JP2009267768A - Directional bar antenna - Google Patents

Directional bar antenna Download PDF

Info

Publication number
JP2009267768A
JP2009267768A JP2008114981A JP2008114981A JP2009267768A JP 2009267768 A JP2009267768 A JP 2009267768A JP 2008114981 A JP2008114981 A JP 2008114981A JP 2008114981 A JP2008114981 A JP 2008114981A JP 2009267768 A JP2009267768 A JP 2009267768A
Authority
JP
Japan
Prior art keywords
antenna
coil
bar antenna
bar
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008114981A
Other languages
Japanese (ja)
Other versions
JP4774422B2 (en
Inventor
Masayuki Takahashi
政幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2008114981A priority Critical patent/JP4774422B2/en
Priority to US12/418,265 priority patent/US8077105B2/en
Publication of JP2009267768A publication Critical patent/JP2009267768A/en
Application granted granted Critical
Publication of JP4774422B2 publication Critical patent/JP4774422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, in a system such as a keyless entry system, asynchronous directionality in a front-back direction is sometimes required for an antenna, but it is difficult to arbitrarily control the directionality of an antenna in an induction field, and when a difference in reception sensitivity in a front-back direction is required for a bar antenna, the antenna need be surrounded by a shielding material, but it causes problems in terms of cost and shape. <P>SOLUTION: A directional bar antenna comprises a plurality of bar antennae, each being such that a coil is wound around a core, wherein a first bar antenna and a second bar antenna are arranged in an inverted V shape with a third antenna therebetween. In the directional bar antenna, the coil is wound in the same direction in the first bar antenna and in the second bar antenna, but the coil is wound in the reverse direction in the third bar antenna. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、指向性のあるバーアンテナに関するものである。   The present invention relates to a directional bar antenna.

従来の車両等のキーレスエントリー装置として、ユーザーがリモートユニットのボタンを操作することにより、ドアをロックあるいはアンロックする装置が一般的であり、このような装置の周波数にはLF帯がよく用いられており、アンテナは波長の長さに関係なく小型化できるバーアンテナが用いられている。   As a keyless entry device for a conventional vehicle or the like, a device that locks or unlocks a door by a user operating a button on a remote unit is generally used, and the LF band is often used as the frequency of such a device. As the antenna, a bar antenna that can be downsized regardless of the length of the wavelength is used.

一般的にバーアンテナは極座標において、コアの軸と垂直の方向に、軸に対して全ての方向に対称に8の字の指向特性がある。
図13(a)は従来のバーアンテナの一例を示す斜視図であり、棒状コア41の中央部にコイル42が巻回されている。
図13においてコア41は、
長さL×幅W×厚さT=20mm×10mm×10mm
の棒状であり、原点Oは、コア41の長さL,幅W,厚さTを2分するコアの中心点であり、コアの長さ方向をX軸、コアの幅方向をY軸,コアの厚み方向をZ軸とする。
また、
点Aは、アンテナの前方の点(X,Y,Z)=( 1m,0,0)
点Bは、アンテナの後方の点(X,Y,Z)=(−1m,0,0)
をあらわす。(以後、点Aと点Bとする。)
コアの特性は、
比透磁率 μ=80
導電率 σ =0s/m
であり、このコア41の中央部にコイル42が巻回されている。
該コイルは、
絶縁銅線径 φ=0.3mm
巻回数 20ターン
である。
図14は、図13(b)の示すようにバーアンテナ40のコイル42に交流定電流源Iを接続した時の、XY平面における座標の磁界強度分布を示す図である。
交流定電流源Iは、
周波数 f=125kHz
電流 I=2App
である。
この時の磁界強度は、
A点 1.53×10−3A/m
B点 1.51×10−3A/m
であり、指向性感度(20×log(A/B))は0.10dBである。
In general, a bar antenna has an 8-shaped directional characteristic in polar coordinates in a direction perpendicular to the axis of the core and symmetrically in all directions with respect to the axis.
FIG. 13A is a perspective view showing an example of a conventional bar antenna, and a coil 42 is wound around the central portion of a rod-shaped core 41.
In FIG. 13, the core 41 is
Length L x Width W x Thickness T = 20 mm x 10 mm x 10 mm
The origin O is the center point of the core that bisects the length L, width W, and thickness T of the core 41. The length direction of the core is the X axis, the width direction of the core is the Y axis, The thickness direction of the core is the Z axis.
Also,
Point A is a point in front of the antenna (X, Y, Z) = (1 m, 0, 0)
Point B is a point (X, Y, Z) behind the antenna = (− 1 m, 0, 0)
Is expressed. (Hereinafter referred to as point A and point B)
The core characteristics are:
Relative permeability μ r = 80
Conductivity σ = 0s / m
The coil 42 is wound around the central portion of the core 41.
The coil
Insulated copper wire diameter φ = 0.3mm
The number of windings is 20 turns.
FIG. 14 is a diagram showing the magnetic field strength distribution of coordinates in the XY plane when the AC constant current source I is connected to the coil 42 of the bar antenna 40 as shown in FIG.
AC constant current source I is
Frequency f = 125kHz
Current I = 2App
It is.
The magnetic field strength at this time is
Point A 1.53 × 10 −3 A / m
Point B 1.51 × 10 −3 A / m
The directivity sensitivity (20 × log (A / B)) is 0.10 dB.

このように、従来のバーアンテナの指向性はコアの軸を中心として軸に対して対称であり、軸方向の感度が無いため、複数のバーアンテナを組み合わせて無指向性アンテナとする特許文献1に示す発明・考案がされている。   As described above, the directivity of the conventional bar antenna is symmetric with respect to the axis about the axis of the core, and has no sensitivity in the axial direction, and therefore, a plurality of bar antennas are combined to form an omnidirectional antenna. The invention and device shown in FIG.

しかし近年、この種の装置において、運転者がリモートユニットを身につけ、ボタン操作をしなくても車両に近づくだけで自動的に車両のドアを解錠でき、また、降車して車両から離れると自動的に車両のドアを施錠するスマートエントリーが知られており、最近では家の玄関にもこのスマートエントリーが採用されている。
このような装置において、従来のアンテナをドアの外側に対して受信感度を持つように配置すると、ドアの内側に対しても受信感度を持ってしまうため、例えば家の玄関のスマートエントリーの場合は、来訪者を確認するために家の中でリモートユニットを持って玄関ドアに近づいた際にも開錠されてしまう問題があった。このような意図しない開錠を防ぐために、ドアの内と外で受信感度に差をつける必要があり、従来のバーアンテナをこのようなアプリケーションに用いる場合には、図15に示すように、バーアンテナ5の電波を受信したくない方向にシールド材6を設置することで電波を遮蔽して受信感度に差をつけていた。
However, in recent years, in this type of device, the driver can wear the remote unit and automatically unlock the vehicle door just by approaching the vehicle without operating the buttons. A smart entry that automatically locks the door of a vehicle is known, and recently, this smart entry has been adopted at the entrance of a house.
In such a device, if the conventional antenna is arranged so as to have reception sensitivity with respect to the outside of the door, it also has reception sensitivity with respect to the inside of the door. For example, in the case of smart entry at the entrance of a house There was a problem that the door was unlocked when a remote unit was held in the house to check the visitors. In order to prevent such unintentional unlocking, it is necessary to make a difference in reception sensitivity inside and outside the door. When a conventional bar antenna is used for such an application, as shown in FIG. By installing the shield material 6 in a direction where the antenna 5 does not want to receive the radio wave, the radio wave is shielded to make a difference in reception sensitivity.

特開2002−217635JP2002-217635 特許3495401Patent 3495401 特開2007−65881JP2007-65881A

キーレスエントリーなどのシステムでは、アンテナの前後に非対称な指向性が必要な場合がある。
通信距離が波長に対して十分に遠ければ通信は放射電磁界の領域で行われ、一般的な方法でアンテナの指向性を任意に制御が可能である。
近距離における通信の場合でも高周波数帯における通信の場合は波長が短いために、通信は放射電磁界の領域で通信が行われるが、キーレスエントリーやスマートエントリーのような近距離における低周波帯の無線通信の場合は通信距離に比べて波長が非常に長く、通信は誘導電磁界の領域で行われる。
誘導電磁界においてアンテナの指向性を任意に制御することは困難であり、バーアンテナの前後方向で受信感度に差をつけたい場合は、アンテナをシールド材で囲んでいたが、コストと形状に問題があった。
本発明は、シールドの必要のない、特定の方向に指向性を有する、安価で小型の指向性バーアンテナを提供することを目的とする。
In systems such as keyless entry, asymmetric directivity may be required before and after the antenna.
If the communication distance is sufficiently long with respect to the wavelength, communication is performed in the region of the radiated electromagnetic field, and the directivity of the antenna can be arbitrarily controlled by a general method.
Even in the case of short-distance communication, because the wavelength is short in the case of high-frequency communication, communication is performed in the radiated electromagnetic field, but in the low-frequency band in the short distance such as keyless entry and smart entry. In the case of wireless communication, the wavelength is very long compared to the communication distance, and communication is performed in the region of the induction electromagnetic field.
It is difficult to arbitrarily control the directivity of the antenna in the induction electromagnetic field, and if you want to make a difference in the reception sensitivity in the front and rear direction of the bar antenna, the antenna was surrounded by a shield material, but there was a problem with cost and shape was there.
An object of the present invention is to provide an inexpensive and small directional bar antenna having directivity in a specific direction that does not require a shield.

コアにコイルが巻回された複数のバーアンテナにおいて、第1のバーアンテナと、第2のバーアンテナは、第3のバーアンテナを挟んでハの字型に配置された
ことを特徴とする指向性バーアンテナとし、前記指向性バーアンテナにおいて、第1のバーアンテナと第2のバーアンテナのコイルの巻回方向は同じであり、第3のバーアンテナのコイルの巻回方向は逆であることを特徴とする指向性バーアンテナ
とする。
In a plurality of bar antennas in which a coil is wound around a core, the first bar antenna and the second bar antenna are arranged in a C shape with the third bar antenna interposed therebetween. In the directional bar antenna, the coil winding directions of the first bar antenna and the second bar antenna are the same, and the coil winding directions of the third bar antenna are opposite. A directional bar antenna characterized by

本発明によれば、シールド等を必要としないで、指向特性が前後に対して非対称で特定の方向に指向性がある安価で小型な指向性バーアンテナとすることができる。   According to the present invention, it is possible to provide an inexpensive and small directional bar antenna having a directivity that is asymmetric with respect to the front and rear and having directivity in a specific direction without requiring a shield or the like.

図1を用いて本発明による指向性バーアンテナの一実施例を説明する。
図1(a)は本発明の指向性バーアンテナの斜視図であり、図1(b)はアンテナの配置を示す図であり、図1(c)はコイルの接続を示す図である。図に示すように、バーアンテナ10はコア11の中央にコイル12が巻回され、同様にバーアンテナ20はコア21の中央にコイル22が巻回され、バーアンテナ30はコア31の中央にコイル32が巻回されている。
バーアンテナ10と20は、バーアンテナ30を挟んでそれぞれが対称になるようにハの字に配置され、コア11および21とコア31の中心点との距離をDとし、コア11と21はXY平面でそれぞれの中心点を軸に、お互いが逆方向にθ回転している。図においてθ=0°のときのバーアンテナ10を破線で示す。
コア11,21,31は、
長さL×幅W×厚さT=20mm×10mm×10mmの直方体であり、
D=20mm,θ=63°である。
原点Oをコア31の中心点とし、コア31の長手方向でハの字の開いた側をX軸方向、コア幅方向をY軸、厚さ方向をZ軸とし、アンテナの1m前方の点をA点(x,y,z)=(1,0,0),アンテナの1m後方の点をB点(x,y,z)=(−1,0,0)とする。
コイルの巻数は、コイル12=コイル22=コイル32=20ターンである。
図1(c)において、I〜Iは交流定電流源であり、黒丸はコイルの巻き始めを示す。したがってコイル12とコイル22は巻回方向が同じであり、コイル32は巻回方向が逆である。
図2に、図1のバーアンテナのXY平面における磁界強度分布を示す。このコイルの線材はφ0.3mm、コアの比透磁率μ=80、I=I=I=2App,周波数f=125kHzである。
バーアンテナの前後1mの点A,Bにおける磁界強度は、
A点:2.21×10−4A/m
B点:2.59×10−5A/m
であり、指向性感度は18.64dBであり、バーアンテナの前方に感度が高く、後方の感度が低いバーアンテナが得られた。
An embodiment of a directional bar antenna according to the present invention will be described with reference to FIG.
FIG. 1A is a perspective view of a directional bar antenna according to the present invention, FIG. 1B is a diagram showing the arrangement of antennas, and FIG. 1C is a diagram showing connection of coils. As shown in the figure, the bar antenna 10 has a coil 12 wound around the center of the core 11. Similarly, the bar antenna 20 has a coil 22 wound around the center of the core 21, and the bar antenna 30 has a coil at the center of the core 31. 32 is wound.
The bar antennas 10 and 20 are arranged in a square shape so that they are symmetrical with respect to the bar antenna 30, and the distance between the cores 11 and 21 and the center point of the core 31 is D. The cores 11 and 21 are XY. The planes are rotated by θ in opposite directions around each center point as an axis. In the figure, the bar antenna 10 when θ = 0 ° is indicated by a broken line.
The cores 11, 21, 31 are
A length L × width W × thickness T = 20 mm × 10 mm × 10 mm rectangular parallelepiped,
D = 20 mm and θ = 63 °.
The origin O is the center point of the core 31, the side of the core 31 with the letter C in the longitudinal direction is the X axis direction, the core width direction is the Y axis, and the thickness direction is the Z axis. Point A (x, y, z) = (1, 0, 0), and point 1 m behind the antenna is point B (x, y, z) = (− 1, 0, 0).
The number of turns of the coil is coil 12 = coil 22 = coil 32 = 20 turns.
In FIG. 1 (c), I 1 ~I 3 is an alternating constant current source, a black circle denotes the winding start of the coil. Therefore, the winding direction of the coil 12 and the coil 22 is the same, and the winding direction of the coil 32 is opposite.
FIG. 2 shows the magnetic field strength distribution in the XY plane of the bar antenna of FIG. The wire of this coil is φ0.3 mm, the core has a relative permeability μ r = 80, I 1 = I 2 = I 3 = 2A pp , and frequency f = 125 kHz.
The magnetic field strength at points A and B 1 m before and after the bar antenna is
Point A: 2.21 × 10 −4 A / m
Point B: 2.59 × 10 −5 A / m
The directivity sensitivity was 18.64 dB, and a bar antenna with high sensitivity in front of the bar antenna and low sensitivity at the rear was obtained.

(実験1)
図3は、図1の実施例においてθを0°とした場合を示す図であり、図3(a)はバーンテナの配置を示す平面図であり、図3(b)は回路図である。
図3(a)に示すように、バーアンテナ10,20,30はすべて平行に配置され、図3(a)に示すように、コイルの巻回方向はコイル12とコイル22は巻回方向が同じであり、コイル32は巻回方向が逆である。
図4に、図3のバーアンテナのXY平面における磁界強度分布を示す。A点とB点の磁界強度は、
A点:1.53×10−3A/m
B点:1.52×10−3A/m
であり、指向性感度は0.05dBであり、指向性は得られなかった。
(Experiment 1)
3 is a diagram showing a case where θ is set to 0 ° in the embodiment of FIG. 1, FIG. 3 (a) is a plan view showing the arrangement of the burn tena, and FIG. 3 (b) is a circuit diagram.
As shown in FIG. 3 (a), the bar antennas 10, 20, and 30 are all arranged in parallel. As shown in FIG. 3 (a), the winding direction of the coil is that of the coil 12 and that of the coil 22. The coil 32 has the same winding direction.
FIG. 4 shows the magnetic field strength distribution in the XY plane of the bar antenna of FIG. The magnetic field strength at points A and B is
Point A: 1.53 × 10 −3 A / m
Point B: 1.52 × 10 −3 A / m
The directivity sensitivity was 0.05 dB, and directivity was not obtained.

(実験2)
図5は、図1の実施例において、コイル12,コイル22,コイル32の巻回方向を同じとした場合を示す図であり、図5(a)はバーアンテナの配置を示す平面図であり、図5(b)は回路図である。
図5(a)に示すように、バーアンテナ10と20は、バーアンテナ30を挟んでそれぞれが対称になるようにハの字に配置され、図5(b)に示すように、コイル12,22,32の巻回方向は同じである。
図6に、図5のバーアンテナのXY平面における磁界強度分布を示す。A点とB点の磁界強度は、
A点:2.72×10−3A/m
B点:2.69×10−3A/m
であり、指向性感度は0.11dBであり、指向性は得られなかった。
(Experiment 2)
FIG. 5 is a diagram showing a case where the winding directions of the coil 12, the coil 22, and the coil 32 are the same in the embodiment of FIG. 1, and FIG. 5 (a) is a plan view showing the arrangement of the bar antennas. FIG. 5B is a circuit diagram.
As shown in FIG. 5 (a), the bar antennas 10 and 20 are arranged in a C shape so that they are symmetrical with respect to the bar antenna 30, and as shown in FIG. The winding directions of 22 and 32 are the same.
FIG. 6 shows the magnetic field strength distribution in the XY plane of the bar antenna of FIG. The magnetic field strength at points A and B is
Point A: 2.72 × 10 −3 A / m
Point B: 2.69 × 10 −3 A / m
The directivity sensitivity was 0.11 dB, and no directivity was obtained.

(実験3)
図7は、図1の実施例においてコア11および21とコア31のなす角θを0〜180°まで変化させた場合の指向性を示すグラフであり、横軸は角度、縦軸は指向性感度を示す。
θが0°付近の3つのコアが平行な状態では指向性がほとんど得られないが、
θが63°付近では指向性感度は18dBと最大になり、前方に大きい指向性が得られる。
θが90°以上ではコイル12,13の巻回方向が逆になったのと同じになり、したがってコイル12,22,32の巻回方向がすべて同じ向きとなる。このときの指向性感度はほぼ0dBとなり指向性は得られない。
(Experiment 3)
FIG. 7 is a graph showing directivity when the angle θ between the cores 11 and 21 and the core 31 is changed from 0 to 180 ° in the embodiment of FIG. 1, the horizontal axis is the angle, and the vertical axis is the directivity feeling. Degrees.
Although directivity is hardly obtained in the state where three cores with θ near 0 ° are parallel,
When θ is around 63 °, the directivity sensitivity is a maximum of 18 dB, and a large directivity can be obtained in the front.
When θ is 90 ° or more, the winding direction of the coils 12, 13 is the same as that of the coils 12, 13, 32, and therefore the winding directions of the coils 12, 22, 32 are all the same. The directivity sensitivity at this time is almost 0 dB, and directivity cannot be obtained.

上記の結果から、バーアンテナ30をバーアンテナ10と20で挟んだハの字に配置し、コイル12とコイル22の巻回方向を同じとし、コイル32の巻回方向を逆にしたときのみ本発明の効果が得られた。   From the above results, the bar antenna 30 is arranged in a letter C sandwiched between the bar antennas 10 and 20, the winding direction of the coil 12 and the coil 22 is the same, and the winding direction of the coil 32 is reversed only. The effect of the invention was obtained.

図1の実施例において、コイル12と22の電流値と巻数およびコア11と21の中心となるコア31からの距離およびコア11と21の透磁率を同じにしたが、これらのいずれかを異ならせることで指向性の方向が変化する。例えば、コイルの電流を調節することで容易に指向性を調整することができ、アダプティブアンテナとすることができる。
また、材料やばらつきによりコア11と21の特性や、製造上のばらつきによりコイルの巻回位置などがずれてしまった場合に、コイルの電流を調整することによってばらつきを修正することも可能である。
また上記実施例ではそれぞれのコイルの電流はコイルごとの駆動電流が変えられるように別々の電流源としているが、全て同じ電流であれば、それぞれのコイルを直列に接続し、ひとつの電流源で3つのコイルを駆動とすることも可能である。
In the embodiment of FIG. 1, the current values and the number of turns of the coils 12 and 22, the distance from the core 31 that is the center of the cores 11 and 21, and the magnetic permeability of the cores 11 and 21 are the same. Change the direction of directivity. For example, the directivity can be easily adjusted by adjusting the coil current, and an adaptive antenna can be obtained.
In addition, when the characteristics of the cores 11 and 21 due to materials or variations, or the winding position of the coil shifts due to variations in manufacturing, the variations can be corrected by adjusting the coil current. .
In the above embodiment, the current of each coil is a separate current source so that the driving current for each coil can be changed. However, if all the currents are the same, the coils are connected in series, and one current source is used. It is also possible to drive three coils.

(実験4)
図8は、図1の実施例においてコイル12の巻数を21ターンとした場合のXY平面における磁界強度分布を示す。
(実験5)
図9は、図1の実施例においてコイル12の巻回位置をコア11の中心点からハの字の開いた側にd1=3mmだけ移動した場合のXY平面における磁界強度分布を示す。図10はコイル12の巻回位置を示す図である。
(実験6)
図11は、図1の実施例においてコイル12の電流Iを0.8Aとした場合のXY平面における磁界強度分布を示す。
(Experiment 4)
FIG. 8 shows the magnetic field strength distribution in the XY plane when the number of turns of the coil 12 is 21 turns in the embodiment of FIG.
(Experiment 5)
FIG. 9 shows the magnetic field strength distribution in the XY plane when the winding position of the coil 12 is moved from the center point of the core 11 by d1 = 3 mm from the center point of the core 11 in the embodiment of FIG. FIG. 10 is a view showing a winding position of the coil 12.
(Experiment 6)
FIG. 11 shows the magnetic field strength distribution in the XY plane when the current I 1 of the coil 12 is 0.8 A in the embodiment of FIG.

実験4〜6の結果より、コイル12の巻数や、コイル12の巻回位置や、コイル12の電流Iを異ならせることで指向性を変えることが可能である。 The results of experiments 4-6, the number of turns and the coil 12, the winding position of the coil 12 and, it is possible to vary the directivity by varying the current I 1 of the coil 12.

(実験7〜11)
表1は、図12において、コア11および21とコア31のなす角θを変えた場合,コイル32の巻回位置d2を変えた場合,コア31の位置d3を変えた場合,コイル32の巻数Nを変えた場合,コア11および21とコア31の中心点との距離Dを変えた場合の、A点とB点における指向性感度を示す。
図12は、バーアンテナ30におけるコイル32の巻回位置およびコア31の位置を示す図である。図においてd2はコア31の中心とコイル32の巻回の中心との距離を示し、原点Oはd3=0のときのコア31の中心点であり、d3は原点Oに対するコア31の中心からX方向の距離を示す。d2,d3はX軸方向を正とする。
(Experiments 7-11)
Table 1 shows the number of turns of the coil 32 when the angle θ between the cores 11 and 21 and the core 31 is changed, when the winding position d2 of the coil 32 is changed, when the position d3 of the core 31 is changed. When N is changed, the directivity sensitivity at points A and B when the distance D between the cores 11 and 21 and the center point of the core 31 is changed is shown.
FIG. 12 is a diagram showing the winding position of the coil 32 and the position of the core 31 in the bar antenna 30. In the figure, d2 indicates the distance between the center of the core 31 and the center of winding of the coil 32, the origin O is the center point of the core 31 when d3 = 0, and d3 is X from the center of the core 31 with respect to the origin O. Indicates the distance in the direction. d2 and d3 are positive in the X-axis direction.

表1より、コア11および21とコア31のなす角θや、コイル32の巻回位置d2や、コア31の位置d3や、コイル32の巻数Nや、コア11および21とコア31の中心点との距離をDを変えると、指向性感度を変えることが可能である。   From Table 1, the angle θ formed by the cores 11 and 21 and the core 31, the winding position d2 of the coil 32, the position d3 of the core 31, the number N of turns of the coil 32, and the center point of the cores 11 and 21 and the core 31 The directivity sensitivity can be changed by changing D with the distance between the two.

本発明の指向性バーアンテナの一実施例を示す図である。It is a figure which shows one Example of the directional bar antenna of this invention. 図1の指向性バーアンテナの磁界強度分布を示す図である。It is a figure which shows magnetic field intensity distribution of the directional bar antenna of FIG. 図1において、θ=0°とした場合を示す図である。In FIG. 1, it is a figure which shows the case where (theta) = 0 degree. 図3のバーアンテナの磁界強度分布を示す図である。It is a figure which shows magnetic field strength distribution of the bar antenna of FIG. 図1において、コイルの巻回を全て同じにした場合を示す図である。In FIG. 1, it is a figure which shows the case where winding of all the coils is made the same. 図5のバーアンテナの磁界強度分布を示す図である。It is a figure which shows magnetic field strength distribution of the bar antenna of FIG. 図1において、θを0〜180°まで可変した場合の指向性感度を示す図である。In FIG. 1, it is a figure which shows the directivity sensitivity at the time of changing (theta) to 0-180 degree. 図1において、コイルの巻数を非対称にした場合の磁界強度分布を示す図である。In FIG. 1, it is a figure which shows magnetic field strength distribution at the time of making the number of turns of a coil asymmetric. 図1において、コイルの巻回位置を非対称にした場合の磁界強度分布を示す図である。In FIG. 1, it is a figure which shows magnetic field strength distribution at the time of making the winding position of a coil asymmetrical. 図9のコイルの巻回位置を説明する図である。It is a figure explaining the winding position of the coil of FIG. 図1において、コイルの駆動電流を非対称にした場合の磁界強度分布を示す図である。In FIG. 1, it is a figure which shows magnetic field strength distribution at the time of making the drive current of a coil asymmetric. バーアンテナ30の位置とコイルの巻回位置を説明する図である。It is a figure explaining the position of the bar antenna 30 and the winding position of a coil. 従来のバーアンテナを示す図である。It is a figure which shows the conventional bar antenna. 図13のバーアンテナの磁界強度分布を示す図である。It is a figure which shows magnetic field strength distribution of the bar antenna of FIG. 従来のバーアンテナに指向性を持たせる一例である。This is an example of providing directivity to a conventional bar antenna.

符号の説明Explanation of symbols

10,20,30,40 バーアンテナ
11,21,31,41 コア
12,22,32,42 コイル
5 従来のバーアンテナ
6 シールド
O 原点
A アンテナより1m前方の点
B アンテナより1m後方の点
D コア1およびコア2の中心点と原点Oとの距離
I,I,I,I 交流定電流源
θ コア11およびコア21とコア31のなす角
d1 コア11の中心点とコイル12の巻回位置の距離
d2 コア31の中心点とコイル32の巻回位置の距離
d3 コア31の中心点と原点との距離
10, 20, 30, 40 Bar antenna 11, 21, 31, 41 Core 12, 22, 32, 42 Coil 5 Conventional bar antenna 6 Shield O Origin A Point B 1 m ahead from the antenna Point D Core 1 m behind the antenna 1 and distances I, I 1 , I 2 and I 3 AC constant current sources θ between the center point of the core 2 and the origin O d1 formed by the core 11 and the core 21 and the core 31 d1 The center point of the core 11 and the coil 12 Distance d2 of rotation position Distance of center point of core 31 and winding position of coil 32 d3 Distance between center point of core 31 and origin

Claims (3)

コアにコイルが巻回された複数のバーアンテナにおいて、第1のバーアンテナと、第2のバーアンテナは、第3のバーアンテナを挟んでハの字型に配置された
ことを特徴とする指向性バーアンテナ。
In a plurality of bar antennas in which a coil is wound around a core, the first bar antenna and the second bar antenna are arranged in a C shape with the third bar antenna interposed therebetween. Sex bar antenna.
前記指向性バーアンテナにおいて、第1のバーアンテナと第2のバーアンテナのコイルの巻回方向は同じであり、第3のバーアンテナのコイルの巻回方向は逆である
ことを特徴とする指向性バーアンテナ。
In the directional bar antenna, the winding directions of the coils of the first bar antenna and the second bar antenna are the same, and the winding directions of the coils of the third bar antenna are opposite. Sex bar antenna.
アダプティブアンテナに用いたことを特徴とする請求項1と2に記載の指向性バーアンテナ。   3. The directional bar antenna according to claim 1, wherein the directional bar antenna is used for an adaptive antenna.
JP2008114981A 2008-04-04 2008-04-25 Directional bar antenna Expired - Fee Related JP4774422B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008114981A JP4774422B2 (en) 2008-04-25 2008-04-25 Directional bar antenna
US12/418,265 US8077105B2 (en) 2008-04-04 2009-04-03 Directive bar-type antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114981A JP4774422B2 (en) 2008-04-25 2008-04-25 Directional bar antenna

Publications (2)

Publication Number Publication Date
JP2009267768A true JP2009267768A (en) 2009-11-12
JP4774422B2 JP4774422B2 (en) 2011-09-14

Family

ID=41393052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114981A Expired - Fee Related JP4774422B2 (en) 2008-04-04 2008-04-25 Directional bar antenna

Country Status (1)

Country Link
JP (1) JP4774422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333601A2 (en) 2009-11-25 2011-06-15 Nikon Corporation Optical Element, Zoom Lens, Optical Apparatus, Method for Manufacturing Optical Element and Method for Manufacturing Zoom Lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486103A (en) * 1990-07-30 1992-03-18 Furukawa Electric Co Ltd:The Main scanning antenna for mobile station
JPH0865032A (en) * 1994-08-17 1996-03-08 Casio Comput Co Ltd Film-like coil element and directivity switching antenna using the same
JP2003152442A (en) * 2001-11-15 2003-05-23 Alps Electric Co Ltd Arranging method of receiving antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486103A (en) * 1990-07-30 1992-03-18 Furukawa Electric Co Ltd:The Main scanning antenna for mobile station
JPH0865032A (en) * 1994-08-17 1996-03-08 Casio Comput Co Ltd Film-like coil element and directivity switching antenna using the same
JP2003152442A (en) * 2001-11-15 2003-05-23 Alps Electric Co Ltd Arranging method of receiving antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333601A2 (en) 2009-11-25 2011-06-15 Nikon Corporation Optical Element, Zoom Lens, Optical Apparatus, Method for Manufacturing Optical Element and Method for Manufacturing Zoom Lens

Also Published As

Publication number Publication date
JP4774422B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US10069336B2 (en) Inductive charging device, electric vehicle, charging station, and method for inductive charging
US7405707B2 (en) Composite antenna
JP6468200B2 (en) Antenna directivity control system and radio apparatus including the same
JP6465109B2 (en) Multi-antenna and radio apparatus including the same
JP4192202B2 (en) Compound antenna
KR102402279B1 (en) Device for near-field radiofrequency communication with a portable element on board a motor vehicle
JP2006279202A (en) Gate antenna
KR20150130247A (en) Three-axis antenna
JP2011049802A (en) Circular polarized wave antenna
WO2014203976A1 (en) Antenna and wireless device provided therewith
US8632009B2 (en) Near field magnetic coupling antenna and RFID reader having the same
JP4486138B2 (en) Bar antenna
JP4774422B2 (en) Directional bar antenna
KR101965451B1 (en) Antenna for wireless charging and Dual mode antenna having the same
CN105493344A (en) Device and method for combined signal transmission or for combined signal transmission and energy transmission
US8077105B2 (en) Directive bar-type antenna
JP6414622B2 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
JPH0324807B2 (en)
JP2018019502A (en) Power transmission/reception antenna system
WO2019175031A1 (en) Wireless power supply equipment
WO2019025593A1 (en) Antenna, transmitting device, receiving device and wireless communication system
KR101994744B1 (en) Near field communication antenna device
WO2017104245A1 (en) Antenna device and electronic apparatus
JP2009065280A (en) Antenna unit
JP2002135038A (en) Antenna

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4774422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees