JP2009266675A - Air secondary battery - Google Patents
Air secondary battery Download PDFInfo
- Publication number
- JP2009266675A JP2009266675A JP2008115810A JP2008115810A JP2009266675A JP 2009266675 A JP2009266675 A JP 2009266675A JP 2008115810 A JP2008115810 A JP 2008115810A JP 2008115810 A JP2008115810 A JP 2008115810A JP 2009266675 A JP2009266675 A JP 2009266675A
- Authority
- JP
- Japan
- Prior art keywords
- gallium
- metal
- secondary battery
- negative electrode
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Hybrid Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、例えば自動車や携帯電話等の携帯機器の電源に適した空気二次電池に関する。 The present invention relates to an air secondary battery suitable for a power source of a portable device such as an automobile or a mobile phone.
近年、地球環境に配慮する観点から市場に電気自動車やハイブリッド自動車が登場するようになってきた。また、高機能な携帯電話等の携帯機器が普及するようになってきた。このような自動車や携帯機器には、よりエネルギー密度の高い二次電池が必要になる。そこで、正極側に多量の正極活物質を充填する必要のない、正極活物質として空気を用いた空気―亜鉛電池、空気―アルミニウム電池や空気―金属水素化物電池(例えば、特許文献1参照)が注目されるようになってきた。 In recent years, electric vehicles and hybrid vehicles have appeared on the market in consideration of the global environment. In addition, mobile devices such as high-performance mobile phones have become widespread. Such automobiles and portable devices require secondary batteries with higher energy density. Therefore, there are air-zinc batteries, air-aluminum batteries, and air-metal hydride batteries (for example, see Patent Document 1) that use air as the positive electrode active material without the need for filling a large amount of positive electrode active material on the positive electrode side. It has come to be noticed.
しかしながら、上記特許文献1に開示された技術には以下のような問題点が存在する。
However, the technique disclosed in
この二次電池は、両電極間のイオン反応が活発に行なわれるようにするために、電解液として水酸化カリウム(KOH)が使用されている。これは、イオン反応が活発に行なわれる点では、好都合であるが、KOHのようにpHの高い電解液を用いると空気中の二酸化炭素を吸収して、炭酸カリウム(K2CO3)を生成し電解液が劣化するという問題点があった。すなわち、電解液のpHが低下し、両電極間のイオン反応が不活発になり、電圧が低下するという現象が発生してしまう。
本発明の目的は、電解液の劣化がなく、電圧が低下しない空気二次電池を提供することにある。 An object of the present invention is to provide an air secondary battery in which the electrolyte does not deteriorate and the voltage does not decrease.
この目的を達成するために、本発明の請求項1に記載の発明は、
正極と、この正極に対峙して配置された負極と、前記正極と負極の間に配置された電解液とを備え、
前記負極は、
スズとガリウムを含有した第1の金属、銀とガリウムを含有した第2の金属、ガリウムからなる第3の金属、または、ガリウムに鉄、銅、ゲルマニウム、アンチモンからなる群から選ばれた少なくとも1種以上を含有した第4の金属から選択される少なくとも1種のガリウム系金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素とを有する液状合金材を含むことを特徴とする空気二次電池ある。
In order to achieve this object, the invention according to
A positive electrode, a negative electrode disposed opposite to the positive electrode, and an electrolyte solution disposed between the positive electrode and the negative electrode,
The negative electrode is
At least one selected from the group consisting of a first metal containing tin and gallium, a second metal containing silver and gallium, a third metal made of gallium, or gallium with iron, copper, germanium, and antimony Liquid alloy material having at least one gallium metal selected from a fourth metal containing at least a seed and at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium There is an air secondary battery characterized by including.
請求項2に記載の発明は、請求項1に記載の発明において、前記標準電極電位がガリウムより低い金属元素が、亜鉛である。
The invention according to
請求項3に記載の発明は、請求項1に記載の発明において、前記標準電極電位がガリウムより低い金属元素が、アルミニウムであり、前記液状合金材に前記アルミニウムを連続供給可能な構成を備えたものである。 According to a third aspect of the invention, in the first aspect of the invention, the metal element having a lower standard electrode potential than gallium is aluminum, and the liquid alloy material can be continuously supplied with the aluminum. Is.
請求項4に記載の発明は、請求項1〜3に記載の発明において、pHが9以下である。
The invention according to
請求項5に記載の発明は、請求項1〜4に記載の発明において、前記液状合金材および前記電解液を収容する容器を有し、
前記正極は、前記電解液および空気と接触するが、前記液状合金材とは接触しない構成としたものである。
Invention of
The positive electrode is configured to be in contact with the electrolytic solution and air but not in contact with the liquid alloy material.
本発明に係る空気二次電池は、正極と、この正極に対峙して配置された負極と、前記正極と負極の間に配置された電解液とを備え、
前記負極は、
スズとガリウムを含有した第1の金属、銀とガリウムを含有した第2の金属、ガリウムからなる第3の金属、または、ガリウムに鉄、銅、ゲルマニウム、アンチモンからなる群から選ばれた少なくとも1種以上を含有した第4の金属から選択される少なくとも1種のガリウム系金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素とを有する液状合金材を含む構成であるため、電解液の劣化がなく、電圧降下がない。
An air secondary battery according to the present invention includes a positive electrode, a negative electrode disposed opposite to the positive electrode, and an electrolyte solution disposed between the positive electrode and the negative electrode,
The negative electrode is
At least one selected from the group consisting of a first metal containing tin and gallium, a second metal containing silver and gallium, a third metal made of gallium, or gallium with iron, copper, germanium, and antimony Liquid alloy material having at least one gallium metal selected from a fourth metal containing at least a seed and at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium Therefore, there is no deterioration of the electrolyte and no voltage drop.
以下、本発明の実施形態についてさらに詳細に説明する。 Hereinafter, embodiments of the present invention will be described in more detail.
本発明に係る空気二次電池は、正極と、この正極に対峙して配置された負極と、前記正極と負極の間に配置された電解液とを備え、
前記負極は、
スズ(Sn)とガリウム(Ga)を含有した第1の金属、銀(Ag)とガリウムを含有した第2の金属、ガリウムからなる第3の金属、または、ガリウムに鉄(Fe)、銅(Cu)、ゲルマニウム(Ge)、アンチモン(Sb)からなる群から選ばれた少なくとも1種以上を含有した第4の金属から選択される少なくとも1種のガリウム系金属と、
標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素とを有する液状合金材を含むことを特徴とする。
An air secondary battery according to the present invention includes a positive electrode, a negative electrode disposed opposite to the positive electrode, and an electrolyte solution disposed between the positive electrode and the negative electrode,
The negative electrode is
A first metal containing tin (Sn) and gallium (Ga), a second metal containing silver (Ag) and gallium, a third metal made of gallium, or gallium with iron (Fe), copper ( At least one gallium metal selected from a fourth metal containing at least one selected from the group consisting of Cu), germanium (Ge), and antimony (Sb);
A liquid alloy material having at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium is included.
以上のような構成であるため、本発明は、以下のような作用効果を奏する。
1)電解液の劣化がない。
2)負極は全体として粘性の低い状態を呈し、かつ、負極を構成する標準電極電位がガリウムより低い金属元素が放電時にイオンとして電解液内にスムーズに拡散することができるため、電圧降下がない。
Since it is the above structures, this invention has the following effects.
1) There is no deterioration of the electrolyte.
2) The negative electrode as a whole exhibits a low viscosity state, and a metal element having a standard electrode potential lower than that of gallium can be smoothly diffused into the electrolyte as ions during discharge, so there is no voltage drop. .
以下に、上記構成に至った理由について詳述する。 Hereinafter, the reason for the above configuration will be described in detail.
本発明者は、如何にしたら空気二次電池でありながら、電解液の劣化もなく、電圧降下を避けることが可能なのか、鋭意研究を行った。その結果、空気二次電池において、当業者においても想到し得ない、スズとガリウムを含有した第1の金属、銀とガリウムを含有した第2の金属、ガリウムからなる第3の金属、または、ガリウムに鉄、銅、ゲルマニウム、アンチモンからなる群から選ばれた少なくとも1種以上を含有した第4の金属から選択される少なくとも1種のガリウム系金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素とを有する液状合金材を含む負極を用いたことで、以下のような知見を得た。
1)上記液状合金材を含む負極を用いると、放電時に標準電極電位がガリウムより低い金属元素が負極内からイオンとして電解液内にスムーズに拡散するため、KOHのようなpHの高い電解液を使用する必要がなくなる。したがって、空気中の二酸化炭素を吸収して、沈殿物を生成し電解液が劣化するようなこともなくなった。
2)また、上述のように負極内から上記イオンとして電解液内にスムーズに拡散し、かつ、電解液の劣化も起こらないことより、電圧降下も発生しなかった。
The present inventor has conducted intensive research on how to avoid a voltage drop without deterioration of the electrolyte solution even though it is an air secondary battery. As a result, in the air secondary battery, a first metal containing tin and gallium, a second metal containing silver and gallium, a third metal made of gallium, which cannot be conceived by those skilled in the art, or From at least one gallium metal selected from a fourth metal containing at least one selected from the group consisting of iron, copper, germanium, and antimony in gallium, and a metal element having a standard electrode potential lower than that of gallium. The following knowledge was acquired by using the negative electrode containing the liquid alloy material which has at least 1 sort (s) of metal element chosen from the group which consists of.
1) When a negative electrode containing the above liquid alloy material is used, a metal element having a lower standard electrode potential than gallium diffuses smoothly from the negative electrode as ions into the electrolyte during discharge. No need to use. Therefore, the carbon dioxide in the air is absorbed, so that a precipitate is generated and the electrolytic solution is not deteriorated.
2) Further, as described above, the ions were smoothly diffused from the negative electrode as the ions into the electrolytic solution, and the electrolytic solution was not deteriorated, so that no voltage drop occurred.
上記負極を構成する液状合金材として、上記第1の金属は、スズがW%(%は、質量%の意味、以下同じ)、ガリウムがX%であり、上記第2の金属は、銀がY%、ガリウムがZ%であり、上記第1または第2の金属は粘性の低い状態を呈する下記式(1)〜(6)を満足する。また、上記第1または第2の金属に上記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量を添加しても、粘性の低い状態を呈し、かつ、放電時にイオンとして負極内から電解液内にスムーズに溶出し、拡散することにより電圧降下抑制が可能な点から、上記金属元素の合計量は上記第1または第2の金属基準で90%以下(ただし、0%を含まない)であることが好ましい。上記金属元素の合計量として、より好ましくは、0.1%以上90%以下である。
W≦12.5 … (1)
87.5≦X≦100 … (2)
X=100−W … (3)
0.1<Y≦50 … (4)
50 ≦Z<100 … (5)
Z=100−Y … (6)
As the liquid alloy material constituting the negative electrode, the first metal is W% tin (% means mass%, the same applies hereinafter), X% gallium, and the second metal is silver. Y% and gallium are Z%, and the first or second metal satisfies the following formulas (1) to (6) exhibiting a low viscosity state. In addition, even when a total amount of at least one metal element selected from the group consisting of metal elements whose standard electrode potential is lower than that of gallium is added to the first or second metal, it exhibits a low viscosity state, In addition, the total amount of the metal elements is 90% on the basis of the first or second metal from the viewpoint that the voltage drop can be suppressed by smoothly eluting and diffusing as ions during the discharge from the negative electrode into the electrolyte. The following (however, not including 0%) is preferable. The total amount of the metal elements is more preferably 0.1% or more and 90% or less.
W ≦ 12.5 (1)
87.5 ≦ X ≦ 100 (2)
X = 100−W (3)
0.1 <Y ≦ 50 (4)
50 ≦ Z <100 (5)
Z = 100−Y (6)
また、上記第3の金属として、実質的にガリウムのみからなる金属(その他は不可避不純物)を用いても、上記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量がガリウム基準で90%以下(ただし、0%を含まない)の条件さえ満足するば、上述同様の作用効果を奏する。上記金属元素の合計量として、より好ましくは、0.1%以上90%以下である。 Further, at least one metal selected from the group consisting of metal elements whose standard electrode potential is lower than that of gallium is used even when a metal consisting essentially of gallium (the others are inevitable impurities) is used as the third metal. As long as the total amount of elements satisfies the condition of 90% or less (excluding 0%) on the basis of gallium, the same effects as described above can be obtained. The total amount of the metal elements is more preferably 0.1% or more and 90% or less.
また、上記第4の金属に関しても、上述の観点より、ガリウムに鉄、銅、ゲルマニウム、アンチモンからなる群から選ばれた少なくとも1種以上を0.1〜1%含有したものであり、前記標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素の合計量は、前記第4の金属基準で90%以下(ただし、0%を含まない)であることが好ましい。上記金属元素の合計量として、より好ましくは、0.1%以上90%以下である。 The fourth metal also contains 0.1 to 1% of at least one selected from the group consisting of iron, copper, germanium, and antimony in gallium from the above viewpoint. The total amount of at least one metal element selected from the group consisting of metal elements having an electrode potential lower than that of gallium is preferably 90% or less (excluding 0%) based on the fourth metal. . The total amount of the metal elements is more preferably 0.1% or more and 90% or less.
また、上記標準電極電位がGaより低い金属元素からなる群から選ばれた少なくとも1種の金属元素としては、亜鉛(Zn)、アルミニウム(Al)、マグネシウム(Mg)、ケイ素(Si)、チタン(Ti)、ランタン(La)、セリウム(Ce)が利用可能である。これらの金属元素は、放電時に負極内から電解液内にイオンとして極めてスムーズに拡散する。また、この金属元素としては、亜鉛が好ましい。また、この金属元素として、アルミニウムを単体もしくは混合して利用する場合には、液状合金材を構成するガリウム系金属内にアルミニウムを連続供給可能な構成を備えておきさえすれば、極めてスムーズに充電を行なうことが可能である。 In addition, as the at least one metal element selected from the group consisting of metal elements whose standard electrode potential is lower than Ga, zinc (Zn), aluminum (Al), magnesium (Mg), silicon (Si), titanium ( Ti), lanthanum (La), and cerium (Ce) can be used. These metal elements diffuse very smoothly as ions from the negative electrode into the electrolyte during discharge. Moreover, as this metal element, zinc is preferable. In addition, when aluminum is used alone or in combination as this metal element, it can be charged very smoothly as long as it has a structure capable of continuously supplying aluminum into the gallium metal constituting the liquid alloy material. Can be performed.
また、電解液としては、例えばpH5程度の硫酸亜鉛(ZnSO4・7H2O)水溶液やpH4程度の塩化アルミニウム(AlCl3・6H2O)水溶液のような酸性の電解液を用いることができる。具体的には、標準電極電位がガリウムより低い金属元素として用いる元素と同元素の陽イオンを含む水溶液を用いることができる。また、電解液としては、酸性の電解液に限定されるものではなく、水のようにほぼ中性近傍のものを使用することも可能である。さらに、電解液としては、強アルカリ性でないpHが9以下のものを使用することも可能である。なぜならば、上記負極を構成する液状合金材を用いたならば、電解液として、pHが9以下のものを使用したとしても、上述したように放電時に標準電極電位がガリウムより低い金属元素が負極内からイオンとして電解液内にスムーズに拡散するためである。よって、電解液の劣化がなく、電圧降下を抑制できる。すなわち、電解液としては、pHが9以下で、かつ、負極を構成する上記液状合金材に合わせて所定なものを適宜選定すればよい。 As the electrolytic solution, for example, an acidic electrolytic solution such as a zinc sulfate (ZnSO 4 .7H 2 O) aqueous solution having a pH of about 5 or an aluminum chloride (AlCl 3 .6H 2 O) aqueous solution having a pH of about 4 can be used. Specifically, an aqueous solution containing a cation of the same element as an element used as a metal element whose standard electrode potential is lower than that of gallium can be used. Further, the electrolytic solution is not limited to an acidic electrolytic solution, and it is also possible to use an approximately neutral one such as water. Furthermore, it is also possible to use a non-strongly alkaline pH of 9 or less as the electrolytic solution. This is because if the liquid alloy material constituting the negative electrode is used, even if an electrolyte having a pH of 9 or less is used, the metal element whose standard electrode potential is lower than that of gallium during discharge is negative as described above. This is because ions diffuse smoothly from the inside into the electrolyte. Therefore, there is no deterioration of the electrolyte and voltage drop can be suppressed. That is, as the electrolytic solution, a predetermined one may be appropriately selected according to the liquid alloy material having a pH of 9 or less and constituting the negative electrode.
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.
本発明の作用効果を確証するため、以下のラボ試験を実施した。 In order to confirm the effects of the present invention, the following laboratory tests were conducted.
(実施例1)
図1は本発明の実施例1の空気二次電池の実験構成を説明するための模式図である。図1において、1は容器、2は容器1の下層側に収容された下記表1に示す負極、3は負極2の上に注がれ容器1に収容された電解液、4は正極としての白金(Pt)からなる空気拡散電極、5は集電導線である。
Example 1
FIG. 1 is a schematic diagram for explaining an experimental configuration of an air secondary battery according to Example 1 of the present invention. In FIG. 1, 1 is a container, 2 is a negative electrode shown in the following Table 1 accommodated in the lower layer side of the
下記表1の試験No.1、2(発明例)に示す組成からなる負極2は、液状合金材であり、試験No.3(比較例)に示すZnからなる負極2は、固体である。また、試験No.1、2(発明例)、3(比較例)ともに電解液3の薬剤は、下記表1に示すようにZnSO4・7H2Oである。また、空気拡散電極(正極)4は電解液3の中に浸漬され、電解液3と接触すると同時に空気とも接触するが、負極2とは接触しないように構成されている。また、負極2と集電導線5とは、電気的に接続されている。この集電導線5は、銅等の線に塩化ビニル等の絶縁樹脂が被覆された構成である。なお、集電導線5において、電解液3との接触部分には必ず絶縁被覆が必要であり、上記負極2を構成する液状合金材や固体のZnとの接触部分は、絶縁被覆がなく、銅等の線がむき出しになっている。また、正極4では、放電時に空気のバブリングがある。
Test No. in Table 1 below. 1 and 2 (invention examples), the
上記のように構成された試験No.1、2(発明例)と試験No.3(比較例)をそれぞれ2.5Vで5時間充電した。充電後の試験No.1〜3について、電圧を計測した結果、それぞれ2.3V、1.7V、1Vであった。その後、放電電流を計測した結果、それぞれ4、5、0.5(mA/cm2)であり、試験No.1、2に関しては、1.5V以上の電圧が示されたが、試験No.3に関しては、1Vの電圧になった。 Test No. configured as described above. 1, 2 (invention example) and test no. 3 (comparative examples) were each charged at 2.5 V for 5 hours. Test No. after charging As a result of measuring the voltage for 1 to 3, they were 2.3 V, 1.7 V, and 1 V, respectively. Then, as a result of measuring the discharge current, it was 4, 5, and 0.5 (mA / cm 2 ), respectively. Regarding 1 and 2, a voltage of 1.5 V or more was shown. With respect to 3, the voltage was 1V.
また、上記放電電流の計測後に電解液を観察した結果、試験No.1〜3のいずれとも劣化は、認められなかった。 Further, as a result of observing the electrolytic solution after measuring the discharge current, the test No. No deterioration was observed in any of 1-3.
また、上記充電後の試験No.1〜3の負極側を観察した結果、試験No.3では、試験No.1、2では認められないデンドライトの生成が確認された。試験No.3は、上述の電圧、放電電流特性のみならず、前記デンドライトの生成の点からも適当でない。 In addition, the test No. 1 after the charging was performed. As a result of observing the negative electrode side of 1-3, test no. 3, test no. The formation of dendrite, which is not recognized in 1 and 2, was confirmed. Test No. 3 is not suitable not only from the above-mentioned voltage and discharge current characteristics but also from the viewpoint of the generation of the dendrite.
本実施例においては、ガリウム系金属として、第1の金属としてのSn−Ga合金(試験No.2)と第3の金属としてのGa金属(試験No.1)のみについて説明したが、必ずしもこれに特定されるものではなく、上述したような条件を満足する銀とガリウムを含有した第2の金属、または、ガリウムに鉄、銅、ゲルマニウム、アンチモンからなる群から選ばれた少なくとも1種以上を含有した第4の金属や第1、第2、第3、第4の金属の組合せも使用可能である。 In the present embodiment, only the Sn—Ga alloy (test No. 2) as the first metal and the Ga metal (test No. 1) as the third metal have been described as the gallium metal. A second metal containing silver and gallium that satisfies the above-mentioned conditions, or at least one selected from the group consisting of iron, copper, germanium, and antimony in gallium. The 4th metal contained and the combination of the 1st, 2nd, 3rd, 4th metal can also be used.
また、上記負極2を構成する標準電極電位がGaより低い金属元素の量に関しても、必ずしも上記表1に示す値に特定されるものではなく、上述した所定の条件を満足するものであればよい。
Further, the amount of the metal element whose standard electrode potential constituting the
また、本実施例においては、電解液として、薬剤にZnSO4・7H2Oを用いた場合についてのみ説明したが、必ずしもこれに特定されるものではなく、上述したようにpHが9以下で、かつ、負極を構成する上記液状合金材に合わせて所定なものを適宜選定すればよい。 Further, in this example, only the case where ZnSO 4 · 7H 2 O was used as a chemical agent as the electrolyte was described, but this is not necessarily specified, and as described above, the pH is 9 or less, And what is necessary is just to select a predetermined | prescribed thing suitably according to the said liquid alloy material which comprises a negative electrode.
また、本実施例においては、空気拡散電極(正極)4に白金(Pt)を用いる場合についてのみ説明したが、必ずしもこれに限定されるものではなく、例えば白金めっきしたチタンやカーボン等を用いることも可能である。 In this embodiment, only the case where platinum (Pt) is used for the air diffusion electrode (positive electrode) 4 has been described. However, the present invention is not necessarily limited to this. For example, platinum-plated titanium or carbon is used. Is also possible.
(実施例2)
図2は本発明の実施例2の空気二次電池の実験構成を説明するための模式図である。本実施例において、実施例1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分のみ詳述する。図2において、6はアルミニウムを負極2を構成する液状合金材内に連続供給可能な補充機構である。
(Example 2)
FIG. 2 is a schematic diagram for explaining an experimental configuration of the air secondary battery of Example 2 of the present invention. In the present embodiment, the same constituent elements as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and only different portions are described in detail. In FIG. 2, 6 is a replenishment mechanism capable of continuously supplying aluminum into the liquid alloy material constituting the
また、本実施例において、下記表2の試験No.4(発明例)に示す組成からなる負極2は、液状合金材であり、試験No.5(比較例)に示すAlからなる負極2は、固体である。また、試験No.4(発明例)、5(比較例)ともに電解液3の薬剤は、下記表2に示すようにAlCl3・6H2Oである。また、試験No.4(発明例)においては、下記表2に示すように負極2を構成する液状合金材中に標準電極電位がGaより低い金属元素として亜鉛(Zn)以外にアルミニウム(Al)も含有するため、補充機構6によりアルミニウムを連続供給可能にしてある。これにより、極めてスムーズに充電を行なうことが可能である。
In this example, the test Nos. The
上記のように構成された試験No.4(発明例)と試験No.5(比較例)について、電圧を計測した結果、それぞれ1.5V、0.8Vであった。その後、放電電流を計測した結果、それぞれ10、0.1(mA/cm2)であり、試験No.4に関しては、1.5V以上の電圧が得られたが、試験No.5に関しては、1V以下の電圧しかえられなかった。 Test No. configured as described above. 4 (invention example) and test no. As a result of measuring the voltage for 5 (Comparative Example), they were 1.5 V and 0.8 V, respectively. Then, as a result of measuring the discharge current, it was 10 and 0.1 (mA / cm 2 ), respectively. For No. 4, a voltage of 1.5 V or higher was obtained. With respect to 5, only a voltage of 1 V or less was obtained.
また、上記放電電流の計測後に電解液を観察した結果、試験No.4、5のいずれとも劣化は、認められなかった。 Further, as a result of observing the electrolytic solution after measuring the discharge current, the test No. No deterioration was observed in any of 4 and 5.
試験No.5は、電圧、放電電流特性自体に問題があり、適当でない。 Test No. No. 5 has a problem in the voltage and discharge current characteristics itself and is not appropriate.
本実施例においては、ガリウム系金属として、第3の金属としてのGa金属(試験No.4)のみについて説明したが、必ずしもこれに特定されるものではなく、実施例1の場合と同様に、上述したさまざまものを使用可能である。 In the present embodiment, only the Ga metal (test No. 4) as the third metal has been described as the gallium-based metal, but it is not necessarily limited to this, as in the case of the first embodiment, The various things mentioned above can be used.
また、本実施例においては、上記標準電極電位がGaより低い金属元素として、Alを主体としたZnとの混合物のみについて説明したが、必ずしもこれに特定されるものではなく、大きな電圧が得られるMgとの組合せも使用可能である。また、上記金属元素の合計量に関しても、必ずしもこれに特定されるものではなく、上述した所定の条件を満足するものであればよい。 In the present embodiment, only a mixture of Zn mainly composed of Al as the metal element whose standard electrode potential is lower than Ga has been described. However, the present invention is not necessarily limited to this, and a large voltage can be obtained. Combinations with Mg can also be used. Further, the total amount of the metal elements is not necessarily specified as long as it satisfies the predetermined condition described above.
また、本実施例においては、電解液として、薬剤にAlCl3・6H2Oを用いた場合についてのみ説明したが、必ずしもこれに特定されるものではなく、上述したようにpHが9以下で、かつ、負極を構成する上記液状組成物に合わせて所定なものを適宜選定すればよい。 Further, in this example, only the case where AlCl 3 · 6H 2 O was used as the chemical agent as the electrolytic solution was described, but this is not necessarily specified, and as described above, the pH is 9 or less, And what is necessary is just to select a predetermined thing suitably according to the said liquid composition which comprises a negative electrode.
1 容器
2 負極
3 電解液
4 空気拡散電極(正極)
5 集電導線
6 補充機構
DESCRIPTION OF
5
Claims (5)
前記負極は、
スズとガリウムを含有した第1の金属、銀とガリウムを含有した第2の金属、ガリウムからなる第3の金属、または、ガリウムに鉄、銅、ゲルマニウム、アンチモンからなる群から選ばれた少なくとも1種以上を含有した第4の金属から選択される少なくとも1種のガリウム系金属と、標準電極電位がガリウムより低い金属元素からなる群から選ばれた少なくとも1種の金属元素とを有する液状合金材を含むことを特徴とする空気二次電池。 A positive electrode, a negative electrode disposed opposite the positive electrode, and an electrolyte solution disposed between the positive electrode and the negative electrode,
The negative electrode is
At least one selected from the group consisting of a first metal containing tin and gallium, a second metal containing silver and gallium, a third metal made of gallium, or gallium with iron, copper, germanium, and antimony Liquid alloy material having at least one gallium metal selected from a fourth metal containing at least a seed and at least one metal element selected from the group consisting of metal elements having a standard electrode potential lower than that of gallium An air secondary battery comprising:
前記正極は、前記電解液および空気と接触するが、前記液状合金材とは接触しない請求項1〜4に記載の空気二次電池。 A container containing the liquid alloy material and the electrolytic solution;
The air secondary battery according to claim 1, wherein the positive electrode is in contact with the electrolytic solution and air but is not in contact with the liquid alloy material.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008115810A JP5342165B2 (en) | 2008-04-25 | 2008-04-25 | Air secondary battery |
PCT/JP2008/068494 WO2009048146A1 (en) | 2007-10-10 | 2008-10-10 | Negative electrode active material for rechargeable battery, rechargeble battery using the negative electrode active material, and air rechargeable battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008115810A JP5342165B2 (en) | 2008-04-25 | 2008-04-25 | Air secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009266675A true JP2009266675A (en) | 2009-11-12 |
JP5342165B2 JP5342165B2 (en) | 2013-11-13 |
Family
ID=41392236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008115810A Expired - Fee Related JP5342165B2 (en) | 2007-10-10 | 2008-04-25 | Air secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5342165B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013168536A1 (en) * | 2012-05-09 | 2013-11-14 | ソニー株式会社 | Direct aluminum fuel cell and electronic device |
KR101338142B1 (en) * | 2010-04-27 | 2013-12-06 | 한양대학교 산학협력단 | Lithium air battery |
US8927143B2 (en) * | 2011-12-06 | 2015-01-06 | John E. Stauffer | Aluminum storage battery |
US9509017B2 (en) | 2014-07-22 | 2016-11-29 | John E. Stauffer | Lithium storage battery |
US9666898B2 (en) | 2014-07-22 | 2017-05-30 | John E. Stauffer | Storage battery using a uniform mix of conductive and nonconductive granules in a lithium bromide electrolyte |
US9680193B2 (en) | 2011-12-14 | 2017-06-13 | Eos Energy Storage, Llc | Electrically rechargeable, metal anode cell and battery systems and methods |
US9923242B2 (en) | 2014-01-23 | 2018-03-20 | John E. Stauffer | Lithium bromide battery |
CN113972371A (en) * | 2020-07-23 | 2022-01-25 | 比亚迪股份有限公司 | Negative electrode material, preparation method thereof, negative electrode and all-solid-state lithium battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01163977A (en) * | 1987-09-25 | 1989-06-28 | Alcan Internatl Ltd | Metal/air cell |
JPH07192731A (en) * | 1993-11-19 | 1995-07-28 | Dowa Mining Co Ltd | Negative active material using ga as main component and secondary battery using this active material |
JPH0992277A (en) * | 1995-09-21 | 1997-04-04 | Dowa Mining Co Ltd | Negative active material for secondary battery, electrode and secondary battery using it |
-
2008
- 2008-04-25 JP JP2008115810A patent/JP5342165B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01163977A (en) * | 1987-09-25 | 1989-06-28 | Alcan Internatl Ltd | Metal/air cell |
JPH07192731A (en) * | 1993-11-19 | 1995-07-28 | Dowa Mining Co Ltd | Negative active material using ga as main component and secondary battery using this active material |
JPH0992277A (en) * | 1995-09-21 | 1997-04-04 | Dowa Mining Co Ltd | Negative active material for secondary battery, electrode and secondary battery using it |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101338142B1 (en) * | 2010-04-27 | 2013-12-06 | 한양대학교 산학협력단 | Lithium air battery |
US8927143B2 (en) * | 2011-12-06 | 2015-01-06 | John E. Stauffer | Aluminum storage battery |
US9680193B2 (en) | 2011-12-14 | 2017-06-13 | Eos Energy Storage, Llc | Electrically rechargeable, metal anode cell and battery systems and methods |
EP2792004B1 (en) * | 2011-12-14 | 2017-11-08 | Eos Energy Storage, LLC | Electrically rechargeable, metal anode cell and battery systems and methods |
WO2013168536A1 (en) * | 2012-05-09 | 2013-11-14 | ソニー株式会社 | Direct aluminum fuel cell and electronic device |
US9923242B2 (en) | 2014-01-23 | 2018-03-20 | John E. Stauffer | Lithium bromide battery |
US9509017B2 (en) | 2014-07-22 | 2016-11-29 | John E. Stauffer | Lithium storage battery |
US9666898B2 (en) | 2014-07-22 | 2017-05-30 | John E. Stauffer | Storage battery using a uniform mix of conductive and nonconductive granules in a lithium bromide electrolyte |
CN113972371A (en) * | 2020-07-23 | 2022-01-25 | 比亚迪股份有限公司 | Negative electrode material, preparation method thereof, negative electrode and all-solid-state lithium battery |
CN113972371B (en) * | 2020-07-23 | 2023-03-14 | 比亚迪股份有限公司 | Negative electrode material, preparation method thereof, negative electrode and all-solid-state lithium battery |
Also Published As
Publication number | Publication date |
---|---|
JP5342165B2 (en) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5342165B2 (en) | Air secondary battery | |
JP5676802B2 (en) | Negative electrode material for magnesium fuel cell and magnesium fuel cell | |
JPH08507637A (en) | Aluminum and sulfur electrochemical cells and cells | |
US20160028133A1 (en) | Lithium-air battery for electric vehicles and other applications using molten nitrate electrolytes | |
US9557289B2 (en) | Lead-free electrochemical galvanic oxygen sensor | |
Pino et al. | The electrochemical characteristics of commercial aluminium alloy electrodes for Al/air batteries | |
JP6461766B2 (en) | Metal-air electrochemical cell, lithium-air battery, and vehicle | |
US8795868B1 (en) | Rechargeable lithium-air and other lithium-based batteries using molten nitrates | |
CN103109412B (en) | Lead battery and be equipped with the idling stop vehicle of this lead battery | |
WO1996014667A1 (en) | Sulfur/aluminum electrochemical batteries | |
EP3229309A1 (en) | Rechargeable aluminum-air electrochemical cell | |
US8927143B2 (en) | Aluminum storage battery | |
JP2015198059A (en) | Flow type storage battery | |
JP2015191782A (en) | Electrolyte for zinc secondary batteries and zinc secondary battery | |
JP5329066B2 (en) | Negative electrode active material for secondary battery and secondary battery using the same | |
US9029027B2 (en) | Degenerate doping of metallic anodes | |
JP2010015964A (en) | Negative electrode active material for secondary battery, and secondary battery using this | |
KR20150063106A (en) | Battery charge transfer mechanisms | |
Nguyen | Lead acid batteries in extreme conditions: accelerated charge, maintaining the charge with imposed low current, polarity inversions introducing non-conventional charge methods | |
JP6813016B2 (en) | Alkaline batteries and electrolytes for alkaline batteries | |
JP6874806B2 (en) | Aqueous solution-based secondary battery and aqueous solution-based secondary battery system | |
JP2012155910A (en) | Underwater traveling body | |
KR100685907B1 (en) | The method of an electrode use the inorganic | |
Egan | Development and characterisation of a lightweight alkaline aluminium-air cell | |
JP2019129044A (en) | Primary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130409 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5342165 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |