JP2009266892A - Method for manufacturing compound semiconductor crystalline substrate - Google Patents

Method for manufacturing compound semiconductor crystalline substrate Download PDF

Info

Publication number
JP2009266892A
JP2009266892A JP2008111539A JP2008111539A JP2009266892A JP 2009266892 A JP2009266892 A JP 2009266892A JP 2008111539 A JP2008111539 A JP 2008111539A JP 2008111539 A JP2008111539 A JP 2008111539A JP 2009266892 A JP2009266892 A JP 2009266892A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor crystal
laser
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008111539A
Other languages
Japanese (ja)
Inventor
Keisuke Tanizaki
圭祐 谷崎
Tomomasa Miyanaga
倫正 宮永
Hideaki Nakahata
英章 中幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008111539A priority Critical patent/JP2009266892A/en
Publication of JP2009266892A publication Critical patent/JP2009266892A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a compound semiconductor crystalline substrate for making the compound semiconductor crystalline substrate with high accuracy and good yielding by laser machining. <P>SOLUTION: A compound semiconductor crystal such as a single AlN crystal is grown on a principal plane of a base substrate such as a SiC substrate. Laser 1a is irradiated from one of the compound semiconductor crystal and the base substrate to reach the other, thereby cutting the compound semiconductor crystal together with the base substrate. The compound semiconductor crystal may also be cut by irradiating the laser in a direction parallel to an interface between the compound semiconductor crystal and the base substrate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、レーザを用いた窒化アルミニウム結晶基材等の化合物半導体結晶基材の製造方法に関する。   The present invention relates to a method for producing a compound semiconductor crystal substrate such as an aluminum nitride crystal substrate using a laser.

従来より、半導体単結晶の加工方法としては、ダイシング加工、ワイヤソー加工、レーザ加工等が利用されている。また、半導体単結晶以外の加工にも上記加工方法は利用されている。   Conventionally, dicing processing, wire saw processing, laser processing, and the like have been used as processing methods for semiconductor single crystals. Moreover, the said processing method is utilized also for processes other than a semiconductor single crystal.

ダイシング加工は、ダイヤモンド砥粒を付着させたブレードで半導体単結晶を切断するものであり、ワイヤソー加工は、ダイヤモンド砥粒を付着させたワイヤで半導体単結晶を切断する機械加工である。   The dicing process is to cut the semiconductor single crystal with a blade to which diamond abrasive grains are attached, and the wire saw process is a mechanical process to cut the semiconductor single crystal with a wire to which diamond abrasive grains are attached.

半導体単結晶をレーザで加工する手法としては、例えば特開平11―224865号公報に記載された手法があるが、この文献に記載の手法ではCOレーザを用いて酸化物単結晶等を切断している。より詳しくは、被加工体である酸化物単結晶に対してレーザにより溝入れ加工を行ない、溝下部に蓄熱された熱応力により酸化物単結晶を割断している。同様に、特開2006―82232号公報においても、レーザを用いて、熱応力により結晶のへき開面で単結晶基板を割断する手法が記載されている。 As a technique for processing a semiconductor single crystal with a laser, for example, there is a technique described in JP-A-11-224865. In the technique described in this document, an oxide single crystal or the like is cut using a CO 2 laser. ing. More specifically, grooving is performed by laser on the oxide single crystal that is the workpiece, and the oxide single crystal is cleaved by the thermal stress stored in the lower part of the groove. Similarly, Japanese Patent Application Laid-Open No. 2006-82232 describes a method of cleaving a single crystal substrate with a cleavage plane of a crystal by thermal stress using a laser.

他方、特開2005―38459号公報に記載の手法では、YAGレーザを用いて厚さ0.4mmから1mmの単結晶シリコンを切断しており、特開2002―93751号公報や特開2004―39931号公報では、半導体単結晶基板上にデバイスを形成した後に、レーザによって溝入れ加工を施し、割断にはブレーキング加工を用いている。
特開平11―224865号公報 特開2006―82232号公報 特開2005―38459号公報 特開2002―93751号公報 特開2004―39931号公報
On the other hand, in the method described in Japanese Patent Laid-Open No. 2005-38459, single crystal silicon having a thickness of 0.4 mm to 1 mm is cut using a YAG laser, and Japanese Patent Laid-Open No. 2002-93751 and Japanese Patent Laid-Open No. 2004-39931 are cut. In the publication, after forming a device on a semiconductor single crystal substrate, grooving is performed by a laser, and breaking is used for cleaving.
Japanese Patent Laid-Open No. 11-224865 JP 2006-82232 A JP 2005-38459 A JP 2002-93751 A JP 2004-39931 A

上述した従来のレーザ加工法では、被加工体である結晶に溝入れ加工を行った後に熱応力による割断や、ブレーキング加工といった機械加工を行っている。そのため、結晶のへき開面(すべり面)の影響により予定割断位置にばらつきが生じるという問題がある。   In the above-described conventional laser processing method, machining such as cleaving due to thermal stress or breaking is performed after grooving a crystal as a workpiece. For this reason, there is a problem in that the planned cleave position varies due to the influence of the cleavage plane (slip plane) of the crystal.

また、ダイシング加工やワイヤソー加工といった機械加工の場合には、加工体(ブレードやワイヤー)と被加工体である結晶とが物理的に接触することで、被加工体に機械的な応力が生じる。このため、やはり予定割断位置がばらつき、割れ、亀裂、欠けが生じるという問題がある。   In the case of machining such as dicing or wire sawing, mechanical stress is generated in the workpiece by physically contacting the workpiece (blade or wire) and the crystal as the workpiece. For this reason, there is still a problem that the expected cleaving position varies and cracks, cracks and chips occur.

以上のことから、従来の手法では、設計通りの結晶の切断加工を行なうことが困難であり、また割れ、亀裂、欠け等も生じ易く、歩留まりや加工精度が悪いという問題がある。   From the above, the conventional method has a problem that it is difficult to cut a crystal as designed, and cracks, cracks, and chips are likely to occur, resulting in poor yield and processing accuracy.

本発明は、上記のような課題を解決するためになされたものであり、レーザ加工により高精度かつ良好な歩留りで化合物半導体結晶基材を製造することが可能となる、化合物半導体結晶基材の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and a compound semiconductor crystal base material capable of manufacturing a compound semiconductor crystal base material with high accuracy and good yield by laser processing. An object is to provide a manufacturing method.

本発明に係る化合物半導体結晶基材の製造方法は、1つの局面では、下記の各工程を備える。下地基板の主面上に化合物半導体結晶を成長させる。化合物半導体結晶と下地基板との一方から他方に達するようにレーザを照射することで、下地基板とともに化合物半導体結晶を切断加工する。   In one aspect, the method for producing a compound semiconductor crystal substrate according to the present invention includes the following steps. A compound semiconductor crystal is grown on the main surface of the base substrate. By irradiating a laser so that one of the compound semiconductor crystal and the base substrate reaches the other, the compound semiconductor crystal is cut along with the base substrate.

上記化合物半導体結晶の一例としては、たとえば窒化アルミニウム結晶を挙げることができる。この場合、下地基板を、炭化珪素、窒化アルミニウム、窒化ホウ素のいずれかで構成すればよい。上記化合物半導体結晶の厚みは、たとえば1μm以上20mm以下程度であればよい。レーザは、化合物半導体結晶の主面側から入射させてもよく、下地基板の裏面側から入射させてもよい。   An example of the compound semiconductor crystal is an aluminum nitride crystal. In this case, the base substrate may be made of any of silicon carbide, aluminum nitride, and boron nitride. The thickness of the compound semiconductor crystal may be, for example, about 1 μm to 20 mm. The laser may be incident from the main surface side of the compound semiconductor crystal, or may be incident from the back surface side of the base substrate.

本発明に係る化合物半導体結晶基材の製造方法は、他の局面では、下記の各工程を備える。下地基板の主面上に化合物半導体結晶を成長させる。化合物半導体結晶と下地基板との界面に平行な方向にレーザを照射することで化合物半導体結晶を切断加工する。   In another aspect, the method for producing a compound semiconductor crystal substrate according to the present invention includes the following steps. A compound semiconductor crystal is grown on the main surface of the base substrate. The compound semiconductor crystal is cut by irradiating a laser in a direction parallel to the interface between the compound semiconductor crystal and the base substrate.

上記化合物半導体結晶の(0001)面、(11−20)面、(1−100)面、(1−102)面のいずれかに平行な結晶面で化合物半導体結晶を切断加工してもよい。また、化合物半導体結晶の(0001)面、(11−20)面、(1−100)面、(1−102)面のいずれかに平行な結晶面に対して0.1°から5°傾いた面で化合物半導体結晶を切断加工してもよい。   The compound semiconductor crystal may be cut by a crystal plane parallel to any of the (0001) plane, (11-20) plane, (1-100) plane, and (1-102) plane of the compound semiconductor crystal. In addition, the compound semiconductor crystal is tilted by 0.1 ° to 5 ° with respect to a crystal plane parallel to any of the (0001) plane, (11-20) plane, (1-100) plane, and (1-102) plane. The compound semiconductor crystal may be cut and processed on the other surface.

上記レーザとして固体Nd:YAGレーザを使用し、該レーザを、波長が1064nm、出力が13W以上15W以下、加工周波数が3kHz以上5kHz以下、パルスエネルギーが3.0mJ以上4.3mJ以下、最大ピーク出力が35kW以上60kW以下、電磁場モードがTEM00モードで照射してもよい。   A solid Nd: YAG laser is used as the laser. The laser has a wavelength of 1064 nm, an output of 13 W to 15 W, a processing frequency of 3 kHz to 5 kHz, a pulse energy of 3.0 mJ to 4.3 mJ, and a maximum peak output. May be irradiated in an electromagnetic field mode of TEM00 mode.

上記化合物半導体結晶へのレーザの照射軌道を変化させながら化合物半導体結晶を切断加工することが好ましい。   It is preferable to cut the compound semiconductor crystal while changing the irradiation trajectory of the laser to the compound semiconductor crystal.

本発明によれば、機械加工を施すことなくレーザを用いて化合物半導体結晶を切断加工することができるので、機械的加工による歪みの発生等の不具合を回避することができ、高精度かつ良好な歩留りで化合物半導体結晶基材を製造することができる。   According to the present invention, since the compound semiconductor crystal can be cut using a laser without machining, problems such as generation of strain due to mechanical machining can be avoided, and high accuracy and good A compound semiconductor crystal base material can be manufactured with a yield.

以下、本発明の1つの実施の形態における化合物半導体結晶基材の製造方法について説明する。   Hereafter, the manufacturing method of the compound semiconductor crystal base material in one embodiment of this invention is demonstrated.

本実施の形態では、機械加工を行わずにレーザ加工のみで窒化アルミニウム(以下、「AlN」と称する)結晶のような化合物半導体結晶を切断し、多種多様な形状に切断加工する。このように機械加工を行わずにレーザ加工のみで化合物半導体結晶を切断することにより、機械的加工による歪みの発生等の不具合を回避することができ、また化合物半導体結晶の割れ、亀裂、欠け等をも抑制することができる。その結果、高精度かつ良好な歩留りで化合物半導体結晶基材を製造することができる。   In this embodiment mode, a compound semiconductor crystal such as an aluminum nitride (hereinafter referred to as “AlN”) crystal is cut by only laser processing without machining, and cut into various shapes. By cutting the compound semiconductor crystal only by laser processing without performing machining in this way, it is possible to avoid problems such as distortion caused by mechanical processing, and cracks, cracks, chips, etc. of the compound semiconductor crystal Can also be suppressed. As a result, a compound semiconductor crystal substrate can be produced with high accuracy and good yield.

化合物半導体結晶としては、たとえばAlN単結晶やAlN多結晶等の様々な化合物半導体結晶を挙げることができる。化合物半導体結晶は、たとえば昇華法や気相成長法により下地基板上に成長させることができる。AlN単結晶の場合、下地基板として炭化珪素(以下、「SiC」と称する)基板やAlN単結晶基板を使用することができ、AlN多結晶の場合、下地基板として窒化ホウ素(以下、「BN」と称する)基板を使用することができる。   Examples of compound semiconductor crystals include various compound semiconductor crystals such as AlN single crystals and AlN polycrystals. The compound semiconductor crystal can be grown on the base substrate by, for example, a sublimation method or a vapor phase growth method. In the case of an AlN single crystal, a silicon carbide (hereinafter referred to as “SiC”) substrate or an AlN single crystal substrate can be used as the base substrate, and in the case of AlN polycrystal, boron nitride (hereinafter referred to as “BN”) is used as the base substrate. Substrate) can be used.

上記のような手法で、下地基板上にAlN単結晶のような化合物半導体結晶を成長させた後、レーザを用いて、下地基板上に成長した化合物半導体結晶を、たとえばウェハプロセスに適用する等のために円形や四角形といった様々な形状に切断加工する。   After a compound semiconductor crystal such as an AlN single crystal is grown on the base substrate by the method as described above, the compound semiconductor crystal grown on the base substrate is applied to, for example, a wafer process using a laser. Therefore, it is cut into various shapes such as a circle and a rectangle.

このとき、下地基板上に形成した化合物半導体結晶を、下地基板とともに切断加工してもよく、下地基板と化合物半導体結晶との界面に沿って化合物半導体結晶を切断するスライス加工を行なってもよい。   At this time, the compound semiconductor crystal formed on the base substrate may be cut together with the base substrate, or slice processing may be performed to cut the compound semiconductor crystal along the interface between the base substrate and the compound semiconductor crystal.

このようにレーザを用いることにより、化合物半導体結晶を円形や多角形等の様々な形状に容易かつ高精度に加工することができる。より具合的には、化合物半導体結晶を、合成炉のサセプターに合わせた形状等に容易に加工することができ、またフォトリソグラフィーなどのウェハープロセスに適用可能な形状にも容易に加工することができる。   By using the laser in this way, the compound semiconductor crystal can be easily and accurately processed into various shapes such as a circle and a polygon. More specifically, a compound semiconductor crystal can be easily processed into a shape suitable for a susceptor of a synthesis furnace, or can be easily processed into a shape applicable to a wafer process such as photolithography. .

レーザ加工する際には、まずレーザ加工機のXYステージ上にAlN単結晶のような化合物半導体結晶を下地基板とともに載置する。そして、たとえば化合物半導体結晶の主面(下地基板と接する表面と反対側の表面)側よりレーザを化合物半導体結晶に照射する。   When performing laser processing, first, a compound semiconductor crystal such as an AlN single crystal is placed together with a base substrate on an XY stage of a laser processing machine. Then, for example, the compound semiconductor crystal is irradiated with a laser from the main surface (surface opposite to the surface in contact with the base substrate) side of the compound semiconductor crystal.

このとき、化合物半導体結晶を載置したXYステージを移動させることで、所望の形状に化合物半導体結晶を切断加工することができる。たとえば、化合物半導体結晶を円形に切断加工する場合には、化合物半導体結晶を載置したXYステージを、円軌道を数回に渡って描くように移動させればよい。ここで、化合物半導体結晶へのレーザの照射軌道が少しずつ変化するようにXYステージを駆動する。具体的には、円軌道に沿ってレーザを照射して切断加工を行なう場合、直径が異なる複数の円軌道に沿ってレーザを化合物半導体結晶に照射して切断加工を行なえばよい。それにより、化合物半導体結晶の厚みが厚い場合でも、レーザのみで効率的に化合物半導体結晶を所望の形状に加工することができる。   At this time, the compound semiconductor crystal can be cut into a desired shape by moving the XY stage on which the compound semiconductor crystal is placed. For example, when a compound semiconductor crystal is cut into a circle, the XY stage on which the compound semiconductor crystal is placed may be moved so as to draw a circular orbit several times. Here, the XY stage is driven so that the laser irradiation trajectory to the compound semiconductor crystal changes little by little. Specifically, when the cutting process is performed by irradiating a laser along a circular orbit, the cutting process may be performed by irradiating the compound semiconductor crystal with a laser along a plurality of circular orbits having different diameters. Thereby, even when the thickness of the compound semiconductor crystal is large, the compound semiconductor crystal can be efficiently processed into a desired shape using only a laser.

化合物半導体結晶に入射したレーザは、化合物半導体結晶を切断し、最終的には下地基板に達する。ここで、下地基板をも切断するようにレーザを照射してもよいが、下地基板内で止まるようにレーザを調節してもよい。下地基板をも切断するようにレーザを照射することにより、化合物半導体結晶と下地基板との両方を円形等の所望の形状に加工することができる。   The laser incident on the compound semiconductor crystal cuts the compound semiconductor crystal and finally reaches the base substrate. Here, the laser may be irradiated so as to cut the base substrate, but the laser may be adjusted so as to stop within the base substrate. By irradiating the laser so as to cut the base substrate, both the compound semiconductor crystal and the base substrate can be processed into a desired shape such as a circle.

AlN結晶等の化合物半導体結晶の厚さは、1μm以上20mm以下が好ましく、より好ましくは5mm以上10mm以下である。化合物半導体結晶の厚さが1μm以上の場合には、化合物半導体結晶自体の厚さが薄いので、下地基板も含めて化合物半導体結晶の切断が容易となる。また、化合物半導体結晶の厚さが20mm以下の場合は、化合物半導体結晶自体が厚いので割れの発生可能性を低減することができる。さらに化合物半導体結晶の厚さが5mm以上の場合には、1μm程度の厚さの場合と比較して割れや亀裂の発生を抑制でき、化合物半導体結晶の厚さを10mm以下とした場合には、厚さが20mmの場合と比較して加工時間の短縮に加え、割れや亀裂を防ぐこともできる。   The thickness of the compound semiconductor crystal such as AlN crystal is preferably 1 μm or more and 20 mm or less, more preferably 5 mm or more and 10 mm or less. When the thickness of the compound semiconductor crystal is 1 μm or more, since the thickness of the compound semiconductor crystal itself is thin, the compound semiconductor crystal including the base substrate can be easily cut. Further, when the thickness of the compound semiconductor crystal is 20 mm or less, the possibility of cracking can be reduced because the compound semiconductor crystal itself is thick. Furthermore, when the thickness of the compound semiconductor crystal is 5 mm or more, the occurrence of cracks and cracks can be suppressed as compared to the thickness of about 1 μm, and when the thickness of the compound semiconductor crystal is 10 mm or less, In addition to shortening the processing time as compared with the case where the thickness is 20 mm, cracks and cracks can also be prevented.

化合物半導体結晶のレーザ加工は、下地基板の裏面側からレーザを照射することによっても行なうことができる。この場合、たとえば下地基板を上側にしてレーザ加工機のXYステージ上に化合物半導体結晶を載置し、この状態で下地基板の裏面側にレーザを照射すればよい。   Laser processing of the compound semiconductor crystal can also be performed by irradiating a laser from the back side of the base substrate. In this case, for example, the compound semiconductor crystal may be placed on the XY stage of the laser processing machine with the base substrate facing up, and the back side of the base substrate may be irradiated with the laser in this state.

このとき、下地基板と化合物半導体結晶との双方を貫通するように下地基板側からレーザを照射することで、下地基板と化合物半導体結晶との両方を切断することができる。   At this time, both the base substrate and the compound semiconductor crystal can be cut by irradiating the laser from the base substrate side so as to penetrate both the base substrate and the compound semiconductor crystal.

また、下地基板と化合物半導体結晶の材料が異なる場合、たとえばAlN単結晶を下地基板上で成長させる場合に下地基板としてSiCのようなAlN単結晶とは異なる材料を使用した場合には、下地基板と化合物半導体結晶との界面付近に、格子不整合や物性値の相違から応力が生じる。このような場合に、上記のように下地基板の裏面部からレーザを入射させることで、これらの応力を開放することができ、化合物半導体結晶に割れ、亀裂、欠けを発生させずに切断することが可能となる。   Further, when the material of the base substrate and the compound semiconductor crystal are different, for example, when an AlN single crystal is grown on the base substrate, and a material different from the AlN single crystal such as SiC is used as the base substrate, the base substrate Stress is generated in the vicinity of the interface between the crystal and the compound semiconductor crystal due to a lattice mismatch or a difference in physical properties. In such a case, the laser can be incident from the back surface of the base substrate as described above to release these stresses, and the compound semiconductor crystal can be cut without causing cracks, cracks, or chips. Is possible.

次に、下地基板と化合物半導体結晶との界面に沿って化合物半導体結晶を切断するスライス加工を行なう場合について説明する。   Next, the case where the slicing process for cutting the compound semiconductor crystal along the interface between the base substrate and the compound semiconductor crystal is described.

下地基板と化合物半導体結晶との材料が異なる場合、上記のような応力が発生し、割れや亀裂発生の原因になっている。そこで、レーザを用いて下地基板と化合物半導体結晶との界面に沿って化合物半導体結晶を切断加工する。   When the materials of the base substrate and the compound semiconductor crystal are different, the stress as described above is generated, causing cracks and cracks. Therefore, the compound semiconductor crystal is cut and processed along the interface between the base substrate and the compound semiconductor crystal using a laser.

かかる化合物半導体結晶のスライス加工を行うことにより、下地基板の存在に起因する応力から化合物半導体結晶を開放することができ、割れや亀裂の極めて少ない化合物半導体結晶を取り出すことが可能となる。また、機械加工による加工応力も無いため、機械加工に起因する割れや亀裂といったダメージをも低減することができる。   By slicing the compound semiconductor crystal, the compound semiconductor crystal can be released from the stress caused by the presence of the base substrate, and the compound semiconductor crystal with very few cracks and cracks can be taken out. Further, since there is no machining stress due to machining, damage such as cracks and cracks resulting from machining can be reduced.

上記のようなレーザスライス加工により化合物半導体結晶を多数枚取りする場合には、下地基板として異種材料の基板を使用せずに同種材料の基板を使用してもよい。   When a large number of compound semiconductor crystals are obtained by laser slicing as described above, a substrate of the same material may be used as a base substrate without using a substrate of a different material.

AlN単結晶のような化合物半導体結晶は、C面(面方位(0001)に垂直な面)、A面(面方位(11−20)に垂直な面)、M面(面方位(1−100)に垂直な面)、R面(面方位(1−102)に垂直な面)等に平行な面でスライス加工できる。これにより、極性面、非極性面、半極性面を持つ結晶基板を作製することができる。   A compound semiconductor crystal such as an AlN single crystal has a C plane (plane perpendicular to the plane orientation (0001)), an A plane (plane perpendicular to the plane orientation (11-20)), and an M plane (plane orientation (1-100). ) And a plane parallel to the R plane (plane perpendicular to the plane orientation (1-102)) and the like. Thereby, a crystal substrate having a polar surface, a nonpolar surface, and a semipolar surface can be produced.

また、意図的に上記4つの平面に対してオフ角0.1°から5°をもつオフ角面に平行な面でスライス加工も可能であり、全面方位に対するスライス加工も可能である。   In addition, slicing can be performed on a plane parallel to the off-angle plane having an off-angle of 0.1 ° to 5 ° with respect to the four planes, and slicing can be performed on the entire surface.

上記レーザとしては、たとえば固体Nd:YAGレーザを使用することができる。該レーザを使用する場合、波長を1064nm、出力を13W以上15W以下、加工周波数を3kHz以上5kHz以下、パルスエネルギーを3.0mJ以上4.3mJ以下、最大ピーク出力を35kW以上60kW以下、電磁場モードをTEM00モードとすればよい。   As the laser, for example, a solid Nd: YAG laser can be used. When using the laser, the wavelength is 1064 nm, the output is 13 W or more and 15 W or less, the processing frequency is 3 kHz or more and 5 kHz or less, the pulse energy is 3.0 mJ or more and 4.3 mJ or less, the maximum peak output is 35 kW or more and 60 kW or less, and the electromagnetic field mode is set. The TEM00 mode may be set.

次に、本発明の実施例について図1〜図6を用いて説明する。   Next, an embodiment of the present invention will be described with reference to FIGS.

図1(a)および(b)に示すように、下地基板として、主面の面方位が(0001)、オフ角3°、厚さ400μm、直径30mmサイズのSiC基板3を準備した。このSiC基板3の主面部上に、昇華法を用いて厚さ20mmのAlN単結晶2を成長させた。   As shown in FIGS. 1A and 1B, a SiC substrate 3 having a principal surface of (0001), an off angle of 3 °, a thickness of 400 μm, and a diameter of 30 mm was prepared as a base substrate. An AlN single crystal 2 having a thickness of 20 mm was grown on the main surface portion of the SiC substrate 3 by using a sublimation method.

上記AlN単結晶2をレーザ加工機のステージに固定し、図1(a)および(b)に示す円形の軌道1に沿ってAlN単結晶2の主面側からレーザ1aを照射し、直径25mmのAlN単結晶2の切断加工を行った。レーザ1aとしては、固体Nd:YAGレーザを使用した。レーザ1aの波長は1064nm、出力は13W以上15W以下、加工周波数は3kHz以上5kHz以下、パルスエネルギーは3.0mJ以上4.3mJ以下、最大ピーク出力は35kW以上60kW以下、電磁場モードはTEM00モードとした。   The AlN single crystal 2 is fixed to the stage of a laser processing machine, and the laser 1a is irradiated from the main surface side of the AlN single crystal 2 along the circular orbit 1 shown in FIGS. 1 (a) and 1 (b). The AlN single crystal 2 was cut. A solid Nd: YAG laser was used as the laser 1a. The wavelength of the laser 1a is 1064 nm, the output is 13 W to 15 W, the processing frequency is 3 kHz to 5 kHz, the pulse energy is 3.0 mJ to 4.3 mJ, the maximum peak output is 35 kW to 60 kW, and the electromagnetic field mode is the TEM00 mode. .

本実施例1では、図1(c)に示すように、レーザ1aの照射軌道を徐々に変化させながらAlN単結晶2の切断加工を行った。たとえば、AlN単結晶2の径方向(円形の軌道1の径方向)にレーザ1aを徐々に移動させながら複数回異なる径の円軌道を描くようにレーザ1aをAlN単結晶2に照射して切断加工を行なえばよい。以下の各実施例の場合も同様の手法で切断加工を行った。   In Example 1, as shown in FIG. 1C, the AlN single crystal 2 was cut while gradually changing the irradiation trajectory of the laser 1a. For example, the AlN single crystal 2 is cut by irradiating the laser 1a to the AlN single crystal 2 so as to draw a circular orbit having a different diameter multiple times while gradually moving the laser 1a in the radial direction of the AlN single crystal 2 (the radial direction of the circular orbit 1). What is necessary is just to process. In each of the following examples, the cutting process was performed in the same manner.

上記のようにレーザ1aをAlN単結晶2に照射することにより、厚さ20mmのAlN単結晶2を切断し、さらに下地基板であるSiC基板3も切断することができた。このときの切断加工時間は約4時間であった。   By irradiating the AlN single crystal 2 with the laser 1a as described above, the AlN single crystal 2 having a thickness of 20 mm was cut, and further, the SiC substrate 3 as a base substrate could be cut. The cutting time at this time was about 4 hours.

切断加工後に、AlN単結晶2の状態を、光学顕微鏡、目視、走査型電子顕微鏡(SEM)を用いて確認したところ、亀裂や割れが発生していないことを確認した。   After cutting, the state of the AlN single crystal 2 was confirmed using an optical microscope, visual observation, and a scanning electron microscope (SEM), and it was confirmed that no cracks or cracks were generated.

また、本願の発明者等は、AlN単結晶2の厚さを変えたときのレーザ加工と研削加工による亀裂および割れの発生の有無を比較したので、その結果を下記の表1に示す。   Moreover, since the inventors of this application compared the presence or absence of the generation | occurrence | production of the crack by a laser processing and grinding processing when changing the thickness of the AlN single crystal 2, the result is shown in following Table 1.

Figure 2009266892
Figure 2009266892

表1に示すように、AlN単結晶2の厚さが1μm以上20mm以下の場合には、研削加工よりもレーザ加工の方が割れや亀裂の発生を抑制することができることがわかる。また、AlN単結晶以外の化合物半導体結晶の場合も、同様に上記のような厚み範囲の場合に、レーザ加工で切断することで割れや亀裂の発生を抑制することができる。   As shown in Table 1, when the thickness of the AlN single crystal 2 is 1 μm or more and 20 mm or less, it can be seen that the laser processing can suppress the generation of cracks and cracks more than the grinding processing. Similarly, in the case of a compound semiconductor crystal other than an AlN single crystal, the occurrence of cracks and cracks can be suppressed by cutting by laser processing when the thickness is in the above range.

本実施例2では、下地基板としてAlN単結晶基板4を使用した。AlN単結晶基板4としては、面方位(0001)、オフ角0.5°、厚さ1mm、直径50mmサイズのものを準備した。図2(a)および(b)に示すように、AlN単結晶基板4の主面部上に、昇華法を用いて厚さ10mmのAlN単結晶22を成長させた。   In Example 2, an AlN single crystal substrate 4 was used as the base substrate. As the AlN single crystal substrate 4, a substrate having a plane orientation (0001), an off angle of 0.5 °, a thickness of 1 mm, and a diameter of 50 mm was prepared. As shown in FIGS. 2A and 2B, an AlN single crystal 22 having a thickness of 10 mm was grown on the main surface portion of the AlN single crystal substrate 4 by using a sublimation method.

上記のAlN単結晶基板4とともにAlN単結晶22をレーザー加工機のステージに固定し、図2(b)に示すように、AlN単結晶基板4の裏面側から矩形の軌道21に沿ってレーザ1aを照射した。AlN単結晶基板4の裏面側からレーザ1aを照射するためには、たとえばAlN単結晶基板4の裏面を上側にしてレーザー加工機のステージ上に載置し、上方からレーザ1aを照射すればよい。   The AlN single crystal 22 is fixed to the stage of the laser processing machine together with the AlN single crystal substrate 4, and the laser 1a is formed along the rectangular track 21 from the back side of the AlN single crystal substrate 4 as shown in FIG. Was irradiated. In order to irradiate the laser 1a from the back surface side of the AlN single crystal substrate 4, for example, the AlN single crystal substrate 4 may be placed on the stage of the laser processing machine with the back surface of the AlN single crystal substrate 4 facing up and irradiated with the laser 1a from above. .

上記のようにレーザ1aを照射し、図2(a)および(b)に示すように、1辺が10mmの正方形の形状となるようにAlN単結晶22の切断加工を行った。レーザー照射条件は実施例1と同じである。その結果、約6時間の加工時間でAlN単結晶基板4とAlN単結晶22とを切断することができた。切断面は加工変質層の発生により白膜化したが、有機溶剤及びアルコール洗浄により表面の白膜を除去することができた。   The laser 1a was irradiated as described above, and as shown in FIGS. 2A and 2B, the AlN single crystal 22 was cut so as to have a square shape with one side of 10 mm. Laser irradiation conditions are the same as in Example 1. As a result, the AlN single crystal substrate 4 and the AlN single crystal 22 could be cut in a processing time of about 6 hours. Although the cut surface turned into a white film due to the generation of a work-affected layer, the white film on the surface could be removed by washing with an organic solvent and alcohol.

上記切断加工後に、光学顕微鏡、目視、走査型電子顕微鏡(SEM)により、AlN単結晶22の状態を観察したところ、亀裂や割れが発生していないことを確認することができた。   After the cutting process, when the state of the AlN single crystal 22 was observed with an optical microscope, visual observation, and scanning electron microscope (SEM), it was confirmed that no cracks or cracks occurred.

本実施例3では、下地基板として、厚さ2mm、直径55mmサイズの窒化ホウ素(BN)基板5を準備した。このBN基板5の主面部上に、図3(a)および(b)に示すように、昇華法を用いて厚さ20mmのAlN多結晶23を成長させた。   In Example 3, a boron nitride (BN) substrate 5 having a thickness of 2 mm and a diameter of 55 mm was prepared as a base substrate. As shown in FIGS. 3A and 3B, an AlN polycrystal 23 having a thickness of 20 mm was grown on the main surface portion of the BN substrate 5 by using a sublimation method.

上記AlN多結晶23をレーザー加工機のステージに固定し、BN基板5の裏面部から円形の軌道21に沿ってレーザ1aを照射し、図3(a)に示すように直径25mmのAlN多結晶23の切断加工を行った。レーザー照射条件は実施例1と同じである。本実施例の場合も、下地基板であるBN基板5も含めて切断加工したところ、加工時間は約5時間であった。   The AlN polycrystal 23 is fixed to a stage of a laser processing machine, and the laser 1a is irradiated along the circular orbit 21 from the back surface of the BN substrate 5, and an AlN polycrystal having a diameter of 25 mm as shown in FIG. 23 cutting processes were performed. Laser irradiation conditions are the same as in Example 1. Also in the case of this example, when the BN substrate 5 as the base substrate was cut and processed, the processing time was about 5 hours.

上記切断加工後に、光学顕微鏡、目視、走査型電子顕微鏡(SEM)により、AlN多結晶23の状態を観察したところ、亀裂や割れが発生していないことを確認した。   After the cutting process, when the state of the AlN polycrystal 23 was observed with an optical microscope, visual observation, and scanning electron microscope (SEM), it was confirmed that no cracks or cracks occurred.

本実施例4では、下地基板として、面方位(0001)、オフ角3°、厚さ400μm、直径20mmのサイズのSiC基板3を準備した。このSiC基板3主面部上に、図4(a)および(b)に示すように、昇華法を用いて厚さ10mmのAlN単結晶2を成長させた。   In Example 4, an SiC substrate 3 having a plane orientation (0001), an off angle of 3 °, a thickness of 400 μm, and a diameter of 20 mm was prepared as a base substrate. On the main surface portion of this SiC substrate 3, as shown in FIGS. 4A and 4B, an AlN single crystal 2 having a thickness of 10 mm was grown using a sublimation method.

上記AlN単結晶2をレーザー加工機のステージに固定し、このAlN単結晶2の側面部にレーザ1a、1bを照射した。本実施例4では、図4(b)に示すように、AlN単結晶2の両側から、直線状の軌道21に沿うように、交互にレーザ1a、1bを照射し、直径20mm、厚さ9.7mmのAlN単結晶2のスライス加工を行った。レーザー照射条件は実施例1と同じである。加工時間は約10時間、切断代は300μmであった。本実施例4では、下地基板であるSiC基板3を除去するためにも、上記スライス加工を使用した。   The AlN single crystal 2 was fixed to a stage of a laser processing machine, and lasers 1a and 1b were irradiated to the side surface portion of the AlN single crystal 2. In Example 4, as shown in FIG. 4B, the lasers 1a and 1b are alternately irradiated along the linear trajectory 21 from both sides of the AlN single crystal 2 to have a diameter of 20 mm and a thickness of 9 Slicing of 7 mm AlN single crystal 2 was performed. Laser irradiation conditions are the same as in Example 1. The processing time was about 10 hours and the cutting allowance was 300 μm. In Example 4, the slicing process was also used to remove the SiC substrate 3 as the base substrate.

上記切断加工後に、光学顕微鏡、目視、走査型電子顕微鏡(SEM)により、AlN多結晶23の状態を観察したところ、亀裂や割れが発生していないことを確認した。   After the cutting process, when the state of the AlN polycrystal 23 was observed with an optical microscope, visual observation, and scanning electron microscope (SEM), it was confirmed that no cracks or cracks occurred.

本実施例5では、下地基板として、面方位(0001)、オフ角3°、厚さ400μm、直径15mmサイズのSiC基板を準備した。このSiC基板の主面部上に昇華法を用いて厚さ20mmのAlN単結晶2(図5(a)参照)を成長させた。   In Example 5, a SiC substrate having a plane orientation (0001), an off angle of 3 °, a thickness of 400 μm, and a diameter of 15 mm was prepared as a base substrate. An AlN single crystal 2 (see FIG. 5A) having a thickness of 20 mm was grown on the main surface portion of the SiC substrate using a sublimation method.

図5(b)に示すように、面方位(0001)5に垂直な面6(C面)に平行な方向にレーザ1a、1bをAlN単結晶2に照射した。本実施例5でも、AlN単結晶2の両側から交互にレーザ1a、1bを照射してAlN単結晶2を加工し、自立基板7をスライス加工により切り出した。具体的には、厚さ1mm、直径約16mmの基板を5枚切り出した。   As shown in FIG. 5B, the laser 1a and 1b were irradiated to the AlN single crystal 2 in a direction parallel to the plane 6 (C plane) perpendicular to the plane orientation (0001) 5. Also in Example 5, the AlN single crystal 2 was processed by alternately irradiating the lasers 1a and 1b from both sides of the AlN single crystal 2, and the free-standing substrate 7 was cut out by slicing. Specifically, five substrates having a thickness of 1 mm and a diameter of about 16 mm were cut out.

切り出された上記自立基板7を、光学顕微鏡、目視、走査型電子顕微鏡(SEM)により観察したところ、自立基板7には亀裂や割れが発生していないことを確認した。   When the cut-out self-supporting substrate 7 was observed with an optical microscope, visual observation, and a scanning electron microscope (SEM), it was confirmed that the self-supporting substrate 7 was not cracked or cracked.

本実施例6では、下地基板として、面方位(0001)、オフ角3°、厚さ400μm、直径15mmのサイズのSiC基板を準備した。このSiC基板の主面部上に昇華法を用いて厚さ20mmのAlN単結晶2(図6(a)参照)を成長させた。   In Example 6, a SiC substrate having a plane orientation (0001), an off angle of 3 °, a thickness of 400 μm, and a diameter of 15 mm was prepared as a base substrate. An AlN single crystal 2 (see FIG. 6A) having a thickness of 20 mm was grown on the main surface portion of the SiC substrate using a sublimation method.

図6(b)に示すように、面方位(0001)5に平行な面61(M面)に平行な方向にレーザ1a、1bをAlN単結晶2に照射した。本実施例6においても、AlN単結晶2の両側から交互にレーザ1a、1bを照射してAlN単結晶2を加工し、自立基板7をスライス加工により切り出した。具体的には、厚さ400μm、一辺が約15mmの正方形の基板を5枚切り出した。   As shown in FIG. 6B, the laser 1a and 1b were irradiated to the AlN single crystal 2 in a direction parallel to the plane 61 (M plane) parallel to the plane orientation (0001) 5. Also in Example 6, the AlN single crystal 2 was processed by alternately irradiating the lasers 1a and 1b from both sides of the AlN single crystal 2, and the free-standing substrate 7 was cut out by slicing. Specifically, five square substrates having a thickness of 400 μm and a side of about 15 mm were cut out.

切り出された上記自立基板7を、光学顕微鏡、目視、走査型電子顕微鏡(SEM)により観察したところ、自立基板7には亀裂や割れが発生していないことを確認した。   When the cut-out self-supporting substrate 7 was observed with an optical microscope, visual observation, and a scanning electron microscope (SEM), it was confirmed that the self-supporting substrate 7 was not cracked or cracked.

以上のように本発明の実施の形態および実施例について説明を行なったが、上記の実施の形態や実施例の構成を適宜組合せることも可能である。また、今回開示した実施の形態および実施例はすべての点での例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   Although the embodiments and examples of the present invention have been described above, the configurations of the above embodiments and examples can be combined as appropriate. The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all modifications within the scope.

(a)は、本発明の実施例1における切断加工前のAlN単結晶を示す平面図であり、(b)は(a)に示すAlN単結晶の側面図であり、(c)はレーザ加工法を説明するための断面模式図である。(A) is a top view which shows the AlN single crystal before the cutting process in Example 1 of this invention, (b) is a side view of the AlN single crystal shown to (a), (c) is laser processing It is a cross-sectional schematic diagram for demonstrating a method. (a)は、本発明の実施例2における切断加工前のAlN単結晶を示す平面図であり、(b)は(a)に示すAlN単結晶の側面図である。(A) is a top view which shows the AlN single crystal before the cutting process in Example 2 of this invention, (b) is a side view of the AlN single crystal shown to (a). (a)は、本発明の実施例3における切断加工前のAlN多結晶を示す平面図であり、(b)は(a)に示すAlN多結晶の側面図である。(A) is a top view which shows the AlN polycrystal before the cutting process in Example 3 of this invention, (b) is a side view of the AlN polycrystal shown to (a). (a)は、本発明の実施例4における切断加工前のAlN単結晶を示す平面図であり、(b)は(a)に示すAlN単結晶の側面図である。(A) is a top view which shows the AlN single crystal before the cutting process in Example 4 of this invention, (b) is a side view of the AlN single crystal shown to (a). (a)は、本発明の実施例5における切断加工前のAlN単結晶を示す平面図であり、(b)は(a)に示すAlN単結晶の側面図である。(A) is a top view which shows the AlN single crystal before the cutting process in Example 5 of this invention, (b) is a side view of the AlN single crystal shown to (a). (a)は、本発明の実施例6における切断加工前のAlN単結晶を示す平面図であり、(b)は(a)に示すAlN単結晶の側面図である。(A) is a top view which shows the AlN single crystal before the cutting process in Example 6 of this invention, (b) is a side view of the AlN single crystal shown to (a).

符号の説明Explanation of symbols

1,21 軌道、1a,1b レーザ、2,22 AlN単結晶、3 SiC基板、4 BN基板、5 面方位(0001)、6 (0001)面、7 自立基板、23 AlN多結晶。   1,21 orbit, 1a, 1b laser, 2,22 AlN single crystal, 3 SiC substrate, 4 BN substrate, 5 plane orientation (0001), 6 (0001) plane, 7 freestanding substrate, 23 AlN polycrystal.

Claims (10)

下地基板の主面上に化合物半導体結晶を成長させる工程と、
前記化合物半導体結晶と前記下地基板との一方から他方に達するようにレーザを照射することで、前記下地基板とともに前記化合物半導体結晶を切断加工する工程と、
を備えた化合物半導体結晶基材の製造方法。
A step of growing a compound semiconductor crystal on the main surface of the base substrate;
Cutting the compound semiconductor crystal together with the base substrate by irradiating a laser so as to reach the other from one of the compound semiconductor crystal and the base substrate;
A method for producing a compound semiconductor crystal substrate comprising:
前記化合物半導体結晶は窒化アルミニウム結晶であり、
前記下地基板を、炭化珪素、窒化アルミニウム、窒化ホウ素のいずれかで構成した、請求項1に記載の化合物半導体結晶基材の製造方法。
The compound semiconductor crystal is an aluminum nitride crystal,
The method for producing a compound semiconductor crystal base material according to claim 1, wherein the base substrate is composed of any one of silicon carbide, aluminum nitride, and boron nitride.
前記化合物半導体結晶の厚みは1μm以上20mm以下である、請求項1または請求項2に記載の化合物半導体結晶基材の製造方法。   The manufacturing method of the compound semiconductor crystal base material of Claim 1 or Claim 2 whose thickness of the said compound semiconductor crystal is 1 micrometer or more and 20 mm or less. レーザを前記化合物半導体結晶の主面側から入射させ、前記化合物半導体結晶と前記下地基板とを切断加工する、請求項1から請求項3のいずれかに記載の化合物半導体結晶基材の製造方法。   The manufacturing method of the compound semiconductor crystal base material in any one of Claims 1-3 which makes a laser inject from the main surface side of the said compound semiconductor crystal, and cuts the said compound semiconductor crystal and the said base substrate. レーザを前記下地基板の裏面側から入射させ、前記下地基板と前記化合物半導体結晶とを切断加工する、請求項1から請求項3のいずれかに記載の化合物半導体結晶基材の製造方法。   The manufacturing method of the compound semiconductor crystal base material in any one of Claims 1-3 which makes a laser inject from the back surface side of the said base substrate, and cuts the said base substrate and the said compound semiconductor crystal. 下地基板の主面上に化合物半導体結晶を成長させる工程と、
前記化合物半導体結晶と前記下地基板との界面に平行な方向にレーザを照射することで前記化合物半導体結晶を切断加工する工程と、
を備えた化合物半導体結晶基材の製造方法。
A step of growing a compound semiconductor crystal on the main surface of the base substrate;
Cutting the compound semiconductor crystal by irradiating a laser in a direction parallel to the interface between the compound semiconductor crystal and the base substrate;
A method for producing a compound semiconductor crystal substrate comprising:
前記化合物半導体結晶の(0001)面、(11−20)面、(1−100)面、(1−102)面のいずれかに平行な結晶面で前記化合物半導体結晶を切断加工する、請求項6に記載の化合物半導体結晶基材の製造方法。   The compound semiconductor crystal is cut by a crystal plane parallel to any of a (0001) plane, a (11-20) plane, a (1-100) plane, and a (1-102) plane of the compound semiconductor crystal. 6. A method for producing a compound semiconductor crystal substrate according to 6. 前記化合物半導体結晶の(0001)面、(11−20)面、(1−100)面、(1−102)面のいずれかに平行な結晶面に対して0.1°から5°傾いた面で前記化合物半導体結晶を切断加工する、請求項6に記載の化合物半導体結晶基材の製造方法。   The compound semiconductor crystal is tilted by 0.1 ° to 5 ° with respect to a crystal plane parallel to any of the (0001) plane, (11-20) plane, (1-100) plane, and (1-102) plane. The method for producing a compound semiconductor crystal substrate according to claim 6, wherein the compound semiconductor crystal is cut and processed on a surface. 前記レーザとして固体Nd:YAGレーザを使用し、前記レーザを、波長が1064nm、出力が13W以上15W以下、加工周波数が3kHz以上5kHz以下、パルスエネルギーが3.0mJ以上4.3mJ以下、最大ピーク出力が35kW以上60kW以下、電磁場モードがTEM00モードで照射する、請求項1から請求項8のいずれかに記載の化合物半導体結晶基材の製造方法。   A solid Nd: YAG laser is used as the laser, and the laser has a wavelength of 1064 nm, an output of 13 W to 15 W, a processing frequency of 3 kHz to 5 kHz, a pulse energy of 3.0 mJ to 4.3 mJ, and a maximum peak output. The manufacturing method of the compound semiconductor crystal base material in any one of Claims 1-8 which irradiates in 35 to 60 kW, and electromagnetic field mode is TEM00 mode. 前記化合物半導体結晶への前記レーザの照射軌道を変化させながら前記化合物半導体結晶を切断加工する、請求項1から請求項9のいずれかに記載の化合物半導体結晶基材の製造方法。   The method for producing a compound semiconductor crystal substrate according to any one of claims 1 to 9, wherein the compound semiconductor crystal is cut while changing an irradiation trajectory of the laser to the compound semiconductor crystal.
JP2008111539A 2008-04-22 2008-04-22 Method for manufacturing compound semiconductor crystalline substrate Withdrawn JP2009266892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111539A JP2009266892A (en) 2008-04-22 2008-04-22 Method for manufacturing compound semiconductor crystalline substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111539A JP2009266892A (en) 2008-04-22 2008-04-22 Method for manufacturing compound semiconductor crystalline substrate

Publications (1)

Publication Number Publication Date
JP2009266892A true JP2009266892A (en) 2009-11-12

Family

ID=41392399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111539A Withdrawn JP2009266892A (en) 2008-04-22 2008-04-22 Method for manufacturing compound semiconductor crystalline substrate

Country Status (1)

Country Link
JP (1) JP2009266892A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049161A (en) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk Method of cutting workpiece
WO2013058222A1 (en) * 2011-10-18 2013-04-25 富士電機株式会社 Solid-phase bonded wafer support substrate detachment method and semiconductor device fabrication method
WO2013061788A1 (en) * 2011-10-24 2013-05-02 住友電気工業株式会社 Method for manufacturing silicon carbide substrate, and silicon carbide substrate
JP2016111149A (en) * 2014-12-04 2016-06-20 株式会社ディスコ Generation method of wafer
JP2016111150A (en) * 2014-12-04 2016-06-20 株式会社ディスコ Generation method of wafer
JP2016111148A (en) * 2014-12-04 2016-06-20 株式会社ディスコ Generation method of wafer
JP2016127186A (en) * 2015-01-06 2016-07-11 株式会社ディスコ Production method of wafer
KR20160098054A (en) * 2015-02-09 2016-08-18 가부시기가이샤 디스코 Wafer producing method
JP2018500262A (en) * 2014-11-07 2018-01-11 エレメント シックス テクノロジーズ リミテッド Method of making a plate of superhard material using a collimated cutting beam

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049161A (en) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk Method of cutting workpiece
WO2013058222A1 (en) * 2011-10-18 2013-04-25 富士電機株式会社 Solid-phase bonded wafer support substrate detachment method and semiconductor device fabrication method
CN103890908A (en) * 2011-10-18 2014-06-25 富士电机株式会社 Solid-phase bonded wafer support substrate detachment method and semiconductor device fabrication method
JPWO2013058222A1 (en) * 2011-10-18 2015-04-02 富士電機株式会社 Method for peeling support substrate of solid-phase bonded wafer and method for manufacturing semiconductor device
US9147599B2 (en) 2011-10-18 2015-09-29 Fuji Electric Co., Ltd. Wafer support system and method for separating support substrate from solid-phase bonded wafer and method for manufacturing semiconductor device
WO2013061788A1 (en) * 2011-10-24 2013-05-02 住友電気工業株式会社 Method for manufacturing silicon carbide substrate, and silicon carbide substrate
JP2018500262A (en) * 2014-11-07 2018-01-11 エレメント シックス テクノロジーズ リミテッド Method of making a plate of superhard material using a collimated cutting beam
US10240254B2 (en) 2014-11-07 2019-03-26 Element Six Technologies Limited Method of fabricating plates of super-hard material using a collimated cutting beam
JP2016111149A (en) * 2014-12-04 2016-06-20 株式会社ディスコ Generation method of wafer
JP2016111148A (en) * 2014-12-04 2016-06-20 株式会社ディスコ Generation method of wafer
JP2016111150A (en) * 2014-12-04 2016-06-20 株式会社ディスコ Generation method of wafer
JP2016127186A (en) * 2015-01-06 2016-07-11 株式会社ディスコ Production method of wafer
KR20160098054A (en) * 2015-02-09 2016-08-18 가부시기가이샤 디스코 Wafer producing method
KR102361278B1 (en) 2015-02-09 2022-02-10 가부시기가이샤 디스코 Wafer producing method

Similar Documents

Publication Publication Date Title
JP2009266892A (en) Method for manufacturing compound semiconductor crystalline substrate
CN106057737B (en) Method for separating thin plate
EP3246937B1 (en) Method for manufacturing semiconductor diamond substrate and semiconductor diamond substrate
JP7320130B2 (en) Method for processing silicon carbide wafers with relaxed positive curvature
US8815705B2 (en) Laser machining method and method for manufacturing compound semiconductor light-emitting element
JP2009061462A (en) Method for manufacturing substrate, and substrate
CN105899325B (en) By means of the combined chip autofrettage of laser treatment and temperature-induced stress
CN108779579B (en) Nitride crystal substrate
WO2013176089A1 (en) Cutting method for item to be processed, item to be processed and semiconductor element
TW200932461A (en) Working object cutting method
JP2015224143A (en) Manufacturing method of group iii nitride substrate
JP2019126838A (en) Cutting method and chip
KR100558436B1 (en) Method of producing a gallium nitride singlecrystal substrate
JP2009081285A (en) Substrate and manufacturing method therefor
JP6130039B2 (en) Method for manufacturing group III nitride substrate
JP5569167B2 (en) Method for producing group III nitride single crystal substrate
TW202308778A (en) Method of manufacturing diamond substrate
JP2015202986A (en) Nitride semiconductor substrate, substrate lot and method for forming orientation flat
CN115555744A (en) Method for manufacturing diamond substrate
JP2011159827A (en) Method for forming reformed area of transparent substrate
EP4269669A1 (en) Method for processing gallium oxide substrate
TW201836750A (en) Slicing apparatus and method for silicon carbide crystal
US11969916B2 (en) Wafer forming method
US20210316476A1 (en) Wafer forming method
JP2017024984A (en) Manufacturing method of group iii nitride substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705