることを特徴とする請求項1、2または3記載のシリコン単結晶の製造方法。   The length of slip dislocation in the produced silicon single crystal is 91% or less of the silicon single crystal diameter at the propagation start position of slip dislocation. Production method. 請求項1〜4のいずれか1項記載のシリコン単結晶の製造方法により製造されたシリコン単結晶。   A silicon single crystal produced by the method for producing a silicon single crystal according to claim 1.
JP2008128120A 2008-05-15 2008-05-15 Silicon single crystal and production method of the same Pending JP2009274916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008128120A JP2009274916A (en) 2008-05-15 2008-05-15 Silicon single crystal and production method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008128120A JP2009274916A (en) 2008-05-15 2008-05-15 Silicon single crystal and production method of the same

Publications (1)

Publication Number Publication Date
JP2009274916A true JP2009274916A (en) 2009-11-26

Family

ID=41440680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128120A Pending JP2009274916A (en) 2008-05-15 2008-05-15 Silicon single crystal and production method of the same

Country Status (1)

Country Link
JP (1) JP2009274916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173998A1 (en) * 2014-05-12 2015-11-19 信越半導体株式会社 Method for growing silicon single crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249492A (en) * 1996-03-13 1997-09-22 Sumitomo Sitix Corp Seed crystal for pulling up single crystal and pulling-up of single crystal using the same
JP2001072494A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Ind Ltd Production of single crystal
JP2002255684A (en) * 2001-02-28 2002-09-11 Toshiba Ceramics Co Ltd Manufacturing method of silicone monocrystal ingot
JP2006261558A (en) * 2005-03-18 2006-09-28 Fujitsu Ltd Silicon semiconductor substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249492A (en) * 1996-03-13 1997-09-22 Sumitomo Sitix Corp Seed crystal for pulling up single crystal and pulling-up of single crystal using the same
JP2001072494A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Ind Ltd Production of single crystal
JP2002255684A (en) * 2001-02-28 2002-09-11 Toshiba Ceramics Co Ltd Manufacturing method of silicone monocrystal ingot
JP2006261558A (en) * 2005-03-18 2006-09-28 Fujitsu Ltd Silicon semiconductor substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173998A1 (en) * 2014-05-12 2015-11-19 信越半導体株式会社 Method for growing silicon single crystal
JP2015214460A (en) * 2014-05-12 2015-12-03 信越半導体株式会社 Raising method of silicon single crystal
KR20170009853A (en) * 2014-05-12 2017-01-25 신에쯔 한도타이 가부시키가이샤 Method for growing silicon single crystal
CN106460227A (en) * 2014-05-12 2017-02-22 信越半导体株式会社 Method for growing silicon single crystal
US9988736B2 (en) 2014-05-12 2018-06-05 Shin-Etsu Handotai Co., Ltd. Method for growing a silicon single crystal while suppressing a generation of slip dislocations in a tail portion
CN106460227B (en) * 2014-05-12 2019-03-22 信越半导体株式会社 The growing method of monocrystalline silicon
KR102105366B1 (en) 2014-05-12 2020-04-28 신에쯔 한도타이 가부시키가이샤 Method for growing silicon single crystal
DE112015001883B4 (en) 2014-05-12 2022-03-17 Shin-Etsu Handotai Co., Ltd. Process for growing a silicon single crystal

Similar Documents

Publication Publication Date Title
JP5052493B2 (en) Method for producing silicon single crystal
JP5309170B2 (en) A method for pulling a single crystal made of silicon from a melt contained in a crucible, and a single crystal produced by this method
JP4821179B2 (en) Method for growing silicon single crystal
JP4806974B2 (en) Silicon single crystal growth method
KR20180101586A (en) Manufacturing method of silicon single crystal
CN110629283A (en) Silicon single crystal growth method
JP5953884B2 (en) Method for producing sapphire single crystal
JP2009292659A (en) Method for forming shoulder in growing silicon single crystal
JP6579046B2 (en) Method for producing silicon single crystal
JP5399212B2 (en) Method for producing silicon single crystal
JP4726138B2 (en) Quartz glass crucible
US20090038537A1 (en) Method of pulling up silicon single crystal
JP5375636B2 (en) Method for producing silicon single crystal
JP2009274916A (en) Silicon single crystal and production method of the same
JP5167942B2 (en) Method for producing silicon single crystal
JP2009274888A (en) Production method of silicon single crystal, and silicon single crystal wafer
JP5067301B2 (en) Method for producing silicon single crystal
JP2000072590A (en) Growth of high quality single silicon crystal
JP2010042968A (en) Method for producing silicon single crystal
JP3900816B2 (en) Silicon wafer manufacturing method
JP2005314143A (en) Method for producing silicon single crystal
JP6699620B2 (en) Method for producing silicon single crystal
KR101173764B1 (en) A Method for Eliminating a Dislocation in Growing Single Si Crystal
JP2011251892A (en) InP SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP5136253B2 (en) Method for growing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110413

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120308

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120313

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120814

Free format text: JAPANESE INTERMEDIATE CODE: A02