JP2009267230A - Electromagnetic wave shielding material - Google Patents
Electromagnetic wave shielding material Download PDFInfo
- Publication number
- JP2009267230A JP2009267230A JP2008117171A JP2008117171A JP2009267230A JP 2009267230 A JP2009267230 A JP 2009267230A JP 2008117171 A JP2008117171 A JP 2008117171A JP 2008117171 A JP2008117171 A JP 2008117171A JP 2009267230 A JP2009267230 A JP 2009267230A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- fiber cloth
- metal layer
- shielding material
- conductive metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、繊維布と、前記繊維布の表面に導電性金属被覆層を有し、薄くて軽量で通気性と屈曲性がすぐれた電磁波遮蔽材に関する。 The present invention relates to a fiber cloth and an electromagnetic wave shielding material that has a conductive metal coating layer on the surface of the fiber cloth, is thin and lightweight, and has excellent air permeability and flexibility.
従来の技術として、特開2005−59580号に示されている電磁波シールド用金属被覆繊維布がある。これは、繊維布の表面を、前記表面が平滑になるように、例えばポリウレタンで被覆して界面層を形成し、その界面層の表面に金属層を被覆している。 As a conventional technique, there is a metal-coated fiber cloth for electromagnetic wave shielding disclosed in JP-A-2005-59580. In this method, the surface of the fiber cloth is coated with, for example, polyurethane so that the surface becomes smooth to form an interface layer, and the surface of the interface layer is coated with a metal layer.
したがって、前記電磁波シールド用金属被覆繊維布は、界面層が繊維布の隙間を埋めているので、通気性がなく、また、屈曲性にも劣る。このために、前記電磁波シールド用金属被覆繊維布を衣類などに使用すると、はなはだしく着心地が悪いものになる。
電磁波シールド用金属被覆繊維布を衣類などに使用するには、薄くて軽量であること、通気性があること、屈曲性がすぐれていること、広い入射角からの電磁波に対する遮蔽効果があることが重要な課題である。本発明は、これらの課題を解決することを目的とした。 In order to use the metal-coated fiber cloth for electromagnetic shielding in clothing, etc., it must be thin and lightweight, be breathable, have excellent flexibility, and have a shielding effect against electromagnetic waves from a wide incident angle. This is an important issue. The present invention has been made to solve these problems.
前記の目的を達成するためになされた本発明に係わる電磁波遮蔽材は、繊維布と、前記繊維布の片側または両側の表面に形成した導電性金属層とからなり、前記導電性金属層は繊維布の表面付近の繊維の表面を被覆し、導電性金属層が繊維間の間隙を埋めることは無く、繊維間の間隙を通しての通気性を有することを特徴とする。 An electromagnetic wave shielding material according to the present invention made to achieve the above object comprises a fiber cloth and a conductive metal layer formed on one or both surfaces of the fiber cloth, and the conductive metal layer is a fiber. The surface of the fiber near the surface of the cloth is covered, and the conductive metal layer does not fill the gap between the fibers, and has air permeability through the gap between the fibers.
前記繊維布は、直径が10μm以下の繊維からなり、織物、編物、不織布、織物と不織布の複合体、編物と不織布の複合体、織物と編物との複合体または織物と編物と不織布との複合体のいずれかである。 The fiber cloth is made of fibers having a diameter of 10 μm or less, and is a woven fabric, a knitted fabric, a nonwoven fabric, a composite of a woven fabric and a nonwoven fabric, a composite of a knitted fabric and a nonwoven fabric, a composite of a woven fabric and a knitted fabric, or a composite of a woven fabric, a knitted fabric and a nonwoven fabric. One of the body.
前記導電性金属層は真空プロセス、スプレー法および電着法の少なくとも一つの方法で前記繊維布の片側または両側の表面に形成するとよい。前記真空プロセスは、スパッター、蒸着、イオンプレーティングなどの真空乃至減圧下で導電性金属層を形成するプロセスである。 The conductive metal layer may be formed on one or both surfaces of the fiber cloth by at least one of a vacuum process, a spray method, and an electrodeposition method. The vacuum process is a process for forming a conductive metal layer under vacuum or reduced pressure, such as sputtering, vapor deposition, or ion plating.
また、前記導電性金属層の材料は、初期透磁率が真空の透磁率の100倍以上の高透磁率を有するものが好適である。 Further, the material of the conductive metal layer preferably has a high magnetic permeability that is 100 times or more higher than the initial magnetic permeability.
前記繊維布の不織布を構成する繊維は、エレクトロスピニング法で作製されたポリアクリロニトリル繊維が好適である。 As the fiber constituting the nonwoven fabric of the fiber cloth, polyacrylonitrile fiber produced by an electrospinning method is suitable.
前記繊維布を他の補強用繊維布と積層することで前記繊維布を機械的に強化することができる。また、前記繊維布の導電性金属層が形成された表面側に他の補強用繊維布を積層することで前記導電性金属層を保護することができる。 The fiber cloth can be mechanically reinforced by laminating the fiber cloth with another reinforcing fiber cloth. Moreover, the said conductive metal layer can be protected by laminating | stacking another reinforcing fiber cloth on the surface side in which the conductive metal layer of the said fiber cloth was formed.
本発明の電磁波遮蔽繊維布は、繊維間に隙間があり、通気性を有している。また、繊維布に直径10μm以下の細い繊維を用いることで、繊維布は薄くて軽量であり、屈曲性および耐久性に優れている。 The electromagnetic shielding fiber cloth of the present invention has a gap between fibers and has air permeability. Further, by using thin fibers having a diameter of 10 μm or less for the fiber cloth, the fiber cloth is thin and lightweight, and is excellent in flexibility and durability.
さらに、本発明の電磁波遮蔽繊維布は、電磁波の入射角度による遮蔽効果の差が小さいので、広い範囲の入射角からの電磁波に対して遮蔽効果があり、電磁波遮蔽効果を要求される種々の用途に利用可能である。特に、電磁波遮蔽用衣料への利用、情報通信機器の電磁波障害対策への利用、心臓ペースメーカーの保護等の医療機器への利用が可能である。 Furthermore, since the electromagnetic shielding fiber cloth of the present invention has a small shielding effect difference due to the incident angle of electromagnetic waves, it has a shielding effect against electromagnetic waves from a wide range of incident angles, and various uses requiring an electromagnetic shielding effect. Is available. In particular, it can be used for electromagnetic shielding clothing, information communication devices for electromagnetic wave countermeasures, and medical devices such as cardiac pacemakers.
本発明の電磁波遮蔽材は、繊維布と、前記繊維布の片側または両側の表面に形成した導電性金属層とからなり、前記導電性金属層は繊維布の表面付近の繊維の表面を被覆し、導電性金属層が繊維間の間隙を埋めることは無く、繊維間の間隙を通しての通気性を有する。 The electromagnetic wave shielding material of the present invention comprises a fiber cloth and a conductive metal layer formed on one or both surfaces of the fiber cloth, and the conductive metal layer covers the surface of the fiber near the surface of the fiber cloth. The conductive metal layer does not fill the gap between the fibers, and has air permeability through the gap between the fibers.
前記繊維布は、直径が10μm以下の繊維からなり、薄くて軽量であり、屈曲性および耐久性に優れている。なお、好ましくは、繊維の直径1μm以下である。繊維布が、直径10μm以下の繊維からなる場合、その繊維の表面に形成された導電性金属層は、小さな曲げ半径に折り曲げられても破損しにくい。例えば、直径10μmの繊維を曲げ半径1mmに曲げた時、その繊維の外側面と内側面の歪の差は1%程度である。この場合、繊維の表面に形成された導電性金属層が破壊され脱落する可能性は低い。さらに、直径1μm以下の繊維からなる繊維布の場合、直径1μmの繊維を曲げ半径1mmに曲げた時の前記歪の差は0.1%程度とさらに小さくなる。 The fiber cloth is made of fibers having a diameter of 10 μm or less, is thin and lightweight, and has excellent flexibility and durability. The diameter of the fiber is preferably 1 μm or less. When the fiber cloth is made of fibers having a diameter of 10 μm or less, the conductive metal layer formed on the surface of the fibers is not easily damaged even when bent to a small bending radius. For example, when a fiber having a diameter of 10 μm is bent to a bending radius of 1 mm, the difference in strain between the outer surface and the inner surface of the fiber is about 1%. In this case, the possibility that the conductive metal layer formed on the surface of the fiber is broken and dropped off is low. Furthermore, in the case of a fiber cloth made of fibers having a diameter of 1 μm or less, the strain difference when a fiber having a diameter of 1 μm is bent to a bending radius of 1 mm is further reduced to about 0.1%.
前記繊維布は、織物、編物、不織布、織物と不織布との複合体、編物と不織布との複合体、織物と編物との複合体または織物と編物と不織布との複合体の少なくとも1つである。前記複合体とは、織物、編物、不織布の少なくとも2種類を積層して一体の布状としたものである。また、繊維布は、シート、リボン、ひも、筒、袋など、電磁波遮蔽を行う対象物の形状に適合した形状で用いる。 The fiber fabric is at least one of a woven fabric, a knitted fabric, a nonwoven fabric, a composite of a woven fabric and a nonwoven fabric, a composite of a knitted fabric and a nonwoven fabric, a composite of a woven fabric and a knitted fabric, or a composite of a woven fabric, a knitted fabric and a nonwoven fabric. . The composite is formed by laminating at least two types of woven fabric, knitted fabric and non-woven fabric into an integral cloth shape. Further, the fiber cloth is used in a shape suitable for the shape of an object to be shielded against electromagnetic waves, such as a sheet, a ribbon, a string, a cylinder, and a bag.
前記導電性金属層は、真空プロセス、スプレー法および電着法の少なくとも一つの方法で前記繊維布の片側または両側の表面に形成される。このとき前記導電性金属層は、繊維布の表面付近の繊維の表面を被覆し、繊維間の間隙を埋めることは無く、また、繊維布の内部にも形成されることが無い。このために、前記繊維布は繊維間の間隙を通しての通気性を有する。 The conductive metal layer is formed on one or both surfaces of the fiber cloth by at least one of a vacuum process, a spray method, and an electrodeposition method. At this time, the conductive metal layer covers the surface of the fiber near the surface of the fiber cloth, does not fill the gap between the fibers, and is not formed inside the fiber cloth. For this reason, the fiber cloth has air permeability through the gaps between the fibers.
前記導電性金属層を形成する真空プロセスは、スパッタリング法、真空蒸着法、イオンプレーティング法などの真空乃至減圧状態での被膜形成工程を意味する。 The vacuum process for forming the conductive metal layer means a film forming process in a vacuum or reduced pressure state such as a sputtering method, a vacuum deposition method, or an ion plating method.
また、前記導電性金属層は、前記繊維布の表面を構成する繊維の表面に直接形成され、繊維間の間隙には金属層は存在しない。したがって、前記導電性金属層の形状は、繊維布の表面に存在する繊維群が形成する凹凸面を反映して凹凸状となる。このために、本発明の電磁波遮蔽材は、電磁波の入射角度が種々異なっても、その入射角度に対して有効な遮蔽効果を持つ導電性金属層の部分を有し、電磁波の入射角度による遮蔽効果の差が出にくい。 The conductive metal layer is directly formed on the surface of the fiber constituting the surface of the fiber cloth, and there is no metal layer in the gap between the fibers. Therefore, the shape of the conductive metal layer is uneven, reflecting the uneven surface formed by the fiber group present on the surface of the fiber cloth. For this reason, the electromagnetic wave shielding material of the present invention has a portion of a conductive metal layer having an effective shielding effect with respect to the incident angle even when the incident angle of the electromagnetic wave varies, and is shielded by the incident angle of the electromagnetic wave. Difficulty in effect.
なお、従来の技術では、繊維布の表面を気密な界面層が平面状に被覆し、その界面層の表面に金属層を被覆している。したがって、金属層はひとつの平面状をなす金属薄膜であった。一般的に、ひとつの平面状をなす金属薄膜では、電磁波の入射角度によって遮蔽効果に差が生じる。これに対して、本発明の電磁波遮蔽材は、前記のように、広い入射角からの電磁波に対する遮蔽効果がある。 In the conventional technique, the surface of the fiber cloth is covered with an airtight interface layer in a planar shape, and the surface of the interface layer is covered with a metal layer. Therefore, the metal layer was a single metal thin film. In general, a metal thin film having a single planar shape has a difference in shielding effect depending on the incident angle of electromagnetic waves. On the other hand, the electromagnetic wave shielding material of the present invention has a shielding effect against electromagnetic waves from a wide incident angle as described above.
前記導電性金属層は、初期透磁率が真空の透磁率の100倍以上の高透磁率材料からなることを特徴とする。このように導電性金属層が高透磁率材料からなる場合、電磁波から電場のエネルギーだけでなく、磁場のエネルギーも多く吸収することができ、本発明の電磁波遮蔽材は、より大きな電磁波遮蔽効果をもつことができる。 The conductive metal layer is made of a high permeability material having an initial permeability of 100 times or more of a vacuum permeability. Thus, when the conductive metal layer is made of a high permeability material, it can absorb not only electric field energy but also magnetic field energy from electromagnetic waves, and the electromagnetic wave shielding material of the present invention has a larger electromagnetic wave shielding effect. Can have.
前記導電性金属層用の高透磁率材料として、鉄、ニッケル、ケイ素鋼、アルパーム、パーメンジュール、センダスト、パーマロイ、スーパーマロイ、ミューメタル、メタグラスなどがある。これらの高透磁率材料の少なくとも1種類の高透磁率材料からなる導電性金属層を繊維布の表面に形成する。 Examples of the high magnetic permeability material for the conductive metal layer include iron, nickel, silicon steel, alpalm, permendur, sendust, permalloy, supermalloy, mu metal, and metaglass. A conductive metal layer made of at least one of these high magnetic permeability materials is formed on the surface of the fiber cloth.
前記繊維布に用いる不織布を構成する繊維は、エレクトロスピニング法で作製されたポリアクリロニトリル繊維が好ましい。不織布は職布に比べて直径がより小さい繊維で作製が可能であり、エレクトロスピニング法で作製されたポリアクリロニトリル繊維で、直径10μm以下の細い繊維を用いると、繊維布は薄くて軽量であり、屈曲性および耐久性に優れたものとなる。ただし、不織布の繊維はエレクトロスピニング法で作製されたポリアクリロニトリル繊維に限定するものではなく、直径10μm以下であれば、他の高分子化学繊維を用いることもできる。 The fibers constituting the nonwoven fabric used for the fiber cloth are preferably polyacrylonitrile fibers produced by an electrospinning method. Nonwoven fabric can be made of fibers with a smaller diameter than craft cloth, polyacrylonitrile fiber made by electrospinning method, and if thin fibers with a diameter of 10 μm or less are used, the fiber cloth is thin and lightweight, Excellent flexibility and durability. However, the nonwoven fabric fibers are not limited to polyacrylonitrile fibers produced by the electrospinning method, and other high molecular chemical fibers can be used as long as the diameter is 10 μm or less.
前記繊維布は直径10μm以下の細い繊維からなり、単独では高い機械的強度を期待できない場合がある。高い機械的強度を確保するには、請求項3に記載の導電性金属層を表面に有する繊維布に、補強材としての高強度繊維布を積層することで、通気性と機械的強度に優れた電磁波遮蔽材となる。また、前記導電性金属層を有する前記繊維布の表面を高強度繊維布で被覆することで、繊維布表面に形成された導電性金属層を保護し、磨耗も抑止できる。 The fiber cloth is made of fine fibers having a diameter of 10 μm or less, and high mechanical strength may not be expected by itself. In order to ensure high mechanical strength, excellent air permeability and mechanical strength are obtained by laminating a high-strength fiber cloth as a reinforcing material on the fiber cloth having the conductive metal layer according to claim 3 on the surface. It becomes an electromagnetic shielding material. In addition, by covering the surface of the fiber cloth having the conductive metal layer with a high-strength fiber cloth, the conductive metal layer formed on the surface of the fiber cloth can be protected and wear can be suppressed.
本発明の繊維布が不織布である電磁波遮蔽材の構成を模式的に図1に示した。電磁波遮蔽材1の端部2を拡大したものを図2に示した。電磁波遮蔽材1は、繊維21を用いた不織布構造の繊維布11と、その表面に形成された導電性金属層22とからなる。電磁波遮蔽材1の厚さは用途に応じて調節が可能である。 The structure of the electromagnetic wave shielding material in which the fiber cloth of the present invention is a nonwoven fabric is schematically shown in FIG. An enlarged view of the end 2 of the electromagnetic shielding material 1 is shown in FIG. The electromagnetic shielding material 1 includes a fiber fabric 11 having a nonwoven fabric structure using fibers 21 and a conductive metal layer 22 formed on the surface thereof. The thickness of the electromagnetic shielding material 1 can be adjusted according to the application.
図1の繊維布11を構成する繊維21は、エレクトロスピニング法で作製したポリアクリロニトリルであり、繊維の直径は10μm以下とし、好ましくは1μm以下である。なお、繊維としてポリアクリロニトリルは好ましいが、これに限定するものではない。 The fiber 21 constituting the fiber cloth 11 of FIG. 1 is polyacrylonitrile produced by an electrospinning method, and the fiber diameter is 10 μm or less, preferably 1 μm or less. In addition, although polyacrylonitrile is preferable as a fiber, it is not limited to this.
導電性金属層22として、ニッケルと鉄の合金のパーマロイを用い、スパッタリング法で作成すると、下記の実施例のように、約15分間のスパッタリングで電磁波遮蔽に有効な導電性金属層22が得られる。なお、パーマロイの透磁率は真空の透磁率のおよそ8000倍である。 When a permalloy of an alloy of nickel and iron is used as the conductive metal layer 22 and formed by sputtering, the conductive metal layer 22 effective for shielding electromagnetic waves can be obtained by sputtering for about 15 minutes as in the following example. . The magnetic permeability of permalloy is approximately 8000 times that of vacuum.
図2に示したように、導電性金属層22は、繊維布11の表面を構成する繊維21aの表面に形成され、繊維布11の内側に存在する繊維21bの表面にはほとんど形成されない。また、繊維21の間隙にも導電性金属層22は存在しない。 As shown in FIG. 2, the conductive metal layer 22 is formed on the surface of the fiber 21 a constituting the surface of the fiber cloth 11, and hardly formed on the surface of the fiber 21 b existing inside the fiber cloth 11. Further, the conductive metal layer 22 does not exist in the gap between the fibers 21.
直径500〜600nmのポリアクリロニトリル繊維の不織布を繊維布として用い、前記不織布の片側表面に、ニッケルと鉄の合金パーマロイを用い、約15分間のスパッタリング法で導電性金属層を形成し、厚さ約110μmの電磁波遮蔽材を作製した。前記電磁波遮蔽材について電磁波遮蔽率を測定した。電磁波遮蔽率測定はネットワークアナライザーに二つの導波管の接続面に電磁波遮蔽材を挟んで測定した。その結果を図3に示した。 A non-woven fabric of polyacrylonitrile fiber having a diameter of 500 to 600 nm is used as a fiber fabric, and a conductive metal layer is formed on the surface of one side of the non-woven fabric using a nickel-iron alloy permalloy by a sputtering method for about 15 minutes. A 110 μm electromagnetic shielding material was produced. The electromagnetic wave shielding rate was measured for the electromagnetic wave shielding material. The electromagnetic wave shielding rate was measured with a network analyzer sandwiching an electromagnetic wave shielding material between the connection surfaces of the two waveguides. The results are shown in FIG.
縦軸は遮蔽率%を、横軸は電磁波の振動数1〜13GHzを示している。曲線31は本発明の電磁波遮蔽材1の電磁波遮蔽率を示している。曲線31を参照するに、本発明の電磁波遮蔽材1は電磁波の振動数が1〜13GHzの範囲で85%以上の電磁波遮蔽率を示し、そのほとんどの範囲で90%以上の電磁波遮蔽率を示している。 The vertical axis represents the shielding rate%, and the horizontal axis represents the electromagnetic wave frequency 1 to 13 GHz. A curve 31 represents the electromagnetic wave shielding rate of the electromagnetic wave shielding material 1 of the present invention. Referring to the curve 31, the electromagnetic wave shielding material 1 of the present invention exhibits an electromagnetic wave shielding rate of 85% or more when the frequency of electromagnetic waves is in the range of 1 to 13 GHz, and exhibits an electromagnetic wave shielding rate of 90% or more in most of the range. ing.
電磁波遮蔽材1は、導電性金属層22が繊維布11の片側表面に形成された場合である。なお、導電性金属層が繊維布の両面に形成された場合は、導電性金属層が2層存在するので、電磁波の振動数が1〜13GHzの範囲で98〜99%以上の電磁波遮蔽率が期待される。また、このような電磁波遮蔽材を多層に重ねることで、更に電磁波遮蔽率を向上させることも可能である。また、前記電磁波遮蔽材を機械的強度が大きい繊維布と積層することで、機械的強度が増強された通気性の電磁波遮蔽材となる。 The electromagnetic wave shielding material 1 is a case where the conductive metal layer 22 is formed on one surface of the fiber cloth 11. When the conductive metal layer is formed on both sides of the fiber cloth, there are two conductive metal layers, so that the electromagnetic wave shielding rate is 98 to 99% or more in the frequency range of 1 to 13 GHz. Be expected. Moreover, it is possible to further improve the electromagnetic wave shielding rate by stacking such electromagnetic wave shielding materials in multiple layers. In addition, by laminating the electromagnetic shielding material with a fiber cloth having high mechanical strength, a breathable electromagnetic shielding material with enhanced mechanical strength is obtained.
1:電磁波遮蔽材
2:電磁波遮蔽材の端部
11:繊維布
21、21a、21b:繊維
22:導電性金属層
31:本発明の電磁波遮蔽材の電磁波遮蔽率を示す曲線
1: Electromagnetic wave shielding material 2: End part of electromagnetic wave shielding material 11: Fiber cloth 21, 21a, 21b: Fiber 22: Conductive metal layer 31: Curve showing the electromagnetic wave shielding rate of the electromagnetic wave shielding material of the present invention
Claims (8)
The electromagnetic wave shielding material according to claim 1, wherein the fiber cloth is laminated with another reinforcing fiber cloth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008117171A JP2009267230A (en) | 2008-04-28 | 2008-04-28 | Electromagnetic wave shielding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008117171A JP2009267230A (en) | 2008-04-28 | 2008-04-28 | Electromagnetic wave shielding material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009267230A true JP2009267230A (en) | 2009-11-12 |
Family
ID=41392675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008117171A Pending JP2009267230A (en) | 2008-04-28 | 2008-04-28 | Electromagnetic wave shielding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009267230A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010065327A (en) * | 2008-09-08 | 2010-03-25 | Shinshu Univ | Conductor-coated fiber assembly and method for producing the same |
WO2011010697A1 (en) * | 2009-07-24 | 2011-01-27 | 旭化成せんい株式会社 | Electromagnetic shielding sheet |
WO2011074609A1 (en) * | 2009-12-15 | 2011-06-23 | 旭化成せんい株式会社 | Noise absorbing fabric |
CN102398390A (en) * | 2011-06-24 | 2012-04-04 | 绍兴县舒丽乐纺织品有限公司 | Silver fiber cloth compound printed radiation-proof kitchen apron shell fabric |
JP2012243993A (en) * | 2011-05-20 | 2012-12-10 | Asahi Kasei Fibers Corp | Noise absorption cloth |
KR101423169B1 (en) | 2014-03-04 | 2014-07-28 | 톱텍에이치앤에스 주식회사 | A Method for Manufacturing of Shield Sheet for Preventing Electromagnetic Wave |
JP2014241330A (en) * | 2013-06-11 | 2014-12-25 | 住友電工プリントサーキット株式会社 | Shield film and printed wiring board |
JP2015042448A (en) * | 2013-08-26 | 2015-03-05 | 槌屋ティスコ株式会社 | Laminated sheet, molded article and production method of the same |
WO2015076387A1 (en) * | 2013-11-25 | 2015-05-28 | 旭化成せんい株式会社 | Noise-absorbing sheet |
JP2015528827A (en) * | 2012-06-04 | 2015-10-01 | アモグリーンテク カンパニー,リミテッド | Conductive adhesive tape and method for producing the same |
WO2017047320A1 (en) * | 2015-09-16 | 2017-03-23 | セーレン株式会社 | Conductive member |
CN108513524A (en) * | 2018-04-18 | 2018-09-07 | 成都联腾动力控制技术有限公司 | A kind of New-energy electric vehicle high-strength magnetic shielding material and preparation method thereof |
KR20190026475A (en) * | 2017-09-05 | 2019-03-13 | 인하대학교 산학협력단 | Manufacturing method of nickel-plated CuS-PAN fibers for EMI-shielding |
WO2019072322A1 (en) * | 2017-10-13 | 2019-04-18 | Technicka Univerzita V Liberci | Textile for the protection of electronic information carriers |
KR102007608B1 (en) | 2018-06-01 | 2019-08-07 | (주)크린앤사이언스 | Electro Magnetic Shielding Materials Using Metal Foil and Process for Producing The Same |
CN115045108A (en) * | 2022-07-08 | 2022-09-13 | 中国核动力研究设计院 | Composite material, preparation method and application |
-
2008
- 2008-04-28 JP JP2008117171A patent/JP2009267230A/en active Pending
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010065327A (en) * | 2008-09-08 | 2010-03-25 | Shinshu Univ | Conductor-coated fiber assembly and method for producing the same |
KR101254908B1 (en) | 2009-07-24 | 2013-04-19 | 아사히 가세이 셍이 가부시키가이샤 | Electromagnetic shielding sheet |
WO2011010697A1 (en) * | 2009-07-24 | 2011-01-27 | 旭化成せんい株式会社 | Electromagnetic shielding sheet |
US9233517B2 (en) | 2009-07-24 | 2016-01-12 | Asahi Kasei Fibers Corporation | Electromagnetic shielding sheet |
CN102656962A (en) * | 2009-12-15 | 2012-09-05 | 旭化成纤维株式会社 | Noise absorbing fabric |
TWI586251B (en) * | 2009-12-15 | 2017-06-01 | Asahi Kasei Fibers Corp | Noise absorbing fabric |
JP2011146696A (en) * | 2009-12-15 | 2011-07-28 | Asahi Kasei Fibers Corp | Noise absorbing fabric |
JP2014197715A (en) * | 2009-12-15 | 2014-10-16 | 旭化成せんい株式会社 | Noise absorbing fabric |
US9972913B2 (en) | 2009-12-15 | 2018-05-15 | Asahi Kasei Fibers Corporation | Noise absorbing fabric |
CN102656962B (en) * | 2009-12-15 | 2016-06-01 | 旭化成株式会社 | Noise absorption cloth and silk |
KR101515693B1 (en) * | 2009-12-15 | 2015-04-27 | 아사히 가세이 셍이 가부시키가이샤 | Noise absorbing fabric |
WO2011074609A1 (en) * | 2009-12-15 | 2011-06-23 | 旭化成せんい株式会社 | Noise absorbing fabric |
JP2012243993A (en) * | 2011-05-20 | 2012-12-10 | Asahi Kasei Fibers Corp | Noise absorption cloth |
CN102398390A (en) * | 2011-06-24 | 2012-04-04 | 绍兴县舒丽乐纺织品有限公司 | Silver fiber cloth compound printed radiation-proof kitchen apron shell fabric |
JP2015528827A (en) * | 2012-06-04 | 2015-10-01 | アモグリーンテク カンパニー,リミテッド | Conductive adhesive tape and method for producing the same |
JP2014241330A (en) * | 2013-06-11 | 2014-12-25 | 住友電工プリントサーキット株式会社 | Shield film and printed wiring board |
JP2015042448A (en) * | 2013-08-26 | 2015-03-05 | 槌屋ティスコ株式会社 | Laminated sheet, molded article and production method of the same |
WO2015076387A1 (en) * | 2013-11-25 | 2015-05-28 | 旭化成せんい株式会社 | Noise-absorbing sheet |
CN105766075A (en) * | 2013-11-25 | 2016-07-13 | 旭化成株式会社 | Noise-absorbing sheet |
JPWO2015076387A1 (en) * | 2013-11-25 | 2017-03-16 | 旭化成株式会社 | Noise absorbing sheet |
KR101423169B1 (en) | 2014-03-04 | 2014-07-28 | 톱텍에이치앤에스 주식회사 | A Method for Manufacturing of Shield Sheet for Preventing Electromagnetic Wave |
JP2017056621A (en) * | 2015-09-16 | 2017-03-23 | セーレン株式会社 | Conductive member |
TWI593843B (en) * | 2015-09-16 | 2017-08-01 | Seiren Co Ltd | Conductive parts |
WO2017047320A1 (en) * | 2015-09-16 | 2017-03-23 | セーレン株式会社 | Conductive member |
KR20180053704A (en) * | 2015-09-16 | 2018-05-23 | 세렌가부시키가이샤 | Conductive member |
US10737461B2 (en) | 2015-09-16 | 2020-08-11 | Seiren Co., Ltd. | Conductive member |
KR102164133B1 (en) | 2015-09-16 | 2020-10-12 | 세렌가부시키가이샤 | Conductive member |
KR20190026475A (en) * | 2017-09-05 | 2019-03-13 | 인하대학교 산학협력단 | Manufacturing method of nickel-plated CuS-PAN fibers for EMI-shielding |
KR101967805B1 (en) * | 2017-09-05 | 2019-04-10 | 인하대학교 산학협력단 | Manufacturing method of nickel-plated CuS-PAN fibers for EMI-shielding |
WO2019072322A1 (en) * | 2017-10-13 | 2019-04-18 | Technicka Univerzita V Liberci | Textile for the protection of electronic information carriers |
CN108513524A (en) * | 2018-04-18 | 2018-09-07 | 成都联腾动力控制技术有限公司 | A kind of New-energy electric vehicle high-strength magnetic shielding material and preparation method thereof |
KR102007608B1 (en) | 2018-06-01 | 2019-08-07 | (주)크린앤사이언스 | Electro Magnetic Shielding Materials Using Metal Foil and Process for Producing The Same |
CN115045108A (en) * | 2022-07-08 | 2022-09-13 | 中国核动力研究设计院 | Composite material, preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009267230A (en) | Electromagnetic wave shielding material | |
KR101254908B1 (en) | Electromagnetic shielding sheet | |
EP2585290B1 (en) | Waterproof breathable composite materials for fabrication of flexible membranes and other articles | |
CN108274829A (en) | A kind of light-weighted shielding wallboard of shelter and preparation method thereof with radar invisible function | |
TW201445000A (en) | Vapor deposition mask, vapor deposition mask precursor, vapor deposition mask manufacturing method, and organic semiconductor element manufacturing method | |
JP2011004651A (en) | Fishline guide | |
JP6293407B2 (en) | Magnetic field shielding material | |
US20130303242A1 (en) | Textile surface and textile material for absorbing electromagnetic waves, and protective device comprising a textile surface or textile material | |
CN206986416U (en) | A kind of carbon fiber woven cloth and its prepreg | |
US20190100870A1 (en) | Multilayered fabric composed of alternating conductive and nonconductive layers for emi or rf shielding applications | |
EP1120795A1 (en) | Laminated lightweight radiation shielding materials | |
JP2011181714A (en) | Electromagnetic wave shield sheet and manufacturing method thereof | |
JP2007305874A (en) | Magnetic element | |
JP5479614B2 (en) | Electromagnetic wave absorber | |
CN202247486U (en) | Microfiber-simulated leather with composite structure | |
JP6436399B2 (en) | Electromagnetic wave removal sheet | |
KR100334434B1 (en) | Electromagnetic shielding materials using high-permeability metal fibers and method thereof | |
CN109244865A (en) | A kind of distribution box with shell structure | |
CN220554263U (en) | Electromagnetic shielding shell and new energy automobile | |
JPH11330778A (en) | Laminate for electromagnetic wave shield and its manufacturing method | |
CN219611969U (en) | Shell and sound producing device | |
US20230162881A1 (en) | Electrically conductive composite with co-cured region for interface surfaces | |
CN209813314U (en) | Cloth with magnetic conductivity for microcirculation medical care | |
CN208978378U (en) | A kind of spun laced fabric aluminium foil | |
CN216087426U (en) | Make things convenient for fixed metal fiber shielding felt of rolling |