JP2009270673A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2009270673A
JP2009270673A JP2008123484A JP2008123484A JP2009270673A JP 2009270673 A JP2009270673 A JP 2009270673A JP 2008123484 A JP2008123484 A JP 2008123484A JP 2008123484 A JP2008123484 A JP 2008123484A JP 2009270673 A JP2009270673 A JP 2009270673A
Authority
JP
Japan
Prior art keywords
current
energizing
rolling
inner ring
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008123484A
Other languages
Japanese (ja)
Inventor
Takayasu Ozaki
孝泰 尾嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008123484A priority Critical patent/JP2009270673A/en
Publication of JP2009270673A publication Critical patent/JP2009270673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/49Bearings with both balls and rollers

Abstract

<P>PROBLEM TO BE SOLVED: To easily incorporate a short-circuiting path in a rolling bearing equipped with an electrolytic erosion preventing function. <P>SOLUTION: An inner ring energization face 17 and an outer ring energization face 18 are respectively provided on an outer diameter face 11a and an inner diameter face 12a of an inner ring 11 and an outer ring 12, and minute protrusions are formed on each energization face 17, 18. Cylindrical rollers 23 for energization are interposed between a plurality of balls interposed between the inner ring 11 and the outer ring 12, and they are retained by a common retainer 16. The short-circuiting path is formed by metallic contact of the cylindrical rollers 23 with the energization faces 17, 18. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電食防止構造を備えた転がり軸受に関するものである。   The present invention relates to a rolling bearing having an electrolytic corrosion prevention structure.

電動機などの電気機器に用いられる転がり軸受は、接地が不完全な場合や、高周波電流を使用した場合に、電気機器の電流が転がり軸受の軌道輪及び転動体を通って流れることがある。このとき、軌道輪の軌道面と転動体の間の潤滑油膜の不完全な部分において発生するスパークにより軌道面が局部的に溶解される現象、いわゆる電食が生じ、軸受寿命を縮める要因となる。   In a rolling bearing used for an electric device such as an electric motor, when the grounding is incomplete or a high-frequency current is used, the current of the electric device may flow through the raceway and the rolling element of the rolling bearing. At this time, a phenomenon in which the raceway surface is locally melted by sparks generated in an incomplete portion of the lubricating oil film between the raceway surface of the raceway and the rolling element, so-called galvanic corrosion occurs, and causes a reduction in bearing life. .

前記の電食を防止するために、軌道輪を構成する外輪の外径面にセラミックの溶射皮膜を形成することが知られている(特許文献1)。また、通電ブラシを内外輪間に付設することにより内外輪間を電気的に短絡することも知られている(特許文献2)。さらに、内外輪間に導電性グリースを封入することにより、軸受に流入した電流をそのグリースを通じて流すようにしたものも知られている(特許文献3)。   In order to prevent the electrolytic corrosion, it is known to form a ceramic sprayed coating on the outer diameter surface of the outer ring constituting the race (Patent Document 1). It is also known to electrically short-circuit between the inner and outer rings by attaching an energizing brush between the inner and outer rings (Patent Document 2). Further, there is also known one in which a conductive grease is sealed between the inner and outer rings so that a current flowing into the bearing flows through the grease (Patent Document 3).

特開2005−133876号公報(「発明を実施するための最良の形態」の段落0012)JP 2005-133876 A (paragraph 0012 of “Best Mode for Carrying Out the Invention”) 実用新案登録第2546472号公報(「実施例」の段落0007)Utility Model Registration No. 2546472 (paragraph 0007 of “Example”) 特開2007−100006号公報(「発明を実施するための最良の形態」の段落0032)JP 2007-100006 (paragraph 0032 of “Best Mode for Carrying Out the Invention”)

前記の特許文献1に開示されたように、外輪の外径面にセラミックの溶射皮膜を設ける方法によると、その外輪をハウジングに組み込む際に溶射皮膜を破壊させることがある。また、この方法をグリース潤滑の軸受に適用した場合は、軸受の回転によって発生する熱の放散が溶射皮膜によって妨げられるため、ハウジングを通じて放熱することができず、軸受の焼き付きの要因となる。   As disclosed in Patent Document 1, according to the method of providing a ceramic sprayed coating on the outer diameter surface of the outer ring, the sprayed coating may be destroyed when the outer ring is incorporated into the housing. In addition, when this method is applied to a grease lubricated bearing, the heat dissipation generated by the rotation of the bearing is hindered by the sprayed coating, so that heat cannot be dissipated through the housing, which causes the bearing to be seized.

さらに、上記の方法はセラミックを溶射する加工コストや材料費が高くつくこと、溶射皮膜にクラックが発生した場合の対策として溶射皮膜の空孔に合成樹脂を含浸させて封孔処理を施す必要があることなどの問題もある。   Furthermore, the above method requires high processing costs and material costs for thermal spraying the ceramic, and it is necessary to impregnate the pores of the thermal spray coating with a synthetic resin as a countermeasure when cracks occur in the thermal spray coating. There are also problems such as being.

特許文献2に開示されたように、通電ブラシを用いて短絡する方法は、通電ブラシの滑り接触に起因してPV値が高くなることが懸念され、軸受の高速回転に支障を来たす問題のほか、ブラシの摺接音が発生する問題もある。   As disclosed in Patent Document 2, the method of short-circuiting using the energizing brush is concerned that the PV value becomes high due to the sliding contact of the energizing brush, in addition to the problem that hinders the high-speed rotation of the bearing. There is also a problem that the sliding contact sound of the brush occurs.

特許文献3のように、導電性グリースを封入する方法は、グリースにカーボンブラックなどの導電物質が混入されるため、高速回転に不向きであり、また回転音が高くなるなどの問題がある。   As in Patent Document 3, the method of encapsulating conductive grease is not suitable for high-speed rotation because the grease is mixed with a conductive material such as carbon black, and there are problems such as high rotational noise.

そこで、この発明は、以上のような従来技術の問題を解消し、組立てが容易であり、安定した電食防止効果のある転がり軸受を提供することを課題とする。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art, to provide a rolling bearing which is easy to assemble and has a stable electrolytic corrosion preventing effect.

前記の課題を解決するために、この発明においては、軌道輪を構成する内輪11と外輪12、前記内輪11と外輪12の間に介在された所要数の転動体、これらの転動体を保持する保持器16からなる転がり軸受において、前記転動体の中に少なくとも1個の通電用転動体が前記保持器16に保持された状態で介在され、前記内輪11の外径面11aに内輪通電面17、外輪12の内径面12aに外輪通電面18がそれぞれ設けられ、前記通電用転動体が該内輪通電面17と外輪通電面18に金属接触した構成を採用した。   In order to solve the above problems, in the present invention, the inner ring 11 and the outer ring 12 constituting the raceway ring, the required number of rolling elements interposed between the inner ring 11 and the outer ring 12, and the rolling elements are held. In the rolling bearing including the cage 16, at least one energizing rolling element is interposed in the rolling element while being held by the cage 16, and the inner ring energizing surface 17 is disposed on the outer diameter surface 11 a of the inner ring 11. The outer ring energizing surface 18 is provided on the inner diameter surface 12a of the outer ring 12, and the energizing rolling element is in metal contact with the inner ring energizing surface 17 and the outer ring energizing surface 18.

前記構成の転がり軸受においては、通電用転動体が内輪通電面17と外輪通電面18に金属接触することにより、通電用転動体とを通じた電気的な短絡経路が内輪11と外輪12の間に形成される。   In the rolling bearing having the above-described configuration, the energizing rolling element is in metal contact with the inner ring energizing surface 17 and the outer ring energizing surface 18, so that an electrical short circuit path between the energizing rolling element is provided between the inner ring 11 and the outer ring 12. It is formed.

この発明は以上の構成であるので、以下の効果を奏することができる。
a)通電転動体を通じた短絡経路が形成されることにより、負荷を受ける転動体に電流が流れることがなく、そのため軌道面における電食が防止される。
Since this invention is the above structure, there can exist the following effects.
a) By forming a short-circuit path through the energized rolling element, no current flows through the rolling element that receives the load, and therefore, electrolytic corrosion on the raceway surface is prevented.

b)通電用転動体は、負荷を受ける転動体と同じ保持器16によって保持されるので、通電用転動体を軸受に容易に組み込むことができる。   b) Since the energizing rolling element is held by the same cage 16 as the rolling element receiving the load, the energizing rolling element can be easily incorporated into the bearing.

c)通電面17、18に、仕上げ加工を施すことなく残された粗面に含まれる凹凸19によって微小突起を形成することにより、特別な加工を施すことなく、通電面17、18に多数の微小突起を形成することができる。   c) By forming minute projections on the current-carrying surfaces 17 and 18 by the unevenness 19 included in the rough surface left without finishing, a large number of current-carrying surfaces 17 and 18 can be formed on the current-carrying surfaces 17 and 18 without any special processing. Microprojections can be formed.

d)通電面17、18に加工を施しその全周に分散状の微小突起又は複数の微小突条22を形成することにより、通電面17、18の全周に渡り通電用転動体との安定した接触が得られる。   d) Stabilization with the current-carrying rolling element over the entire circumference of the current-carrying surfaces 17 and 18 by processing the current-carrying surfaces 17 and 18 and forming dispersed minute projections or a plurality of minute projections 22 on the entire circumference. Contact is obtained.

e)負荷を受ける転動体を玉15により、通電用転動体を円筒ころ23によりそれぞれ構成することにより、これらを共通に保持する保持器16の構造が簡単となり、内外輪11、12間への装着が容易となる。また、円筒ころ23により、内外輪の通電面17、18との接触面積を十分に確保できるので、安定した電食防止効果を得ることができる。   e) The structure of the retainer 16 that holds them in common is simplified by configuring the rolling elements that receive a load by the balls 15 and the energizing rolling elements by the cylindrical rollers 23, respectively. Mounting becomes easy. In addition, since the cylindrical roller 23 can sufficiently secure the contact area between the inner and outer ring current-carrying surfaces 17 and 18, a stable electrolytic corrosion preventing effect can be obtained.

f)内外輪11、12の軌道13、14の両側に沿って所要深さの周溝31、32が設けられ、その周溝31、32の溝底に通電面17、18が形成された構成を採ると、円筒ころ23の公転半径が玉15の公転半径に近づくので、両者の周速差が小さくなり、保持器16に与える振動が抑制される。   f) Configuration in which circumferential grooves 31 and 32 having a required depth are provided along both sides of the raceways 13 and 14 of the inner and outer rings 11 and 12, and current-carrying surfaces 17 and 18 are formed on the groove bottoms of the circumferential grooves 31 and 32. Since the revolution radius of the cylindrical roller 23 approaches the revolution radius of the ball 15, the peripheral speed difference between the two becomes small, and the vibration applied to the cage 16 is suppressed.

g)円筒ころ23を前記保持器16の屈曲部29との接触によって内輪通電面17に押し当てた構成をとることにより、遠心力によって円筒ころ23が内輪通電面17から浮き上がることが防止され、通電を確保することができる。   g) By adopting a configuration in which the cylindrical roller 23 is pressed against the inner ring energizing surface 17 by contact with the bent portion 29 of the cage 16, the cylindrical roller 23 is prevented from being lifted from the inner ring energizing surface 17 by centrifugal force. Energization can be secured.

以下、この発明に係る転がり軸受の実施例を添付図面に基づいて説明する。   Embodiments of the rolling bearing according to the present invention will be described below with reference to the accompanying drawings.

実施例1の転がり軸受は、図1から図7に示したように、内外に対向した軌道輪を構成する内輪11と外輪12、内輪11の軌道13と外輪12の軌道14の間に介在された所要数の玉15、前記玉15の間に介在された通電用の円筒ころ23、これらの玉15及び円筒ころ23を保持する保持器16によって構成される。   As shown in FIGS. 1 to 7, the rolling bearing of the first embodiment is interposed between the inner ring 11 and the outer ring 12 that constitute the inner and outer opposed race rings, and between the race 13 of the inner ring 11 and the race 14 of the outer ring 12. The ball 15 includes a required number of balls 15, a current-carrying cylindrical roller 23 interposed between the balls 15, and a cage 16 that holds the ball 15 and the cylindrical roller 23.

前記内輪11の軌道13の両側に存在する内輪外径面11aのうち軌道13に接した所要幅の部分が内輪通電面17となっている。同様に、外輪12の軌道14の両側に存在する外輪内径面12aのうち軌道14に接した所要幅の部分が、外輪通電面18となっている。これらの内外の各通電面17、18は径方向に相互に対向した位置に形成される。   Of the inner ring outer diameter surface 11 a existing on both sides of the raceway 13 of the inner ring 11, a portion having a required width in contact with the raceway 13 is an inner ring energization surface 17. Similarly, the outer ring energizing surface 18 is a portion of the outer ring inner diameter surface 12 a existing on both sides of the raceway 14 of the outer ring 12 and having a required width in contact with the raceway 14. These inner and outer current-carrying surfaces 17 and 18 are formed at positions facing each other in the radial direction.

転がり軸受の製造工程において、内外輪11、12の各軌道13、14は超仕上げ加工が施される。しかし、その両側の外径面11a、内径面12aは、このような仕上げ加工が施されることなく、旋削加工の後に熱処理を施したまま残された粗面、又は粗研削されたまま残された粗面であり、その粗面に含まれる凹凸19(図5(a)参照)によって無数の微小突起が全周に渡り形成される。   In the manufacturing process of the rolling bearing, the raceways 13 and 14 of the inner and outer rings 11 and 12 are superfinished. However, the outer diameter surface 11a and the inner diameter surface 12a on both sides thereof are not subjected to such a finishing process, and are left as a rough surface left after being subjected to heat treatment after the turning process or after being subjected to rough grinding. An infinite number of minute protrusions are formed over the entire circumference by the unevenness 19 (see FIG. 5A) included in the rough surface.

前記の各通電面17、18に積極的に加工を施し、全周に渡り分散状の微小突起20を形成する場合もある(図5(b)参照)。   In some cases, the current-carrying surfaces 17 and 18 are positively processed to form dispersed microprotrusions 20 over the entire circumference (see FIG. 5B).

前記の玉15は、図1に示したように、全部で6個使用され、その2個置きの玉15の間に1個ずつ、全部で3個の円筒ころ23の組み合わせからなる。図示の場合、全体のバランスを考慮して3個の円筒ころ23を均等に分散状態に配置しているが、電食防止の観点からは少なくとも1個あればよい。   As shown in FIG. 1, a total of six balls 15 are used, and each ball 15 is composed of a combination of three cylindrical rollers 23, one between the two balls 15. In the case shown in the drawing, the three cylindrical rollers 23 are uniformly distributed in consideration of the overall balance, but at least one is sufficient from the viewpoint of preventing electrolytic corrosion.

玉15は内外の軌道13、14の間に介在され、通常の転がり軸受の場合と同様に負荷を受けて動転する作用を行う。円筒ころ23は通常の円筒ころ軸受の転動体として用いられている金属製のものが使用されるが、ここでは専ら通電転動体として用いられる。円筒ころ23は、その軸線が軸方向となる向きに配置される。   The balls 15 are interposed between the inner and outer races 13 and 14 and perform the action of rotating under the load as in the case of a normal rolling bearing. The cylindrical roller 23 is made of a metal that is used as a rolling element of a normal cylindrical roller bearing. Here, the cylindrical roller 23 is exclusively used as an energized rolling element. The cylindrical roller 23 is disposed in a direction in which the axis is the axial direction.

前記保持器16は、図4及び図6に示したように、前記の玉15及び円筒ころ23に対応した玉保持部25ところ保持部26が設けられ、それぞれ玉15、円筒ころ23がこれらの部分に保持される。   As shown in FIGS. 4 and 6, the cage 16 is provided with a ball holding portion 25 corresponding to the ball 15 and the cylindrical roller 23, and a holding portion 26 is provided. Retained in the part.

前記の玉保持部25に収納保持された玉15は、内外輪11、12の軌道13、14の間に介在される(図3参照)。ころ保持部26に保持された円筒ころ23は、軌道13、14を跨ぎ越し、その両端部がそれぞれ内外の通電面17、18の間で挟まれ、両方の通電面17、18に接触した状態に配置される(図2参照)。円筒ころ23の両端部は、微視的には通電面17、18に形成された前記の凹凸19(図5(a)参照)によって形成された微小突起又は加工によって形成された微小突起20(図5(b)参照)に金属接触する。その接触により、内外輪11、12の間に円筒ころ23を経由した電気的な短絡経路が形成される。   The balls 15 stored and held in the ball holding portion 25 are interposed between the tracks 13 and 14 of the inner and outer rings 11 and 12 (see FIG. 3). The cylindrical roller 23 held by the roller holding portion 26 straddles the raceways 13 and 14, and both end portions thereof are sandwiched between the inner and outer current-carrying surfaces 17 and 18, respectively, and are in contact with both the current-carrying surfaces 17 and 18 (See FIG. 2). Microscopically, both end portions of the cylindrical roller 23 are microprojections formed by the above-described unevenness 19 (see FIG. 5A) formed on the current-carrying surfaces 17 and 18, or microprojections 20 ( Metal contact is made (see FIG. 5B). By the contact, an electrical short circuit path is formed between the inner and outer rings 11 and 12 via the cylindrical roller 23.

前記の円筒ころ23は、軸受の回転時の遠心力の作用を受けて、内輪通電面17から浮き上がる傾向がある。このため、一部の円筒ころ23については、図7に示したように、ころ保持部26に屈曲部29を設け(同図の一点鎖線参照)、その屈曲部29を円筒ころ23の肩部分に接触させることにより内向きの荷重(図7の矢印A参照)をかけ、その円筒ころ23を内輪通電面17に押し当てることが望ましい。   The cylindrical roller 23 tends to be lifted from the inner ring energizing surface 17 under the action of centrifugal force during rotation of the bearing. Therefore, for some cylindrical rollers 23, as shown in FIG. 7, a bent portion 29 is provided in the roller holding portion 26 (see the alternate long and short dash line in FIG. 7), and the bent portion 29 is used as the shoulder portion of the cylindrical roller 23. It is desirable to apply an inward load (see arrow A in FIG. 7) by bringing the cylindrical roller 23 into contact with the inner ring energizing surface 17.

この場合、円筒ころ23が内輪通電面17側に押圧されると、該円筒ころ23は反対側の外輪通電面18から離れ、この部分での通電が遮断される場合がある。しかし、当該円筒ころ23が接触した保持器16、屈曲部29が設けられていない他のころ保持部26に保持された円筒ころ23、その円筒ころ23が接触する外輪通電面18を経た短絡経路が形成されるので問題はない。   In this case, when the cylindrical roller 23 is pressed to the inner ring energizing surface 17 side, the cylindrical roller 23 is separated from the outer ring energizing surface 18 on the opposite side, and the energization at this portion may be interrupted. However, the short-circuit path through the cage 16 in contact with the cylindrical roller 23, the cylindrical roller 23 held in another roller holding portion 26 not provided with the bent portion 29, and the outer ring energizing surface 18 in contact with the cylindrical roller 23. Is formed, so there is no problem.

なお、内外輪11、12の対向面の両端部に従来通りのシール部材27、28が装着され、その内側にグリースが封入される。   In addition, conventional seal members 27 and 28 are attached to both end portions of the opposing surfaces of the inner and outer rings 11 and 12, and grease is sealed inside thereof.

実施例1の転がり軸受は以上のように構成される。次にその作用について説明する。通常の使用状態において、負荷は玉15によって支持される。円筒ころ23は実質的に負荷を支持することはない。使用時の回転によって生じる発熱によりグリースが溶融され、玉15と軌道13、14の間に油膜が形成される。また内外輪の通電面17、18にも油膜が生じるが、各通電面17、18に存在する前記の凹凸19による微小突起、又は加工された微小突起20がその油膜を破って円筒ころ23の外径面と金属接触する。   The rolling bearing of Embodiment 1 is configured as described above. Next, the operation will be described. In normal use, the load is supported by balls 15. The cylindrical roller 23 does not substantially support the load. The grease is melted by heat generated by rotation during use, and an oil film is formed between the balls 15 and the tracks 13 and 14. An oil film is also formed on the current-carrying surfaces 17 and 18 of the inner and outer rings. However, the minute projections by the unevenness 19 or the processed minute projections 20 existing on the current-carrying surfaces 17 and 18 break the oil film and Metal contact with outer surface.

このような状態において、電流が内輪11側又は外輪12側から流入した場合、玉15と軌道13、14間にはグリースの油膜が存在するため電気抵抗値は高い。油膜が不完全であって抵抗値が低下した場合においても、1MΩ程度の高抵抗があることが知られている。   In such a state, when current flows from the inner ring 11 side or the outer ring 12 side, an oil film of grease exists between the balls 15 and the raceways 13 and 14, and thus the electric resistance value is high. It is known that even when the oil film is incomplete and the resistance value decreases, there is a high resistance of about 1 MΩ.

玉15と軌道13、14の間の前記の抵抗に比べ、円筒ころ23を通じた短絡経路は、円筒ころ23が油膜を破った通電面17、18の微小突起に金属接触する構造であるので、遥かに低抵抗である。このため、電流は通電面17、18と円筒ころ23を経た短絡経路を通じて流れる。その結果、玉15と軌道13、14の間にスパークが発生せず、電食が防止される。
なお、玉15が小サイズの場合は、円筒ころ23に代えて針状ころを用いることができる。
Compared to the resistance between the ball 15 and the raceways 13 and 14, the short circuit path through the cylindrical roller 23 has a structure in which the cylindrical roller 23 is in metal contact with the minute protrusions of the current-carrying surfaces 17 and 18 where the oil film is broken. Much lower resistance. For this reason, the current flows through a short-circuit path passing through the current-carrying surfaces 17 and 18 and the cylindrical roller 23. As a result, no spark is generated between the ball 15 and the tracks 13 and 14, and electrolytic corrosion is prevented.
When the balls 15 are small, needle rollers can be used instead of the cylindrical rollers 23.

図8から図10に示した実施例2の転がり軸受は、基本的には前記の実施例1と同様の構成であるが、通電面17、18の構成においてのみ相違する。即ち、この場合は通電面17、18に加工を施し、全周に渡り複数の微小突条22を平行に形成したものを示している。この微小突条22の高さは、通電面17、18に存在するグリースによる油膜21(図9の一点鎖線参照)と同程度か若干高い程度である。このような微小突条22も、「請求項2」にいう「微小突起」に含まれる。   The rolling bearing of the second embodiment shown in FIGS. 8 to 10 has basically the same configuration as that of the first embodiment, but differs only in the configuration of the current-carrying surfaces 17 and 18. That is, in this case, the current-carrying surfaces 17 and 18 are processed, and a plurality of minute protrusions 22 are formed in parallel over the entire circumference. The height of the minute protrusions 22 is about the same as or slightly higher than the oil film 21 (see the one-dot chain line in FIG. 9) due to the grease existing on the current-carrying surfaces 17 and 18. Such minute protrusions 22 are also included in the “minute protrusions” referred to in “claim 2”.

軸受の停止状態においては、グリースが微小突条22の間に形成された溝に溜まる。回転時の発熱によってグリースが溶融され油膜21を形成した場合は、微小突条22の先端が油膜21と同等か油膜21より高く突き出し、油膜21を破って露出した状態となる。微小突条22の先端の幅は、円筒ころ23と接触した際の接触圧で排除されその先端面に油膜が残らない程度に狭く形成される。   When the bearing is stopped, grease accumulates in a groove formed between the minute protrusions 22. When the grease is melted and the oil film 21 is formed by the heat generated during the rotation, the tip of the fine protrusion 22 protrudes to be equal to or higher than the oil film 21, and the oil film 21 is broken and exposed. The width of the tip of the fine protrusion 22 is narrowed to such an extent that it is eliminated by the contact pressure when contacting the cylindrical roller 23 and no oil film remains on the tip surface.

上記の微小突条22は、全周に渡り連続したもの、部分的に途切れたもののいずれでもよく、また前記微小突条22を軸方向に寸断した形状の多数の独立した微小突起を全周に渡り列状に形成したものであってもよい。
その他の構成及び作用は実施例1の場合と同様であるので、その説明を省略する
The microprojections 22 may be continuous or partially interrupted over the entire circumference, and a large number of independent microprojections having a shape obtained by cutting the microprojections 22 in the axial direction may be disposed on the entire circumference. It may be formed in a crossover shape.
Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.

上述のように、各通電面17、18に微小突起を形成して円筒ころ23と金属接触させる態様としては、通電面17、18に対する仕上げ加工を施すことなく残された粗面に含まれる無数の凹凸19によって形成されたもの(図5(a)参照)、全周に渡り形成された分散状の微小突起20により形成されたもの(図5(b)参照)、又は全周に渡り連続した所要数の微小突条22によって形成されたもの(図10参照)等がある。内外の通電面17、18において同じ態様の組み合わせ、又は異なった態様の組み合わせをとることができる。   As described above, as a mode in which minute protrusions are formed on the current-carrying surfaces 17 and 18 and are brought into metal contact with the cylindrical rollers 23, countless numbers included in the rough surfaces left without finishing the current-carrying surfaces 17 and 18 are included. Formed by the projections and depressions 19 (see FIG. 5A), formed by the dispersed minute projections 20 formed over the entire circumference (see FIG. 5B), or continuous over the entire circumference. And the like (see FIG. 10) formed by the required number of minute protrusions 22. The inner and outer current-carrying surfaces 17 and 18 can have the same combination of modes or different combinations.

図11に示した実施例3の転がり軸受は、基本的には前記の実施例1と同様の構成であるが、通電面17、18の構成においてのみ相違する。即ち、この実施例3の場合は、内輪11の軌道13及び外輪12の軌道14の両側の内輪外径面11aと外輪内径面12aに所要深さの周溝31、32が設けられ、その周溝31、32の溝底に内外輪の通電面17、18が形成される。   The rolling bearing of the third embodiment shown in FIG. 11 has basically the same configuration as that of the first embodiment, but is different only in the configuration of the current-carrying surfaces 17 and 18. That is, in the case of the third embodiment, circumferential grooves 31 and 32 of a required depth are provided on the inner ring outer diameter surface 11a and the outer ring inner diameter surface 12a on both sides of the raceway 13 of the inner ring 11 and the raceway 14 of the outer ring 12, and Current-carrying surfaces 17 and 18 of the inner and outer rings are formed at the groove bottoms of the grooves 31 and 32.

通電用の円筒ころ23の径は、周溝31、32の深さ分だけ実施例1の場合より大径となり、その両端部がそれぞれ通電面17、18に接触する。通電面17、18には微小突起(図5(a)(b)、図10参照)が形成される。   The diameter of the energizing cylindrical roller 23 is larger than that of the first embodiment by the depth of the circumferential grooves 31 and 32, and both ends thereof are in contact with the energizing surfaces 17 and 18, respectively. Small protrusions (see FIGS. 5A, 5B, and 10) are formed on the current-carrying surfaces 17 and 18.

このような構成をとると、円筒ころ23の径が相対的に大きくなるので、その公転の外径の大きさが玉15の公転の外径に近づく。これにより両者の公転の周速差が小さくなる。   With such a configuration, the diameter of the cylindrical roller 23 becomes relatively large, so that the outer diameter of the revolution approaches the outer diameter of the revolution of the ball 15. Thereby, the peripheral speed difference of both revolutions becomes small.

玉15と円筒ころ23の公転の周速差が大きい場合は、保持器16に振動が発生し、保持器16の耐久性を低下させることがある。しかし、この実施例3のような構成をとると周速差が小さくなるので、保持器16の振動が抑制され耐久性を上げることができる。   When the peripheral speed difference between the revolution of the ball 15 and the cylindrical roller 23 is large, vibration may be generated in the cage 16 and the durability of the cage 16 may be reduced. However, when the configuration as in the third embodiment is adopted, the peripheral speed difference is reduced, so that the vibration of the cage 16 is suppressed and the durability can be increased.

その他の構成及び作用は実施例1の場合と同様であるので、その説明を省略する。   Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.

実施例1の断面図Sectional view of Example 1 図1のX−X線の断面図Sectional view of the X 1 -X 1 line in FIG 1 図1のX−X線の断面図Sectional view of the X 2 -X 2 line in FIG. 1 図1のX−X線の断面図Sectional view of the X 3 -X 3 line in FIG. 1 (a)(b)実施例1の場合の通電面部分の諸例を示す一部拡大図(A) (b) The elements on larger scale which show the example of the electricity supply surface part in the case of Example 1 実施例1の保持器部分の一部斜視図The partial perspective view of the holder | retainer part of Example 1. FIG. 図4のX−X線の断面図Sectional view along line X 4 -X 4 in FIG. 実施例2の一部省略断面図Partially omitted sectional view of Example 2 同上の一部省略拡大断面図Partially omitted enlarged sectional view 実施例2の場合の通電面部分を示す一部拡大図Partial enlarged view showing the energizing surface part in the case of Example 2 実施例3の一部省略断面図Partially omitted sectional view of Example 3

符号の説明Explanation of symbols

11 内輪
11a 内輪外径面
12 外輪
12a 外輪内径面
13 軌道
14 軌道
15 玉
16 保持器
17 通電面
18 通電面
19 凹凸
20 微小突起
21 油膜
22 微小突条
23 円筒ころ
25 玉保持部
26 ころ保持部
27 シール部材
28 シール部材
29 屈曲部
31 周溝
32 周溝
DESCRIPTION OF SYMBOLS 11 Inner ring 11a Inner ring outer diameter surface 12 Outer ring 12a Outer ring inner diameter surface 13 Track 14 Track 15 Ball 16 Cage 17 Carrying surface 17 Current carrying surface 18 Current carrying surface 19 Concavity and convexity 20 Micro projection 21 Oil film 22 Micro projection 23 Cylindrical roller 25 Ball holding portion 26 Roller holding portion 27 Seal member 28 Seal member 29 Bent part 31 Circumferential groove 32 Peripheral groove

Claims (11)

軌道輪を構成する内輪(11)と外輪(12)、前記内輪(11)と外輪(12)の間に介在された所要数の転動体、これらの転動体を保持する保持器(16)からなる転がり軸受において、
前記転動体の中に少なくとも1個の通電用転動体が前記保持器(16)に保持された状態で介在され、前記内輪(11)の外径面(11a)に内輪通電面(17)、外輪(12)の内径面(12a)に外輪通電面(18)がそれぞれ設けられ、前記通電用転動体が該内輪通電面(17)と外輪通電面(18)に金属接触したことを特徴とする転がり軸受。
An inner ring (11) and an outer ring (12) constituting the raceway ring, a required number of rolling elements interposed between the inner ring (11) and the outer ring (12), and a cage (16) for holding these rolling elements. In the rolling bearing
At least one energizing rolling element is interposed in the rolling element while being held by the cage (16), and an inner ring energizing surface (17) is provided on the outer diameter surface (11a) of the inner ring (11). An outer ring energizing surface (18) is provided on an inner diameter surface (12a) of the outer ring (12), and the energizing rolling element is in metal contact with the inner ring energizing surface (17) and the outer ring energizing surface (18). Rolling bearing.
前記の金属接触が、前記各通電面(17、18)の全周に存在する多数の微小突起と前記通電用転動体との接触により行われることを特徴とする請求項1に記載の転がり軸受。   2. The rolling bearing according to claim 1, wherein the metal contact is performed by contact between a large number of minute protrusions existing on the entire circumference of each of the current-carrying surfaces (17, 18) and the current-carrying rolling element. . 前記各通電面(17、18)の微小突起が、当該通電面(17、18)に対する仕上げ加工を施すことなく残された粗面に含まれる無数の凹凸(19)によって形成されたことを特徴とする請求項2に記載の転がり軸受。   The minute protrusions on the respective current-carrying surfaces (17, 18) are formed by innumerable irregularities (19) included in the rough surface left without finishing the current-carrying surfaces (17, 18). The rolling bearing according to claim 2. 前記各通電面(17、18)の微小突起が、当該通電面(17、18)の全周に渡り形成された分散状の微小突起(20)により形成されたことを特徴とする請求項2に記載の転がり軸受。   The minute protrusions on each of the current-carrying surfaces (17, 18) are formed by dispersed minute protrusions (20) formed over the entire circumference of the current-carrying surface (17, 18). Rolling bearings as described in 前記各通電面(17、18)の微小突起が、全周に渡り形成された所要数の微小突条(22)により形成されたことを特徴とする請求項2に記載の転がり軸受。   The rolling bearing according to claim 2, wherein the minute protrusions on each of the current-carrying surfaces (17, 18) are formed by a required number of minute protrusions (22) formed over the entire circumference. 前記各通電面(17、18)の微小突起が、それぞれ、当該通電面に対する仕上げ加工を施すことなく残された粗面に含まれる無数の凹凸(19)によって形成されたもの、全周に渡り形成された分散状の微小突起(20)により形成されたもの、又は全周に渡り連続した所要数の微小突条(22)によって形成されたもののいずれかであることを特徴とする請求項2に記載の転がり軸受。   The minute projections on each of the current-carrying surfaces (17, 18) are formed by innumerable irregularities (19) included in the rough surface left without finishing the current-carrying surface, over the entire circumference. 3. The one formed by dispersed fine protrusions (20) formed, or one formed by a required number of fine protrusions (22) continuous over the entire circumference. Rolling bearings as described in 前記各通電面(17、18)に形成される微小突起の高さが、前記通電用転動体と前記各通電面(17、18)との間に生じる潤滑剤の油膜(21)の厚さと同程度かこれより高く形成されたことを特徴とする請求項1から6のいずれかに記載の転がり軸受。   The height of the minute projections formed on each of the energization surfaces (17, 18) is the thickness of the lubricant oil film (21) generated between the energization rolling element and each of the energization surfaces (17, 18). The rolling bearing according to any one of claims 1 to 6, wherein the rolling bearing is formed at the same level or higher. 前記通電用転動体が前記保持器(16)に設けられた屈曲部(29)との接触によって前記内輪通電面(17)に押し当てられたことを特徴とする請求項1から7のいずれかに記載の転がり軸受。   The energizing rolling element is pressed against the inner ring energizing surface (17) by contact with a bent portion (29) provided in the retainer (16). Rolling bearings as described in 前記の転動体が玉(15)により、前記通電用転動体が円筒ころ(23)によりそれぞれ形成されたことを特徴とする請求項1から8のいずれかに記載の転がり軸受。   9. A rolling bearing according to claim 1, wherein the rolling elements are formed by balls (15) and the energizing rolling elements are formed by cylindrical rollers (23). 前記内輪(11)の軌道(13)の両側に前記内輪通電面(17)、前記外輪(12)の軌道(14)の両側に前記外輪通電面(18)がそれぞれ設けられたことを特徴とする請求項1から9のいずれかに記載の転がり軸受。   The inner ring energizing surface (17) is provided on both sides of the raceway (13) of the inner ring (11), and the outer ring energizing surface (18) is provided on both sides of the raceway (14) of the outer ring (12). The rolling bearing according to any one of claims 1 to 9. 前記内輪(11)及び外輪(12)の軌道(13、14)に沿ってそれぞれの両側に所要深さの周溝(31、32)が設けられ、各周溝(31、32)の溝底に前記の各通電面(17、18)が形成されたことを特徴とする請求項10に記載の転がり軸受。   Circumferential grooves (31, 32) having a required depth are provided on both sides along the tracks (13, 14) of the inner ring (11) and the outer ring (12), and the groove bottoms of the respective circumferential grooves (31, 32) are provided. The rolling bearing according to claim 10, wherein each of the current-carrying surfaces (17, 18) is formed on the surface.
JP2008123484A 2008-05-09 2008-05-09 Rolling bearing Pending JP2009270673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123484A JP2009270673A (en) 2008-05-09 2008-05-09 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123484A JP2009270673A (en) 2008-05-09 2008-05-09 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2009270673A true JP2009270673A (en) 2009-11-19

Family

ID=41437409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123484A Pending JP2009270673A (en) 2008-05-09 2008-05-09 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2009270673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134775A (en) * 2015-10-12 2015-12-09 山东凯美瑞轴承科技有限公司 Hybrid bearing with center regulating function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134775A (en) * 2015-10-12 2015-12-09 山东凯美瑞轴承科技有限公司 Hybrid bearing with center regulating function

Similar Documents

Publication Publication Date Title
US9464672B2 (en) Rolling bearing with integrated electrical shunt
WO2009150935A1 (en) Retainer, deep groove ball bearing, and bearing with seal
JP2016128720A (en) Rolling bearing and machine tool spindle device
JP6102137B2 (en) Rolling bearing
JP2013174303A (en) Electrolytic corrosion preventive insulating rolling bearing
JP2008286229A (en) Current-carrying bearing
JP2009108963A (en) Rolling member
JP2009121659A (en) Rolling member
JP2009270673A (en) Rolling bearing
JP2006329366A (en) Insulated bearing for preventing electric erosion
JP2009162272A (en) Rolling bearing and brushless motor
JP2014105809A (en) Retainer for rolling bearing
JP2007113744A (en) Ball bearing and brushless motor
JP4110793B2 (en) Rolling bearing
JP2001041232A (en) Full type ball bearing for oscillation part
JP4519060B2 (en) Double row tapered roller bearing
JP2010096207A (en) Rolling bearing unit for rail vehicle
JP2014105732A (en) Rolling bearing
JP2010007738A (en) Rolling bearing
JP2001099161A (en) Bearing
JP2010002027A (en) Cylindrical roller bearing and cylindrical roller bearing device
JP2008208928A (en) Rolling bearing
JP2006144809A (en) Ball bearing device
JP2005106144A (en) Rolling bearing arrangement
JP2007285352A (en) Bearing