JP2009272139A - Polymer lamination film - Google Patents
Polymer lamination film Download PDFInfo
- Publication number
- JP2009272139A JP2009272139A JP2008121421A JP2008121421A JP2009272139A JP 2009272139 A JP2009272139 A JP 2009272139A JP 2008121421 A JP2008121421 A JP 2008121421A JP 2008121421 A JP2008121421 A JP 2008121421A JP 2009272139 A JP2009272139 A JP 2009272139A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- laminated film
- sulfonic acid
- film
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、酸性基を有するポリマー層と塩基性基を有するポリマー層が交互に積層された積層膜に関する。特に、酸性基を有するポリマーがポリビニルスルホン酸であり、塩基性基を有するポリマーがポリビニルアミン又はポリアリルアミンである積層膜に関する。 The present invention relates to a laminated film in which a polymer layer having an acidic group and a polymer layer having a basic group are alternately laminated. In particular, the present invention relates to a laminated film in which the polymer having an acidic group is polyvinyl sulfonic acid and the polymer having a basic group is polyvinyl amine or polyallyl amine.
近年、高分子電解質膜を利用した固体高分子型燃料電池が、環境負荷が少なく、二酸化炭素排出削減の観点から、自動車用、家庭定置用など様々な用途で検討されている。 In recent years, a polymer electrolyte fuel cell using a polymer electrolyte membrane has been studied for various uses such as for automobiles and home use from the viewpoint of reducing carbon dioxide emissions with less environmental burden.
この高分子電解質膜として、従来、パーフルオロ骨格の側鎖にスルホン酸基が結合したパーフルオロアルキルスルホン酸型高分子が用いられている。また、種々の改良が施されたパーフルオロスルホン酸型高分子が開発されてきている。しかし、高分子の製造工程が複雑で、コストの大幅低減が困難なフッ化炭素系材料を使用するため、費用が高くなる。 As this polymer electrolyte membrane, a perfluoroalkylsulfonic acid type polymer in which a sulfonic acid group is bonded to a side chain of a perfluoro skeleton has been conventionally used. In addition, perfluorosulfonic acid type polymers with various improvements have been developed. However, since the production process of the polymer is complicated and the fluorocarbon material is difficult to significantly reduce the cost, the cost becomes high.
そこで、フッ素系ポリマーを使用しない、かつプロトン伝導度を向上させた炭化水素系高分子電解質膜が開発されてきている。炭化水素系高分子電解質膜は、合成が容易であり、多岐にわたる分子構造に対応でき物性がコントロールしやすい。またリサイクルの観点からも、フッ素を含んでいないため、有害物質が発生しない点で有利である。 Accordingly, hydrocarbon polymer electrolyte membranes that do not use fluorine-based polymers and have improved proton conductivity have been developed. Hydrocarbon polymer electrolyte membranes are easy to synthesize, can handle a wide variety of molecular structures, and are easy to control physical properties. Also, from the viewpoint of recycling, since it does not contain fluorine, it is advantageous in that no harmful substances are generated.
例えば、炭化水素系高分子電解質膜としては、酸性基を有するポリマーと、塩基性基を有するポリマーとから形成されたポリイオンコンプレックスからなる電解質膜が知られている(特許文献1及び2参照)。しかし、成膜性等の点で、更なる改善が求められていた。
本発明は、プロトン伝導性、成膜性及び熱安定性に優れた積層膜、並びに当該積層膜を用いた電解質及び燃料電池を提供することを主な目的とする。 The main object of the present invention is to provide a laminated film excellent in proton conductivity, film formability and thermal stability, and an electrolyte and a fuel cell using the laminated film.
本発明は、従来の問題点等を鑑みて、鋭意検討を重ねた結果、ビニルスルホン酸に着目し、それを用いることにより優れたプロトン伝導度を有し、かつ成膜性に優れた高分子膜を得られることを見出し、更に検討を重ねて、本発明を完成するに至った。 As a result of intensive investigations in view of conventional problems and the like, the present invention focuses on vinyl sulfonic acid, and has a high proton conductivity and excellent film-forming properties by using it. It has been found that a film can be obtained, and further studies have been made, and the present invention has been completed.
即ち、本発明は、下記の積層膜、電解質及び燃料電池を提供する。 That is, the present invention provides the following laminated film, electrolyte, and fuel cell.
1.酸性基を有するポリマーからなる層と塩基性基を有するポリマーからなる層が交互に積層された積層膜であって、
酸性基を有するポリマーがポリビニルスルホン酸であり、
塩基性基を有するポリマーがポリビニルアミン又はポリアリルアミンであること
を特徴とする積層膜。
1. A layered film in which layers composed of a polymer having an acidic group and layers composed of a polymer having a basic group are alternately stacked,
The polymer having an acidic group is polyvinyl sulfonic acid,
A laminated film, wherein the polymer having a basic group is polyvinylamine or polyallylamine.
2.ポリビニルスルホン酸のゲルパーミエーションクロマトグラフィー(GPC )で測定した重量平均分子量が1,000〜1,000,000である項1に記載の積層膜。 2. Item 2. The laminated film according to Item 1, wherein the weight average molecular weight measured by gel permeation chromatography (GPC) of polyvinyl sulfonic acid is 1,000 to 1,000,000.
3.項1又は2に記載の積層膜を含むことを特徴とする電解質膜。
3.
4.項1又は2に記載の積層膜を備えたことを特徴とする燃料電池。
4).
以下、本発明について、更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
1.積層膜
本発明の積層膜は、酸性基を有するポリマー(以下、酸性ポリマーともいう)からなる層と、塩基性基を有するポリマー(以下、塩基性ポリマーともいう)からなる層とが、交互に複数積層されて構成されている。
1. Laminated film In the laminated film of the present invention, layers composed of a polymer having an acidic group (hereinafter also referred to as acidic polymer) and layers composed of a polymer having a basic group (hereinafter also referred to as basic polymer) are alternately arranged. A plurality of layers are stacked.
酸性ポリマーは、換言すると、プロトン供与基を有するポリマーである。塩基性ポリマーは、換言すると、プロトン受容基を有するポリマーである。 In other words, the acidic polymer is a polymer having a proton donating group. In other words, the basic polymer is a polymer having a proton accepting group.
酸性ポリマー層は全体として正の電荷を有する一方、塩基性ポリマー層は全体として負の電荷を有し、これら酸性ポリマー層と塩基性ポリマー層が静電気的に相互に引き寄せ合うことで、緻密な交互積層膜が形成される。 The acidic polymer layer has a positive charge as a whole, while the basic polymer layer has a negative charge as a whole. The acidic polymer layer and the basic polymer layer are attracted to each other electrostatically, so that the dense alternating A laminated film is formed.
本発明の積層膜は、換言すると、酸性ポリマーからなる層と塩基性ポリマーからなる層とから形成されたポリイオンコンプレックスともいえる。 In other words, the laminated film of the present invention can be said to be a polyion complex formed of a layer made of an acidic polymer and a layer made of a basic polymer.
積層膜における塩基性基のモル当量に対する酸性基のモル当量の比は、通常0.5〜1.5程度である。 The ratio of the molar equivalent of the acidic group to the molar equivalent of the basic group in the laminated film is usually about 0.5 to 1.5.
各層は、1又は複数のポリマーにより構成することができ、例えば、1本の高分子鎖が折り畳まれて層厚方向に重ねられて層を形成していてもよく、複数の高分子鎖が重なって層を形成していても良い。 Each layer can be composed of one or a plurality of polymers. For example, one polymer chain may be folded and overlapped in the layer thickness direction to form a layer, and a plurality of polymer chains overlap. A layer may be formed.
各層の厚みは目的や用途に応じて適宜設定される。 The thickness of each layer is appropriately set according to the purpose and application.
また積層膜全体の厚みや積層膜における層の数も、目的や用途に応じて適宜設定することができる。 Moreover, the thickness of the whole laminated film and the number of layers in the laminated film can be appropriately set according to the purpose and application.
本発明では、酸性基を有するポリマーとして、ポリビニルスルホン酸を用いる。 In the present invention, polyvinyl sulfonic acid is used as the polymer having an acidic group.
ポリビニルスルホン酸の重量平均分子量は、GPCで測定した値が、1,000〜1,000,000、特に10,000〜1,000,000であることが好ましい。重量平均分子量が大きいと、Td10%が大きくなり、熱安定性に優れる。 The weight average molecular weight of polyvinyl sulfonic acid is preferably 1,000 to 1,000,000, particularly 10,000 to 1,000,000, as measured by GPC. When the weight average molecular weight is large, Td 10% becomes large and the thermal stability is excellent.
また基本分子構造単位の繰り返し数が、10〜10,000、特に、100〜10,000の範囲であることが好ましい。
基本分子構造単位の繰り返し数が大きいと、Td10%が大きくなり熱安定性に優れる。
The number of repeating basic molecular structural units is preferably in the range of 10 to 10,000, particularly 100 to 10,000.
When the number of repeating basic molecular structural units is large, Td 10% increases and thermal stability is excellent.
ポリビニルスルホン酸の合成方法は特に限定されないが、一般的には、ビニルスルホン酸あるいはビニルスルホン酸水溶液に、少量の開始剤を添加し加熱してラジカル重合を行うか、光あるいは放射線を照射することにより重合することにより製造することができる。開始剤としては過酸化物やアゾ化合物、あるいはレドックス開始剤を用いることが出来る。光重合は、例えば、紫外線を照射することにより行うことができる。また光重合は、N,N−ジメチルホルムアミドの存在下に行うことが好ましい。 The method for synthesizing polyvinyl sulfonic acid is not particularly limited. Generally, a small amount of initiator is added to vinyl sulfonic acid or an aqueous vinyl sulfonic acid solution and heated to perform radical polymerization, or irradiation with light or radiation is performed. Can be produced by polymerization. As the initiator, a peroxide, an azo compound, or a redox initiator can be used. Photopolymerization can be performed, for example, by irradiating with ultraviolet rays. The photopolymerization is preferably performed in the presence of N, N-dimethylformamide.
モノマーとして用いるビニルスルホン酸は、二重結合含量が高く、かつ金属含有量が低いビニルスルホン酸が好ましい。 The vinyl sulfonic acid used as the monomer is preferably a vinyl sulfonic acid having a high double bond content and a low metal content.
特に、二重結合含量が95重量%以上であり、かつ、
(i)ナトリウム(Na)の含有量が1ppm以下、及び、
(ii)アルカリ土類金属及び第一遷移金属からなる群から選ばれる少なくとも1つの金属の含有量が1ppm以下であるビニルスルホン酸が好ましい。
In particular, the double bond content is 95% by weight or more, and
(I) the content of sodium (Na) is 1 ppm or less, and
(Ii) Vinylsulfonic acid having a content of at least one metal selected from the group consisting of alkaline earth metals and first transition metals of 1 ppm or less is preferred.
更に、二重結合含量が95重量%以上であり、かつ、
(i)ナトリウム(Na)の含有量が100ppb以下、及び、
(ii)アルカリ土類金属及び第一遷移金属からなる群から選ばれる少なくとも1つの金属の含有量が100ppb以下であるビニルスルホン酸が好ましい。
Furthermore, the double bond content is 95% by weight or more, and
(I) the content of sodium (Na) is 100 ppb or less, and
(Ii) Vinylsulfonic acid having a content of at least one metal selected from the group consisting of alkaline earth metals and first transition metals of 100 ppb or less is preferred.
二重結合含量が高く、かつ金属含有量が低いビニルスルホン酸を用いることで、プロトン伝導性等の物性がより優れたものとなる。 By using vinyl sulfonic acid having a high double bond content and a low metal content, physical properties such as proton conductivity are further improved.
また、本発明では、塩基性ポリマーとして、ポリビニルアミン又はポリアリルアミンを用いる。 In the present invention, polyvinylamine or polyallylamine is used as the basic polymer.
これら塩基性ポリマーの重量平均分子量も特に限定されないが、例えば、ポリアリルアミンを用いる場合、その平均分子量は、GPCで測定した値が、1,000〜100,000、好ましくは10,000〜100,000程度である。また基本分子構造単位の繰り返し数は、20〜2,000、好ましくは200〜2,000程度である。 Although the weight average molecular weight of these basic polymers is not particularly limited, for example, when polyallylamine is used, the average molecular weight is 1,000 to 100,000, preferably 10,000 to 100,000 as measured by GPC. About 000. The number of repeating basic molecular structural units is about 20 to 2,000, preferably about 200 to 2,000.
重量平均分子量が大きいとTd10%が大きくなり熱安定性に優れる。また、基本分子構造単位の繰り返し数が大きいとTd10%が大きくなり熱安定性に優れる。 When the weight average molecular weight is large, Td 10% becomes large and the thermal stability is excellent. Further, when the number of repeating basic molecular structural units is large, Td 10% is increased and thermal stability is excellent.
積層膜の製法
積層膜の製造方法は公知の方法に従って行うことができ、特に限定されないが、好ましくは、交互浸漬法により膜を作成して製造することが好ましい。
Method for producing a preparation laminated film of the laminated film can be carried out according to known methods is not particularly limited, preferably, it is preferable to produce by creating a film by alternate immersion method.
具体的には、酸性ポリマーを含む酸性溶液又は塩基性ポリマーを含む塩基性溶液に基材を浸漬させて、基材上に酸性ポリマー層又は塩基性ポリマー層を形成する工程と、洗浄液と前記基材とを接触させて余剰の酸性ポリマー又は塩基性ポリマーを洗い流す工程とを交互に繰り返して、酸性ポリマー層と塩基性ポリマー層とを交互に積層する交互積層工程を有する方法により製造することが好ましい。 Specifically, the step of immersing the substrate in an acidic solution containing an acidic polymer or a basic solution containing a basic polymer to form an acidic polymer layer or a basic polymer layer on the substrate, a cleaning liquid and the group It is preferable to produce by a method having an alternate lamination step of alternately laminating an acidic polymer layer and a basic polymer layer by alternately repeating the step of contacting the material and washing away the excess acidic polymer or basic polymer. .
より具体的には、実施例に記載の方法により製造することができる。 More specifically, it can be produced by the method described in the examples.
2.電解質膜
電解質膜として用いる場合、積層膜全体の膜厚は、10μm以上であることが好ましく、10μm以上200μm以下の範囲がより好ましく、20μm以上150μm以下の範囲が特に好ましい。
2. When used as an electrolyte membrane, the thickness of the entire laminated film is preferably 10 μm or more, more preferably 10 μm or more and 200 μm or less, and particularly preferably 20 μm or more and 150 μm or less.
全体の膜厚が10μm以上であれば、膜の機械的強度が高くなり、電解質膜の取扱中に破損するおそれが少なくなる。また膜厚が200μm以下であればプロトン伝導度が低下するおそれが少ない。 If the total film thickness is 10 μm or more, the mechanical strength of the film increases, and the possibility of breakage during handling of the electrolyte membrane decreases. Further, when the film thickness is 200 μm or less, there is little possibility that the proton conductivity is lowered.
3.燃料電池
本発明の積層膜を電解質膜として用いて燃料電池を得ることもできる。
3. Fuel cell A fuel cell can also be obtained by using the laminated membrane of the present invention as an electrolyte membrane.
燃料電池の構成は特に限定されず、公知の構成のものを採用することができる。 The configuration of the fuel cell is not particularly limited, and a known configuration can be adopted.
例えば、酸素極と、燃料極と、酸素極および燃料極の間に電解質膜として挟持された本発明の積層膜と、酸素極の外側に配置された酸化剤流路を有する酸化剤配流板と、燃料極の外側に配置された燃料流路を有する燃料配流板とから構成されたものが挙げられる。 For example, an oxygen electrode, a fuel electrode, a laminated film of the present invention sandwiched as an electrolyte film between the oxygen electrode and the fuel electrode, and an oxidant distribution plate having an oxidant channel disposed outside the oxygen electrode And a fuel flow distribution plate having a fuel flow path disposed outside the fuel electrode.
より具体的に、燃料極及び酸素極はそれぞれ、多孔質性の触媒層と、各触媒層を保持する多孔質カーボンシート(カーボン多孔質体)から構成され得る。触媒層には、電極触媒(触媒)と、この電極触媒を固化成形するための疎水性結着剤とが含まれ得る。 More specifically, each of the fuel electrode and the oxygen electrode can be composed of a porous catalyst layer and a porous carbon sheet (carbon porous body) that holds each catalyst layer. The catalyst layer may contain an electrode catalyst (catalyst) and a hydrophobic binder for solidifying and molding the electrode catalyst.
酸化剤配流板および燃料配流板は導電性を有する金属等から構成され、酸素極および燃料極にそれぞれ接合することで、集電体として機能するとともに、酸素極および燃料極に対して、酸素および燃料ガスを供給する。 The oxidant distribution plate and the fuel distribution plate are made of a conductive metal or the like, and function as a current collector by joining to the oxygen electrode and the fuel electrode, respectively. Supply fuel gas.
燃料極側で水素が酸化されてプロトンが生じ、このプロトンが電解質膜を伝導して酸素極に到達し、酸素極においてプロトンと酸素が電気化学的に反応して水を生成するとともに、電気エネルギーを発生させることができる。 Hydrogen is oxidized on the fuel electrode side to produce protons that pass through the electrolyte membrane and reach the oxygen electrode. At the oxygen electrode, protons and oxygen react electrochemically to produce water, and electrical energy. Can be generated.
本発明の積層膜は、ポリビニルスルホン酸からなる層と、ポリビニルアミン又はポリアリルアミンからなる層で構成され、プロトン伝導度が高く、かつ成膜性がよい。また熱安定性に優れている。 The laminated film of the present invention is composed of a layer made of polyvinylsulfonic acid and a layer made of polyvinylamine or polyallylamine, and has high proton conductivity and good film formability. It also has excellent thermal stability.
このような優れた性質から、本発明の積層膜は、電解質膜や燃料電池用材料などとして好適に利用し得る。 Due to such excellent properties, the laminated membrane of the present invention can be suitably used as an electrolyte membrane, a fuel cell material and the like.
以下に実施例及び比較例を示し、本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
測定方法
重量平均分子量の測定は、0.2M硝酸ナトリウム水溶液を溶媒に、ポリエチレンオキシドを標準試料として、ゲルパーミエイションクロマトグラフィー(GPC)で測定した。カラムは、東ソー株式会社製 GPCカラム TSK−GELのα−2500とα−3000とα−4000の三本を連結して用いた。
Measurement Method The weight average molecular weight was measured by gel permeation chromatography (GPC) using a 0.2 M sodium nitrate aqueous solution as a solvent and polyethylene oxide as a standard sample. The column was used by connecting three α-2500, α-3000, and α-4000 of GPC column TSK-GEL manufactured by Tosoh Corporation.
プロトン伝導度の測定は、電気化学測定装置(AutolabPGSTAT30、ECO CHEMIE社製)を用い、交流2端子法、温度範囲30〜170℃で測定した。 The proton conductivity was measured using an electrochemical measurement device (AutolabPGSTAT30, manufactured by ECO CHEMIE) in an alternating current two-terminal method and a temperature range of 30 to 170 ° C.
示差熱−熱重量同時測定(TG-DTA)は理学製TG8120を用い、窒素雰囲気下、昇温速度10℃/分、温度範囲30〜450℃で測定した。またこの測定で開始時から10%の重量が減った時点を10%熱分解温度(Td10%)とした。 Differential thermal-thermogravimetric simultaneous measurement (TG-DTA) was performed using a TG8120 manufactured by Rigaku under a nitrogen atmosphere at a heating rate of 10 ° C./min and a temperature range of 30 to 450 ° C. In this measurement, the time when the weight decreased by 10% from the beginning was defined as a 10% thermal decomposition temperature (Td 10% ).
示差走査熱量(DSC)はTAインスツルメント製Q200を用い、大気下、昇降温速度10℃/分、温度範囲−60〜200℃で測定した。 Differential scanning calorimetry (DSC) was measured using Q200 manufactured by TA Instruments in the air at a temperature rising / falling rate of 10 ° C / min and in a temperature range of -60 to 200 ° C.
成膜性は、原子間力顕微鏡(AFM)により、膜表面の凹凸を目視で観察して評価した。 The film formability was evaluated by visually observing irregularities on the film surface with an atomic force microscope (AFM).
参考例1:ポリビニルスルホン酸の合成(ラジカル重合)
50mlナスフラスコ中、ビニルスルホン酸(旭化成ファインケム株式会社製 VSA−S)1gに対して、開始剤として過硫酸アンモニウムを0.01g加え、更に反応溶媒として純水1gを加えた。
Reference Example 1: Synthesis of polyvinyl sulfonic acid (radical polymerization)
In a 50 ml eggplant flask, 0.01 g of ammonium persulfate was added as an initiator to 1 g of vinyl sulfonic acid (VSA-S manufactured by Asahi Kasei Finechem Co., Ltd.), and 1 g of pure water was further added as a reaction solvent.
なお、用いたビニルスルホン酸の二重結合含量を、日本工業規格 JIS K0070−1992に準じて測定したよう素価から、下記式:
二重結合含量(重量%)=(よう素価)×(108.1/2)/126.9
(ここで108.1はビニルスルホン酸の分子量で、126.9はよう素の原子量を示す)
より算出した結果、97.5重量%であった。また、金属含有量を、ICP質量分析装置(サーモフィッシャーサイエンティフィック株式会社製 型名:Xシリーズ X7 ICP−MS)にて内標準法で定量した結果、Fe含量455ppb、Na含量465ppb、Ca含量50ppb、Cr含量120ppbのビニルスルホン酸であった。
In addition, from the iodine value measured according to Japanese Industrial Standard JIS K0070-1992, the following formula:
Double bond content (% by weight) = (iodine value) × (108.1 / 2) /126.9
(Where 108.1 is the molecular weight of vinyl sulfonic acid and 126.9 is the atomic weight of iodine)
As a result of calculation, it was 97.5% by weight. Moreover, as a result of quantifying the metal content by an internal standard method using an ICP mass spectrometer (model name: X series X7 ICP-MS manufactured by Thermo Fisher Scientific Co., Ltd.), Fe content 455 ppb, Na content 465 ppb, Ca content The vinyl sulfonic acid was 50 ppb and the Cr content was 120 ppb.
ビニルスルホン酸及び開始剤が溶解後、アルゴン置換を充分にし、60℃、12時間撹拌した。室温に冷却後、メタノール15mlを加え、ろ過により残存する過硫酸アンモニウムを除去した。ろ液を濃縮し、大量のテトラヒドロフラン中に滴下し、粘調物として分離した。これを再度、大量のテトラヒドロフランと接触させ、激しく撹拌し精製し、得られた粘稠物を50℃三昼夜加熱真空乾燥した。 After the vinyl sulfonic acid and the initiator were dissolved, the argon substitution was sufficient, and the mixture was stirred at 60 ° C. for 12 hours. After cooling to room temperature, 15 ml of methanol was added, and the remaining ammonium persulfate was removed by filtration. The filtrate was concentrated and dropped into a large amount of tetrahydrofuran, and separated as a viscous product. This was again brought into contact with a large amount of tetrahydrofuran, purified by vigorous stirring, and the resulting viscous product was vacuum dried by heating at 50 ° C. for 3 days.
得られたポリマーは茶色透明の固体で、GPCで測定したところ、重量平均分子量3.3×104の重合物であった。 The obtained polymer was a brown transparent solid, which was a polymer having a weight average molecular weight of 3.3 × 10 4 as measured by GPC.
このポリマーの10重量%溶液を金電極上にキャストして成膜し、80℃一昼夜加熱減圧乾燥した。DSCを測定すると、ガラス転移温度は57℃であった。 A 10% by weight solution of this polymer was cast on a gold electrode to form a film, and then dried under reduced pressure by heating at 80 ° C. overnight. As measured by DSC, the glass transition temperature was 57 ° C.
参考例2:ポリビニルスルホン酸の合成(光重合)
20mlのサンプル瓶中で、ビニルスルホン酸(旭化成ファインケム株式会社製 VSA−S)2gと、N,N−ジメチルホルムアミド(片山化学社製 試薬特級)1g(ビニルスルホン酸1モルに対し0.74モル)を混合した後、UV照射機を用いて360nmの紫外線を照射した。
Reference Example 2: Synthesis (photopolymerization) of polyvinyl sulfonic acid
In a 20 ml sample bottle, 2 g of vinyl sulfonic acid (VSA-S manufactured by Asahi Kasei Finechem Co., Ltd.) and 1 g of N, N-dimethylformamide (special grade reagent manufactured by Katayama Chemical Co., Ltd.) (0.74 mol per 1 mol of vinyl sulfonic acid) ), And then irradiated with UV light of 360 nm using a UV irradiator.
なお、用いたビニルスルホン酸について、参考例1と同様に測定した結果、二重結合含量97.5重量%、かつ、Fe含量455ppb、Na含量465ppb、Ca含量50ppb、Cr含量120ppbであった。 The vinyl sulfonic acid used was measured in the same manner as in Reference Example 1. As a result, the double bond content was 97.5% by weight, the Fe content was 455 ppb, the Na content was 465 ppb, the Ca content was 50 ppb, and the Cr content was 120 ppb.
重合温度35〜45℃で1時間重合後、系内は透明樹脂状の固体となった。その固体を純水2gに溶解し、大量のテトラヒドロフラン中に滴下し、粘稠物として分離した。これを再度、大量のテトラヒドロフランと接触させ、激しく撹拌し精製、得られた粘調物を50℃三昼夜加熱真空乾燥した。得られたポリマーは薄黄色透明の固体で、GPCで測定したところ、重量平均分子量5×104の重合物であった。 After polymerization for 1 hour at a polymerization temperature of 35 to 45 ° C., the system became a transparent resinous solid. The solid was dissolved in 2 g of pure water, dropped into a large amount of tetrahydrofuran, and separated as a viscous product. This was again brought into contact with a large amount of tetrahydrofuran, purified by vigorous stirring, and the resulting viscous product was vacuum dried by heating at 50 ° C. for 3 days. The obtained polymer was a light yellow transparent solid, which was a polymer having a weight average molecular weight of 5 × 10 4 as measured by GPC.
実施例1:ポリビニルスルホン酸とポリアリルアミンのポリイオンコンプレックス積層膜の合成
2−アミノエタンチオールで表面修飾した金くし型電極を基板として、浸漬、洗浄、乾燥等を繰り返せる自動装置を用いて、参考例1で得られたポリビニルスルホン酸の0.15mM水溶液とポリアリルアミン(登録商標)(日東紡績株式会社製 重量平均分子量6×104)の0.30mM水溶液に交互浸漬させ、120℃加熱三昼夜後減圧乾燥して、ポリビニルスルホン酸からなる層とポリアリルアミンからなる層の交互積層膜からなるポリイオンコンプレックスを作成した。積層膜の層数は、ポリビニルスルホンからなる層が50、ポリアリルアミン層が50で、全体で100層とした。積層膜における塩基性基のモル当量に対する酸性基のモル当量の比は0.5であった。
Example 1: Synthesis of polyion complex laminate film of polyvinyl sulfonic acid and polyallylamine Reference example using an automatic apparatus capable of repeating dipping, washing, drying, etc., using a gold comb electrode surface-modified with 2-aminoethanethiol as a substrate 1. A 0.15 mM aqueous solution of polyvinyl sulfonic acid obtained in 1 and a 0.30 mM aqueous solution of polyallylamine (registered trademark) (weight average molecular weight 6 × 10 4, manufactured by Nitto Boseki Co., Ltd.) are alternately immersed, and heated at 120 ° C. for three days and nights. It dried under reduced pressure, and the polyion complex which consists of an alternating laminated film of the layer which consists of polyvinylsulfonic acid and the layer which consists of polyallylamine was created. The number of layers of the laminated film was 50 for the layer made of polyvinylsulfone and 50 for the polyallylamine layer, for a total of 100 layers. The ratio of the molar equivalent of the acidic group to the molar equivalent of the basic group in the laminated film was 0.5.
得られた膜は薄茶色透明で、アセトン、メタノール、N,N−ジメチルホルムアミド、ジエチルエーテル、酢酸エチルなどの各種有機溶媒および水に不溶であった。 The obtained film was light brown and transparent, and was insoluble in various organic solvents such as acetone, methanol, N, N-dimethylformamide, diethyl ether, ethyl acetate and water.
比較例1:ナフィオン膜
デュポン社製 ナフィオン(登録商標)117をそのまま用いた。
Comparative Example 1: Nafion membrane Nafion (registered trademark) 117 manufactured by DuPont was used as it was.
比較例2:ポリスチレンスルホン酸
ポリスチレンスルホン酸(アルドリッチ社製 重量平均分子量7×104)の10重量%溶液を金電極上にキャストして成膜し、80℃で一昼夜加熱減圧乾燥した。
Comparative Example 2: Polystyrenesulfonic acid A 10% by weight solution of polystyrenesulfonic acid (weight average
DSCを測定すると、ガラス転移温度は87℃であった。 When the DSC was measured, the glass transition temperature was 87 ° C.
比較例3:ポリスチレンスルホン酸とポリアリルアミンのポリイオンコンプレックス積層膜の合成
2−アミノエタンチオールで表面修飾した金くし型電極を基板として、浸漬、洗浄、乾燥等を繰り返せる自動装置を用いて、ポリスチレンスルホン酸(アルドリッチ社製 重量平均分子量7×104)の0.15mM水溶液とポリアリルアミン(登録商標)(日東紡績株式会社製 重量平均分子量6×104)の0.30mM水溶液に交互浸漬させ、120℃加熱三昼夜後減圧乾燥して、ポリスチレンスルホン酸からなる層とポリアリルアミンからなる層の交互積層膜からなるポリイオンコンプレックスを作成した。積層膜の層数は、ポリスチレンスルホン酸からなる層が50、ポリアリルアミン層が50で、全体で100層とした。積層膜における塩基性基のモル当量に対する酸性基のモル当量の比は0.5であった。
Comparative Example 3 Synthesis of Polyion Complex Laminated Film of Polystyrene Sulfonic Acid and Polyallylamine Polystyrene sulfone using an automatic device capable of repeating dipping, washing, drying, etc., using a gold comb electrode surface-modified with 2-aminoethanethiol as a substrate 0.15 mM aqueous solution of acid (Aldrich weight average
以上の参考例1、実施例1及び比較例1〜3で得られた膜について、成膜性、プロトン伝導度および10%熱分解温度(Td10%)を測定した。 With respect to the films obtained in Reference Example 1, Example 1 and Comparative Examples 1 to 3, the film formability, proton conductivity and 10% thermal decomposition temperature (Td 10% ) were measured.
成膜性、測定温度90℃におけるプロトン伝導度及びTd10%の結果を表1に示す。 Table 1 shows the results of film forming properties, proton conductivity at a measurement temperature of 90 ° C., and Td of 10% .
表1に示されるように、実施例1のポリビニルスルホン酸からなる層とポリアリルアミンからなる層の積層膜(以下、「PVS-PAA積層膜」ともいう)は、ポリビニルスルホン酸単独でできた膜に比して、優れたTd10%を有していた。 As shown in Table 1, the laminated film of the layer made of polyvinyl sulfonic acid and the layer made of polyallylamine of Example 1 (hereinafter also referred to as “PVS-PAA laminated film”) is a film made of polyvinyl sulfonic acid alone. Compared to, it had an excellent Td of 10% .
また、PVS−PAA積層膜は、緻密かつ平滑で、比較例3のポリスチレンスルホン酸からなる層とポリアリルアミンからなる層の積層膜(以下、「PSS-PAA積層膜」ともいう)と比較して、優れた成膜性を有していた。これは、ポリスチレンスルホン酸のようなベンゼン骨格を有しているものと比べて、ポリビニルスルホン酸のガラス転移点が低く、流動性が高く電極への密着性が良いためと考えられた。 Further, the PVS-PAA laminated film is dense and smooth, as compared with the laminated film of the layer made of polystyrene sulfonic acid and the layer made of polyallylamine of Comparative Example 3 (hereinafter also referred to as “PSS-PAA laminated film”). The film had excellent film forming properties. This is considered to be because the glass transition point of polyvinyl sulfonic acid is lower than that having a benzene skeleton such as polystyrene sulfonic acid, the fluidity is high, and the adhesion to the electrode is good.
更に、PVS-PAA積層膜は、ポリアミドスルファミド酸やポリアミド酸のようなアミド基を含有しているものと比較して、加水分解を起こしにくいと考えられる。 Furthermore, it is considered that the PVS-PAA laminated film is less susceptible to hydrolysis than those containing an amide group such as polyamide sulfamic acid or polyamic acid.
また、PVS-PAA積層膜は、ポリビニルスルホン酸とポリエチレンイミンを用いた場合と比べ、Td10%が高く、優れた熱安定性も有していた。 In addition, the PVS-PAA laminated film had a high Td of 10% as compared with the case where polyvinyl sulfonic acid and polyethyleneimine were used, and also had excellent thermal stability.
また実施例1の結果に示されるように、PVA-PAA積層膜は、ポリマーイオンコンプレックスの形成により水に不溶となり、ポリビニルスルホン酸単独でできた膜と比較して吸湿性も大幅に低下した。 Further, as shown in the results of Example 1, the PVA-PAA laminated film became insoluble in water due to the formation of the polymer ion complex, and the hygroscopicity was significantly reduced as compared with the film made of polyvinyl sulfonic acid alone.
また、実施例1及び比較例1〜3の膜のプロトン伝導度について温度範囲30〜170℃の測定結果を図3に示す。各膜とも100℃前後で伝導度に折れ点はなかった。 Moreover, the measurement result of the temperature range 30-170 degreeC is shown in FIG. 3 about the proton conductivity of the film | membrane of Example 1 and Comparative Examples 1-3. There was no break in conductivity at around 100 ° C for each film.
図3に示されるように、PVS−PAA積層膜は、全温度範囲のプロトン伝導度において10-4S・cm-1桁の値が得られ、プロトン伝導性に優れることがわかった。 As shown in FIG. 3, the PVS-PAA laminated film has a proton conductivity in the entire temperature range, a value of 10 −4 S · cm −1 digit was obtained, and it was found that the proton conductivity was excellent.
また、PVS−PAA積層膜は、全温度範囲で、比較例2のポリスチレン単独で作成された膜(以下「PSS膜」ともいう)及びナフィオン(Nafion)膜に対して、優れたプロトン伝導度を有していた。 In addition, the PVS-PAA laminated film has excellent proton conductivity over the entire temperature range with respect to a film made of the polystyrene alone of Comparative Example 2 (hereinafter also referred to as “PSS film”) and a Nafion film. Had.
また、PVS−PAA積層膜は、PSS−PAA積層膜よりも、温度変化によるプロトン伝導度の変化が小さいこともわかった。 Further, it was also found that the PVS-PAA laminated film has a smaller change in proton conductivity due to temperature change than the PSS-PAA laminated film.
またPVS−PAA積層膜の活性化エネルギーは8.2 kJmol-1、PSS−PAA積層膜の活性化エネルギーは20kJmol−1で、PVS−PSS積層膜はより低い活性化エネルギーを示した。 Moreover, the activation energy of the PVS-PAA laminated film was 8.2 kJmol −1 , the activation energy of the PSS-PAA laminated film was 20 kJmol −1 , and the PVS-PSS laminated film showed a lower activation energy.
Claims (4)
酸性基を有するポリマーがポリビニルスルホン酸であり、
塩基性基を有するポリマーがポリビニルアミン又はポリアリルアミンであること
を特徴とする積層膜。 A layered film in which layers composed of a polymer having an acidic group and layers composed of a polymer having a basic group are alternately stacked,
The polymer having an acidic group is polyvinyl sulfonic acid,
A laminated film, wherein the polymer having a basic group is polyvinylamine or polyallylamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008121421A JP5221199B2 (en) | 2008-05-07 | 2008-05-07 | Polymer laminated film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008121421A JP5221199B2 (en) | 2008-05-07 | 2008-05-07 | Polymer laminated film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009272139A true JP2009272139A (en) | 2009-11-19 |
JP5221199B2 JP5221199B2 (en) | 2013-06-26 |
Family
ID=41438523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008121421A Expired - Fee Related JP5221199B2 (en) | 2008-05-07 | 2008-05-07 | Polymer laminated film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5221199B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017030502A1 (en) * | 2015-08-14 | 2017-02-23 | Nanyang Technological University | A biomimetic membrane |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085038A2 (en) * | 2002-04-08 | 2003-10-16 | Massachusetts Institute Of Technology | Solid polymer electrolytes from polyethylene oxide-containing layer-by-layer assembled films |
JP2004090318A (en) * | 2002-08-30 | 2004-03-25 | Hitachi Chem Co Ltd | Molded body |
WO2006054668A1 (en) * | 2004-11-18 | 2006-05-26 | Mitsui Chemicals, Inc. | Laminate comprising multilayered film bonded through hydrogen bond, self-supporting thin film provided from said laminate, and their production process and use |
JP2006260797A (en) * | 2005-03-15 | 2006-09-28 | Samsung Sdi Co Ltd | Proton conductive electrolyte film for fuel cell, its manufacturing method as well as device, and fuel cell |
-
2008
- 2008-05-07 JP JP2008121421A patent/JP5221199B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085038A2 (en) * | 2002-04-08 | 2003-10-16 | Massachusetts Institute Of Technology | Solid polymer electrolytes from polyethylene oxide-containing layer-by-layer assembled films |
JP2004090318A (en) * | 2002-08-30 | 2004-03-25 | Hitachi Chem Co Ltd | Molded body |
WO2006054668A1 (en) * | 2004-11-18 | 2006-05-26 | Mitsui Chemicals, Inc. | Laminate comprising multilayered film bonded through hydrogen bond, self-supporting thin film provided from said laminate, and their production process and use |
JP2006260797A (en) * | 2005-03-15 | 2006-09-28 | Samsung Sdi Co Ltd | Proton conductive electrolyte film for fuel cell, its manufacturing method as well as device, and fuel cell |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017030502A1 (en) * | 2015-08-14 | 2017-02-23 | Nanyang Technological University | A biomimetic membrane |
CN108136330A (en) * | 2015-08-14 | 2018-06-08 | 南洋理工大学 | Biomimetic membranes |
Also Published As
Publication number | Publication date |
---|---|
JP5221199B2 (en) | 2013-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vijayakumar et al. | Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells | |
Patel et al. | Superacidity in Nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells | |
Couture et al. | Polymeric materials as anion-exchange membranes for alkaline fuel cells | |
Zhang et al. | Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement | |
Wang et al. | Alkaline polymer electrolyte membranes for fuel cell applications | |
Zhang et al. | Recent development of polymer electrolyte membranes for fuel cells | |
US7910236B2 (en) | Electrolyte material, electrolyte membrane and membrane-electrolyte assembly for polymer electrolyte fuel cells | |
Tian et al. | Cross-linked anion-exchange membranes with dipole-containing cross-linkers based on poly (terphenyl isatin piperidinium) copolymers | |
Kang et al. | Emerging porous solid electrolytes for hydroxide ion transport | |
WO2007007767A1 (en) | Electrolyte membrane for use in solid polymer-type fuel cell, process for production of the membrane and membrane electrode assembly for use in solid polymer-type fuel cell | |
Sharma et al. | Acid resistant PVDF-co-HFP based copolymer proton exchange membrane for electro-chemical application | |
Chen et al. | Densely quaternized fluorinated poly (fluorenyl ether) s with excellent conductivity and stability for vanadium redox flow batteries | |
Chen et al. | Three-decker strategy based on multifunctional layered double hydroxide to realize high-performance hydroxide exchange membranes for fuel cell applications | |
Lin et al. | Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly (arylene ether ketone) membrane with extremely low methanol crossover | |
Lan et al. | Cross-linked anion exchange membranes with pendent quaternary pyrrolidonium salts for alkaline polymer electrolyte membrane fuel cells | |
Chen et al. | Poly (phthalazinone ether ketone) amphoteric ion exchange membranes with low water transport and vanadium permeability for vanadium redox flow battery application | |
Liu et al. | Poly (arylene ether ketone) with an ultrahigh-selectivity hydrophilic phase proton transport channel by grafting sulfonated benzotriazole groups onto pendant chains | |
Zeng et al. | Alkaline anion exchange membranes for fuel cells-a patent review | |
US10862151B2 (en) | Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for slid polymer fuel cells, and fuel cell | |
Yang et al. | Polyether ether ketone-based anion exchange membranes with bis-imidazolium cations for all-vanadium redox flow batteries | |
Sriram et al. | Recent progress in anion exchange membranes (AEMs) in water electrolysis: synthesis, physio-chemical analysis, properties, and applications | |
JP2003288916A (en) | Direct methanol fuel cell membrane and its manufacturing method | |
Chen et al. | Poly (ether sulfone)-based anion exchange membranes containing dense quaternary ammonium cations and their application for fuel cells | |
Li et al. | Advancements of polyvinylpyrrolidone‐based polymer electrolyte membranes for electrochemical energy conversion and storage devices | |
Nagao | Proton‐Conducting Polymers: Key to Next‐Generation Fuel Cells, Electrolyzers, Batteries, Actuators, and Sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20091026 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100215 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110506 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130307 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160315 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |