JP2009273251A - Motor drive - Google Patents

Motor drive Download PDF

Info

Publication number
JP2009273251A
JP2009273251A JP2008122186A JP2008122186A JP2009273251A JP 2009273251 A JP2009273251 A JP 2009273251A JP 2008122186 A JP2008122186 A JP 2008122186A JP 2008122186 A JP2008122186 A JP 2008122186A JP 2009273251 A JP2009273251 A JP 2009273251A
Authority
JP
Japan
Prior art keywords
armature winding
phase
terminal
impedance
phase armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008122186A
Other languages
Japanese (ja)
Other versions
JP5230257B2 (en
Inventor
Makoto Morizaki
誠 森▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2008122186A priority Critical patent/JP5230257B2/en
Publication of JP2009273251A publication Critical patent/JP2009273251A/en
Application granted granted Critical
Publication of JP5230257B2 publication Critical patent/JP5230257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensorless motor drive circuit that can be applied to a brushless motor of delta connection, in which there is no neutral potential. <P>SOLUTION: U and V phases are GND-connected, and a W phase is not connected. Voltages Vn1 and Vn2 are detected. The U phase is plus potential-connected, the V phase is GND-connected and the W phase is not connected. Voltages Vn1' and Vn2' are detected. The ratio between impedance of the U phase and impedance of the V phase is obtained. The V and W phases are GND-connected and the U phase is not connected. Voltages Vn3 and Vn4 are detected. The V phase is plus potential-connected, the W phase is GND-connected and the U phase is not connected. Voltages Vn3' and Vn4' are detected and the ratio between impedance of the V phase and impedance of the W phase is obtained. Thus, the impedance ratios for the respective phases are obtained. The relative angle of three phase armature winding and a magnet rotor is derived from the obtained impedance ratio. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、モータ駆動装置にかかり、特に、ブラシレスモータ等のモータを駆動するモータ駆動装置に関する。   The present invention relates to a motor drive device, and more particularly to a motor drive device that drives a motor such as a brushless motor.

ブラシレスモータ等のモータでは、一般的に回転子の位置を検出する必要があり、ホール素子等の磁気センサを用いて回転子の位置を検出する。しかしながら、センサを設けることによって、センサの使用環境の制約を受けやすく、モータの配線が増え、さらにモータのスペースや部品点数などの面から、種々の弊害を生じることがある。   In a motor such as a brushless motor, it is generally necessary to detect the position of the rotor, and the position of the rotor is detected using a magnetic sensor such as a Hall element. However, by providing the sensor, it is easy to be restricted by the use environment of the sensor, the wiring of the motor is increased, and various adverse effects may occur from the viewpoint of the motor space and the number of parts.

そこで、ホール素子等のセンサを設けずに、モータを駆動制御する技術が提案されている。例えば、特許文献1に記載の技術では、回転子の角度による各相間のインダクタンスの相違を利用して、異なる相間のインダクタンスを求め、予め記憶しておいた関係から電気角を求めることが提案されている。具体的には、電流検出器を用いて停止状態での回転子の位置を検出することが提案されている。   Therefore, a technique for driving and controlling a motor without providing a sensor such as a Hall element has been proposed. For example, in the technique described in Patent Document 1, it is proposed to obtain the inductance between different phases by using the difference in inductance between the phases depending on the angle of the rotor, and obtain the electrical angle from the relationship stored in advance. ing. Specifically, it has been proposed to detect the position of the rotor in a stopped state using a current detector.

しかしながら、特許文献1に記載の技術では、電流検出器が別途必要となってしまうので、特許文献2や特許文献3に記載の技術などが開発された。   However, since the technique described in Patent Document 1 requires a current detector separately, the techniques described in Patent Document 2 and Patent Document 3 have been developed.

特許文献2に記載の技術では、界磁巻線に電源電圧を印加して各相に誘起される電圧から回転子角度を演算して、演算した回転子角度に基づいて、電機子巻線への通電を開始するようにしている。また、初期角度の推定値から次の通電相切替までの時間を推定して通電相を切り替えることによって磁極位置センサを用いることなく電機子の駆動制御を行うことが提案されている。   In the technique described in Patent Document 2, a power source voltage is applied to a field winding to calculate a rotor angle from a voltage induced in each phase, and based on the calculated rotor angle, an armature winding is calculated. The power is turned on. It has also been proposed to control the armature without using a magnetic pole position sensor by estimating the time from the initial angle estimated value to the next energized phase switching and switching the energized phase.

また、特許文献3に記載の技術では、パルス電圧をモータに印加したときの中性点電位を測定して、インダクタンス値を調べて総合回転角を求めることが提案されている。
特開平7−177788号公報 特開2005−12952号公報 特表2001−516198号公報
Further, in the technique described in Patent Document 3, it is proposed to measure a neutral point potential when a pulse voltage is applied to a motor and to examine an inductance value to obtain a total rotation angle.
Japanese Patent Laid-Open No. 7-177788 JP 2005-12952 A Special table 2001-516198 gazette

しかしながら、特許文献2、3の何れの技術も中性点を取り出す必要があり、デルタ結線では実現不可能である。   However, in any of the techniques of Patent Documents 2 and 3, it is necessary to take out a neutral point, which cannot be realized by delta connection.

本発明は、上記事実を考慮して成されたもので、中性電位の存在しないデルタ結線のブラシレスモータにも適用可能なセンサレス方式のモータ駆動回路を提供することを目的とする。   The present invention has been made in consideration of the above-described facts, and an object of the present invention is to provide a sensorless motor driving circuit that can be applied to a delta-connected brushless motor having no neutral potential.

上記目的を達成するために請求項1に記載の発明は、3相以上の複数相の電機子巻線に電力を順次印加することによって回転子を回転するモータと、複数のスイッチング素子のオンオフにより直流電力を交流電力に変換して前記モータに印加するためのスイッチング素子群と、前記回転子の回転を制御するするために前記スイッチング素子群を制御する制御手段と、前記回転子が回転しない程度の電力を前記モータに印加するように前記制御手段が前記スイッチング素子群を制御した際の前記電機子巻線の端子電圧を検出し、検出結果に基づいて前記電機子巻線に対する前記回転子の相対角度を導出する導出手段と、を備えることを特徴としている。   In order to achieve the above object, the invention described in claim 1 is based on a motor that rotates a rotor by sequentially applying electric power to armature windings of three or more phases and a plurality of switching elements. A switching element group for converting DC power into AC power and applying it to the motor, a control means for controlling the switching element group for controlling rotation of the rotor, and a degree that the rotor does not rotate The control means detects the terminal voltage of the armature winding when the control means controls the switching element group so as to apply the power of the motor to the motor, and based on the detection result, the rotor of the rotor with respect to the armature winding And a derivation means for deriving the relative angle.

請求項1に記載の発明によれば、モータは、3相以上の複数相の電機子巻線に電力を順次印加することによって回転子が回転され、スイッチング素子群は、複数のスイッチング素子をオンオフすることにより直流電力を交流電力に変換してモータに印加する。   According to the first aspect of the present invention, the motor rotates the rotor by sequentially applying electric power to the armature windings of the three or more phases and the switching element group turns the plurality of switching elements on and off. By doing so, DC power is converted to AC power and applied to the motor.

そして、制御手段では、回転子の回転を制御するためにスイッチング素子群が制御され、これによってモータが駆動される。   And in a control means, in order to control rotation of a rotor, a switching element group is controlled, and a motor is driven by this.

ところで、複数相の電機子巻線を有するモータでは、モータを駆動するためには、電機子巻線に対する回転子の相対角度を検出する必要がある。一方、電機子巻線と回転子は、電機子巻線に対する回転子の相対角度に応じて各相の電機子巻線のインダクタンスが変化するため各相のインピーダンスが変化する。   By the way, in a motor having a multi-phase armature winding, in order to drive the motor, it is necessary to detect the relative angle of the rotor with respect to the armature winding. On the other hand, since the inductance of the armature winding of each phase changes according to the relative angle of the rotor with respect to the armature winding, the impedance of each phase changes between the armature winding and the rotor.

そこで、導出手段では、回転子が回転しない程度の電力をモータに印加するように制御手段がスイッチング素子群を制御した際の電機子巻線の端子電圧を検出する。そして、検出した端子電圧に基づいて電機子巻線に対する回転子の相対角度を導出する。これによってモータを駆動制御することが可能となる。   Therefore, the deriving unit detects the terminal voltage of the armature winding when the control unit controls the switching element group so that the electric power that does not rotate the rotor is applied to the motor. Then, a relative angle of the rotor with respect to the armature winding is derived based on the detected terminal voltage. This makes it possible to drive and control the motor.

すなわち、回転子が回転しない程度の電力を電機子巻線に印加した際の端子電圧を検出するので、中性点電位を取り出す必要がないため、スター結線及びデルタ結線の双方に適用できる。従って、中性電位の存在しないデルタ結線のブラシレスモータにも適用可能なセンサレス方式のモータ駆動回路を提供することができる。   In other words, since the terminal voltage is detected when power that does not allow the rotor to rotate is applied to the armature winding, it is not necessary to take out the neutral point potential. Therefore, the present invention can be applied to both star connection and delta connection. Therefore, it is possible to provide a sensorless motor drive circuit that can be applied to a delta-connected brushless motor that does not have a neutral potential.

請求項2に記載の発明は、請求項1に記載の発明において、前記導出手段は、前記電機子巻線の端子電圧から各相のインピーダンス比を求め、該インピーダンス比から前記回転子の相対角度を導出することを特徴としている。   According to a second aspect of the present invention, in the first aspect of the invention, the derivation means obtains an impedance ratio of each phase from the terminal voltage of the armature winding, and the relative angle of the rotor is determined from the impedance ratio. It is characterized by deriving.

請求項2に記載の発明によれば、上述したように、電機子巻線に対する回転子の相対角度に応じて各相の電機子巻線のインピーダンスが変化するため、導出手段が、電機子巻線の端子電圧から各相のインピーダンス比を求めることにより、求めたンピーダンス比から周知技術を用いて回転子の相対角度を導出することができる。   According to the invention described in claim 2, as described above, since the impedance of the armature winding of each phase changes according to the relative angle of the rotor with respect to the armature winding, the derivation means includes the armature winding. By obtaining the impedance ratio of each phase from the terminal voltage of the wire, the relative angle of the rotor can be derived from the obtained impedance ratio using a known technique.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記導出手段は、電力が印加されていない前記電機子巻線の端子電圧を検出して、前記相対角度を導出することを特徴としている。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the derivation means detects a terminal voltage of the armature winding to which no power is applied, and determines the relative angle. It is characterized by deriving.

請求項3に記載の発明によれば、導出手段が、電力が印加されていない電機子巻線の端子電圧を検出することで、各相のインピーダンス比を求めることができ、該インピーダンス比から電機子巻線に対する回転子の相対角度を導出することが可能となる。   According to the third aspect of the present invention, the derivation means can determine the impedance ratio of each phase by detecting the terminal voltage of the armature winding to which no electric power is applied, and the electric impedance can be obtained from the impedance ratio. It is possible to derive the relative angle of the rotor with respect to the child winding.

請求項4に記載の発明は、請求項1に記載の発明において、前記導出手段が、前記制御手段によって前記電機子巻線の端子のうち1端子が無接続とされ、残りの端子がマイナス電位に接続するように制御されているときの無接続となっている端子電圧に基づく電位と、前記制御手段によって前記電機子巻線の端子のうち1端子がプラス電位に接続され、残りの端子のうち1端子がマイナス電位に接続され、残りの端子が無接続となるように制御されているときの無接続となっている端子電圧に基づく電位と、を比較することで、前記電機子巻線のインピーダンス交流成分の比を求め、求めた比から前記相対角度を導出することを特徴としている。   According to a fourth aspect of the present invention, in the first aspect of the present invention, in the first aspect, the derivation unit causes the control unit to disconnect one of the terminals of the armature winding, and the remaining terminals have a negative potential. And one terminal among the terminals of the armature winding is connected to a positive potential by the control means, and a potential based on a terminal voltage that is not connected when controlled to be connected to the other terminal. The armature winding is compared with a potential based on a terminal voltage that is not connected when one terminal is connected to a negative potential and the remaining terminals are controlled to be disconnected. The ratio of the alternating current impedance component is obtained, and the relative angle is derived from the obtained ratio.

請求項4に記載の発明によれば、導出手段が、電機子巻線の端子のうち1端子が無接続とされ、残りの端子がマイナス電位に接続されるように制御手段によってスイッチング素子群が制御されたときの無接続となっている端子電圧に基づく電位と、電機子巻線の端子のうち1端子がプラス電位に接続され、残りの端子のうち1端子がマイナス電位に接続され、残りの端子が無接続となるように制御手段によってスイッチング素子群が制御されたときの無接続となっている端子電圧に基づく電位と、を比較することで、電機子巻線のインピーダンス交流成分の比を求めることができ、当該インピーダンス比から電機子巻線に対する回転子の相対角度を導出することが可能となる。   According to the invention described in claim 4, the derivation means is configured so that the switching element group is controlled by the control means so that one of the terminals of the armature winding is not connected and the remaining terminals are connected to a negative potential. One of the terminals of the armature winding is connected to the positive potential, and one of the remaining terminals is connected to the negative potential, and the rest is based on the terminal voltage that is not connected when controlled. The ratio of the impedance AC component of the armature winding is compared with the potential based on the terminal voltage that is not connected when the switching element group is controlled by the control means so that the terminals of the armature winding are not connected. And the relative angle of the rotor to the armature winding can be derived from the impedance ratio.

請求項5に記載の発明は、請求項1に記載の発明において、前記導出手段が、前記制御手段によって前記電機子巻線の端子のうち1端子が無接続とされ、残りの端子がプラス電位に接続されるように制御されているときの無接続となっている端子電圧に基づく電位と、前記制御手段によって前記電機子巻線の端子のうち1端子がプラス電位に接続され、残りの端子のうち1端子がマイナス電位に接続され、残りの端子が無接続となるように制御されているときの無接続となっている端子電圧に基づく電位と、を比較することで、前記電機子巻線のインピーダンス交流成分の比を求め、求めた比から前記相対角度を導出することを特徴としている。   According to a fifth aspect of the present invention, in the first aspect of the present invention, the derivation unit is configured such that one terminal of the terminals of the armature winding is disconnected by the control unit, and the remaining terminals are positive potentials. A potential based on a terminal voltage that is not connected when being controlled to be connected to the terminal, and one terminal among the terminals of the armature winding is connected to a positive potential by the control means, and the remaining terminals Of the armature winding is compared with a potential based on a terminal voltage that is not connected when one terminal is connected to a negative potential and the remaining terminals are controlled to be disconnected. It is characterized in that a ratio of impedance alternating current components of the line is obtained, and the relative angle is derived from the obtained ratio.

請求項5に記載の発明によれば、導出手段が、電機子巻線の端子のうち1端子が無接続とされ、残りの端子がプラス電位に接続されるように制御手段によってスイッチング素子群が制御されたときの無接続となっている端子電圧に基づく電位と、電機子巻線の端子のうち1端子がプラス電位に接続され、残りの端子のうち1端子がマイナス電位に接続され、残りの端子が無接続となるように制御手段によってスイッチング素子群が制御されたときの無接続となっている端子電圧に基づく電位と、を比較することで、電機子巻線のインピーダンス交流成分の比を求めることができ、当該インピーダンス比から電機子巻線に対する回転子の相対角度を導出することが可能となる。   According to the fifth aspect of the present invention, the derivation means is configured so that the switching element group is controlled by the control means so that one of the terminals of the armature winding is not connected and the remaining terminals are connected to a positive potential. One of the terminals of the armature winding is connected to the positive potential, and one of the remaining terminals is connected to the negative potential, and the rest is based on the terminal voltage that is not connected when controlled. The ratio of the impedance AC component of the armature winding is compared with the potential based on the terminal voltage that is not connected when the switching element group is controlled by the control means so that the terminals of the armature winding are not connected. And the relative angle of the rotor to the armature winding can be derived from the impedance ratio.

請求項6に記載の発明は、請求項4又は請求項5に記載の発明において、前記導出手段は、回転子の磁束による前記電機子巻線の誘起電圧を差し引いて前記インピーダンス交流成分の比を求めることを特徴としている。   The invention according to claim 6 is the invention according to claim 4 or 5, wherein the derivation means subtracts the induced voltage of the armature winding due to the magnetic flux of the rotor to obtain the ratio of the impedance AC component. It is characterized by seeking.

請求項6に記載の発明によれば、回転子が回転することによって各相の電機子巻線に誘起電圧が発生するので、導出手段が、回転子の磁束による電機子巻線の誘起電圧を差し引いてインピーダンス交流成分の比を求めることで、誘起電圧分を除外したインピーダンス交流成分の比を求めることが可能となる。   According to the sixth aspect of the present invention, since the induced voltage is generated in the armature winding of each phase by the rotation of the rotor, the derivation means generates the induced voltage of the armature winding by the magnetic flux of the rotor. By subtracting and obtaining the ratio of the impedance alternating current component, the ratio of the impedance alternating current component excluding the induced voltage can be obtained.

請求項7に記載の発明は、請求項4又は請求項5に記載の発明において、前記導出手段は、検出すべき前記電機子巻線の端子電圧の検出可能な期間が、電圧サンプリング周期より小さい場合、前記電機子巻線の端子電圧の発生期間が電圧サンプリング周期より大きくなるまで、プラス電位への接続期間又はマイナス電位への接続期間を調整することで、前記電機子巻線の端子電圧の検出を行うことを特徴としている。   According to a seventh aspect of the present invention, in the invention according to the fourth or fifth aspect, the derivation means has a period in which the terminal voltage of the armature winding to be detected is detectable less than a voltage sampling period. The terminal voltage of the armature winding is adjusted by adjusting the connection period to the positive potential or the connection period to the negative potential until the generation period of the terminal voltage of the armature winding becomes larger than the voltage sampling period. It is characterized by performing detection.

請求項7に記載の発明によれば、検出すべき電機子巻線の端子電圧の検出可能な期間が、電圧サンプリング周期より小さい場合には、各相のインピーダンス交流成分の比を求めることができないので、導出手段が、電機子巻線の端子電圧の発生期間が電圧サンプリング周期より大きくなるまで、プラス電位への接続期間又はマイナス電位への接続期間を調整することで、電機子巻線の端子電圧の検出が可能となる。   According to the seventh aspect of the present invention, when the period in which the terminal voltage of the armature winding to be detected is detectable is smaller than the voltage sampling period, the ratio of the impedance alternating current component of each phase cannot be obtained. Therefore, the derivation means adjusts the connection period to the positive potential or the connection period to the negative potential until the generation period of the terminal voltage of the armature winding becomes larger than the voltage sampling period, so that the terminal of the armature winding The voltage can be detected.

請求項8に記載の発明は、請求項4又は請求項5に記載の発明において、前記導出手段は、無接続となっている前記電機子巻線の端子のプラス側電位と、グランド側電位との電位差を比較することによって、前記インピーダンス交流費を求めることを特徴としている。   According to an eighth aspect of the present invention, in the invention according to the fourth or fifth aspect, the derivation means includes: a positive side potential of a terminal of the armature winding that is not connected; a ground side potential; The impedance AC cost is obtained by comparing the potential difference between the two.

請求項8に記載の発明によれば、電機子巻線の接続はデルタ結線を適用可能で、デルタ結線でもセンサレスでモータを駆動することができる。   According to the eighth aspect of the present invention, delta connection can be applied to the connection of the armature winding, and the motor can be driven without a sensor even in the delta connection.

以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態に係わるブラシレスモータ駆動装置の概略構成図である。   FIG. 1 is a schematic configuration diagram of a brushless motor driving apparatus according to an embodiment of the present invention.

ブラシレスモータ12は、U相、V相、W相の電機子巻線がスター結線(Y結線)された3相電機子巻線と回転子とから構成されている。3相電機子巻線の各相U、V、Wはそれぞれ120°のピッチで配置されており、ブラシレスモータ駆動装置10のPWM(Pulse Width Modulation)方式のインバータを構成するスイッチング素子群14の出力端と接続されている。   The brushless motor 12 includes a three-phase armature winding and a rotor in which U-phase, V-phase, and W-phase armature windings are star-connected (Y-connected). Each phase U, V, W of the three-phase armature winding is arranged at a pitch of 120 °, and the output of the switching element group 14 constituting the PWM (Pulse Width Modulation) type inverter of the brushless motor driving device 10 Connected with the end.

スイッチング素子群14は直流電源16と接続され、コンデンサCが並列に接続されている。3相電機子巻線は、スイッチング素子群14のトランジスタにより3相電機子巻線の各相に所定のタイミングで通電切替されることで、回転磁界が形成される。   The switching element group 14 is connected to a DC power source 16 and a capacitor C is connected in parallel. The three-phase armature winding is energized and switched to each phase of the three-phase armature winding by a transistor of the switching element group 14 at a predetermined timing, thereby forming a rotating magnetic field.

スイッチング素子群14を構成するスイッチング素子としての3対(計6個)のトランジスタTR1〜TR6は、3相ブリッジ接続され、各トランジスタには並列にダイオードDが接続されている。   Three pairs (six in total) of transistors TR1 to TR6 as switching elements constituting the switching element group 14 are connected in a three-phase bridge, and a diode D is connected in parallel to each transistor.

更に、ブラシレスモータ駆動装置10には、ブラシレスモータ12の駆動を制御するコントローラ18、及びブラシレスモータ12の回転子の位置を検出するためのオブザーバ20が設けられている。   Further, the brushless motor driving apparatus 10 is provided with a controller 18 for controlling the driving of the brushless motor 12 and an observer 20 for detecting the position of the rotor of the brushless motor 12.

コントローラ18は、3相ブリッジ接続された各トランジスタが接続されていると共に、オブザーバ20が接続されており、オブザーバ20によって検出されたブラシレスモータ12の回転子の位置(電機子巻線に対する回転子の相対角度)に応じて各トランジスタを制御することによって、ブラシレスモータ12の駆動を制御する。   The controller 18 is connected to each transistor connected in a three-phase bridge, and is also connected to an observer 20. The position of the rotor of the brushless motor 12 detected by the observer 20 (the rotor position relative to the armature winding) is connected. The driving of the brushless motor 12 is controlled by controlling each transistor in accordance with the relative angle.

オブザーバ20は、ブラシレスモータ12の各相の電機子巻線(端子A〜C)に接続されており、電機子巻線の端子電圧を検出することで、3相電機子巻線に対する回転子の相対角度を検出して、検出結果をコントローラ18に出力する。具体的には、オブザーバ20は、電機子巻線の端子電圧をサンプルホールドし、別にサンプルホールドした端子電圧を比較するためのコンパレータを含んでいる。なお、オブザーバ20による3相電機子巻線に対する回転子の相対角度の検出方法については後述する。   The observer 20 is connected to the armature windings (terminals A to C) of each phase of the brushless motor 12, and detects the terminal voltage of the armature windings to detect the rotor with respect to the three-phase armature windings. The relative angle is detected, and the detection result is output to the controller 18. Specifically, the observer 20 includes a comparator that samples and holds the terminal voltage of the armature winding and compares the terminal voltage that has been separately sampled and held. A method for detecting the relative angle of the rotor with respect to the three-phase armature winding by the observer 20 will be described later.

ところで、ブラシレスモータは、回転子の磁極位置に同期して、3相電機子巻線の各相への通電を切り替えるため、回転子の位置を検出する必要があり、一般的には、ホール素子等のセンサを用いて検出するが、本実施の形態では、回転子の位置の検出を行う際には、ホールセンサ等のセンサを用いないセンサレスで3相電機子巻線と回転子の相対角度を検出するようにしている。   By the way, since the brushless motor switches energization to each phase of the three-phase armature winding in synchronization with the magnetic pole position of the rotor, it is necessary to detect the position of the rotor. In this embodiment, when detecting the position of the rotor, the relative angle between the three-phase armature winding and the rotor without using a sensor such as a Hall sensor is used. To detect.

ここで、本発明の実施の形態に係わるブラシレスモータ駆動装置10における3相電機子巻線と回転子の相対角度の検出方法について説明する。   Here, a method for detecting the relative angle between the three-phase armature winding and the rotor in the brushless motor driving apparatus 10 according to the embodiment of the present invention will be described.

ブラシレスモータ12は、3相電機子巻線と回転子の相対角度によってインダクタンスが変化し、突極比(インダクタンスの最大値と最小値の比)を有する。インダクタンス変化の周期は、図2(A)に示すように、回転子のN極とS極によって変化し、モータの電気角360度区間で2周期発生する。3相ブラシレスモータ12のインダクタンス波形は、U、V、W相がそれぞれ電気角120度ずらして配置されているため、図2(B)に示すように、各相毎に120度の位相差のある波形となる。すなわち、3相電機子巻線と回転子の相対角度に応じて相毎の巻線のインピーダンス値が異なるから、どの線間に電圧を印加するかによって中性点電位波形が異なる。   The brushless motor 12 has an inductance that varies depending on the relative angle between the three-phase armature winding and the rotor, and has a salient pole ratio (ratio between the maximum value and the minimum value of inductance). As shown in FIG. 2A, the inductance change period varies depending on the N pole and S pole of the rotor, and is generated in two periods in the motor electrical angle 360 degree section. The inductance waveform of the three-phase brushless motor 12 is such that the U, V, and W phases are arranged with an electrical angle shifted by 120 degrees. Therefore, as shown in FIG. It becomes a certain waveform. That is, since the impedance value of the winding for each phase differs according to the relative angle between the three-phase armature winding and the rotor, the neutral potential waveform varies depending on which line the voltage is applied to.

そこで、本実施の形態では、各相のインダクタンス変化によって発生するインピーダンス変化から各相のインピーダンスの比を求める。   Therefore, in this embodiment, the impedance ratio of each phase is obtained from the impedance change caused by the inductance change of each phase.

例えば、コントローラ18によってトランジスタTR1、TR4をオンすることで、図3(B)に示すように、U相の電機子巻線(端子A)に直流電源16のブラス電圧を印加し、V相の電機子巻線(端子B)をGND接続し、W相の電機子巻線(端子C)を無接続とする。この状態のプラス電位からW相の電機子巻線の端子Cの電位差を観ると、Vn1’=プラス電圧×U相インピーダンス/(U相インピーダンス+V相インピーダンス)の電圧が発生する。また、GNDからW相の電機子巻線の端子Cの電位差を観ると、Vn2’=プラス電圧×V相インピーダンス/(U相インピーダンス+V相インピーダンス)の電圧が発生する。すなわち、電圧Vn1’及び電圧Vn2’をオブザーバ20が検出することで、U相電機子巻線のインピーダンスとV相電機子巻線のインピーダンスとの比を求めることができる。この時、電機子巻線の誘起電圧の変化分を除いた電圧変化分のみを抽出するために、コントローラ18によってトランジスタTR2、TR4をオンすることで、図3(A)に示すように、U相及びV相の電機子巻線(端子A、B)をGND接続し、W相の電機子巻線(端子C)を無接続とする。そして、電圧Vn1、Vn2をそれぞれ検出し、電圧Vn’1、Vn’2から電圧Vn1、Vn2をそれぞれ差し引いて比を求める。これによって(1)式に示すように、U相電機子巻線のインピーダンス(AC成分)とV相電機子巻線のインピーダンス(AC成分)との比を求めることができる。   For example, by turning on the transistors TR1 and TR4 by the controller 18, the brass voltage of the DC power supply 16 is applied to the U-phase armature winding (terminal A) as shown in FIG. The armature winding (terminal B) is GND-connected, and the W-phase armature winding (terminal C) is not connected. When the potential difference at the terminal C of the W-phase armature winding is observed from the plus potential in this state, a voltage of Vn1 '= plus voltage × U phase impedance / (U phase impedance + V phase impedance) is generated. Further, when the potential difference between the GND and the terminal C of the W-phase armature winding is observed, a voltage of Vn2 ′ = plus voltage × V-phase impedance / (U-phase impedance + V-phase impedance) is generated. That is, when the observer 20 detects the voltage Vn1 'and the voltage Vn2', the ratio between the impedance of the U-phase armature winding and the impedance of the V-phase armature winding can be obtained. At this time, in order to extract only the voltage change excluding the change in the induced voltage of the armature winding, by turning on the transistors TR2 and TR4 by the controller 18, as shown in FIG. The phase and V-phase armature windings (terminals A and B) are GND-connected, and the W-phase armature winding (terminal C) is not connected. Then, the voltages Vn1 and Vn2 are detected, respectively, and the voltages Vn1 and Vn'2 are subtracted from the voltages Vn'1 and Vn'2, respectively, to obtain a ratio. As a result, as shown in the equation (1), the ratio between the impedance (AC component) of the U-phase armature winding and the impedance (AC component) of the V-phase armature winding can be obtained.


(Vn’1−Vn1):(Vn’2−Vn2)≒Zu_AC成分:Zv_AC成分
・・・(1)

また、同様に、コントローラ18によってトランジスタTR3、TR6をオンすることで、図3(D)に示すように、V相電機子巻線(端子B)に電源電圧のプラス電圧を印加し、W相の電機子巻線(端子C)をGND接続し、U相の電機子巻線を無接続とする。この状態のプラス電位からU相の電機子巻線の端子Aの電位差を観ると、Vn3’=プラス電圧×V相インピーダンス/(V相インピーダンス+W相インピーダンス)の電圧が発生する。また、GNDからU相の電機子巻線の端子Aの電位差を観ると、Vn4’=プラス電圧×W相インピーダンス/(V相インピーダンス+W相インピーダンス)の電圧が発生する。そして、V相及びW相の電機子巻線の誘起電圧の変化分を除いた電圧変化分のみを抽出するために、コントローラ18によってトランジスタTR4、TR6をオンすることで、図4(C)に示すように、V相及びW相の電機子巻線(端子B、C)をGND接続し、U相の電機子巻線(端子A)を無接続とする。そして、電圧Vn3、Vn4をそれぞれ検出して、電圧Vn’3、Vn’4から電圧Vn1、Vn2をそれぞれ差し引いて比を求めることで、(2)式に示すように、V相電機子巻線のインピーダンス(AC成分)とW相電機子巻線のインピーダンス(AC成分)との比を求めることができる。

(Vn′1-Vn1): (Vn′2-Vn2) ≈Zu_AC component: Zv_AC component
... (1)

Similarly, by turning on the transistors TR3 and TR6 by the controller 18, as shown in FIG. 3D, a positive voltage of the power supply voltage is applied to the V-phase armature winding (terminal B), and the W-phase The armature windings (terminal C) are GND-connected and the U-phase armature windings are not connected. When the potential difference at the terminal A of the U-phase armature winding is observed from the plus potential in this state, a voltage of Vn3 ′ = plus voltage × V phase impedance / (V phase impedance + W phase impedance) is generated. When the potential difference between the GND and the terminal A of the U-phase armature winding is observed, a voltage of Vn4 ′ = plus voltage × W-phase impedance / (V-phase impedance + W-phase impedance) is generated. Then, in order to extract only the voltage change excluding the change in the induced voltage of the V-phase and W-phase armature windings, the controller 18 turns on the transistors TR4 and TR6, so that FIG. As shown, the V-phase and W-phase armature windings (terminals B and C) are GND-connected, and the U-phase armature winding (terminal A) is not connected. Then, the voltages Vn3 and Vn4 are detected, respectively, and the voltages Vn1 and Vn2 are subtracted from the voltages Vn′3 and Vn′4 to obtain the ratio, thereby obtaining the V-phase armature winding as shown in the equation (2). The ratio between the impedance (AC component) and the impedance (AC component) of the W-phase armature winding can be obtained.


(Vn’3−Vn3):(Vn’4−Vn4)≒Zv_AC成分:Zw_AC成分
・・・(2)

従って、(1)、(2)式から、U相電機子巻線のインピーダンス(AC成分)とV相電機子巻線のインピーダンス(AC成分)とW相電機子巻線のインピーダンス(AC成分)との比を求めることができる。

(Vn′3-Vn3): (Vn′4-Vn4) ≈Zv_AC component: Zw_AC component
... (2)

Therefore, from the equations (1) and (2), the impedance of the U-phase armature winding (AC component), the impedance of the V-phase armature winding (AC component), and the impedance of the W-phase armature winding (AC component) The ratio can be obtained.

そして、各相のインピーダンス比から周知の技術を用いることによって3相電機子巻線と回転子の相対角度を導出することが可能となる。   The relative angle between the three-phase armature winding and the rotor can be derived from the impedance ratio of each phase by using a known technique.

本実施形態では、以上の動作をコントローラ18及びオブザーバ20がキャリア周期で行うことで、キャリア周期で3相電機子巻線と回転子の相対角度をセンサレスで検出することができる。   In the present embodiment, the controller 18 and the observer 20 perform the above operation in a carrier cycle, so that the relative angle between the three-phase armature winding and the rotor can be detected without a sensor in the carrier cycle.

次に、上述の3相電機子巻線と回転子の相対角度の検出方法を用いてコントローラ18及びオブザーバ20でキャリア周期で行われる具体的な処理の流れについて説明する。なお、以下では、上述の例と同様に、W相の電機子巻線を無接続とした場合とU相の電機子巻線を無接続とした場合を例を挙げて説明するが、無接続にする電機子巻線は、U相及びW相に限るものではない。   Next, a specific processing flow performed in the carrier cycle by the controller 18 and the observer 20 using the above-described method for detecting the relative angle between the three-phase armature winding and the rotor will be described. In the following, similar to the above example, the case where the W-phase armature winding is not connected and the case where the U-phase armature winding is not connected will be described by way of example. The armature winding to be made is not limited to the U phase and the W phase.

まず、コントローラ18が回転子が回転しない程度の電力をブラシレスモータ12に印加するようにトランジスタTR2、TR4をオンすることによって、U相及びV相の電機子巻線(端子A、B)をGND接続、W相電機子巻線(端子C)を無接続とし(図3(A))、オブザーバ20が電圧Vn1、Vn2を検出した後に、コントローラ18が回転子が回転しない程度の電力をブラシレスモータ12に印加するようにトランジスタTR1、TR4をオンすることによって、U相電機子巻線(端子A)をプラス電位接続、V相電機子巻線(端子B)をGND接続、W相電機子巻線(端子C)を無接続として、オブザーバ20が電圧Vn1’、Vn2’を検出する(図3(B))。   First, by turning on the transistors TR2 and TR4 so that the controller 18 applies power to the brushless motor 12 so that the rotor does not rotate, the U-phase and V-phase armature windings (terminals A and B) are connected to GND. The connection and the W-phase armature winding (terminal C) are not connected (FIG. 3A), and after the observer 20 detects the voltages Vn1 and Vn2, the controller 18 supplies power to the extent that the rotor does not rotate. By turning on the transistors TR1 and TR4 so as to be applied to 12, the U-phase armature winding (terminal A) is connected to the positive potential, the V-phase armature winding (terminal B) is connected to GND, and the W-phase armature winding The line (terminal C) is disconnected, and the observer 20 detects the voltages Vn1 ′ and Vn2 ′ (FIG. 3B).

すなわち、図3(A)の状態から図3(B)の状態に切り替えることによって電圧を発生し易くして、これをオブザーバ20が検出することで、上述したように、U相電機子巻線のインピーダンスとV相電機子巻線のインピーダンスの比をオブザーバ20が求めることができる。   That is, by switching from the state of FIG. 3 (A) to the state of FIG. 3 (B), a voltage is easily generated, and this is detected by the observer 20, and as described above, the U-phase armature winding The observer 20 can determine the ratio of the impedance of the V-phase armature winding and the impedance of the V-phase armature winding.

また、コントローラ18が回転子が回転しない程度の電力をブラシレスモータ12に印加するようにトランジスタTR4、TR6をオンすることによって、V相及びW相の電機子巻線(端子B、C)をGND接続、U相電機子巻線(端子A)を無接続とし(図3(C))、オブザーバ20が電圧Vn3、Vn4を検出した後に、コントローラ18が回転子が回転しない程度の電力をブラシレスモータ12に印加するようにトランジスタTR3、TR6をオンすることによって、V相電機子巻線(端子B)をプラス電位接続、W相電機子巻線(端子C)をGND接続、U相電機子巻線(端子A)を無接続として、オブザーバ20が電圧Vn3’、Vn4’を検出する(図3(D))。   Further, the controller 18 turns on the transistors TR4 and TR6 so as to apply power to the brushless motor 12 so that the rotor does not rotate, so that the V-phase and W-phase armature windings (terminals B and C) are connected to GND. The connection and the U-phase armature winding (terminal A) are not connected (FIG. 3C), and after the observer 20 detects the voltages Vn3 and Vn4, the controller 18 supplies power to the extent that the rotor does not rotate. By turning on the transistors TR3 and TR6 so as to be applied to 12, the V-phase armature winding (terminal B) is connected to the positive potential, the W-phase armature winding (terminal C) is connected to GND, and the U-phase armature winding With the line (terminal A) disconnected, the observer 20 detects the voltages Vn3 ′ and Vn4 ′ (FIG. 3D).

すなわち、図3(C)の状態から図3(D)の状態に切り替えることによって電圧を発生し易くして、これをオブザーバ20が検出することによって、上述したように、V相電機子巻線のインピーダンスとW相電機子巻線のインピーダンスの比をオブザーバ20が求めることができる。   That is, by switching from the state of FIG. 3C to the state of FIG. 3D, a voltage is easily generated, and the observer 20 detects this, and as described above, the V-phase armature winding The observer 20 can obtain the ratio of the impedance of the current and the impedance of the W-phase armature winding.

そして、求めたU相電機子巻線のインピーダンスとV相電機子巻線のインピーダンスの比、及びV相電機子巻線のインピーダンスとW相電機子巻線のインピーダンスの比からU相電機子巻線のインピーダンスとV相電機子巻線のインピーダンスとW相電機子巻線のインピーダンスとの比をオブザーバ20が求め、求めた3相のインピーダンス比から周知技術を用いて3相電機子巻線と回転子の相対角度を導出する。これによって、ホールセンサ等のセンサを用いることなく、3相電機子巻線に対する回転子の相対角度を検出することができる。   Then, the U-phase armature winding is calculated from the ratio between the obtained impedance of the U-phase armature winding and the impedance of the V-phase armature winding, and the ratio of the impedance of the V-phase armature winding and the impedance of the W-phase armature winding. The observer 20 obtains the ratio of the impedance of the wire, the impedance of the V-phase armature winding, and the impedance of the W-phase armature winding, and from the obtained three-phase impedance ratio, The relative angle of the rotor is derived. Accordingly, the relative angle of the rotor with respect to the three-phase armature winding can be detected without using a sensor such as a hall sensor.

なお、永久磁石同期機の場合、駆動中は巻線に誘起電圧が発生するため、無接続相の電機子巻線の端子電圧に対して、誘起電圧成分を差し引く必要があり、上記の実施の形態では、図3(B)の状態の端子電圧と図3(A)の状態の端子電圧の差分、図3(D)の状態の端子電圧と図3(C)の状態の端子電圧の差分によって誘起電圧成分を差し引くようにしたが、これに限るものではなく、例えば、元々測定しておいた誘起電圧値を用いてもよいし、誘起電圧定数を使って誘起電圧を算出するようにしてもよいし、駆動中に誘起電圧を測定できればその値を用いるようにしてもよい。   In the case of a permanent magnet synchronous machine, an induced voltage is generated in the winding during driving. Therefore, it is necessary to subtract the induced voltage component from the terminal voltage of the armature winding of the connectionless phase. In the embodiment, the difference between the terminal voltage in the state of FIG. 3B and the terminal voltage in the state of FIG. 3A, the difference between the terminal voltage in the state of FIG. 3D and the terminal voltage in the state of FIG. However, the present invention is not limited to this. For example, the induced voltage value measured originally may be used, or the induced voltage is calculated using the induced voltage constant. Alternatively, if the induced voltage can be measured during driving, the value may be used.

また、必要な位置情報を含めた電位の発生周期が電圧サンプリング周期より短い場合、すなわち、A/D変換等の処理を含めてインピーダンス比を求めるための処理等が間に合わないような場合には、電機子巻線端子電圧の発生期間が電圧サンプリング周期より大きくなるまで、プラス電位への接続期間又はマイナス電位への接続期間を調整することで、電機子巻線の端子電圧の検出が可能となり、電圧検出が可能な期間を延ばすことができる。   In addition, when the potential generation cycle including necessary position information is shorter than the voltage sampling cycle, that is, when the processing for obtaining the impedance ratio including processing such as A / D conversion is not in time, By adjusting the connection period to the positive potential or the connection period to the negative potential until the generation period of the armature winding terminal voltage becomes larger than the voltage sampling period, it becomes possible to detect the terminal voltage of the armature winding, The period during which voltage detection is possible can be extended.

また、上記の実施の形態で説明したセンサレスのブラシレスモータの駆動は、モータの全駆動領域(トルク−回転数の領域)で実施してもよいが、これに限るものではなく、例えば、駆動の途中で、誘起電圧を使った公知の種々のセンサレス方式に切り替えるようにしてもよい。   Further, the driving of the sensorless brushless motor described in the above embodiment may be performed in the entire motor drive region (torque-rotation speed region), but is not limited thereto. You may make it switch to the well-known various sensorless system using an induced voltage on the way.

また、上記の実施の形態では、3相電機子巻線がスター結線された例について説明したが、3相電機子巻線がデルタ結線されたものを適用するようにしてもよい。   In the above embodiment, an example in which a three-phase armature winding is star-connected has been described. However, a three-phase armature winding may be delta-connected.

ここで、3相電機子巻線がデルタ結線された変形例について説明する。図4は、3相電機子巻線がデルタ結線された場合のブラシレスモータ駆動装置11の概略構成図である。なお、上記の実施の形態と同一構成については同一符号を付して説明する。   Here, a modified example in which the three-phase armature windings are delta-connected will be described. FIG. 4 is a schematic configuration diagram of the brushless motor driving device 11 when the three-phase armature windings are delta-connected. The same components as those in the above embodiment will be described with the same reference numerals.

ブラシレスモータ13は、U相、V相、W相の電機子巻線がデルタ結線された3相電機子巻線と回転子とから構成されている。3相電機子巻線の各相U、V、Wは、上記の実施の形態と同様に、それぞれ120°のピッチで配置されており、ブラシレスモータ駆動装置13のPWM(Pulse Width Modulation)方式のインバータを構成するスイッチング素子群14の出力端と接続されている。   The brushless motor 13 includes a three-phase armature winding and a rotor in which U-phase, V-phase, and W-phase armature windings are delta-connected. Each phase U, V, W of the three-phase armature winding is arranged at a pitch of 120 ° as in the above-described embodiment, and the PWM (Pulse Width Modulation) method of the brushless motor driving device 13 is used. It is connected to the output terminal of the switching element group 14 constituting the inverter.

スイッチング素子群14は直流電源16と接続され、コンデンサCが並列に接続されている。3相電機子巻線は、スイッチング素子群14のトランジスタにより3相電機子巻線の各相に所定のタイミングで通電切替されることで、120°方形波通電の回転磁界が形成される。   The switching element group 14 is connected to a DC power source 16 and a capacitor C is connected in parallel. The three-phase armature winding is energized and switched to each phase of the three-phase armature winding by a transistor of the switching element group 14 at a predetermined timing, so that a rotating magnetic field of 120 ° square wave energization is formed.

スイッチング素子群14を構成するスイッチング素子としての3対(計6個)のトランジスタTR1〜TR6についても、上記の実施の形態と同様に、3相ブリッジ接続され、各トランジスタには並列にダイオードDが接続されている。   The three pairs of transistors TR1 to TR6 as the switching elements constituting the switching element group 14 are also connected in a three-phase bridge as in the above embodiment, and a diode D is connected in parallel to each transistor. It is connected.

更に、上記の実施の形態と同様に、ブラシレスモータ駆動装置11には、ブラシレスモータ13の駆動を制御するコントローラ22、及びブラシレスモータ13の回転子の位置を検出するためのオブザーバ24が設けられている。   Further, similarly to the above embodiment, the brushless motor driving device 11 is provided with a controller 22 for controlling the driving of the brushless motor 13 and an observer 24 for detecting the position of the rotor of the brushless motor 13. Yes.

このように3相電機子巻線がデルタ結線された場合でも上記の実施の形態と同様に、インピーダンス比を求めることで、3相電機子巻線と回転子の相対角度を検出することができる。   Thus, even when the three-phase armature winding is delta-connected, the relative angle between the three-phase armature winding and the rotor can be detected by obtaining the impedance ratio as in the above embodiment. .

例えば、コントローラ22によってトランジスタTR1、TR6をオンすることで、図5(B)に示すように、U相電機子巻線とW相電機子巻線間の端子Fをプラス電位接続、V相電機子巻線とW相電機子巻線間の端子EをGND接続、U相電機子巻線とV相電機子巻線間の端子Dを無接続とする。この状態のプラス電位から観たU相電機子巻線とV相電機子巻線間(端子D)の端子電圧Vn1’と、GNDから観たU相電機子巻線とV相電機子巻線間(端子D)の端子電圧Vn2’をオブザーバ24が検出することで、U相電機子巻線のインピーダンスとV相電機子巻線のインピーダンスとの比を求めることができる。また、この時、上記の実施の形態と同様に、電機子巻線の誘起電圧の変化分を除いた電圧変化分のみを抽出するために、コントローラ22によってトランジスタTR2、TR6をオンすることで、図5(A)に示すように、U相電機子巻線とW相電機子巻線間の端子F、及びV相電機子巻線とW相電機子巻線間の端子EをGND接続、U相電機子巻線とV相電機子巻線間の端子Dを無接続として、プラス電位から観たU相電機子巻線とV相電機子巻線間(端子D)の端子電圧Vn1と、GNDから観たU相電機子巻線とV相電機子巻線間(端子D)の端子電圧Vn2をオブザーバ24が検出して、電圧Vn1’、Vn2’から電圧Vn1、Vn1をそれぞれ差し引いて比を求める。これによって(1)、式に示したようにU相電機子巻線のインピーダンス(AC成分)とV相電機子巻線のインピーダンス(AC成分)との比をより正確に求めることができる。   For example, by turning on the transistors TR1 and TR6 by the controller 22, as shown in FIG. 5B, the terminal F between the U-phase armature winding and the W-phase armature winding is connected to the positive potential, A terminal E between the child winding and the W-phase armature winding is GND-connected, and a terminal D between the U-phase armature winding and the V-phase armature winding is not connected. The terminal voltage Vn1 ′ between the U-phase armature winding and the V-phase armature winding (terminal D) viewed from the positive potential in this state, and the U-phase armature winding and the V-phase armature winding viewed from GND. By detecting the terminal voltage Vn2 ′ between the terminals (terminal D), the ratio of the impedance of the U-phase armature winding to the impedance of the V-phase armature winding can be obtained. At this time, similarly to the above embodiment, the controller 22 turns on the transistors TR2 and TR6 to extract only the voltage change excluding the change in the induced voltage of the armature winding. As shown in FIG. 5A, the terminal F between the U-phase armature winding and the W-phase armature winding, and the terminal E between the V-phase armature winding and the W-phase armature winding are GND-connected, With terminal D between U-phase armature winding and V-phase armature winding disconnected, terminal voltage Vn1 between U-phase armature winding and V-phase armature winding (terminal D) viewed from the positive potential , The observer 24 detects the terminal voltage Vn2 between the U-phase armature winding and the V-phase armature winding (terminal D) as viewed from GND, and subtracts the voltages Vn1 and Vn1 from the voltages Vn1 ′ and Vn2 ′, respectively. Find the ratio. As a result, the ratio between the impedance (AC component) of the U-phase armature winding and the impedance (AC component) of the V-phase armature winding can be obtained more accurately as shown in equation (1).

また、同様に、コントローラ22によってトランジスタTR2、TR3をオンすることで、図5(D)に示すように、U相電機子巻線とV相電機子巻線間の端子Dをプラス電位接続、W相電機子巻線とU相電機子巻線間の端子FをGND接続、V相電機子巻線とW相電機子巻線間の端子Eを無接続とする。この状態のプラス電位から観たV相電機子巻線とW相電機子巻線間(端子E)の端子電圧Vn3’と、GNDから観たV相電機子巻線とW相電機子巻線間(端子E)の端子電圧Vn4’をオブザーバ24が検出することで、V相電機子巻線のインピーダンスとW相電機子巻線のインピーダンスとの比を求めることができる。また、この時、上記の実施の形態と同様に、電機子巻線の誘起電圧の変化分を除いた電圧変化分のみを抽出するために、コントローラ22によってトランジスタTR2、TR4をオンすることで、図5(C)に示すように、U相電機子巻線とV相電機子巻線間の端子D、及びU相電機子巻線とW相電機子巻線間の端子FをGND接続、V相電機子巻線とW相電機子巻線間の端子Eを無接続として、プラス電位から観たV相電機子巻線とW相電機子巻線間(端子E)の端子電圧Vn3と、GNDから観たV相電機子巻線とW相電機子巻線間(端子E)の端子電圧Vn4をオブザーバ24が検出して、電圧Vn3’、Vn4’から電圧Vn3、Vn4をそれぞれ差し引いて比を求める。これによって(2)式に示したようにV相電機子巻線のインピーダンス(AC成分)とW相電機子巻線のインピーダンス(AC成分)との比をより正確に求めることができる。   Similarly, by turning on the transistors TR2 and TR3 by the controller 22, as shown in FIG. 5D, the terminal D between the U-phase armature winding and the V-phase armature winding is connected to the positive potential. A terminal F between the W-phase armature winding and the U-phase armature winding is GND-connected, and a terminal E between the V-phase armature winding and the W-phase armature winding is not connected. The terminal voltage Vn3 ′ between the V-phase armature winding and the W-phase armature winding (terminal E) viewed from the positive potential in this state, and the V-phase armature winding and the W-phase armature winding viewed from GND. By detecting the terminal voltage Vn4 ′ between the terminals (terminal E), the ratio of the impedance of the V-phase armature winding to the impedance of the W-phase armature winding can be obtained. At this time, similarly to the above embodiment, the controller 22 turns on the transistors TR2 and TR4 to extract only the voltage change excluding the change in the induced voltage of the armature winding, As shown in FIG. 5C, the terminal D between the U-phase armature winding and the V-phase armature winding, and the terminal F between the U-phase armature winding and the W-phase armature winding are connected to GND. A terminal voltage Vn3 between the V-phase armature winding and the W-phase armature winding (terminal E) as viewed from the positive potential, with the terminal E between the V-phase armature winding and the W-phase armature winding disconnected. The observer 24 detects the terminal voltage Vn4 between the V-phase armature winding and the W-phase armature winding (terminal E) as viewed from GND, and subtracts the voltages Vn3 and Vn4 from the voltages Vn3 ′ and Vn4 ′, respectively. Find the ratio. As a result, the ratio between the impedance (AC component) of the V-phase armature winding and the impedance (AC component) of the W-phase armature winding can be obtained more accurately as shown in the equation (2).

従って、上記の実施の形態のスター結線と同様に、U相電機子巻線のインピーダンス(AC成分)とV相電機子巻線のインピーダンス(AC成分)とW相電機子巻線のインピーダンス(AC成分)との比を求めることができ、インピーダンス比から周知の技術を用いることによって3相電機子巻線に対する回転子の相対角度を導出することが可能となる。   Therefore, similarly to the star connection of the above embodiment, the impedance of the U-phase armature winding (AC component), the impedance of the V-phase armature winding (AC component), and the impedance of the W-phase armature winding (AC The relative angle of the rotor with respect to the three-phase armature winding can be derived from the impedance ratio by using a well-known technique.

続いて、変形例のコントローラ22及びオブザーバ24でキャリア周期で行われる具体的な処理の流れについて説明する。   Next, a specific processing flow performed in the carrier cycle by the controller 22 and the observer 24 according to the modification will be described.

まず、コントローラ22が回転子が回転しない程度の電力をブラシレスモータ13に印加するようにトランジスタTR2、TR6をオンすることによって、U相電機子巻線とW相電機子巻線間の端子F、及びV相電機子巻線とW相電機子巻線間の端子EをGND接続、U相電機子巻線とV相電機子巻線間の端子Dを無接続とし(図5(A))、オブザーバ24が電圧Vn1、Vn2を検出した後に、コントローラ22が回転子が回転しない程度の電力をブラシレスモータ13に印加するようにトランジスタTR1、TR6をオンすることによって、U相電機子巻線とW相電機子巻線間の端子Fをプラス電位接続、V相電機子巻線とW相電機子巻線間の端子EをGND接続、U相電機子巻線とV相電機子巻線間の端子Dを無接続として、オブザーバ24が電圧Vn1’、Vn2’を検出する(図5(B))。   First, by turning on the transistors TR2 and TR6 so that the controller 22 applies power to the brushless motor 13 so that the rotor does not rotate, the terminal F between the U-phase armature winding and the W-phase armature winding, And the terminal E between the V-phase armature winding and the W-phase armature winding is GND-connected, and the terminal D between the U-phase armature winding and the V-phase armature winding is not connected (FIG. 5A). After the observer 24 detects the voltages Vn1 and Vn2, the controller 22 turns on the transistors TR1 and TR6 so as to apply power to the brushless motor 13 so that the rotor does not rotate. Terminal F between W-phase armature winding is connected to plus potential, terminal E between V-phase armature winding and W-phase armature winding is GND-connected, between U-phase armature winding and V-phase armature winding The terminal D of the Server 24 detects the voltage Vn1 ', Vn2' (FIG. 5 (B)).

すなわち、図5(A)の状態から図5(B)の状態に切り替えることによって電圧を発生し易くして、これをオブザーバ24が検出することで、上述したように、U相電機子巻線のインピーダンスとV相電機子巻線のインピーダンスの比をオブザーバ24が求めることができる。   That is, by switching from the state of FIG. 5 (A) to the state of FIG. 5 (B), a voltage is easily generated, and this is detected by the observer 24. As described above, the U-phase armature winding The observer 24 can determine the ratio between the impedance of the V-phase armature winding and the impedance of the V-phase armature winding.

また、コントローラ22が回転子が回転しない程度の電力をブラシレスモータ13に印加するようにトランジスタTR2、TR4をオンすることによって、U相電機子巻線とV相電機子巻線間の端子D、及びU相電機子巻線とW相電機子巻線の端子FをGND接続、V相電機子巻線とW相電機子巻線の端子Eを無接続とし(図5(C))、オブザーバ24が電圧Vn3、Vn4を検出した後に、コントローラ22が回転子が回転しない程度の電力をブラシレスモータ13に印加するようにトランジスタTR2、TR3をオンすることによって、U相電機子巻線とV相電機子巻線間の端子Dをプラス電位接続、W相電機子巻線とU相電機子巻線間の端子FをGND接続、V相電機子巻線とW相電機子巻線間の端子Eを無接続として、オブザーバ24が電圧Vn3’、Vn4’を検出する(図5(D))。   Further, by turning on the transistors TR2 and TR4 so that the controller 22 applies power to the brushless motor 13 so that the rotor does not rotate, a terminal D between the U-phase armature winding and the V-phase armature winding, And the terminal F of the U-phase armature winding and the W-phase armature winding are GND-connected, the terminal E of the V-phase armature winding and the W-phase armature winding are not connected (FIG. 5C), and the observer After 24 detects the voltages Vn3 and Vn4, the controller 22 turns on the transistors TR2 and TR3 so as to apply power to the brushless motor 13 so that the rotor does not rotate. Terminal D between the armature windings is connected to the positive potential, terminal F between the W-phase armature winding and the U-phase armature winding is connected to GND, and the terminal between the V-phase armature winding and the W-phase armature winding E as no connection, observer 4 detects the voltage Vn3 ', Vn4' (FIG. 5 (D)).

すなわち、図5(C)の状態から図5(D)の状態に切り替えることによって電圧を発生し易くして、これをオブザーバ24が検出することで、上述したように、V相電機子巻線のインピーダンスとW相電機子巻線のインピーダンスの比をオブザーバ24が求めることができる。   That is, by switching from the state of FIG. 5C to the state of FIG. 5D, a voltage is easily generated, and this is detected by the observer 24. As described above, the V-phase armature winding The observer 24 can determine the ratio of the impedance of the W-phase armature winding.

そして、求めたU相電機子巻線のインピーダンスとV相電機子巻線のインピーダンスの比、及びV相電機子巻線のインピーダンスとW相電機子巻線のインピーダンスの比からU相電機子巻線のインピーダンスとV相電機子巻線のインピーダンスとW相電機子巻線のインピーダンスとの比をオブザーバ24が求め、求めた3相のインピーダンス比から周知技術を用いて3相電機子巻線に対する回転子の相対角度を導出する。これによって、ブラシレスモータ13の3相電機子巻線がデルタ結線されていても、上記の実施の形態と同様に、3相電機子巻線と回転子の相対角度をセンサレスで検出することができる。   Then, the U-phase armature winding is calculated from the ratio between the obtained impedance of the U-phase armature winding and the impedance of the V-phase armature winding, and the ratio of the impedance of the V-phase armature winding and the impedance of the W-phase armature winding. The observer 24 obtains the ratio of the impedance of the wire, the impedance of the V-phase armature winding, and the impedance of the W-phase armature winding, and uses the known three-phase impedance ratio for the three-phase armature winding. The relative angle of the rotor is derived. As a result, even if the three-phase armature winding of the brushless motor 13 is delta-connected, the relative angle between the three-phase armature winding and the rotor can be detected sensorlessly as in the above embodiment. .

なお、上記の実施の形態及び変形例では、電機子巻線の誘起電圧の変化分を除いた電圧変化分のみを抽出するために、(図3(A)、(C)、図5(A)、(C))に示したように、電機子巻線の端子のうち1端子を無接続、残りの端子をマイナス電位に接続するようにしたが、電機子巻線の端子のうち1端子を無接続、残りの端子をプラス電位に接続するようにしてもよい。例えば、スター結線の場合には、図6(A)に示すように、V相及びW相の電機子巻線(端子B、C)をプラス電位に接続し、U相の電機子巻線(端子A)を無接続とし、デルタ結線の場合には、図6(B)に示すように、U相電機子巻線とW相電機子巻線間の端子F、及びV相電機子巻線とW相電機子巻線間の端子EをGND接続、U相電機子巻線とV相電機子巻線間の端子Dを無接続としてもよい。   In the above-described embodiment and modification, in order to extract only the voltage change excluding the change in the induced voltage of the armature winding (FIGS. 3A, 3C, 5A) As shown in (C)), one terminal of the armature winding is not connected and the remaining terminals are connected to a negative potential. May be disconnected and the remaining terminals may be connected to a positive potential. For example, in the case of star connection, as shown in FIG. 6A, the V-phase and W-phase armature windings (terminals B and C) are connected to a positive potential, and the U-phase armature winding ( When the terminal A) is not connected and is delta-connected, as shown in FIG. 6B, the terminal F between the U-phase armature winding and the W-phase armature winding, and the V-phase armature winding The terminal E between the W-phase armature winding and the W-phase armature winding may be GND-connected, and the terminal D between the U-phase armature winding and the V-phase armature winding may be left unconnected.

本発明の実施の形態に係わるブラシレスモータ駆動装置の概略構成図である。It is a schematic block diagram of the brushless motor drive device concerning embodiment of this invention. (A)は回転子の回転によって変化するインピーダンス変化を示す図であり、(B)は回転子の回転によって変化する各相のインピーダンス変化を示す図である。(A) is a figure which shows the impedance change which changes with rotation of a rotor, (B) is a figure which shows the impedance change of each phase which changes with rotation of a rotor. (A)はU相及びV相の電機子巻線をGNDし、W相の電機子巻線を無接続とした状態を示す図であり、(B)はU相の電機子巻線に電源電圧の+電圧を印加し、V相の電機子巻線をGNDし、W相の電機子巻線を無接続とした状態を示す図であり、(C)はV相及びW相の電機子巻線をGNDし、U相の電機子巻線を無接続とした状態を示す図であり、(D)はV相電機子巻線に電源電圧の+電圧を印加し、W相の電機子巻線をGNDし、U相の電機子巻線を無接続とした状態を示す図である。(A) is a figure which shows the state which grounded the armature winding of U phase and V phase, and made the armature winding of W phase unconnected, and (B) is a power supply to the armature winding of U phase. It is a figure which shows the state which applied the + voltage of voltage, GND the V-phase armature winding, and made the W-phase armature winding unconnected, (C) is the armature of V-phase and W-phase It is a figure which shows the state which wound the GND and made the U-phase armature winding unconnected, (D) applies the + voltage of the power supply voltage to the V-phase armature winding, and the W-phase armature It is a figure which shows the state which carried out GND of a coil | winding and made the U-phase armature coil | winding unconnected. 3相電機子巻線がデルタ結線された場合のブラシレスモータ駆動装置の概略構成図である。It is a schematic block diagram of a brushless motor drive device when a three-phase armature winding is delta-connected. (A)はU相電機子巻線とW相電機子巻線間、及びV相電機子巻線とW相電機子巻線間をGND接続、U相電機子巻線とV相電機子巻線間を無接続とした状態を示す図であり、(B)はU相電機子巻線とW相電機子巻線間を+電位接続、V相電機子巻線とW相電機子巻線間をGND接続、U相電機子巻線とV相電機子巻線間を無接続とした状態を示す図であり、(C)はU相電機子巻線とV相電機子巻線間、及びU相電機子巻線とW相電機子巻線をGND接続、V相電機子巻線とW相電機子巻線を無接続とした状態を示す図であり、(D)はU相電機子巻線とV相電機子巻線間を+電位接続、W相電機子巻線とU相電機子巻線間をGND接続、V相電機子巻線とW相電機子巻線間を無接続とした状態を示す図である。(A) is a GND connection between the U-phase armature winding and the W-phase armature winding, and between the V-phase armature winding and the W-phase armature winding, and the U-phase armature winding and the V-phase armature winding. It is a figure which shows the state which made no connection between wires, (B) is + electric potential connection between U phase armature winding and W phase armature winding, V phase armature winding and W phase armature winding It is a figure which shows the state which made the GND connection between the U-phase armature winding and the V-phase armature winding, and (C) is between the U-phase armature winding and the V-phase armature winding, And U-phase armature winding and W-phase armature winding are connected in GND, and V-phase armature winding and W-phase armature winding are not connected. + Potential connection between the child winding and the V-phase armature winding, GND connection between the W-phase armature winding and the U-phase armature winding, and no connection between the V-phase armature winding and the W-phase armature winding It is a figure which shows the state made into the connection. (A)はスター結線において電機子巻線の端子のうち1端子を無接続、残りの端子をプラス電位に接続した一例を示す図であり、(B)はデルタ結線において電機子巻線の端子のうち1端子を無接続、残りの端子をプラス電位に接続した一例を示す図である。(A) is a figure which shows an example which connected one terminal among the terminals of the armature winding in the star connection, and connected the remaining terminals to the positive potential, and (B) is a terminal of the armature winding in the delta connection. It is a figure which shows an example which connected one terminal among them, and connected the remaining terminal to plus electric potential.

符号の説明Explanation of symbols

10、11・・・モータ駆動装置、12、13・・・ブラシレスモータ、14・・・スイッチング素子群、16・・・直流電源、18・・・コントローラ、20・・オブザーバ DESCRIPTION OF SYMBOLS 10, 11 ... Motor drive device, 12, 13 ... Brushless motor, 14 ... Switching element group, 16 ... DC power supply, 18 ... Controller, 20 ... Observer

Claims (9)

3相以上の複数相の電機子巻線に電力を順次印加することによって回転子を回転するモータと、
複数のスイッチング素子のオンオフにより直流電力を交流電力に変換して前記モータに印加するためのスイッチング素子群と、
前記回転子の回転を制御するために前記スイッチング素子群を制御する制御手段と、
前記回転子が回転しない程度の電力を前記モータに印加するように前記制御手段が前記スイッチング素子群を制御した際の前記電機子巻線の端子電圧を検出し、検出結果に基づいて前記電機子巻線に対する前記回転子の相対角度を導出する導出手段と、
を備えたモータ駆動装置。
A motor that rotates a rotor by sequentially applying electric power to armature windings of a plurality of phases of three or more phases;
A switching element group for converting DC power into AC power by applying on / off of a plurality of switching elements and applying the same to the motor;
Control means for controlling the switching element group to control rotation of the rotor;
The control means detects a terminal voltage of the armature winding when the control means controls the switching element group so as to apply power to the motor so that the rotor does not rotate, and based on the detection result, the armature Deriving means for deriving a relative angle of the rotor to the winding;
A motor drive device comprising:
前記導出手段は、前記電機子巻線の端子電圧から各相のインピーダンス比を求め、該インピーダンス比から前記回転子の相対角度を導出する請求項1に記載のモータ駆動装置。   The motor driving apparatus according to claim 1, wherein the derivation unit obtains an impedance ratio of each phase from a terminal voltage of the armature winding, and derives a relative angle of the rotor from the impedance ratio. 前記導出手段は、電力が印加されていない前記電機子巻線の端子電圧を検出して、前記相対角度を導出する請求項1又は請求項2に記載のモータ駆動装置。   The motor driving apparatus according to claim 1, wherein the derivation unit detects a terminal voltage of the armature winding to which no electric power is applied, and derives the relative angle. 前記導出手段が、前記制御手段によって前記電機子巻線の端子のうち1端子が無接続とされ、残りの端子がマイナス電位に接続するように制御されているときの無接続となっている端子電圧に基づく電位と、前記制御手段によって前記電機子巻線の端子のうち1端子がプラス電位に接続され、残りの端子のうち1端子がマイナス電位に接続され、残りの端子が無接続となるように制御されているときの無接続となっている端子電圧に基づく電位と、を比較することで、前記電機子巻線のインピーダンス交流成分の比を求め、求めた比から前記相対角度を導出する請求項1に記載のモータ駆動装置。   A terminal that is disconnected when the derivation means is controlled so that one terminal of the terminals of the armature winding is not connected and the remaining terminals are connected to a negative potential by the control means. The potential based on the voltage and one terminal of the armature windings are connected to the positive potential by the control means, one of the remaining terminals is connected to the negative potential, and the remaining terminals are not connected. The ratio of the impedance AC component of the armature winding is obtained by comparing the potential based on the terminal voltage that is not connected when controlled so that the relative angle is derived from the obtained ratio. The motor drive device according to claim 1. 前記導出手段が、前記制御手段によって前記電機子巻線の端子のうち1端子が無接続とされ、残りの端子がプラス電位に接続されるように制御されているときの無接続となっている端子電圧に基づく電位と、前記制御手段によって前記電機子巻線の端子のうち1端子がプラス電位に接続され、残りの端子のうち1端子がマイナス電位に接続され、残りの端子が無接続となるように制御されているときの無接続となっている端子電圧に基づく電位と、を比較することで、前記電機子巻線のインピーダンス交流成分の比を求め、求めた比から前記相対角度を導出する請求項1に記載のモータ駆動装置。   The derivation means is disconnected when the control means is controlled so that one of the terminals of the armature winding is not connected and the remaining terminals are connected to a positive potential. A potential based on a terminal voltage, and one terminal of the armature windings is connected to a positive potential by the control means, one of the remaining terminals is connected to a negative potential, and the remaining terminals are not connected. By comparing the potential based on the terminal voltage that is not connected when being controlled to obtain the ratio of the impedance AC component of the armature winding, the relative angle is calculated from the obtained ratio. The motor driving device according to claim 1, wherein the motor driving device is derived. 前記導出手段は、回転子に配置された磁石の磁束による前記電機子巻線の誘起電圧を差し引いて前記インピーダンス交流成分の比を求める請求項4又は請求項5に記載のモータ駆動装置。   The motor driving apparatus according to claim 4 or 5, wherein the derivation unit subtracts an induced voltage of the armature winding due to a magnetic flux of a magnet disposed on the rotor to obtain a ratio of the impedance AC component. 前記導出手段は、検出すべき前記電機子巻線の端子電圧の検出可能な期間が、電圧サンプリング周期より小さい場合、前記電機子巻線の端子電圧の発生期間が電圧サンプリング周期より大きくなるまで、プラス電位への接続期間又はマイナス電位への接続期間を調整することで、前記電機子巻線の端子電圧の検出を行う請求項4又は請求項5に記載のモータッ駆動装置。   The derivation means, when the detectable period of the terminal voltage of the armature winding to be detected is smaller than the voltage sampling period, until the generation period of the terminal voltage of the armature winding becomes larger than the voltage sampling period, The motor drive device according to claim 4 or 5, wherein the terminal voltage of the armature winding is detected by adjusting a connection period to a positive potential or a connection period to a negative potential. 前記導出手段は、無接続となっている前記電機子巻線の端子のプラス側電位と、該端子のグランド側電位との電位差を比較することによって、前記インピーダンス交流成分の比を求める請求項4又は請求項5に記載のモータ駆動装置。   The derivation means obtains the ratio of the impedance alternating current component by comparing a potential difference between a positive side potential of a terminal of the armature winding that is not connected and a ground side potential of the terminal. Or the motor drive device of Claim 5. 前記電機子巻線は、デルタ結線である請求項1〜8の何れか1項に記載のモータ駆動装置。   The motor drive device according to claim 1, wherein the armature winding is a delta connection.
JP2008122186A 2008-05-08 2008-05-08 Motor drive device Active JP5230257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122186A JP5230257B2 (en) 2008-05-08 2008-05-08 Motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008122186A JP5230257B2 (en) 2008-05-08 2008-05-08 Motor drive device

Publications (2)

Publication Number Publication Date
JP2009273251A true JP2009273251A (en) 2009-11-19
JP5230257B2 JP5230257B2 (en) 2013-07-10

Family

ID=41439310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122186A Active JP5230257B2 (en) 2008-05-08 2008-05-08 Motor drive device

Country Status (1)

Country Link
JP (1) JP5230257B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101696A (en) * 1990-08-18 1992-04-03 Victor Co Of Japan Ltd Rotor stop position detector for dc brushless motor having no position detector
JPH11122976A (en) * 1997-10-14 1999-04-30 Sakura Bo Kk Control device of delta connection three-phase motor
JP2001008490A (en) * 1999-06-23 2001-01-12 Isuzu Ceramics Res Inst Co Ltd Controller and control method for permanent magnet synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101696A (en) * 1990-08-18 1992-04-03 Victor Co Of Japan Ltd Rotor stop position detector for dc brushless motor having no position detector
JPH11122976A (en) * 1997-10-14 1999-04-30 Sakura Bo Kk Control device of delta connection three-phase motor
JP2001008490A (en) * 1999-06-23 2001-01-12 Isuzu Ceramics Res Inst Co Ltd Controller and control method for permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP5230257B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US10141878B2 (en) Controller for permanent magnet synchronous motor, and control method for estimating initial position of rotor
JP4801773B2 (en) Brushless motor, brushless motor control system, and brushless motor control method
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
EP2840701B1 (en) Sensing PM electrical machine position
JP5130876B2 (en) V / f control device for permanent magnet synchronous motor
CA2772805C (en) Position sensing circuit for brushless motors
US20150102758A1 (en) Motor drive controller, motor drive control method and motor system using the same
JP2018098856A (en) Control device of permanent magnet synchronous motor, image formation apparatus and control method
JP5371502B2 (en) Motor driving apparatus and motor driving method
JP5618854B2 (en) Synchronous motor drive system
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
US20160156294A1 (en) Motor driving module
JP6102768B2 (en) Motor control device
KR20180082128A (en) Apparatus and method for controlling a start of BLDC motor using detection of phase voltage
KR101199634B1 (en) Method and apparatus for controling 3-phase brushless dc motor
JP2021072653A (en) Field position detection method of electric motor
US20150069943A1 (en) Motor driving control apparatus, motor driving control method, and motor system using the same
JP5230257B2 (en) Motor drive device
EP3168981A1 (en) Rotor position detection apparatus and motor control apparatus
JP2017034767A (en) Sensorless drive method for three-phase brushless motor
KR20150031356A (en) Apparatus and method for compensating reference voltage in bldc motor control system
CN107872179B (en) Method and device for determining the position of a rotor of an electric motor
KR20170126639A (en) Motor drive control apparatus and sensorless starting method thereof
JP2013532936A5 (en)
US20150188467A1 (en) Zero crossing point estimating circuit, motor driving control apparatus and method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5230257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250