JP2009272124A - Ultra-high-pressure mercury lamp - Google Patents

Ultra-high-pressure mercury lamp Download PDF

Info

Publication number
JP2009272124A
JP2009272124A JP2008121233A JP2008121233A JP2009272124A JP 2009272124 A JP2009272124 A JP 2009272124A JP 2008121233 A JP2008121233 A JP 2008121233A JP 2008121233 A JP2008121233 A JP 2008121233A JP 2009272124 A JP2009272124 A JP 2009272124A
Authority
JP
Japan
Prior art keywords
end portion
electrode
connecting member
base end
pressure mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008121233A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Kitano
洋好 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2008121233A priority Critical patent/JP2009272124A/en
Publication of JP2009272124A publication Critical patent/JP2009272124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultra-high-pressure mercury lamp which can control an occurrence of an electrode breakage at a crystal grain boundary, as a starting point, grown in a large diameter portion of the electrode, can prevent blackening of a light emitting tube due to impurities, and has a high reliability. <P>SOLUTION: In the ultra-high-pressure mercury lamp which is provided with a pair of electrodes arranged facing each other inside a light emitting tube and in which mercury of 0.15 mg/mm<SP>3</SP>or more is enclosed, the electrode is provided with a chip end portion, a base end portion, and a connecting member, and the chip end portion has an opening of a concave shape on an end portion of the base end side and is composed of a tungsten material of purity 99.99 wt.% or more, and the base end portion has an opening of a concave shape on an end portion of the chip end side and an axis portion on the base end side and is composed of the tungsten material of purity less than 99.9 wt.%, and the connecting member is press-inserted into the openings of the chip end portion and the base end portion, and the chip end portion and the base end portion are connected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば液晶ディスプレイ装置などのプロジェクタ装置用の光源に使用される超高圧水銀ランプに関する。特に、発光管内に0.15mg/mm以上の水銀が封入され、点灯時の水銀蒸気圧が150気圧以上になるショートアーク型超高圧水銀ランプに関する。 The present invention relates to an ultrahigh pressure mercury lamp used as a light source for a projector apparatus such as a liquid crystal display apparatus. In particular, the present invention relates to a short arc type ultra-high pressure mercury lamp in which 0.15 mg / mm 3 or more of mercury is enclosed in an arc tube and the mercury vapor pressure at the time of lighting is 150 atmospheres or more.

従来から、プロジェクタ装置等の光源としてショートアーク型超高圧水銀ランプが広く利用されており、近年これらのプロジェクタ装置は小型化されて簡易に持ち運び可能なタイプが普及している。このような小型化されたプロジェクタ装置であっても、十分な明るさを確保して、昼間でも画像がよく見えるようにするための光出力性能が光源には求められている。このような背景から、これらのプロジェクタ装置に搭載される光源については、小型であると同時に一層の高出力化が検討されている。   Conventionally, a short arc type ultra-high pressure mercury lamp has been widely used as a light source for a projector device or the like, and in recent years, these projector devices have become smaller and can be easily carried. Even in such a miniaturized projector device, the light source is required to have a light output performance for ensuring sufficient brightness so that an image can be seen well even in the daytime. Against this background, light sources mounted on these projector apparatuses are being considered to be smaller and at the same time have higher output.

小型でありながら高出力化するための方策の一つとして、ランプの入力電力を高くし、発光部に封入する水銀封入量を増加させ、点灯圧力を高める改良がなされている。しかし電極は、寸法を同じくして入力電力、水銀封入量を増加させれば、点灯時の温度は高温となり、蒸発によって損耗しやすくなる。
そのため電極は、純度の非常に高いタングステンにより構成され、先端が高温になって蒸発したとしても、発光管内に封入されたハロゲンガスと反応してハロゲン化物となり、また電極の先端に帰還する、いわゆるハロゲンサイクルを働かせることによって長寿命化がなされている。このとき電極の先端に、ハロゲン化物とならない、つまりハロゲンサイクルに供しない不純物などが含まれていると、点灯時にこれらが蒸発して管壁に付着し、発光管の黒化を引き起こすなど、ランプの寿命を短くする原因となる。ゆえに、電極の先端には純度の非常に高いタングステンが用いられる必要がある。
As one of the measures for increasing the output while being small, improvements have been made to increase the lighting pressure by increasing the input power of the lamp, increasing the amount of mercury enclosed in the light emitting section. However, if the input power and mercury filling amount are increased with the same dimensions, the temperature at the time of lighting becomes high, and the electrode is easily worn out by evaporation.
For this reason, the electrode is made of tungsten having a very high purity, and even if the tip becomes high temperature and evaporates, it reacts with the halogen gas enclosed in the arc tube to become a halide, and returns to the tip of the electrode, so-called Life is extended by using a halogen cycle. At this time, if the tip of the electrode contains impurities that do not become halides, that is, not subjected to the halogen cycle, these will evaporate during lighting and adhere to the tube wall, causing blackening of the arc tube, etc. This will shorten the service life. Therefore, it is necessary to use tungsten having a very high purity at the tip of the electrode.

しかし、純度の非常に高いタングステン材は、点灯時の高温によって約1300℃以上になると、結晶状態が電極軸方向に沿った針状結晶から略球状の粒状結晶へ変化する再結晶成長が発生しやすく、結晶粒の粗大化によって結晶粒界面が電極径方向に一面的に拡大して、材料の機械的強度が低下することとなる。さらに電極は非常に小径であるため、結晶粒界面を起点として製造時や点灯時に折れが発生するという問題があった。   However, when the tungsten material having a very high purity is about 1300 ° C. or higher due to the high temperature during lighting, recrystallization growth occurs in which the crystal state changes from an acicular crystal along the electrode axis direction to a substantially spherical granular crystal. It is easy to increase the crystal grain interface by expanding the crystal grain interface in the electrode radial direction due to the coarsening of the crystal grains. Furthermore, since the electrode has a very small diameter, there has been a problem that bending occurs at the time of manufacture and lighting from the crystal grain interface.

そこで、例えば特開2007−287387号公報(特許文献1)には、先端に位置する電極本体に純度の高いタングステン材を用い、電極本体を支持する電極軸部に、多くの粒界を有する機械的強度の高いタングステン材料を用いることで、ランプの黒化を防止するとともに、電極軸部の折れを防止する超高圧水銀ランプが開示されている。   Therefore, for example, in Japanese Patent Application Laid-Open No. 2007-287387 (Patent Document 1), a high purity tungsten material is used for an electrode body located at the tip, and a machine having many grain boundaries in an electrode shaft portion that supports the electrode body. An ultra-high pressure mercury lamp is disclosed that uses a tungsten material having a high mechanical strength to prevent the lamp from becoming black and to prevent the electrode shaft from being bent.

図5(a)は、特許文献1に記載の超高圧水銀放電ランプの管軸を含む平面で切断した断面図であり、(b)は電極を前記ランプの管軸を含む平面で切断した断面図である。放電ランプ1は、発光空間Sを内部に有する略球状の発光部11と、発光部11の両端に連続する柱状の封止部12とを有する発光管10を具えている。発光空間S内には、一対の電極13、14が対向配置されると共に、発光物質として0.15mg/mm以上の水銀と、ハロゲンサイクルを行うためのハロゲンガスが封入されている。 FIG. 5A is a cross-sectional view taken along a plane including the tube axis of the ultrahigh pressure mercury discharge lamp described in Patent Document 1, and FIG. 5B is a cross-section taken along a plane including the tube axis of the lamp. FIG. The discharge lamp 1 includes a light-emitting tube 10 having a substantially spherical light-emitting portion 11 having a light-emitting space S inside, and columnar sealing portions 12 continuous at both ends of the light-emitting portion 11. In the light emitting space S, a pair of electrodes 13 and 14 are arranged to face each other, and 0.15 mg / mm 3 or more of mercury as a light emitting substance and a halogen gas for performing a halogen cycle are enclosed.

電極13、14は、一部が封止部12の発光部11側に埋設されると共に、給電用の金属箔15の一端に接続されている。金属箔15の他端には、封止部12から外方に突出する外部リード16が接続されている。この従来の超高圧水銀ランプでは、一方の電極、例えば電極14は、両端が縮径した円柱状である径の大きい電極本体Aと、柱状の電極軸部Bを具備しており、電極軸部Bの最小径部dにおける電極中心軸と直交する断面において、多くの結晶粒界を有している。   The electrodes 13 and 14 are partly embedded on the light emitting unit 11 side of the sealing unit 12 and are connected to one end of a power supply metal foil 15. An external lead 16 that protrudes outward from the sealing portion 12 is connected to the other end of the metal foil 15. In this conventional ultra-high pressure mercury lamp, one electrode, for example, the electrode 14 is provided with a large-diameter electrode body A having a reduced diameter at both ends and a columnar electrode shaft portion B, and an electrode shaft portion. In the cross section orthogonal to the electrode central axis in the minimum diameter portion d of B, there are many crystal grain boundaries.

上記構成に係る超高圧水銀ランプは、先端に位置する電極本体に純度の高いタングステン材を用い、電極本体を保持する電極軸部に多くの粒界を有する機械的強度の高いタングステン材料を用いて、各々の部材をレーザーにて接合することで、ランプの黒化を防止するとともに、電極軸部の折れを防止することができる。
特開2007−287387
The ultra-high pressure mercury lamp according to the above configuration uses a high-purity tungsten material for the electrode body located at the tip, and uses a tungsten material with high mechanical strength having many grain boundaries in the electrode shaft portion that holds the electrode body. By joining each member with a laser, it is possible to prevent the lamp from being blackened and to prevent the electrode shaft portion from being broken.
JP2007-287387

しかしながら、これらの超高圧水銀ランプへの小型化、高出力化の要求はますます高まっており、高出力化のための水銀封入量と定格電力の増大とともに、使用時の電極先端の温度もこれまで以上に高温となるものになった。これにより、電極の軸部と比較して、より先端側である径の大きい大径部において、高温に曝されて結晶粒が粗大化する再結晶成長が顕著になり、機械的強度が低下することとなった。そして、大径の部位においても、成長した結晶粒界面を起点として、折れが発生する場合があり、特に大径部と軸部の間の領域において折れが発生するという問題があった。   However, there is an increasing demand for miniaturization and high output for these ultra-high pressure mercury lamps. As the amount of mercury enclosed and rated power increase for higher output, the temperature at the electrode tip during use also increases. It became hotter than ever. As a result, compared with the shaft portion of the electrode, recrystallization growth in which the crystal grains become coarse due to exposure to high temperature becomes remarkable in the large-diameter portion having a larger diameter on the tip side, and the mechanical strength is reduced. It became a thing. Even in a large-diameter portion, there is a case in which bending occurs from the grown crystal grain interface as a starting point, and there is a problem that bending occurs particularly in a region between the large-diameter portion and the shaft portion.

本発明は以上のような事情に基づいてなされたものであって、電極の大径部に成長した結晶粒界面を起点とした電極折れが生じることを抑制するとともに、不純物による発光管の黒化を防止し、信頼性の高い超高圧水銀ランプを提供することを目的とする。   The present invention has been made based on the circumstances as described above, and suppresses the occurrence of electrode breakage starting from the crystal grain interface grown on the large diameter portion of the electrode, and blackening of the arc tube due to impurities. The purpose is to provide a highly reliable ultra-high pressure mercury lamp.

本発明は、上記課題を解決するために、発光管の内部に一対の電極が対向配置され、水銀が封入0.15mg/mm以上封入された超高圧水銀ランプにおいて、前記電極は、先端部と、基端部と、連結部材とを具備し、前記先端部は、基端側の端部に凹状の開口を有し、99.99重量%以上の純度を有するタングステン材よりなり、前記基端部は、先端側の端部に凹状の開口と、基端側に軸部を有し、99.9重量%未満の純度を有するタングステン材よりなり、前記先端部および前記基端部の開口内に連結部材が圧入されて、前記先端部および前記基端部が連結されてなることを特徴とする。 In order to solve the above-mentioned problems, the present invention provides an ultrahigh pressure mercury lamp in which a pair of electrodes are arranged opposite to each other inside an arc tube, and mercury is sealed in an amount of 0.15 mg / mm 3 or more. A base end portion and a connecting member, and the tip end portion is made of a tungsten material having a concave opening at the end portion on the base end side and having a purity of 99.99% by weight or more. The end portion is made of a tungsten material having a concave opening at the end on the distal end side and a shaft portion on the proximal end side and having a purity of less than 99.9% by weight, and the opening of the distal end portion and the proximal end portion A connecting member is press-fitted inside, and the distal end portion and the base end portion are connected.

また、前記連結部材は、モリブデン、酸化ジルコニウム、または酸化アルミニウムのいずれかよりなることを特徴とする。   The connecting member is made of molybdenum, zirconium oxide, or aluminum oxide.

本発明によれば、電極は、純度の高いタングステン材よりなる先端部と、先端部よりも純度が低めの再結晶化しにくいタングステン材とを、連結部材の圧入により簡便に連結して作製される。すなわち、純度の非常に高いタングステン材を先端部に用いて、発光管の黒化を防止することが出来るとともに、大径部および軸部を具備する基端部に99.9重量%未満の純度を有する機械的強度の高いタングステン材料を使用するために、電極折れが発生するという問題を解決することが出来る。
さらに、連結部材が、例え再結晶成長が起こったとしても、電極折れの起点となる径方向への粒界面の成長を防ぐことが出来るとともに、芯金のような役割を果たし、先端部においても、電極の脱落を防止することが出来る。
According to the present invention, the electrode is manufactured by simply connecting a tip portion made of a highly pure tungsten material and a tungsten material having a lower purity than the tip portion and hardly recrystallized by press-fitting of a connecting member. . That is, a very high purity tungsten material can be used for the tip portion to prevent blackening of the arc tube, and a purity of less than 99.9% by weight at the base end portion having the large diameter portion and the shaft portion. Since the tungsten material having a high mechanical strength having the above is used, the problem of electrode breakage can be solved.
Furthermore, even if recrystallization growth occurs, the connecting member can prevent the growth of the grain interface in the radial direction, which is the starting point of electrode breakage, and also plays a role like a cored bar, even at the tip part. The electrode can be prevented from falling off.

また、連結部材が、電極材料であるタングステンよりも熱伝導率の低い材料により構成されているので、先端から基端側への伝熱を抑制し、高温による再結晶化成長を抑制して、電極折れを防止することができる。   Moreover, since the connecting member is made of a material having a lower thermal conductivity than tungsten, which is an electrode material, it suppresses heat transfer from the distal end to the proximal end side, suppresses recrystallization growth due to high temperature, Electrode breakage can be prevented.

以下に、本発明について図面を参照しながら説明する。
図1は、本発明の実施形態に係る放電ランプの全体構成を示す、管軸を含む平面で切断した概略断面図である。
放電ランプ1は、石英ガラスからなる略球状の発光部11と、発光部11の両端に連続する柱状の封止部12とからなる発光管10を具えている。発光部11の内部の発光空間S内には、発光物質として0.15mg/mm以上の水銀と、ハロゲンサイクルを行うための、例えば臭素などのハロゲンガスと、始動性改善のための、例えばアルゴンなどの希ガスが封入されている。
The present invention will be described below with reference to the drawings.
FIG. 1 is a schematic sectional view taken along a plane including a tube axis, showing the overall configuration of a discharge lamp according to an embodiment of the present invention.
The discharge lamp 1 includes a light-emitting tube 10 including a substantially spherical light-emitting portion 11 made of quartz glass and columnar sealing portions 12 continuous at both ends of the light-emitting portion 11. In the light emitting space S inside the light emitting unit 11, 0.15 mg / mm 3 or more of mercury as a luminescent substance, a halogen gas such as bromine for performing a halogen cycle, and for improving startability, for example, A rare gas such as argon is enclosed.

発光部11の内部の発光空間Sには、タングステン材からなる一対の電極13、14が各々の先端を対向して配置されている。電極13、14の一部は封止部12内に埋設され、モリブデンからなる給電用の金属箔15の一端に接続されている。金属箔15の他端には、一部が封止部12内から外方に突出する外部リード16の一端が接続されている。これら導電部材である、電極13、14の封止部側の一部、金属箔15、外部リード16の発光空間S側の一部は、例えばシュリンクシールによって封止部12内に気密に封止される。   In the light emitting space S inside the light emitting unit 11, a pair of electrodes 13 and 14 made of a tungsten material are arranged with their tips facing each other. A part of the electrodes 13 and 14 is embedded in the sealing portion 12 and connected to one end of a power supply metal foil 15 made of molybdenum. The other end of the metal foil 15 is connected to one end of an external lead 16, part of which protrudes outward from the inside of the sealing portion 12. These conductive members, such as a part on the sealing part side of the electrodes 13 and 14, the metal foil 15, and a part on the light emitting space S side of the external lead 16, are hermetically sealed in the sealing part 12 by, for example, a shrink seal. Is done.

このような放電ランプ1は、両端の外部リード16に不図示の給電装置が接続され、電極14の各々に給電されることによって、電極13、14の間で交流電圧が印加され、絶縁破壊して電極間に放電アークが形成され、発光部11から可視光を含む光線が発光部11から外方に放出される。   In such a discharge lamp 1, a power supply device (not shown) is connected to the external leads 16 at both ends, and power is supplied to each of the electrodes 14, whereby an AC voltage is applied between the electrodes 13 and 14, thereby causing dielectric breakdown. Thus, a discharge arc is formed between the electrodes, and light rays including visible light are emitted from the light emitting unit 11 to the outside.

図2に本発明の実施形態に係る電極を抽出した概略断面図を示す。
ここで、電極構造の位置関係の説明のために、電極中心軸Lに沿って、電極が封止部に埋設されている側を「基端側」、発光空間Sに突出している側を「先端側」と呼ぶこととする。また、「径」とは電極中心軸Lに対する径であるとする。以下には電極14について説明するが、対向する電極13についても同様のものとする。
FIG. 2 shows a schematic sectional view of the extracted electrodes according to the embodiment of the present invention.
Here, in order to explain the positional relationship of the electrode structure, along the electrode central axis L, the side where the electrode is embedded in the sealing portion is the “base end side”, and the side protruding into the light emitting space S is “ It will be referred to as “tip side”. The “diameter” is a diameter with respect to the electrode central axis L. Hereinafter, the electrode 14 will be described, but the same applies to the opposing electrode 13.

図2において、電極14は、先端部142、基端部143、連結部材141の3つの部材より構成される。先端部142は、大径の部材であり、その先端側は例えば略半球状、円錐台状に形成される。当該先端部の基端部143側には、径方向に切断された端面146を有し、該端面146には、該端面の略中央から電極軸Lに沿って先端側に向かって凹状の開口148が、連結部材141を挿入するために形成される。
この先端部142は、99.99重量%以上の純度を有するタングステン材よりなり、そのタングステン純度は高ければ高いほど好ましい。実際には99.99重量%以上の純度を有する市販のタングステン材を購入することにより入手可能である。
交流点灯方式の超高圧水銀ランプにおいては、前記先端部142は電子を放出する部分であって、電子放出を容易にするために、先端の形状を、半球状、円錐状、円錐台状などのように先端に近づくにつれて縮径させたり、先端に小径の突起を設けたり適宜設計されるので、先端の一部は小径ともなる。また電子の衝突を受ける部分でもあるから、熱容量を増やすために先端側の一部を径方向に拡大して体積を増やすような設計も考えられる。
In FIG. 2, the electrode 14 is composed of three members: a distal end portion 142, a proximal end portion 143, and a connecting member 141. The distal end portion 142 is a large-diameter member, and the distal end side is formed, for example, in a substantially hemispherical shape or a truncated cone shape. The proximal end 143 side of the distal end has an end surface 146 cut in the radial direction, and the end surface 146 has a concave opening from the approximate center of the end surface along the electrode axis L toward the distal end. 148 is formed for inserting the connecting member 141.
The tip portion 142 is made of a tungsten material having a purity of 99.99% by weight or more, and the higher the tungsten purity, the better. Actually, it can be obtained by purchasing a commercially available tungsten material having a purity of 99.99% by weight or more.
In the AC lighting ultra high pressure mercury lamp, the tip 142 is an electron emitting portion, and the tip has a hemispherical shape, a conical shape, a truncated cone shape, etc. in order to facilitate electron emission. In this way, the diameter of the tip is reduced as it approaches the tip, or a small-diameter protrusion is provided on the tip. Moreover, since it is also a part which receives an electron collision, in order to increase a heat capacity, the design which expands a part on the front end side to radial direction and increases a volume is also considered.

基端部143の先端側は先端部142と同程度に大径であり、先端部142側には径方向に切断された端面147を有し、該端面147には、該端面の略中央から電極軸Lに沿って基端側に向かって凹状の開口149が形成される。基端部143の基端側には小径で柱状の軸部14cが一体となって備わる。基端部の大径の部分と軸部14cとの間には、基端側に向かって漸次縮径する縮径部14bを備える。
この基端部143は、99.9重量%未満の純度を有するタングステン材からなる。基端部143には、機械的強度を高める目的で添加物等を添加してもよい。具体的には、カリウム、または酸化トリウムなどが好適に用いられ、例えばカリウムであれば、最大で120重量ppm、酸化トリウムであれば最大で2重量%程度添加することが好ましい。添加された添加物は、軸方向に伸びる結晶粒界においてタングステン粒同士が再結晶化することを阻害し、再結晶化温度を2000K以上に上昇させることができるため、高温においても機械的強度を維持することが出来る。
また、基端部143には、縮径部14bを設けない構成も可能であり、大径部14aと軸部14cを直に隣接させて当該基端部143を形成しても良い。
The distal end side of the base end portion 143 is as large as the distal end portion 142, and has an end surface 147 cut in the radial direction on the distal end portion 142 side, and the end surface 147 extends from the approximate center of the end surface. A concave opening 149 is formed along the electrode axis L toward the base end side. A small-diameter columnar shaft portion 14c is integrally provided on the proximal end side of the proximal end portion 143. Between the large-diameter portion of the base end portion and the shaft portion 14c, a reduced diameter portion 14b that gradually decreases in diameter toward the base end side is provided.
The base end portion 143 is made of a tungsten material having a purity of less than 99.9% by weight. An additive or the like may be added to the base end portion 143 for the purpose of increasing mechanical strength. Specifically, potassium or thorium oxide is preferably used. For example, potassium is preferably added at a maximum of 120 ppm by weight, and thorium oxide is preferably added at a maximum of about 2% by weight. The added additive prevents the tungsten grains from recrystallizing at the grain boundaries extending in the axial direction, and can raise the recrystallization temperature to 2000K or higher, so that the mechanical strength is increased even at high temperatures. Can be maintained.
Further, the base end portion 143 may be configured not to have the reduced diameter portion 14b, and the base end portion 143 may be formed by directly adjoining the large diameter portion 14a and the shaft portion 14c.

連結部材141は、前記開口148、149に圧入されて、先端部142と基端部143とを連結する部材である。電極完成時には、当該連結部材141は、開口148、149内に収まり、先端部142と基端部143とに囲繞されて放電に曝されることはない。
連結部材141の形状は、軸部14cよりも大径であり、例えば略円柱状に形成され、用いられる材料としては、圧入に耐えうる剛性があり、純タングステンの再結晶成長が始まる1300Kにおいても溶解せず、再結晶成長しないものが好ましい。例えばモリブデン、タンタル、酸化アルミニウム、または酸化ジルコニウムなどを好適に用いることができる。
さらには、連結部材141に用いられる材料は、電極14の外側を構成する材料であるタングステンよりも熱伝導率が低いことが好ましい。例えば、上記した4つの材料はいずれも熱伝導率がタングステンよりも低い。
なお、連結部材141の形状は円柱状の塊でなくてもよく、図3のように例えばモリブデン、タンタル等の金属であれば線状材をコイル状にして連結部材141とすることもできる。
The connecting member 141 is a member that is press-fitted into the openings 148 and 149 to connect the distal end portion 142 and the proximal end portion 143. When the electrode is completed, the connecting member 141 is accommodated in the openings 148 and 149 and is not surrounded by the distal end portion 142 and the proximal end portion 143 and exposed to the discharge.
The shape of the connecting member 141 is larger than that of the shaft portion 14c. For example, the connecting member 141 is formed in a substantially cylindrical shape, and the material used has rigidity capable of withstanding press-fitting, and even at 1300K where recrystallization growth of pure tungsten starts. Those which do not dissolve and do not recrystallize are preferred. For example, molybdenum, tantalum, aluminum oxide, zirconium oxide, or the like can be preferably used.
Furthermore, it is preferable that the material used for the connecting member 141 has a lower thermal conductivity than tungsten, which is a material constituting the outside of the electrode 14. For example, the above four materials all have a lower thermal conductivity than tungsten.
Note that the shape of the connecting member 141 does not have to be a cylindrical lump. As shown in FIG. 3, for example, a metal such as molybdenum or tantalum can be used to form a connecting member 141 by forming a linear material into a coil shape.

本発明に係る超高圧水銀ランプの電極は、以下に説明する方法によって製造することができる。
図4(a)ないし(c)に電極の製造方法を説明するための図を示す。
図4(a)に示すように、99.99重量%以上の純度を有するタングステン材よりなる先端部142、連結部材141、99.9重量%未満の純度を有するタングステン材よりなる基端部143をそれぞれ用意する。
各々の部材は、例えば切削により作製することができる。
次に、図4(b)に示すように、基端部143の開口149内に、連結部材141を電極軸に沿って圧入して嵌合する。
このとき、連結部材141の先端側は開口149内に入りきらず外部に突出する。
次に、図4(c)に示すように、連結部材141の外部に突出した先端側を、先端部142の開口148内に対して圧入し、嵌合する。
このとき、先端部142の端面146と、基端部143の端面147とが当接し、連結部材141を囲繞することとなる。
以上の工程を経ることによって、本発明に係る超高圧水銀ランプの電極を作製することができる。
The electrode of the ultrahigh pressure mercury lamp according to the present invention can be manufactured by the method described below.
FIGS. 4A to 4C are views for explaining a method for manufacturing an electrode.
As shown in FIG. 4A, a front end portion 142 made of a tungsten material having a purity of 99.99% by weight or more, a connecting member 141, a base end portion 143 made of a tungsten material having a purity of less than 99.9% by weight. Prepare each.
Each member can be produced by cutting, for example.
Next, as shown in FIG. 4B, the connecting member 141 is press-fitted along the electrode axis into the opening 149 of the base end portion 143 and fitted.
At this time, the distal end side of the connecting member 141 does not enter the opening 149 and protrudes to the outside.
Next, as shown in FIG. 4C, the distal end side protruding outside the connecting member 141 is press-fitted into the opening 148 of the distal end portion 142 and fitted.
At this time, the end surface 146 of the distal end portion 142 and the end surface 147 of the proximal end portion 143 come into contact with each other to surround the connecting member 141.
Through the above steps, the electrode of the ultrahigh pressure mercury lamp according to the present invention can be produced.

上記構成に係る超高圧水銀ランプによれば、純度の高いタングステン材よりなる先端部と、先端部よりも純度が低めの再結晶化しにくいタングステン材を、連結部材の圧入により簡便に作製される。すなわち、先端部に99.99重量%以上の純度を有するタングステン材を使用するために、含有される不純物の量が極めて少ない。これにより、不純物が発光管の内壁に付着することによって生じる、発光管の黒化を防止することが出来る。
また、大径部および軸部を具備する基端部に、99.9重量%未満の純度を有するタングステン材料を使用するために、再結晶成長が起こりにくく、電極の軸部のみでなく、大径部においても電極折れが発生するという問題を解決することが出来る。
さらに、連結部材が電極の内部にあって、点灯時に再結晶成長や溶融するものではないから、例え再結晶成長が起こったとしても、電極折れの起点となる径方向への粒界面の成長を連結部材によって防ぐことが出来るとともに、当該連結部材が芯金のような役割を果たし、99.99重量%以上の純度を有するタングステン材よりなる先端部においても、電極の脱落を防止することが出来る。
According to the ultra-high pressure mercury lamp having the above configuration, the tip portion made of a tungsten material having a high purity and the tungsten material having a lower purity than that of the tip portion and hardly recrystallized can be easily produced by press-fitting the connecting member. That is, since a tungsten material having a purity of 99.99% by weight or more is used at the tip, the amount of impurities contained is extremely small. Thereby, it is possible to prevent blackening of the arc tube caused by impurities adhering to the inner wall of the arc tube.
In addition, since a tungsten material having a purity of less than 99.9% by weight is used for the base end portion having the large diameter portion and the shaft portion, recrystallization growth hardly occurs, and not only the shaft portion of the electrode but also a large It is possible to solve the problem that electrode breakage occurs in the diameter portion.
Furthermore, since the connecting member is inside the electrode and does not recrystallize or melt at the time of lighting, even if recrystallization growth occurs, the growth of the grain interface in the radial direction, which is the starting point of electrode breakage, will occur. It can be prevented by the connecting member, and the connecting member plays a role like a metal core, and the electrode can be prevented from falling off even at a tip portion made of a tungsten material having a purity of 99.99% by weight or more. .

また、連結部材が、電極材料であるタングステンよりも熱伝導率の低い材料により構成されているので、先端から基端側への伝熱を抑制し、折れが発生しやすい大径部と軸部の間の領域へ熱を伝わりにくくすることにより、高温による再結晶化成長を抑制して、当該領域での電極折れを防止することができる。
さらに、電極軸部の径よりも大径である連結部材によって、先端部と基端部とを連結するので、難削材であるタングステンを用いても、非常に小径である電極軸部に比べれば加工が容易である。すなわち、例えば軸部を大径部に嵌入して支持する場合には、設計寸法が小さいためにより精度よく仕上げることが困難であると共に、寸法が合わずに嵌入しても連結出来ないという不具合が発生しやすいという問題があるが、当該連結部材によってこれを解決することが出来る。
In addition, since the connecting member is made of a material having a lower thermal conductivity than tungsten, which is an electrode material, it suppresses heat transfer from the distal end to the proximal end, and a large-diameter portion and a shaft portion that are liable to break. By making it difficult to transfer heat to the region between the layers, recrystallization growth due to high temperature can be suppressed, and electrode breakage in the region can be prevented.
Furthermore, since the tip and the base end are connected by a connecting member having a diameter larger than the diameter of the electrode shaft, even if tungsten, which is a difficult-to-cut material, is used, it is in comparison with the electrode shaft having a very small diameter. Processing is easy. That is, for example, when the shaft portion is inserted and supported in the large-diameter portion, it is difficult to finish more accurately because the design size is small, and there is a problem that it is not possible to connect even if the size is not matched. Although there is a problem that it is likely to occur, this connection member can solve this problem.

上記のような本発明に係る放電ランプに用いる電極の仕様の一例を示すと、以下のとおりである。
電極14は、電極全長TLが8.2mm、先端部142の最大外径Dが1.6mm、先端部の電極軸L方向の長さが1.9mm、基端部143の最大外径Dは先端部と略等しく、基端部143の電極軸L方向の長さが6.3mm、そのうち軸部14cの最大外径dが0.5mm、連結部材141の電極軸L方向の長さが1.8mm、最大外径CDが0.8mmである。
An example of the specifications of the electrodes used in the discharge lamp according to the present invention as described above is as follows.
The electrode 14 has an overall electrode length TL of 8.2 mm, a maximum outer diameter D of the distal end portion 142 of 1.6 mm, a length of the distal end portion in the electrode axis L direction of 1.9 mm, and a maximum outer diameter D of the proximal end portion 143 of The length in the electrode axis L direction of the base end portion 143 is approximately 6.3 mm, of which the maximum outer diameter d of the shaft portion 14c is 0.5 mm, and the length of the connecting member 141 in the electrode axis L direction is 1. .8 mm and the maximum outer diameter CD is 0.8 mm.

本発明に係る超高圧水銀ランプの概略全体図である。1 is a schematic overall view of an extra-high pressure mercury lamp according to the present invention. 本発明に係る超高圧水銀ランプの電極のみを抽出した概略断面図である。It is the schematic sectional drawing which extracted only the electrode of the ultrahigh pressure mercury lamp which concerns on this invention. 本発明に係る超高圧水銀ランプの電極の他の実施形態を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating other embodiment of the electrode of the ultrahigh pressure mercury lamp which concerns on this invention. 本発明に係る超高圧水銀ランプの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the ultra high pressure mercury lamp which concerns on this invention. (a)は従来の超高圧水銀ランプの概略全体図であり、(b)は、電極のみを抽出した概略断面図である。(A) is a schematic whole figure of the conventional super-high pressure mercury lamp, (b) is a schematic sectional drawing which extracted only the electrode.

符号の説明Explanation of symbols

1 放電ランプ
10 発光管
11 発光部
12 封止部
13 電極
14 電極
141 連結部材
142 先端部材
143 基端部材
146 端面
147 端面
148 開口
149 開口
14a 大径部
14b 縮径部
14c 軸部
15 金属箔
16 外部リード
A 電極本体
B 電極軸部
CD 最大外径
D 最大外径
d 最大外径
L 電極軸
TL 電極全長
DESCRIPTION OF SYMBOLS 1 Discharge lamp 10 Light emission tube 11 Light emission part 12 Sealing part 13 Electrode 14 Electrode 141 Connecting member 142 Front end member 143 Base end member 146 End face 147 End face 148 Opening 149 Opening 14a Large diameter part 14b Reduced diameter part 14c Shaft part 15 Metal foil 16 External lead A Electrode body B Electrode shaft CD Maximum outer diameter D Maximum outer diameter d Maximum outer diameter L Electrode shaft TL Total electrode length

Claims (2)

発光管の内部に一対の電極が対向配置され、水銀が封入0.15mg/mm以上封入された超高圧水銀ランプにおいて、
前記電極は、先端部と、基端部と、連結部材とを具備し、
前記先端部は、基端側の端部に凹状の開口を有し、99.99重量%以上の純度を有するタングステン材よりなり、
前記基端部は、先端側の端部に凹状の開口と、基端側に軸部を有し、99.9重量%未満の純度を有するタングステン材よりなり、
前記先端部および前記基端部の開口内に連結部材が圧入されて、前記先端部および前記基端部が連結されてなることを特徴とする超高圧水銀ランプ。
In an ultra-high pressure mercury lamp in which a pair of electrodes are opposed to each other inside an arc tube and mercury is enclosed in an amount of 0.15 mg / mm 3 or more,
The electrode includes a distal end portion, a proximal end portion, and a connecting member,
The distal end portion has a concave opening at the proximal end portion, and is made of a tungsten material having a purity of 99.99% by weight or more,
The base end portion is made of a tungsten material having a concave opening at the end portion on the front end side and a shaft portion on the base end side and having a purity of less than 99.9% by weight,
An ultra-high pressure mercury lamp, wherein a connecting member is press-fitted into the opening of the distal end portion and the proximal end portion, and the distal end portion and the proximal end portion are coupled.
前記連結部材は、モリブデン、酸化ジルコニウム、または酸化アルミニウムのいずれかよりなることを特徴とする請求項2に記載の超高圧水銀ランプ。   The ultra high pressure mercury lamp according to claim 2, wherein the connecting member is made of any one of molybdenum, zirconium oxide, and aluminum oxide.
JP2008121233A 2008-05-07 2008-05-07 Ultra-high-pressure mercury lamp Pending JP2009272124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121233A JP2009272124A (en) 2008-05-07 2008-05-07 Ultra-high-pressure mercury lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121233A JP2009272124A (en) 2008-05-07 2008-05-07 Ultra-high-pressure mercury lamp

Publications (1)

Publication Number Publication Date
JP2009272124A true JP2009272124A (en) 2009-11-19

Family

ID=41438508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121233A Pending JP2009272124A (en) 2008-05-07 2008-05-07 Ultra-high-pressure mercury lamp

Country Status (1)

Country Link
JP (1) JP2009272124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513863A (en) * 2011-05-16 2014-06-05 オスラム ゲーエムベーハー Gas discharge lamp and electrode for gas discharge lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513863A (en) * 2011-05-16 2014-06-05 オスラム ゲーエムベーハー Gas discharge lamp and electrode for gas discharge lamp

Similar Documents

Publication Publication Date Title
JP5360033B2 (en) Short arc flash lamp
JP5315951B2 (en) Super high pressure discharge lamp
JP3623137B2 (en) Discharge lamp and light source device
JP2007172959A (en) Metal halide lamp
EP2725604A1 (en) Mercury-free metal halide lamp for vehicle and metal halide lamp device
JP4259282B2 (en) High pressure discharge lamp
US9748087B2 (en) Short arc flash lamp and light source device
JP4837605B2 (en) Metal halide lamp
JP2009043446A (en) Metal halide lamp
JP4940723B2 (en) Short arc type ultra high pressure discharge lamp
JP5397401B2 (en) Short arc type discharge lamp
JP2009272124A (en) Ultra-high-pressure mercury lamp
JP4872999B2 (en) High pressure discharge lamp
JP2010086855A (en) Short arc type discharge lamp
JP2009004155A (en) Metal halide lamp
JP5733264B2 (en) High pressure discharge lamp
JP2004071530A (en) High-voltage discharge lamp and lamp unit using the same
JP4587118B2 (en) Short arc discharge lamp
JP5224368B2 (en) Short arc type discharge lamp
JP6662203B2 (en) Discharge lamp
JP2010113881A (en) Discharge lamp
JP5218320B2 (en) Super high pressure mercury lamp
JP2008052964A (en) Metal halide lamp
JP6562298B2 (en) Discharge lamp
JP3957710B2 (en) Light source device and projection display device