JP2009265801A - Autonomous traveling device and program for making the same device function - Google Patents

Autonomous traveling device and program for making the same device function Download PDF

Info

Publication number
JP2009265801A
JP2009265801A JP2008112338A JP2008112338A JP2009265801A JP 2009265801 A JP2009265801 A JP 2009265801A JP 2008112338 A JP2008112338 A JP 2008112338A JP 2008112338 A JP2008112338 A JP 2008112338A JP 2009265801 A JP2009265801 A JP 2009265801A
Authority
JP
Japan
Prior art keywords
main body
wall
obstacle
distance
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008112338A
Other languages
Japanese (ja)
Inventor
Osamu Eguchi
修 江口
Tadashi Nakatani
直史 中谷
Izumi Yamaura
泉 山浦
Kazuhiro Kuroyama
和宏 黒山
Kazunori Kurimoto
和典 栗本
Masakazu Onda
雅一 恩田
Hiroaki Kurihara
裕明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008112338A priority Critical patent/JP2009265801A/en
Publication of JP2009265801A publication Critical patent/JP2009265801A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an autonomous traveling device for preventing the generation of any non-passing region where any body does not pass by improving the precision of the moving direction to move the body. <P>SOLUTION: The autonomous traveling device includes: an obstacle detection means 2 installed on the front face and side face of a body 1 for detecting the presence/absence of an obstacle and its distance to an obstacle; a direction detection means 3 for detecting the moving direction of the body 1; a traveling means 7 for making the body 1 move and travel; and a control means 5 for controlling the traveling means 7 based on the output signal of each detection means. In correcting the moving direction of the body by correcting the output of the direction detection means 3, the control means 5 determines whether to execute direction deviation correction processing according to an angle made with a wall face according to the establishment of the conditions of the earlier one of the elapsed time of an operation and the number of times of direction conversion. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、障害物を検知して回避しながら走行する自律走行装置およびこの装置を機能させるためのプログラムに関するものである。   The present invention relates to an autonomous traveling device that travels while detecting and avoiding an obstacle, and a program for causing the device to function.

従来、この種の自律走行装置は、制御手段と、本体を移動走行させる走行手段と、本体の走行方向を検出する走行方向検知手段と、壁や障害物を検知するための障害物検知手段と、工程終了判定手段と、次工程開始位置判定手段とを備え、前記走行方向検知手段の出力に従って本体を第1の方向に走行させ、第1の方向に走行中前方に前記障害物検知手段が壁または障害物を検知すると本体を反転させ、第1の方向の反転方向である第2の方向に本体を走行させ、第2の方向に走行中前方に壁または障害物を検知すると再び反転させ、第2の方向の反転方向である第1の方向に走行させるというように、第1の方向と第2の方向とを本体が繰り返し往復走行しながら、所定区域を第1、第2の方向と略直角の方向に進行させる動作を行う様にしたものがある(例えば、特許文献1参照)。
特開2003−241832号公報
Conventionally, this type of autonomous traveling device includes control means, traveling means for moving the main body, traveling direction detecting means for detecting the traveling direction of the main body, and obstacle detecting means for detecting walls and obstacles. A process end determination means and a next process start position determination means, wherein the main body travels in a first direction according to the output of the travel direction detection means, and the obstacle detection means is in front of the vehicle while traveling in the first direction. When a wall or obstacle is detected, the main body is reversed, the main body is moved in the second direction which is the reverse direction of the first direction, and when a wall or obstacle is detected in front of the second direction, the main body is reversed. The main body repeatedly travels back and forth between the first direction and the second direction, such as traveling in the first direction which is the reverse direction of the second direction, and the predetermined area is moved in the first and second directions. So that it moves in a direction substantially perpendicular to There is a (for example, see Patent Document 1).
JP 2003-241832 A

しかしながら、上述した従来の技術は、本体の走行方向を検出する走行方向検知手段にたとえばジャイロセンサ等を用いることが多い。このジャイロセンサは、出力信号が起動時に一時的に不安定になることから、一般に入力角度に対する出力信号の調整が必要である。しかし、ジャイロセンサの入力角度に対する出力信号の特性を調整しても、時間経過と共に出力信号が変動(角度ドリフト)したり、温度特性により出力信号が変動したりするという問題がある。この出力信号のズレにより、動作開始時に壁を基準に合わせた本体1の移動方向がずれ、その結果、移動領域内の壁際で未通過領域が発生し、移動領域内を隈無く移動することが困難となるという課題を有していた。   However, the conventional techniques described above often use, for example, a gyro sensor or the like as the traveling direction detection means for detecting the traveling direction of the main body. In this gyro sensor, since the output signal becomes unstable temporarily at the time of activation, it is generally necessary to adjust the output signal with respect to the input angle. However, even if the characteristics of the output signal with respect to the input angle of the gyro sensor are adjusted, there is a problem that the output signal fluctuates (angle drift) over time or the output signal fluctuates due to temperature characteristics. Due to the deviation of the output signal, the movement direction of the main body 1 with respect to the wall is shifted at the start of operation, and as a result, a non-passing area is generated near the wall in the movement area, and the movement area can be moved without much. It had the problem of becoming difficult.

本発明は、前記従来の課題を解決するもので、本体が移動する移動精度の低下を防止して、本体が通過しない未通過領域の発生を防ぐ自律走行装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide an autonomous traveling device that prevents the movement accuracy of the main body from moving down and prevents the occurrence of a non-passing area through which the main body does not pass.

前記従来の課題を解決するために本発明の自律走行装置は、本体の前面と側面に設置され障害物の有無または前記障害物までの距離を検知する障害物検知手段と、前記本体の移動方向を検知する方向検知手段と、前記本体を移動走行させる走行手段と、前記各検知手段の出力信号に基づいて前記走行手段を制御する制御手段とを備え、前記制御手段は、前記方向検知手段の出力を補正して本体移動方向の補正を行う際に壁面との角度に応じて方向ズレ補正処理の実行か否かの判断を動作経過時間か方向転換の回数のどちらかの早いほうの条件成立で行う自律走行装置としたものである。これにより、自律走行装置が移動領域を移動中に障害物検知手段で検知した壁を基に、本体1の方向合わせを行うことにより方向検知手段の本体移動方向を補正し、本体が移動する移動精度が低下することを防止して、自律走行装置が通過しない未通過領域が発生することを防ぐことができる。   In order to solve the above-described conventional problems, the autonomous traveling device of the present invention includes an obstacle detection unit that is installed on the front and side surfaces of the main body and detects the presence or absence of an obstacle or the distance to the obstacle, and the moving direction of the main body Direction detecting means, traveling means for moving the main body, and control means for controlling the traveling means based on an output signal of each detecting means, the control means comprising: When correcting the output and correcting the direction of movement of the main unit, whether the direction deviation correction processing is executed according to the angle with the wall surface is satisfied, whichever of the operation elapsed time or the number of direction changes is satisfied This is an autonomous traveling device performed in Accordingly, the main body 1 moves in the direction of the main body 1 by correcting the direction of the main body 1 by adjusting the direction of the main body 1 based on the wall detected by the obstacle detecting means while the autonomous mobile device is moving in the moving area. It can prevent that a precision falls and can prevent the non-passing area | region which an autonomous traveling apparatus does not pass generate | occur | produces.

本発明の自律走行装置およびこの装置を機能させるためのプログラムは、本体が移動領域を移動中に障害物検知手段2で検知した壁に対し本体を平行、又は直角に方向合わせを行い、それにより、本体の方向検知手段3の本体移動方向を補正し、本体が移動する移動
精度が低下することを防止して、自律走行装置が通過しない未通過領域が発生することを防ぐことができる。
The autonomous traveling device of the present invention and the program for causing the device to function are arranged such that the main body is aligned parallel to or perpendicular to the wall detected by the obstacle detection means 2 while the main body is moving in the moving region, thereby The main body moving direction of the main body direction detecting means 3 is corrected, the movement accuracy of the main body moving is prevented from being lowered, and the occurrence of a non-passing area through which the autonomous traveling device does not pass can be prevented.

第1の発明は、本体の前面と側面に設置され障害物の有無または前記障害物までの距離を検知する障害物検知手段と、前記本体の移動方向を検知する方向検知手段と、前記本体を移動走行させる走行手段と、前記各検知手段の出力信号に基づいて前記走行手段を制御する制御手段とを備え、前記制御手段は、前記方向検知手段の出力を補正して本体移動方向の補正を行う際に壁面との角度に応じて方向ズレ補正処理の実行か否かの判断を動作経過時間か方向転換の回数のどちらかの早いほうの条件成立で行う自律走行装置とすることにより、本体が移動不能領域から抜け出ることができ、繰り返し動作で往復移動が進行せず、また終了しないことを改善した自律走行装置とすることができる。   According to a first aspect of the present invention, there is provided obstacle detection means for detecting presence or absence of an obstacle or a distance to the obstacle, direction detection means for detecting a movement direction of the main body, and the main body. Travel means for traveling, and control means for controlling the travel means based on output signals of the detection means. The control means corrects the output of the direction detection means to correct the movement direction of the main body. By making an autonomous traveling device that determines whether or not to perform direction deviation correction processing depending on the angle with the wall surface when the operation elapsed time or the number of direction changes is satisfied, whichever is earlier, the main body Can move out of the immovable region, and the autonomous traveling device can be improved in that the reciprocal movement does not proceed and does not end by repeated operations.

第2の発明は、第1の発明の制御手段が、本体が移動領域を走行中に障害物検知手段で検知した前方の壁面を基に本体移動方向の補正を行う自律走行装置とすることにより、本体が移動領域を移動中に障害物検知手段2で本体前方に検知した壁に対し本体を直角になる様に方向合わせを行い、それにより、本体の方向検知手段3の方向補正を行い、方向検知手段3の出力ズレを解消し、本体1の移動精度の低下及び、未通過領域の発生を防ぐことができる。   In a second aspect of the invention, the control means of the first aspect of the invention is an autonomous traveling device that corrects the main body moving direction based on the front wall surface detected by the obstacle detecting means while the main body is traveling in the moving region. The main body is oriented so that it is perpendicular to the wall detected in front of the main body by the obstacle detection means 2 while the main body is moving in the moving region, thereby correcting the direction of the main body direction detection means 3, It is possible to eliminate the output deviation of the direction detecting means 3 and prevent the movement accuracy of the main body 1 from being lowered and the occurrence of a non-passing area.

第3の発明は、第1または第2の発明の制御手段が、本体移動方向の補正後、本体が直進中に本体側面に検知した壁との距離の変化に基づき、本体移動方向の補正角度を検証する請求項1または2に記載の自律走行装置とすることにより、本体が移動領域を移動中に障害物検知手段2で検知した側面の壁に対し本体を平行に方向合わせを行い、それにより、本体の方向検知手段3の方向補正を行い、方向検知手段3の出力ズレを解消し、本体1の移動精度の低下及び、未通過領域の発生を防ぐことができる。   According to a third aspect of the invention, the control means of the first or second aspect of the invention corrects the main body moving direction and then corrects the main body moving direction correction angle based on the change in the distance from the wall detected on the side surface of the main body while the main body moves straight The autonomous traveling device according to claim 1 or 2, wherein the main body is aligned in parallel with the side wall detected by the obstacle detection means 2 while the main body is moving in the moving area, Thus, it is possible to correct the direction of the direction detection means 3 of the main body, eliminate the output deviation of the direction detection means 3, and prevent the movement accuracy of the main body 1 from being lowered and the occurrence of a non-passing area.

第4の発明は、第1から第4の発明のいずれか1つの制御手段が、本体移動方向の補正実施の可否判定に利用する壁面の角度の判定値を、動作経過時間に応じて変更する自律走行装置とすることにより、方向補正に不適な間違った壁で方向ズレ補正処理を行う事を防ぎ、本体1の移動精度の低下及び、未通過領域の発生を防ぐことができる。   According to a fourth aspect of the present invention, any one of the control means according to the first to fourth aspects of the present invention changes a determination value of the angle of the wall surface used for determining whether or not correction of the main body moving direction can be performed according to the elapsed operation time. By using the autonomous traveling device, it is possible to prevent the direction deviation correction process from being performed on the wrong wall that is inappropriate for the direction correction, and it is possible to prevent the movement accuracy of the main body 1 from being lowered and the occurrence of a non-passing area.

第5の発明は、第1から第4の発明のいずれか1つの制御手段が、本体が直進中に本体側面に検知した壁との距離の変化に基づき、本体移動方向の補正角度を検証後、側面の壁と予め設定された角度範囲内に本体の移動方向がない場合に補正動作をやり直す自律走行装置とすることにより、方向補正に不適な間違った壁で方向ズレ補正処理を行う事を防ぎ、本体1の移動精度の低下及び、未通過領域の発生を防ぐことができる。   According to a fifth aspect, after any one of the control means according to the first to fourth aspects verifies the correction angle in the moving direction of the main body based on a change in the distance from the wall detected on the side surface of the main body while the main body is moving straight ahead. By using an autonomous traveling device that repeats the correction operation when there is no moving direction of the main body within the preset angle range with the side wall, it is possible to perform the direction deviation correction processing with the wrong wall unsuitable for the direction correction. It is possible to prevent the lowering of the movement accuracy of the main body 1 and the occurrence of a non-passing area.

第6の発明は、第1から第5の発明のいずれか1つの制御手段が、本体を時計方向或いは反時計方向に回転させ、障害物検知手段により本体側面に検知した障害物との距離変化を基に本体移動方向の補正を行う自律走行装置とすることにより、方向補正に不適な間違った壁で方向ズレ補正処理を行う事を防ぎ、本体1の移動精度の低下及び、未通過領域の発生を防ぐことができる。   According to a sixth aspect of the present invention, there is provided a distance change from the obstacle detected by the obstacle detection means on the side surface of the main body by the control means of any one of the first to fifth inventions rotating the main body clockwise or counterclockwise. By using the autonomous traveling device that corrects the movement direction of the main body based on the above, it is possible to prevent the direction deviation correction processing from being performed on the wrong wall that is inappropriate for the direction correction, and to reduce the movement accuracy of the main body 1 and the non-passing area. Occurrence can be prevented.

第7の発明は、第1から第6の発明のいずれか1つの制御手段が、本体側面の障害物検知手段で検知する検知距離の連続性を判断して壁面及び壁面の凹凸の判断を行う自律走行装置とすることにより、方向補正に不適な間違った壁で方向ズレ補正処理を行う事を防ぎ、本体1の移動精度の低下及び、未通過領域の発生を防ぐことができる。   In a seventh aspect, the control means according to any one of the first to sixth aspects determines the continuity of the detection distance detected by the obstacle detection means on the side surface of the main body and determines the wall surface and the unevenness of the wall surface. By using the autonomous traveling device, it is possible to prevent the direction deviation correction process from being performed on the wrong wall that is inappropriate for the direction correction, and it is possible to prevent the movement accuracy of the main body 1 from being lowered and the occurrence of a non-passing area.

第8の発明は、特に第1から第7のいずれか1つの発明の自律走行装置の手段の全ても
しくは一部としてコンピュータに機能させるためのプログラムとすることにより、マイコンなどを用いて本発明の自律走行装置の一部あるいは全てを容易に実現することができ超音波センサの変更または経年変化等の特性の変化や動作を実現するための設定条件や定数の変更が柔軟に対応できる。また記録媒体に記録したり通信回線を用いてプログラムを配信したりすることでプログラムの配布が簡単にできる。
The eighth invention is a program for causing a computer to function as all or part of the means of the autonomous mobile device according to any one of the first to seventh inventions. A part or all of the autonomous traveling device can be easily realized, and changes in the setting conditions and constants for realizing a change in characteristics and an operation such as change of the ultrasonic sensor or secular change can be flexibly dealt with. Also, the program can be easily distributed by recording it on a recording medium or distributing the program using a communication line.

以下、本発明の実施の形態について、図面を参照しながら説明する。尚、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の実施の形態1に係る自律走行装置の構成を示す構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram showing the configuration of the autonomous mobile device according to Embodiment 1 of the present invention.

図1に示すように、自律走行装置は、本体1の前面と側面に設置され障害物の有無及び距離を検知する障害物検知手段2と、ジャイロセンサ等で構成され本体1の回転角度、及び本体1の移動方向を検知する方向検知手段3と、駆動輪9の径とその回転数より本体1の移動距離を検知する距離認識手段4と、駆動輪9と連結されたモータ(図示せず)及びその駆動回路(図示せず)から成り、駆動輪9を駆動し従輪10とともに本体1を走行させる走行手段7と、前記方向検知手段3の方向出力と前記距離認識手段4の距離出力とに基づいて本体1の位置を算出し、かつ本体1の移動軌跡を記憶する位置認識手段6と、本体1の前面に設置され前方からの衝撃を緩和すると共に障害物との接触を検知する緩衝手段8と、通電開始時からの経過時間などの時間を計時する計時手段12と、使用者が本体1の起動及び停止または各種設定の変更(方向検知手段3の出力補正指示等)等の指示を入力する設定入力手段11と、前記障害物検知手段2、方向検知手段3、距離認識手段4、位置認識手段6、緩衝手段8、設定入力手段11及び計時手段12の出力信号に基づいて走行手段7を制御する制御手段5とを備えている。また、方向検知手段3は角速度に比例した信号を出力するジャイロセンサと、このジャイロセンサの出力信号を積分し、角度を表す信号に変換する回路により構成されている。   As shown in FIG. 1, the autonomous mobile device includes obstacle detection means 2 that is installed on the front and side surfaces of the main body 1 to detect the presence and distance of an obstacle, a gyro sensor, and the like. Direction detecting means 3 for detecting the moving direction of the main body 1, distance recognition means 4 for detecting the moving distance of the main body 1 from the diameter of the driving wheel 9 and its rotational speed, and a motor (not shown) connected to the driving wheel 9. ) And its drive circuit (not shown), driving means 9 for driving the drive wheel 9 to drive the main body 1 together with the follower wheel 10, the direction output of the direction detection means 3, and the distance output of the distance recognition means 4; The position recognition means 6 that calculates the position of the main body 1 based on the above and stores the movement trajectory of the main body 1 and a buffer that is installed on the front surface of the main body 1 to mitigate impact from the front and detect contact with an obstacle. Means 8 and progress from the start of energization The time measuring means 12 for measuring time such as the interval, the setting input means 11 for the user to input instructions such as starting and stopping the main body 1 or changing various settings (such as output correction instructions for the direction detecting means 3); Control means 5 for controlling the traveling means 7 based on the output signals of the obstacle detecting means 2, the direction detecting means 3, the distance recognizing means 4, the position recognizing means 6, the buffer means 8, the setting input means 11 and the time measuring means 12. I have. The direction detecting means 3 is composed of a gyro sensor that outputs a signal proportional to the angular velocity, and a circuit that integrates the output signal of the gyro sensor and converts it into a signal representing an angle.

図2は、本体1に設置された障害物検知手段2の構成を説明するための模式図である。   FIG. 2 is a schematic diagram for explaining the configuration of the obstacle detection means 2 installed in the main body 1.

図2に示すように、体1前方には超音波を送信する送信側超音波センサ2a、2b、障害物で反射した超音波の反射波を受信する受信側超音波センサ2dが配置され、さらに本体1右側面には赤外線で障害物までの距離を測定する光測距センサ2f、2gが配置されており、θcは受信側超音波センサ2dの検知角度範囲を示している。これら送信側超音波センサ2a、2b、受信側超音波センサ2d、光測距センサ2f、2gで障害物検知手段2を構成している。   As shown in FIG. 2, transmitting-side ultrasonic sensors 2a and 2b that transmit ultrasonic waves are disposed in front of the body 1, and a receiving-side ultrasonic sensor 2d that receives reflected waves of ultrasonic waves reflected by an obstacle is disposed. Optical distance measuring sensors 2f and 2g for measuring the distance to the obstacle with infrared rays are arranged on the right side surface of the main body 1, and θc indicates a detection angle range of the receiving ultrasonic sensor 2d. The transmission side ultrasonic sensors 2a and 2b, the reception side ultrasonic sensor 2d, and the optical distance measuring sensors 2f and 2g constitute the obstacle detection means 2.

以上のように構成された自律走行装置について、以下、図3〜図5を用いて動作を説明する。図3は自律走行装置の動作フローを示す図、図4は自律走行装置の動作状態を示す図、図5は障害物検知手段の距離検知特性を示す図である。   The operation of the autonomous traveling device configured as described above will be described below with reference to FIGS. 3 is a diagram illustrating an operation flow of the autonomous traveling device, FIG. 4 is a diagram illustrating an operation state of the autonomous traveling device, and FIG. 5 is a diagram illustrating distance detection characteristics of the obstacle detection means.

図3に示すように、自律走行装置は、起動した後、本体1右側面に配置された障害物検知手段2である光測距センサ2f,2gにより障害物までの距離を検知して、本体1の右側に壁が存在するか否かを障害物検知手段2の光測距センサ2f、2gにより検知し(ステップ1)、障害物を検知しなければ本体1を前進させる(ステップ2)。障害物検知手段2(受信側超音波センサ2d)により、本体1前方の第1の所定距離(例えば10cm)以内に障害物を検知すると(ステップ3)、制御手段5は走行手段7を制御し本体1を停止させた後、左90度回転を行う(ステップ4)。このとき、制御手段5は方向検知手段3の方向出力で本体1の回転角を監視しながら、走行手段7により左右の駆動輪9を互いに逆回転(左駆動輪は後退、右駆動輪は前進)させることで、本体1の左(反時計方向
)90度回転を行う。
As shown in FIG. 3, after starting, the autonomous mobile device detects the distance to the obstacle by the optical distance measuring sensors 2f and 2g, which are the obstacle detection means 2 arranged on the right side surface of the main body 1. Whether or not a wall is present on the right side of 1 is detected by the optical distance measuring sensors 2f and 2g of the obstacle detecting means 2 (step 1). If no obstacle is detected, the main body 1 is advanced (step 2). When the obstacle detection means 2 (reception-side ultrasonic sensor 2d) detects an obstacle within a first predetermined distance (for example, 10 cm) in front of the main body 1 (step 3), the control means 5 controls the traveling means 7. After the main body 1 is stopped, it is rotated 90 degrees to the left (step 4). At this time, the control means 5 monitors the rotation angle of the main body 1 with the direction output of the direction detection means 3, while the traveling means 7 rotates the left and right drive wheels 9 in the reverse direction (the left drive wheel moves backward and the right drive wheel moves forward). ), The main body 1 is rotated 90 degrees to the left (counterclockwise).

すると、それまで本体1の前方にあった障害物(壁13)は本体1の右側で検知されるので、光測距センサ2f、2gで障害物までの距離Df,Dg(図4を参照)を測定し、前側距離Dfと後側距離Dgの距離差の大小を判定し、前側距離DfがDgより大きければ(ステップ5)、本体1が壁と平行になるように本体1を右方向に所定角度回転させる(ステップ8)。その後、再度(ステップ5)に戻って、前後の距離Df,Dgの大小を判断し、逆に後ろ側距離DgがDfより大きければ(ステップ6)、壁13と平行になるように本体1を左回転し(ステップ7)、再度(ステップ5)に戻って、前後の距離Df,Dgの大小を判断する(ステップ5)。このような動作を数回(3〜4回)繰り返すことで、最終的に前側距離Dfと後側距離Dgの測定値が同じになり、本体1は右側に存在する壁の壁面方向と平行になる。   Then, since the obstacle (wall 13) that has been in front of the main body 1 is detected on the right side of the main body 1, the distances Df and Dg to the obstacle are detected by the optical distance measuring sensors 2f and 2g (see FIG. 4). Is measured, and the difference between the front distance Df and the rear distance Dg is determined. If the front distance Df is larger than Dg (step 5), the main body 1 is moved to the right so that the main body 1 is parallel to the wall. A predetermined angle is rotated (step 8). Thereafter, returning to (Step 5) again, the front and rear distances Df and Dg are determined, and if the rear distance Dg is larger than Df (Step 6), the main body 1 is placed so as to be parallel to the wall 13. It rotates counterclockwise (step 7) and returns to (step 5) again to determine whether the front and rear distances Df and Dg are large or small (step 5). By repeating such an operation several times (3 to 4 times), the measured values of the front distance Df and the rear distance Dg are finally the same, and the main body 1 is parallel to the wall surface direction of the wall on the right side. Become.

この様子を図4に示す。図4において光測距センサ2f及び2gの検知距離Df、Dgが同じになれば、本体1の向き及び本体1の移動方向が右側に存在する壁13と平行になるように光測距センサ2f及び2gの本体1への取り付け位置を決定している。   This is shown in FIG. In FIG. 4, if the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g are the same, the optical distance measuring sensor 2f so that the direction of the main body 1 and the moving direction of the main body 1 are parallel to the wall 13 existing on the right side. And the attachment position to the main body 1 of 2g is determined.

次に、図5は、光測距センサ2f,2gが検知する障害物までの検知距離Df,Dgと、本体1の回転角との関係を示す特性図であり、同図中の実線は光測距センサ2fの測定距離Dfを示し、鎖線は光測距センサ2gの測定距離Dgを示している。そして、縦軸は光測距センサ2f、2gの検知距離Df、Dgを示し、横軸は回転角度を示しており、横軸の回転角度を左から右へ可変した場合、即ち本体1を反時計方向に回転した場合の各検知距離Df、Dgを示している。   Next, FIG. 5 is a characteristic diagram showing the relationship between the detection distances Df and Dg to the obstacle detected by the optical distance measuring sensors 2f and 2g and the rotation angle of the main body 1. The solid line in FIG. The measurement distance Df of the distance measurement sensor 2f is shown, and the chain line shows the measurement distance Dg of the optical distance measurement sensor 2g. The vertical axis indicates the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g, the horizontal axis indicates the rotation angle, and when the rotation angle of the horizontal axis is changed from the left to the right, that is, the main body 1 is reversed. Each detection distance Df and Dg when rotating clockwise is shown.

図5に示すように、壁13が平面である場合は、本体1の向きが連続的に回転すると、光測距センサ2f、2gの測定距離が連続的に変化する。本体1の方向が壁面と平行になる平行点PPより反時計方向に回転すると、光測距センサ2fの検知距離Dfは漸次増加し、平行点PPより時計方向に回転すると、一旦減少した後に増加する特性を示す。また、本体1の向きが壁面と平行になる平行点PPより時計方向に回転すれば、光測距センサ2gの検知距離Dgは漸次増加し、反時計方向では一旦減少した後に増加する特性を示す。また、本体1とその側面に存在する壁13が平行な場合、光測距センサ2f、2gの検知距離Df、Dgは平行時の距離L0で同じとなり、本体1の回転時の測定距離Df、Dgは壁と平行点PP以外は同じにならない。これは、図4に示すように、本体1側面に設けられた光測距センサ2fと2gとが所定間隔で離間して配置され、且つ本体1が壁13から所定の間隔を保っているために起きる現象である。そして、制御手段5は本体1が壁13と平行になると、その時点での方向検知手段3の方向出力を初期化(リセット)し、以後の本体1の回転角度の基準方向(0°)として認識する。   As shown in FIG. 5, when the wall 13 is a flat surface, when the orientation of the main body 1 is continuously rotated, the measurement distances of the optical distance measuring sensors 2f and 2g are continuously changed. When the direction of the main body 1 rotates counterclockwise from the parallel point PP parallel to the wall surface, the detection distance Df of the optical distance measuring sensor 2f gradually increases, and when it rotates clockwise from the parallel point PP, it decreases and then increases. The characteristics to be shown. Further, if the direction of the main body 1 rotates clockwise from a parallel point PP parallel to the wall surface, the detection distance Dg of the optical distance measuring sensor 2g gradually increases, and once it decreases in the counterclockwise direction, it shows a characteristic of increasing. . In addition, when the main body 1 and the wall 13 present on the side surface thereof are parallel, the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g are the same at the parallel distance L0, and the measurement distance Df when the main body 1 is rotated, Dg is not the same except for the wall and parallel point PP. This is because, as shown in FIG. 4, the optical distance measuring sensors 2 f and 2 g provided on the side surface of the main body 1 are spaced apart from each other at a predetermined interval, and the main body 1 maintains a predetermined interval from the wall 13. It is a phenomenon that occurs. When the main body 1 becomes parallel to the wall 13, the control means 5 initializes (resets) the direction output of the direction detection means 3 at that time, and sets the reference direction (0 °) of the rotation angle of the main body 1 thereafter. recognize.

つまり、この図4に示した例では、本体1の起動後、右側に壁13が存在するか否かを障害物検知手段2により検知し、壁13が存在しなければ前進する。そして、本体1前方に壁(障害物)13を検知すると、検知した壁13に対し左90度回転を行い、本体1前方で検知していた壁13を本体1の右側で検知できる様にした後、その壁13に対する本体1の向きを平行するものである。   That is, in the example shown in FIG. 4, after the main body 1 is activated, the obstacle detection unit 2 detects whether or not the wall 13 is present on the right side. When a wall (obstacle) 13 is detected in front of the main body 1, the detected wall 13 is rotated 90 degrees to the left so that the wall 13 detected in front of the main body 1 can be detected on the right side of the main body 1. Then, the direction of the main body 1 with respect to the wall 13 is made parallel.

尚、本体1の左側面にも光測距センサを配置し、本体1の起動後、左側に存在する壁の有無も検知し、左側に障害物や壁が存在していれば、それに対して本体1を平行になるようにしても構わない。また、起動直後の最初に本体1を360度回転させ、その回転動作中に、本体1の右側面の光測距センサ2f、2gで壁13を検知した場合に、その壁13に対して本体1が平行になるようにしても構わない。   An optical distance measuring sensor is also arranged on the left side of the main body 1, and after the main body 1 is activated, the presence or absence of a wall on the left side is also detected. If there are obstacles or walls on the left side, You may make it the main body 1 become parallel. In addition, when the main body 1 is first rotated 360 degrees immediately after activation and the wall 13 is detected by the optical distance measuring sensors 2f and 2g on the right side surface of the main body 1 during the rotation operation, 1 may be parallel.

次に、壁13に対して本体1を平行にした以降の動作について、図6を用いて説明する。図6は、自律走行装置の移動軌跡を示した図であり、壁13に囲まれた移動領域内において、本体1内の位置認識手段6に記憶される移動軌跡を示している。   Next, the operation after making the main body 1 parallel to the wall 13 will be described with reference to FIG. FIG. 6 is a diagram showing a movement trajectory of the autonomous traveling device, and shows a movement trajectory stored in the position recognition means 6 in the main body 1 within the movement region surrounded by the wall 13.

図6に示すように、位置認識手段6には本体1の方向検知手段3により検知した本体1の回転角度(移動方向)と、距離認識手段4で検知される本体1の移動距離とに基づいて本体1の位置情報を算出し、その位置情報に基づいた移動軌跡が2次元の座標上に記憶される。図6における座標は、X軸の左方向へ移動すると座標値が増え、Y軸の上方向へ移動すると座標値が増えていくように定義し、1単位の座標は本体1の幅とほぼ同じ大きさ(例えば30cm)としている。本実施の形態では、図6に示す移動領域内の最上部のY座標値をpとおいて、以下の説明で用いるものとする。   As shown in FIG. 6, the position recognition means 6 is based on the rotation angle (movement direction) of the main body 1 detected by the direction detection means 3 of the main body 1 and the movement distance of the main body 1 detected by the distance recognition means 4. Then, the position information of the main body 1 is calculated, and the movement trajectory based on the position information is stored on the two-dimensional coordinates. The coordinates in FIG. 6 are defined so that the coordinate value increases when moving to the left of the X axis, and the coordinate value increases when moving upward on the Y axis. The coordinates of one unit are almost the same as the width of the main body 1. The size (for example, 30 cm) is used. In the present embodiment, it is assumed that the uppermost Y coordinate value in the movement area shown in FIG.

図6に示すように、座標(0,0)のP0地点で平行合わせ動作を終え、ここを開始地点として移動を開始すると、平行合わせをした壁13との距離を第1の所定距離(10cm)に保ちながら前進し、障害物検知手段2によって本体1前方に障害物(壁13)を検知すれば、その場で左90度に方向転換を行って、それまで前方に検知した障害物を本体1の右側面で検知できるようにする。そして、本体1が右側面に検知した障害物に対して第1の所定距離(10cm)に保ちながら左方向に前進する動作を行い、次に本体1前方に障害物(壁13)を検知すると、その障害物(壁13)に対しても方向転換を行なう。この動作を繰り返して行って、図6の実線で示すように、部屋である移動領域内の外周(壁13の内側)を左回りに一周する外周移動動作を行う。この外周移動動作は、本体1が開始地点(図6の原点(0,0))に戻って来て方向転換し、本体1の右側面の光測距センサ2fで検知する検知距離Dfが図6中の右側の壁13に対して第1の所定距離をほぼ確保した時点で終了する。   As shown in FIG. 6, when the parallel alignment operation is finished at the point P0 of the coordinates (0, 0) and the movement is started from this point, the distance from the parallel aligned wall 13 is set to the first predetermined distance (10 cm). If the obstacle detection means 2 detects an obstacle (wall 13) in front of the main body 1, the direction is changed to 90 degrees to the left and the obstacle detected so far is detected. The right side of the main body 1 can be detected. Then, when the main body 1 moves to the left while maintaining the first predetermined distance (10 cm) with respect to the obstacle detected on the right side, and then detects an obstacle (wall 13) in front of the main body 1 The direction of the obstacle (wall 13) is also changed. By repeating this operation, as shown by a solid line in FIG. 6, an outer periphery moving operation is performed in which the outer periphery (inside the wall 13) in the moving region, which is a room, goes around counterclockwise. In this outer peripheral movement operation, the main body 1 returns to the starting point (the origin (0, 0) in FIG. 6) and changes its direction, and the detection distance Df detected by the optical distance measuring sensor 2f on the right side surface of the main body 1 is illustrated. 6 when the first predetermined distance is almost secured with respect to the right wall 13 in FIG.

次に、外周移動動作後に行う内部移動動作について説明する。図6に示すように、制御手段5は、内部移動動作を開始すると、本体1を最初に壁13に平行に合わせた第1の方向(Y軸方向)へ直進させ、本体1前方に障害物の壁13を検知すると、その壁13を検知した地点(座標(0,p))で左右の駆動輪9を互いに逆回転させて、本体1を左側90度の方向転換した後、左方向へ第2の所定距離(本体幅約30cm)ほど直進させる。その地点(座標(1,p))で本体1を更に左90度に方向転換させた後、本体1を第2の方向(Y軸の逆方向)へ直進させる。   Next, the internal movement operation performed after the outer peripheral movement operation will be described. As shown in FIG. 6, when the control means 5 starts the internal movement operation, the control unit 5 first moves the main body 1 straight in the first direction (Y-axis direction) that is aligned parallel to the wall 13, and obstructs the body 1 in front. When the wall 13 is detected, the left and right drive wheels 9 are reversely rotated at the point (coordinate (0, p)) where the wall 13 is detected, and the main body 1 is turned 90 degrees to the left, and then leftward. A second predetermined distance (main body width of about 30 cm) is made to go straight. At that point (coordinates (1, p)), the main body 1 is further turned 90 degrees to the left, and then the main body 1 is moved straight in the second direction (the reverse direction of the Y axis).

そして、第2の方向(Y軸の逆方向)への直進を開始した後、本体1前方の第1の所定距離以内に障害物の壁13を検知すると、その地点(座標(1,0))で左右の駆動輪9を互いに逆回転して、本体1を右側90度へ方向転換した後、第2の所定距離ほど直進させる。その地点(座標(2,0))で本体1を更に右90度へ方向転換し、再度、本体1を第1の方向(Y軸方向)へ直進させる。以上の動作を繰り返し行って、本体1が移動領域内をジグザグ状に折り返して走行する内部移動動作を行う。   Then, after starting straight travel in the second direction (opposite direction of the Y axis), if the obstacle wall 13 is detected within the first predetermined distance in front of the main body 1, the point (coordinates (1, 0)) is detected. ), The left and right drive wheels 9 are reversely rotated to change the direction of the main body 1 to 90 degrees on the right side, and then go straight ahead by a second predetermined distance. At that point (coordinates (2, 0)), the main body 1 is further turned 90 degrees to the right, and the main body 1 is again moved straight in the first direction (Y-axis direction). The above operation is repeated to perform an internal movement operation in which the main body 1 travels in a zigzag manner in the movement area.

このように、本体1が直進中、本体1前方の第1の所定距離以内に障害物である壁13を検知すると、往復移動の進行方向(図6のY軸方向)に対して90度方向転換した後、X軸の逆方向に第2の所定距離の直進を行い、更にその後、再度の90度方向転換を行う。この一連の動きで180度の方向転換を行うもので、壁13を検知する度にこの方向転換動作を繰り返し行うものである。このとき、制御手段5は、方向転換の実施回数を計数していく。内部移動動作内の各動作において、直進中に障害物である壁13を検知して最初に行なう90度方向転換を方向転換T1、横方向の移動を横方向直進T2、その後の90度方向転換を方向転換T3と呼ぶものとする。   As described above, when the main body 1 is traveling straight and detecting the wall 13 that is an obstacle within the first predetermined distance in front of the main body 1, the direction is 90 degrees with respect to the traveling direction of the reciprocating movement (Y-axis direction in FIG. 6). After the conversion, the vehicle travels straight ahead for a second predetermined distance in the opposite direction of the X axis, and then performs another 90-degree direction change. The direction change of 180 degrees is performed by this series of movements, and this direction change operation is repeatedly performed every time the wall 13 is detected. At this time, the control means 5 counts the number of times of direction change. In each of the internal movements, the first turn 90 degrees is detected by detecting the wall 13 which is an obstacle while going straight, the turn T1 is the turn, the transverse movement is the turn T2, and the turn 90 degrees thereafter. Is referred to as direction change T3.

また、内部移動動作においても、方向検知手段3により検知した本体1の回転角度(移
動方向)と、距離認識手段4により検知される本体1の移動距離により本体1の位置を認識し、本体1の動作の移動軌跡が位置認識手段6に逐次記憶されていく。
In the internal movement operation, the position of the main body 1 is recognized based on the rotation angle (movement direction) of the main body 1 detected by the direction detection means 3 and the movement distance of the main body 1 detected by the distance recognition means 4. Are sequentially stored in the position recognizing means 6.

次に時間経過等の要因により方向検知手段3の出力にズレが発生した場合の動作について、図7を用いて説明する。図7は、方向検知手段3の出力にズレが発生した場合の、本体1が移動領域内を実際に移動する実移動軌跡を示す図である。   Next, an operation when a deviation occurs in the output of the direction detection means 3 due to factors such as the passage of time will be described with reference to FIG. FIG. 7 is a diagram showing an actual movement trajectory in which the main body 1 actually moves in the movement area when a deviation occurs in the output of the direction detection means 3.

図7において方向検知手段3の方向出力が僅かに(図7に対しCW:時計回り)ずれた場合の実移動軌跡を示し、図7の未通過領域R1(横線塗りつぶし部)に示すように本体1の移動方向がずれることで移動領域の壁付近に未通過領域が発生している。このように未通過領域が発生すると移動領域内を隈無く移動することができなくなる。未通過領域は方向検知手段3の方向ズレの発生によるので、方向検知手段3の方向ズレはできる限り無くす必要がある。そこで本体1の制御手段5は、内部移動動作中に本体1の起動後、外周移動動作で移動領域内の壁に平行合わせをして方向検知手段3の方向出力を初期化してから所定時間(例えば5分)以上経過するか、または方向検知手段3の方向出力を初期化してから内部移動動作を開始後の方向転換が所定回数に達するかの、いずれか早い方の条件成立により方向検知手段3の方向出力を補正する動作を行う。   7 shows an actual movement locus when the direction output of the direction detecting means 3 is slightly shifted (CW: clockwise with respect to FIG. 7), and the main body as shown in the non-passing region R1 (horizontal line filling portion) in FIG. As the moving direction of 1 shifts, a non-passing region is generated near the wall of the moving region. When a non-passing area is generated in this way, it is impossible to move without any movement in the moving area. Since the non-passing region is caused by the occurrence of the direction deviation of the direction detection means 3, it is necessary to eliminate the direction deviation of the direction detection means 3 as much as possible. Therefore, the control means 5 of the main body 1 starts the main body 1 during the internal movement operation, aligns it with the wall in the movement area by the outer peripheral movement operation, initializes the direction output of the direction detection means 3 for a predetermined time ( For example, 5 minutes) or more passes, or the direction detection unit 3 initializes the direction output and the direction change after starting the internal movement operation reaches a predetermined number of times, whichever comes first, whichever comes first. The operation of correcting the direction output 3 is performed.

図8は自律走行装置の内部移動動作の動作フローを示す図である。図8に示すように、第1の方向に移動中、本体1前方に壁13を検知すると(ステップ11)、制御手段5はその地点(図6において座標0,p)で走行手段7を制御し、本体1を停止した後、左90度回転を行う(ステップ12)。このとき、制御手段5は方向検知手段3の方向出力で本体1の回転角を監視しながら、走行手段7により左右の駆動輪9を逆回転(左駆動輪は後退、右駆動輪は前進)させることで本体1の左90度(反時計方向)の方向転換を行う。   FIG. 8 is a diagram showing an operation flow of the internal movement operation of the autonomous mobile device. As shown in FIG. 8, when the wall 13 is detected in front of the main body 1 while moving in the first direction (step 11), the control means 5 controls the traveling means 7 at that point (coordinates 0, p in FIG. 6). After the main body 1 is stopped, it is rotated 90 degrees to the left (step 12). At this time, the control means 5 reversely rotates the left and right drive wheels 9 by the traveling means 7 while monitoring the rotation angle of the main body 1 by the direction output of the direction detection means 3 (the left drive wheel moves backward and the right drive wheel moves forward). By doing so, the direction of the main body 1 is changed 90 degrees to the left (counterclockwise).

そして、外周移動動作時に壁に平行合わせをして方向検知手段3の方向出力を初期化してから、所定時間(例えば5分)以上経過していた場合(ステップ13)、本体1の前方にあった壁13は本体1の右側で検知されるので、光測距センサ2f、2gの検知距離Df、Dgの差を判定し、前側の検知距離Dfが遠ければ(ステップ14)、壁と平行になるように本体1を右回転し(ステップ17)、再度、前後の検知距離Df,Dgの差を判断する(ステップ14)。同様に後側の検知距離Dgが遠ければ(ステップ15)、壁と平行になるように本体1を左回転し(ステップ16)、再度(ステップ14)に戻って、前後の検知距離Df,Dgを判断する。このような動作を数回繰り返すことで、最終的に前後の検知距離Df,Dgが同じになり、本体1は右側面に存在する壁と平行になる。一方、(ステップ13)で所定時間(5分)の未経過の場合で、内部移動動作開始後の方向転換回数が所定の回数(例えば4回)に達した場合(ステップ22)にも、前記と同様に(ステップ14)〜(ステップ17)の壁との平行合わせ動作を行う。   When a predetermined time (for example, 5 minutes) has passed since the direction output of the direction detection means 3 was initialized by parallel alignment with the wall during the outer peripheral movement operation (step 13), there is a front of the main body 1. Since the wall 13 is detected on the right side of the main body 1, the difference between the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g is determined, and if the front detection distance Df is long (step 14), it is parallel to the wall. Thus, the main body 1 is rotated to the right (step 17), and the difference between the front and rear detection distances Df and Dg is determined again (step 14). Similarly, if the rear detection distance Dg is long (step 15), the main body 1 is rotated counterclockwise so as to be parallel to the wall (step 16), and again returns to (step 14) to detect the front and rear detection distances Df and Dg. Judging. By repeating such an operation several times, the front and rear detection distances Df and Dg are finally the same, and the main body 1 is parallel to the wall existing on the right side surface. On the other hand, when the predetermined time (5 minutes) has not elapsed in (Step 13) and the number of direction changes after the start of the internal movement operation reaches a predetermined number (for example, 4 times) (Step 22), Similarly to (Step 14) to (Step 17), the parallel alignment operation with the wall is performed.

そして、制御手段5は、方向検知手段3の方向出力の情報をモニタし、方向転換の前後における方向検知手段3の方向出力の差を求め、それらの方向出力の差が予め設定された角度内(例えば90°±3°)かを判断し(ステップ18)、角度以上であれば平行合わせ動作後の方向検知手段3の方向を新たに横方向直進T2の目標方向の90°とする(例えば平行合わせ後の方向検知手段3の方向出力が94°であったならば、それを90°に設定変更して横方向直進T2の目標方向とする)。つまり、方向検知手段3の方向出力を含む制御系の方向誤差(ズレ)が全体的に4°補正される(ステップ19)。目標方向を変更後、計時手段12が計時する経過時間と制御手段5で計数する方向転換実施の回数をリセットし(ステップ20)、再度、計時手段12が計時する経過時間が予め設定された所定時間(例えば5分)経過するか、方向転換を所定回数(例えば4回)実施するまでは、方向検知手段3の方向出力の補正は行わない。一方、正対動作前後の方向出力の差が予
め設定された角度(例えば90°±3°)以内の場所では、方向検知手段3の方向出力の変更は行わない。ここで、(ステップ19)の方向補正動作について、図9を用いて説明する。
And the control means 5 monitors the information of the direction output of the direction detection means 3, calculates | requires the difference of the direction output of the direction detection means 3 before and behind a direction change, and the difference of those direction outputs is within the preset angle. (For example, 90 ° ± 3 °) is determined (step 18). If the angle is equal to or greater than the angle, the direction of the direction detecting means 3 after the parallel alignment operation is newly set to 90 °, which is the target direction of the lateral straight advance T2 (for example, If the direction output of the direction detecting means 3 after the parallel alignment is 94 °, the setting is changed to 90 ° and set as the target direction of the lateral straight advance T2). That is, the direction error (deviation) of the control system including the direction output of the direction detecting means 3 is corrected by 4 ° as a whole (step 19). After changing the target direction, the elapsed time counted by the time measuring means 12 and the number of times of direction change counted by the control means 5 are reset (step 20), and the elapsed time measured by the time measuring means 12 is set again in advance. The direction output of the direction detection unit 3 is not corrected until the time (for example, 5 minutes) elapses or the direction change is performed a predetermined number of times (for example, 4 times). On the other hand, the direction output of the direction detection unit 3 is not changed in a place where the difference in the direction output before and after the facing operation is within a preset angle (for example, 90 ° ± 3 °). Here, the direction correction operation of (Step 19) will be described with reference to FIG.

図9は本発明の方向補正動作を説明する図である。図9(a)は(ステップ11)で本体1前方に壁13を検知し停止した状態を示し、停止するまでの本体1の直進方向は図9(a)に示す本体移動方向D1である。その状態から本体1を左90°方向転換させ、光測距センサ2f、2gの検知距離Df、Dgの距離が等しくなるように、本体1を壁に平行合わせ動作を行った状態を図9(b)に示しており、平行合わせした本体1正面の向いている方向が図9(b)の本体移動方向D2である。   FIG. 9 is a diagram for explaining the direction correcting operation of the present invention. FIG. 9A shows a state in which the wall 13 is detected and stopped in front of the main body 1 in (Step 11), and the straight direction of the main body 1 until the stop is the main body moving direction D1 shown in FIG. 9A. FIG. 9 shows a state in which the main body 1 is turned 90 ° to the left from that state, and the main body 1 is parallelly aligned with the wall so that the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g are equal. As shown in FIG. 9B, the direction in which the front face of the main body 1 aligned in parallel is the main body moving direction D2 in FIG.

方向検知手段3の方向出力にズレが大きく、本体1の第1の直進方向が図9(a)に示すように大きく時計回り方向にずれている場合は、本体移動方向D1と本体移動方向D2の角度差は通常の方向転換角度90度より大きく、その角度差が所定角度範囲(例えば90°±3°)内か否かを判断し、範囲外であれば、前述のように平行合わせ動作後の本体移動方向D2を90°(横方向直進T2の目標方向)とするように、方向検知手段3の方向出力を補正する。   When the direction output of the direction detection means 3 is large and the first straight movement direction of the main body 1 is largely deviated clockwise as shown in FIG. 9A, the main body movement direction D1 and the main body movement direction D2 The angle difference is larger than the normal turning angle of 90 degrees, and it is judged whether or not the angle difference is within a predetermined angle range (for example, 90 ° ± 3 °). The direction output of the direction detecting means 3 is corrected so that the subsequent main body moving direction D2 is 90 ° (the target direction of the laterally straight traveling T2).

このように、内部移動動作中に、方向検知手段3の方向出力を初期化後、所定時間経過もしくは方向転換の実施回数が所定の回数に達した状態で、本体1の前方に壁13を検知して方向転換した後、その検知した壁13に対して本体1を平行合わせする。その方向転換前と、方向転換してから方向合わせ後の角度差から、方向検知手段3の方向出力の補正が必要か否かを判定し、必要であれば本体1が平行になった方向を、以降の本体1の移動方向の目標方向を補正する。   As described above, during the internal movement operation, after the direction output of the direction detection means 3 is initialized, the wall 13 is detected in front of the main body 1 in a state where a predetermined time has elapsed or the number of times of direction change has reached a predetermined number. Then, after the direction is changed, the main body 1 is aligned with the detected wall 13 in parallel. It is determined whether or not it is necessary to correct the direction output of the direction detecting means 3 from the angle difference before the direction change and after the direction change after the direction change. If necessary, the direction in which the main body 1 is parallel is determined. Thereafter, the target direction of the moving direction of the main body 1 is corrected.

以上のように、本実施の形態においては、内部移動動作中に本体1の前方に壁13を検知し、本体1を停止して方向転換した場合に、方向検知手段3の初期化後、所定時間の経過もしくは方向転換の実施回数が所定の回数に達していれば、その方向転換後に平行合わせした後の方向検知手段3の方向出力と、方向転換前の方向出力との角度差から、方向検知手段3の方向補正が必要か否かを判定し、必要であれば本体1が平行になった方向を基に以降の本体1の移動方向の目標方向とすることで、方向検知手段3の方向ズレを補正でき、方向ズレによる未通過領域の発生を防ぎ、移動精度の低下及び、清掃残りの発生を防ぐことを可能にできるものである。   As described above, in the present embodiment, when the wall 13 is detected in front of the main body 1 during the internal movement operation, and the main body 1 is stopped and changed direction, the direction detecting means 3 is initialized after the initialization. If the passage of time or the number of times of direction change has reached a predetermined number, the direction difference from the direction output of the direction detection means 3 after parallel alignment after the direction change and the direction output before the direction change, It is determined whether or not the direction of the detection unit 3 needs to be corrected. If necessary, the direction of the direction detection unit 3 is determined by setting the target direction of the subsequent movement of the main body 1 based on the direction in which the main body 1 is parallel. The direction deviation can be corrected, the occurrence of a non-passing area due to the direction deviation can be prevented, the movement accuracy can be reduced, and the occurrence of cleaning residue can be prevented.

尚、上述した本実施の形態1では、予め設定された一つの所定時間(例えば5分)で、設定された角度内(例えば90°から±3°)かを判断し、角度内であれば平行合わせ動作後の方向検知手段3の方向出力を基に以降の本体1の移動方向の目標方向を補正するとしたが、これに限定されるものではなく、例えば、3分、5分、7分等の複数の経過時間に応じて複数の角度範囲(それぞれ90°±5°、90°±4°、90°±3°)で判定するようにしても良い。   In the first embodiment described above, it is determined whether the angle is within a set angle (for example, 90 ° to ± 3 °) within a predetermined time period (for example, 5 minutes). The target direction of the subsequent movement direction of the main body 1 is corrected based on the direction output of the direction detection means 3 after the parallel alignment operation, but is not limited to this. For example, 3 minutes, 5 minutes, 7 minutes Alternatively, the determination may be made in a plurality of angle ranges (90 ° ± 5 °, 90 ° ± 4 °, 90 ° ± 3 °, respectively) according to a plurality of elapsed times.

また、往復回数に於いても複数の回数(例えば、4回、6回、8回以上等)に応じて複数の角度範囲(それぞれ90°±5°、90°±4°、90°±3°)で判定するようにしても良い。これにより方向検知手段3の初期化から経過時間が長い程、また、往復回数の多いほど判定する角度範囲が狭く、補正機会を多くして、経過時間に比例する(往復回数の多さは経過時間の多さにも通じる)、方向検知手段3の方向ズレの特性に合わせても構わない。   Also, in the number of reciprocations, a plurality of angle ranges (90 ° ± 5 °, 90 ° ± 4 °, 90 ° ± 3, respectively) according to a plurality of times (for example, 4, 6, 8 times or more). You may make it judge by °). As a result, the longer the elapsed time from the initialization of the direction detection means 3 and the larger the number of reciprocations, the narrower the angle range to be determined, and the more the correction opportunities, the more proportional to the elapsed time. This also corresponds to the amount of time), and may be matched to the direction deviation characteristics of the direction detection means 3.

また、本実施の形態1では最初に部屋の外周を左回りに一周動作をするとしたが、これに限定されるものではなく、本体1の左側面にも光測距センサを配置し、本体1の起動後
、左側に存在する壁伝いに部屋の外周を右回りに一周動作を行うようにしても構わない。
In the first embodiment, it is assumed that the outer periphery of the room is first rotated counterclockwise. However, the present invention is not limited to this, and an optical distance measuring sensor is also arranged on the left side surface of the main body 1. After the activation, it may be possible to perform a round movement around the outer circumference of the room clockwise around the wall existing on the left side.

(実施の形態2)
次に、本発明の実施の形態2に係る自律走行装置ついて説明する。以下では、実施の形態1の構成、動作との相違点を中心に述べ、同一要素については同一符号を付してその説明を省略する。
(Embodiment 2)
Next, an autonomous traveling device according to Embodiment 2 of the present invention will be described. In the following, differences from the configuration and operation of the first embodiment will be mainly described, and the same elements will be denoted by the same reference numerals and description thereof will be omitted.

図10は本体1に障害物検知手段2c,2eを追加配置した詳細構成を示す構成図である。   FIG. 10 is a configuration diagram showing a detailed configuration in which obstacle detection means 2c and 2e are additionally arranged in the main body 1. As shown in FIG.

図10に示すように、本体1前面には超音波を送信する送信側超音波センサ2a、2b、障害物で反射した超音波の反射波を受信する受信側超音波センサ2c、2d、2eが配置され、さらに本体右側面には赤外線で障害物までの距離を測定する光測距センサ2f、2gが配置されており、θl、θc、θrはそれぞれ受信側超音波センサ2c、2d、2eの検知角度範囲を示している。これら送信側超音波センサ2a、2b、受信側超音波センサ2c、2d、2e、光測距センサ2f、2gで障害物検知手段2を構成している。本体1の前方の障害物検知のための受信側超音波センサが3つであることが実施の形態1と異なる点である。   As shown in FIG. 10, transmission-side ultrasonic sensors 2a and 2b for transmitting ultrasonic waves and reception-side ultrasonic sensors 2c, 2d and 2e for receiving reflected ultrasonic waves reflected by obstacles are provided on the front surface of the main body 1. Furthermore, optical distance measuring sensors 2f and 2g for measuring the distance to the obstacle with infrared rays are arranged on the right side of the main body, and θl, θc, and θr are the reception side ultrasonic sensors 2c, 2d, and 2e, respectively. The detection angle range is shown. These transmission-side ultrasonic sensors 2a and 2b, reception-side ultrasonic sensors 2c, 2d and 2e, and optical distance measuring sensors 2f and 2g constitute the obstacle detection means 2. The difference from the first embodiment is that there are three reception-side ultrasonic sensors for obstacle detection in front of the main body 1.

以上のように構成された自律走行装置の動作について、以下、図11及び図12を用いて説明する。図11は自律走行装置の動作を説明する説明図であり、図12は自律走行装置の動作フローを示す図である。   The operation of the autonomous traveling device configured as described above will be described below with reference to FIGS. 11 and 12. FIG. 11 is an explanatory diagram for explaining the operation of the autonomous mobile device, and FIG. 12 is a diagram showing an operation flow of the autonomous mobile device.

図11に示すように、内部移動動作中、本体1が第1の方向Aに移動して壁13に接近した状態を示している(図12の(ステップ10))。そして、図12に示すように、本体1前方に壁13を検知すると(ステップ11)、その地点で制御手段5は走行手段7を制御し、本体1を停止させる(ステップ12)。   As shown in FIG. 11, during the internal movement operation, the main body 1 moves in the first direction A and approaches the wall 13 (step 10 in FIG. 12). Then, as shown in FIG. 12, when the wall 13 is detected in front of the main body 1 (step 11), the control means 5 controls the traveling means 7 at that point to stop the main body 1 (step 12).

そして、外周移動動作時に壁に平行合わせをして方向検知手段3の方向出力を初期化してから、所定時間(例えば5分)以上経過していた場合(ステップ13)、受信側超音波センサ2c、2eで距離Dc,Deを測定し、左右の距離差(|Dc−De|)を判定し左側が遠ければ(ステップ24)、壁と正対するように本体1を右回転し(ステップ27)、再度、左右の距離を判断する(ステップ24)。同様に右側が遠ければ(ステップ25)、壁と正対するように本体1を左回転し(ステップ26)、再度、左右の距離を判断する(ステップ24)。このような動作を数回繰り返すことで、最終的に左右の距離測定値が同じになり本体1は前方に存在する壁と正対する。同様に(ステップ13)において所定時間経過前でも、(ステップ22)で所定の方向転換回数(例えば4回)以上であれば、制御手段5は、この正対後の本体1の方向検知手段3の方向出力と正対動作前の方向出力の差を求め、予め設定された角度内(例えば±3°)かを判断し(ステップ28)、角度以上であれば正対動作後の方向検知手段3の方向を第1の方向の目標方向とする(ステップ29)。目標方向を変更後、計時手段12が計時する経過時間と制御手段5で計数する方向転換実施の回数をリセットし(ステップ30)、再度、計時手段12が計時する経過時間が予め設定された所定時間(例えば5分)経過するか、所定回数(例えば4回)の方向転換を実施するまでは、方向検知手段3の方向出力の補正は行わない。一方、(ステップ13)で所定時間(5分)の未経過の場合で、内部移動動作開始後の方向転換回数が所定の回数(例えば4回)に達した場合(ステップ22)にも、前記と同様に(ステップ24)〜(ステップ27)の壁13との平行合わせ動作を行う。   When a predetermined time (for example, 5 minutes) has passed since the direction output of the direction detection means 3 was initialized by parallel alignment with the wall during the outer peripheral movement operation (step 13), the reception-side ultrasonic sensor 2c 2e, the distances Dc and De are measured, and the difference between the left and right distances (| Dc-De |) is determined. If the left side is far (step 24), the main body 1 is rotated to the right so as to face the wall (step 27). Again, the left and right distances are determined (step 24). Similarly, if the right side is far (step 25), the main body 1 is rotated counterclockwise so as to face the wall (step 26), and the left and right distances are determined again (step 24). By repeating such an operation several times, the distance measurement values on the left and right are finally the same, and the main body 1 faces the wall existing in front. Similarly, even before the predetermined time has elapsed in (Step 13), if it is equal to or more than a predetermined number of direction changes (for example, 4 times) in (Step 22), the control means 5 will detect the direction detection means 3 of the main body 1 after this facing. The difference between the directional output before and the directional output before the facing operation is obtained, and it is judged whether it is within a preset angle (for example, ± 3 °) (step 28). The direction 3 is set as the target direction of the first direction (step 29). After the target direction is changed, the elapsed time counted by the time measuring means 12 and the number of times of direction change counted by the control means 5 are reset (step 30), and the elapsed time measured by the time measuring means 12 is set again in advance. The direction output of the direction detector 3 is not corrected until the time (for example, 5 minutes) elapses or the direction change is performed a predetermined number of times (for example, 4 times). On the other hand, when the predetermined time (5 minutes) has not elapsed in (Step 13) and the number of direction changes after the start of the internal movement operation reaches a predetermined number (for example, 4 times) (Step 22), Similarly to (Step 24) to (Step 27), the parallel alignment operation with the wall 13 is performed.

さらに、ステップ28で、正対動作前後の方向出力の差が予め設定された角度(例えば±3°)内の場合には、その場所での方向検知手段3の方向出力との変更は行わない。ま
た、同様に第2の方向に移動中、所定時間経過後、前方に壁を検知した場合も左右の受信側超音波センサ2c、2eの距離測定値が同じになるように本体1を動作させ、予め設定された角度(例えば±3°)以上であれば正対動作後の方向検知手段3の方向を第2の方向の目標方向とする。
Furthermore, if the difference in the direction output before and after the facing operation is within a preset angle (eg, ± 3 °) in step 28, the direction output from the direction detection means 3 at that location is not changed. . Similarly, while moving in the second direction, the main body 1 is operated so that the distance measurement values of the left and right receiving ultrasonic sensors 2c and 2e are the same even when a wall is detected forward after a lapse of a predetermined time. If the angle is equal to or greater than a preset angle (for example, ± 3 °), the direction of the direction detecting means 3 after the facing operation is set as the target direction of the second direction.

以上のように、本実施の形態においては、所定時間経過または所定回数の方向転換毎に障害物検知手段2を用いて、本体1前方に検知した壁と正対する方向と、直進の目標方向との差が所定角度以上である場合に本体1前方に検知した壁と正対する方向に、方向検知手段3の方向出力を変更することで、精度良く方向検知手段3の出力ズレを補正でき、未通過領域の発生を抑えることができ、移動領域の全てを隈無く移動することを可能にできるものである。   As described above, in this embodiment, the obstacle detection means 2 is used for every predetermined time or a predetermined number of turnovers, and the direction facing the wall detected in front of the main body 1 and the straight target direction By changing the direction output of the direction detection means 3 in the direction opposite to the wall detected in front of the main body 1 when the difference is equal to or greater than a predetermined angle, the output deviation of the direction detection means 3 can be corrected with high accuracy. The generation of the passing area can be suppressed, and the entire moving area can be moved without any problem.

(実施の形態3)
以下に、本発明の実施の形態3に係る自律走行装置について、図13〜図17を用いて説明する。図13は同自律走行装置の動作フロー図であり、図14〜図17は同自律走行装置の動作を説明するための図である。本実施の形態では、制御手段5において行われる方向検知手段3の方向出力の補正動作後の動作が異なるのみで、その他の構成は上述した実施の形態1と同じであり、異なる点を中心に説明する。
(Embodiment 3)
Hereinafter, an autonomous traveling device according to Embodiment 3 of the present invention will be described with reference to FIGS. FIG. 13 is an operation flowchart of the autonomous traveling device, and FIGS. 14 to 17 are diagrams for explaining the operation of the autonomous traveling device. In the present embodiment, only the operation after the direction output correcting operation of the direction detecting unit 3 performed in the control unit 5 is different, and the other configuration is the same as that of the above-described first embodiment, and the different points are mainly described. explain.

図14に示すように、実施の形態1と同様、本体1は起動後、座標(0,0)のP0地点で平行合わせを終え、ここを開始地点として、実線で示すように部屋である移動領域の外周(壁の内側)を左回りに一周動作し、開始地点(座標(0,0):P0地点)まで戻り、最初に壁に平行合わせを行った方向に本体1を向けて、内部移動動作を開始する。   As shown in FIG. 14, as in the first embodiment, the main body 1 finishes parallel alignment at the point P0 of the coordinates (0, 0) after starting, and moves in a room as indicated by a solid line with this point as the start point. Move the outer periphery of the area (inside the wall) counterclockwise, return to the start point (coordinate (0, 0): P0 point), and turn the main body 1 in the direction where the parallel alignment with the wall was performed first. Start moving.

図14は、X軸座標0から5迄の区間では、内部移動動作を開始した後、最初の壁に平行合わせを行った方向を基にした内部移動の軌跡を破線で示している。その後、座標(5,p)のP2地点で実施の形態2のように方向検知手段3の方向出力を補正し、区間Aを走行中に、本体側面(右側面)に検知した壁13に対する検知距離の変化に基づき、P2地点での本体移動方向の補正角度を検証して座標(5,p−2)のP3地点で再度、方向検知手段3の方向出力を補正し、それ以降の本体1の移動軌跡を示している。このP3地点では本体1が区間Aを直進走行中に、光測距センサ2f、または2gの検知距離Df、Dgの履歴を参照し、本体が直進中に本体側面に検知した壁13との距離の変化に基づき、本体移動方向の補正角度を検証して、光測距センサ2f、2gの検知距離Df、Dgから求まる壁と本体1との角度が所定角度(例えば3°以上)以上であれば再度、方向検知手段3の方向出力を補正する。   In FIG. 14, in the section from the X-axis coordinate 0 to 5, the internal movement locus based on the direction in which the first wall is aligned in parallel after the internal movement operation is started is indicated by a broken line. Thereafter, the direction output of the direction detecting means 3 is corrected at the point P2 of the coordinates (5, p) as in the second embodiment, and the detection of the wall 13 detected on the side surface (right side surface) of the main body while traveling in the section A. Based on the change in distance, the correction angle of the main body moving direction at the point P2 is verified, the direction output of the direction detecting means 3 is corrected again at the point P3 of the coordinates (5, p-2), and the subsequent main body 1 The movement trajectory is shown. At this point P3, while the main body 1 is traveling straight in the section A, the distance to the wall 13 detected on the side surface of the main body while the main body is traveling straight with reference to the history of the detection distances Df and Dg of the optical distance measuring sensor 2f or 2g. Based on this change, the correction angle in the main body moving direction is verified, and if the angle between the wall and the main body 1 obtained from the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g is equal to or larger than a predetermined angle (eg, 3 ° or more). If so, the direction output of the direction detection means 3 is corrected again.

図15は図14中の区間Aにおける本体1と壁13との位置関係を示す図である。図15に示すように、図14のP2地点での方向検知手段3の出力補正が、光測距センサ2f、2gのノイズや壁面の凹凸等の影響により、出力補正動作の結果が僅かに時計回り方向にずれた場合、区間Aでは本体1の直進方向(第2の直進方向)が本体移動方向D3となり、光測距センサ2f及び2gの検知距離Df、DgはDg>Dfとなる。また、図14の区間Aの壁面に凹凸が無く、壁面が平面であれば、本体1がこの第2の方向に直進中、光測距センサ2f、2gが本体1右側に検知する区間Aの壁面に対する検知距離Df、Dgは徐々に減少していき、その差は殆ど変化がないものとなる。   FIG. 15 is a diagram showing the positional relationship between the main body 1 and the wall 13 in the section A in FIG. As shown in FIG. 15, the output correction of the direction detection means 3 at the point P2 in FIG. 14 is slightly affected by the noise of the optical distance measuring sensors 2f and 2g, the unevenness of the wall surface, etc. In the section A, the straight direction (second straight direction) of the main body 1 is the main body moving direction D3 in the section A, and the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g are Dg> Df. In addition, if the wall surface of the section A in FIG. 14 is not uneven and the wall surface is flat, the optical distance measuring sensors 2f and 2g detect the right side of the main body 1 while the main body 1 is traveling straight in the second direction. The detection distances Df and Dg with respect to the wall surface gradually decrease, and the difference between them hardly changes.

図16は、区間Aにおける光測距センサ2f、2gの検知距離Df、Dgの様子を示す図である。図16に於いて横軸は本体1が図14の座標(5,p)からの第2の方向への移動直進距離で、縦軸は光測距センサ2f、2gの検知距離Df、Dgを示している。   FIG. 16 is a diagram showing the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g in the section A. In FIG. 16, the horizontal axis is the straight travel distance of the main body 1 in the second direction from the coordinates (5, p) in FIG. 14, and the vertical axis is the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g. Show.

図15に示すように、方向検知手段3の方向出力が時計回り方向にずれている状態で、
本体1が図14の座標(5,p)から第2の方向へ、移動を開始すると光測距センサ2f、2gの検知距離Df、Dgは徐々に連続的に減少していき、距離差(|Df−Dg|)はほぼ一定の値を示す。制御手段5は、光測距センサ2f、2gの検知距離Df、Dgのデータを走行中に記憶し、記憶した検知距離Df、Dgの履歴を参照する。そして、図16に示すように、光測距センサ2f、2gの検知距離Df、Dgが徐々に連続的に減少し、距離Df、Dgの距離差Ldがほぼ一定状態で、距離Df、Dgが予め設定された距離(設定距離M:例えば15cm)以下になった場合、検知している壁の凹凸の有無の判定を開始する。壁沿い動作時における光測距センサ2f、2gの検知距離Df、Dgの平均値が第1の所定距離(10cm)に達するまでに移動距離Lほど移動し、図16の停止地点Pstに達するが、検知距離Df、Dgの距離差Ldが一定のまま、予め設定された距離(設定距離N:例えば10cm)を移動済みであると、制御手段5は検知している壁が凹凸の無い平面と判定する。そして、この凹凸のない平面と本体1との角度を光測距センサ2f、2gの検知距離Df、Dgから認識し、直前の方向検知手段3の方向出力の補正角度を検証する。
As shown in FIG. 15, in a state where the direction output of the direction detecting means 3 is shifted in the clockwise direction,
When the main body 1 starts moving from the coordinates (5, p) in FIG. 14 in the second direction, the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g gradually decrease continuously, and the distance difference ( | Df−Dg |) is a substantially constant value. The control means 5 stores the data of the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g while traveling, and refers to the history of the stored detection distances Df and Dg. As shown in FIG. 16, the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g gradually decrease continuously, the distance difference Ld between the distances Df and Dg is substantially constant, and the distances Df and Dg are When the distance is equal to or less than a preset distance (set distance M: 15 cm, for example), the determination of the presence / absence of unevenness of the detected wall is started. The optical distance sensors 2f and 2g move along the wall by the moving distance L until the average value of the detection distances Df and Dg reaches the first predetermined distance (10 cm), and reaches the stop point Pst in FIG. If the distance Ld between the detection distances Df and Dg remains constant and has been moved a preset distance (set distance N: for example, 10 cm), the control means 5 determines that the detected wall is a flat surface having no irregularities. judge. Then, the angle between this flat surface and the main body 1 is recognized from the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g, and the correction angle of the direction output of the previous direction detection means 3 is verified.

図17は本体1の側面壁との平行合わせ動作時の光測距センサ2f、2gの検知距離Df、Dgを示す図である。図17の横軸は本体の1の回転角度を示し、縦軸は光測距センサ2f、2gの検知距離Df、Dgを示している。   FIG. 17 is a diagram showing the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g during the parallel alignment operation with the side wall of the main body 1. The horizontal axis in FIG. 17 indicates the rotation angle of the main body 1, and the vertical axis indicates the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g.

図17に示すように、光測距センサ2fの検知距離Dfは、平行点PPより反時計方向では増加し、時計方向では一旦減少した後に増加する。また、光測距センサ2gの測定距離は平行点PPより時計方向に回転すれば光測距センサ2gの測定距離は増加し、反時計方向では一旦減少した後に増加する。本体1と右側面に存在する壁が平行な場合、光測距センサ2f、2gの検知距離Df、DgはL0(平行時の距離で、壁沿い動作時の第1の所定距離(10cm)と同じ)で同じとなる。また、平行点PPより所定の角度(例えば3°)分、反時計方向に回転した場合の光測距センサ2f、2gの検知距離Df、Dgはそれぞれ、Df0、Dg0で、平行点PPより所定の角度(例えば3°)分、時計方向に回転した場合の光測距センサ2f、2gの検知距離Df、Dgはそれぞれ、Df1、Dg1である。これは光測距センサ2f、2gの検知距離Df、Dgの差が(Df0−Dg0)または、(Dg1−Df1)より小さい場合は、本体1と右側面の壁との角度が3°より小さいことを示し、逆に検知距離Df、Dgの差が(Df0−Dg0)または、(Dg1−Df1)より大きい場合は、本体1と右側面の壁との角度が3°より大きいことを示す。   As shown in FIG. 17, the detection distance Df of the optical distance measuring sensor 2f increases in the counterclockwise direction from the parallel point PP, and once decreases in the clockwise direction and then increases. Further, if the measurement distance of the optical distance measuring sensor 2g is rotated clockwise from the parallel point PP, the measurement distance of the optical distance measurement sensor 2g is increased, and once decreased in the counterclockwise direction, it is increased. When the main body 1 and the wall on the right side are parallel, the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g are L0 (distance when parallel, and the first predetermined distance (10 cm) when operating along the wall. The same). The detection distances Df and Dg of the optical distance measuring sensors 2f and 2g when rotated counterclockwise by a predetermined angle (for example, 3 °) from the parallel point PP are Df0 and Dg0, respectively, which are predetermined from the parallel point PP. Detection distances Df and Dg of the optical distance measuring sensors 2f and 2g when rotated clockwise by an angle (for example, 3 °) are Df1 and Dg1, respectively. This is because when the difference between the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g is smaller than (Df0−Dg0) or (Dg1−Df1), the angle between the main body 1 and the right side wall is smaller than 3 °. Conversely, when the difference between the detection distances Df and Dg is greater than (Df0−Dg0) or (Dg1−Df1), it indicates that the angle between the main body 1 and the right side wall is greater than 3 °.

そして制御手段5は、右側面に検知している壁が凹凸の無い平面と判定し、壁との距離が平行時の距離L0相当である場合に、方向検知手段3の出力補正動作(図16のP2地点での補正)の検証を行い、光測距センサ2f、2gの検知距離Df、Dgから求まる壁と本体1との角度が所定角度(例えば3°以上)以上であれば、再度平行合わせ動作して、本体1を壁に対して平行にし、方向検知手段3の方向出力を補正する。そして制御手段5は、その状態での方向検知手段3の方向を第2の方向の目標方向とする。一方、光測距センサ2f、2gの検知距離Df、Dgから求まる壁と本体1との角度が所定角度(3°)内であればそのまま、直進を行う。   Then, the control means 5 determines that the wall detected on the right side is a flat surface, and the output correction operation of the direction detection means 3 (FIG. 16) when the distance from the wall is equivalent to the parallel distance L0. If the angle between the wall and the main body 1 determined from the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g is equal to or larger than a predetermined angle (for example, 3 ° or more), it is parallel again. By performing the matching operation, the main body 1 is made parallel to the wall, and the direction output of the direction detecting means 3 is corrected. And the control means 5 makes the direction of the direction detection means 3 in the state the target direction of a 2nd direction. On the other hand, if the angle between the wall and the main body 1 obtained from the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g is within a predetermined angle (3 °), the vehicle goes straight as it is.

以下に、この方向検知手段3の方向補正動作および補正動作後の検証動作について、図13を用いて説明する。図13は、自律走行装置の動作フローを示す動作フロー図である。同図において、実施の形態1と同じ動作については、同じステップ番号を付与して説明を省略する。   Hereinafter, the direction correcting operation of the direction detecting unit 3 and the verification operation after the correcting operation will be described with reference to FIG. FIG. 13 is an operation flowchart showing an operation flow of the autonomous mobile device. In the figure, the same operation as that of the first embodiment is given the same step number and the description thereof is omitted.

図13に示すように、外周移動動作を終了後、本体1が第1の方向に移動中(ステップ10)、本体1前方の所定距離内に障害物である壁13を検知すると(ステップ11)、
その地点で制御手段5は走行手段7を制御して、本体1を停止させた後、本体1を所定角度(左90°)回転させる(ステップ12)。
As shown in FIG. 13, after the outer peripheral movement operation is finished, the main body 1 is moving in the first direction (step 10), and when the wall 13 as an obstacle is detected within a predetermined distance in front of the main body 1 (step 11). ,
At that point, the control means 5 controls the traveling means 7 to stop the main body 1 and then rotates the main body 1 by a predetermined angle (90 ° to the left) (step 12).

そして、外周移動動作時に壁に平行合わせをした後に方向検知手段3の方向出力を初期化してから、所定時間(例えば5分)以上経過していた場合(ステップ13)、(ステップ14)から(ステップ17)迄に本体1右側の壁13に対する平行合わせ動作を行い、(ステップ18)の平行合わせ動作前後の方向出力の角度差が予め設定された許容角度範囲(例えば±3°)以上の場合には、平行合わせ動作後の方向検知手段3の方向を直進の目標方向とする(ステップ19)。目標方向を変更後、計時手段12が計時する経過時間と方向転換回数をリセットし(ステップ20)、再度、計時手段12が計時する経過時間が予め設定された所定時間(例えば5分)、経過するまでは、前記方向検知手段3の方向補正は行わない。   Then, when the direction output of the direction detection means 3 is initialized after the parallel alignment with the wall during the outer peripheral movement operation, a predetermined time (for example, 5 minutes) or more has elapsed (step 13), from (step 14) to ( When the parallel alignment operation is performed on the right wall 13 of the main body 1 until step 17), and the angular difference of the direction output before and after the parallel alignment operation of (step 18) is greater than or equal to a preset allowable angle range (for example, ± 3 °). In this case, the direction of the direction detecting means 3 after the parallel alignment operation is set as a straight target direction (step 19). After changing the target direction, the elapsed time measured by the time measuring means 12 and the number of direction changes are reset (step 20), and the elapsed time measured by the time measuring means 12 is again set to a predetermined time (for example, 5 minutes). Until this is done, the direction correction of the direction detection means 3 is not performed.

例えば、本体1が図14に示す区間Aを走行する時のように、本体1が直進中(ステップ10)、区間Aの走行中のように前方に壁を検知していない状態(ステップ11)で、かつ、座標P2地点で方向検知手段3の方向補正後に直進する場合(ステップ41)に、制御手段5が光測距センサ2f、2gの検知の履歴より検知距離Df、Dgが連続的に変化しかつ、所定距離内(例えば15cm)に本体1の右側面に光測距センサ2f、2gで壁を検知し(ステップ42)、その検知した状態で光測距センサ2f、2gの検知距離Df、Dgの平均値が壁沿い動作の第1の所定距離(10cm)と同じとなった時点(ステップ43)で、予め設定された距離(設定距離N:例えば10cm)をステップ42の地点から移動していた時に(ステップ44)、光測距センサ2f、2gの検知距離Df、Dgの距離差(|距離Df−距離Dg|)が所定の距離差以上である場合(ステップ45)、制御手段5は走行手段7を制御し、本体1を停止させ(ステップ46)、ステップ14からステップ17迄の実施の形態1と同様の本体1右側面壁に対する平行合わせ動作を行い、ステップ18の平行合わせ動作前後の方向出力の角度差が予め設定された角度差(例えば±3°)以上の場合には、平行合わせ動作後の方向検知手段3の方向を新たに直進の目標方向とする(ステップ19)。   For example, as the main body 1 travels in the section A shown in FIG. 14, the main body 1 is traveling straight (step 10), and the front wall is not detected as in the traveling of the section A (step 11). When the vehicle travels straight after correcting the direction of the direction detection means 3 at the point P2 (step 41), the detection distances Df and Dg are continuously detected from the detection history of the optical distance measurement sensors 2f and 2g. The wall is detected by the optical distance measuring sensors 2f and 2g on the right side of the main body 1 within a predetermined distance (for example, 15 cm) (step 42), and the detection distance of the optical distance measuring sensors 2f and 2g in the detected state. When the average value of Df and Dg becomes the same as the first predetermined distance (10 cm) of the motion along the wall (step 43), a preset distance (set distance N: eg 10 cm) is determined from the point of step 42. When moving 44), when the distance difference (| distance Df−distance Dg |) between the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g is equal to or greater than a predetermined distance difference (step 45), the control means 5 is the traveling means 7 The main body 1 is stopped (step 46), and the parallel alignment operation is performed on the right side wall of the main body 1 as in the first embodiment from step 14 to step 17, and the direction output before and after the parallel alignment operation in step 18 is output. If the angle difference is greater than or equal to a preset angle difference (for example, ± 3 °), the direction of the direction detecting means 3 after the parallel alignment operation is newly set as the straight target direction (step 19).

そして、前述のように目標方向を変更後、計時手段12が計時する経過時間をリセットし(ステップ54)、再度、計時手段12が計時する経過時間が予め設定された所定時間(例えば5分)、経過するまでは方向検知手段3の方向補正は行わない。   Then, after the target direction is changed as described above, the elapsed time that the time measuring means 12 measures is reset (step 54), and again, the elapsed time that the time measuring means 12 measures is preset a predetermined time (for example, 5 minutes). Until the time elapses, the direction of the direction detection means 3 is not corrected.

このように、光測距センサ2f、2gの検知距離Df,Dgが予め設定された距離(設定距離M:例えば15cm)以下で連続的に変化し、その距離差Ldも予め設定された距離差(例えば3cm)以下で、かつ、一定の状態で予め設定された距離(設定距離N:例えば10cm)、移動すると制御手段5は検知している壁が凹凸の無い平面と判定し、本体1が第1の方向に移動中であれば、平行合わせ後の方向に第1の方向を補正し、第2の方向に移動中であれば、平行合わせ後の方向に第2の方向を補正する。   As described above, the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g continuously change within a preset distance (set distance M: 15 cm, for example), and the distance difference Ld is also a preset distance difference. (For example, 3 cm) or less and a predetermined distance (set distance N: for example, 10 cm) in a constant state, the control means 5 determines that the detected wall is a flat surface without unevenness, and the main body 1 is If moving in the first direction, the first direction is corrected in the direction after parallel alignment, and if moving in the second direction, the second direction is corrected in the direction after parallel alignment.

以上のように、本実施の形態においては、方向検知手段3の方向補正後の内部移動動作の直進中に、本体1側面に検知した壁までの距離を2つの光測距センサ2f、2gで検知する。その2つの検知距離Df,Dgに基づいて凹凸の無い平面か否かの判定を行い、凹凸の無い平面であると判断すると、光測距センサ2f、2gの検知距離Df、Dgの平均値が壁沿い動作の第1の所定距離(10cm)と同じとなった時点で、光測距センサ2f、2gの検知距離Df、Dgの差から壁と本体1との角度を検証し、所定の角度以上であれば再度、方向検知手段3の方向出力補正を行うようにすることで、平面な壁で確実に方向検知手段3の方向出力補正を行え、壁面の凹凸等の影響を受けずに精度良く方向検知手段3の出力ズレを補正でき、未通過領域の発生を抑えることができ、移動領域の全てを隈無く移動することを可能にできるものである。   As described above, in the present embodiment, the distance to the wall detected on the side surface of the main body 1 during the straight movement of the internal movement operation after direction correction of the direction detection means 3 is determined by the two optical distance measuring sensors 2f and 2g. Detect. Based on the two detection distances Df and Dg, it is determined whether or not it is a flat surface without unevenness. When it is determined that the flat surface has no unevenness, the average value of the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g is calculated. When it becomes the same as the first predetermined distance (10 cm) of the movement along the wall, the angle between the wall and the main body 1 is verified from the difference between the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g, and the predetermined angle If it is above, the direction output correction of the direction detection means 3 is performed again, so that the direction output correction of the direction detection means 3 can be reliably performed with a flat wall, and the accuracy is not affected by the unevenness of the wall surface. The output deviation of the direction detecting means 3 can be corrected well, the occurrence of a non-passing area can be suppressed, and the entire moving area can be moved without any problems.

(実施の形態4)
次に、本発明の実施の形態3に係る自律走行装置について、図18および図19を用いて説明する。図18は同自律走行装置の動作フロー図であり、図19は同自律走行装置の動作を説明する図である。実施の形態4では光測距センサ2f、2gの検知距離Df、Dgを用いて制御手段5において行われる壁面の凹凸の判断が本体1の回転動作時に行うことが異なるのみで、第1及び第3の実施の形態の構成と同じであり、同じ動作については同じステップ番号を付与して説明を省略する。
(Embodiment 4)
Next, an autonomous mobile device according to Embodiment 3 of the present invention will be described using FIG. 18 and FIG. FIG. 18 is an operation flowchart of the autonomous traveling device, and FIG. 19 is a diagram illustrating the operation of the autonomous traveling device. In the fourth embodiment, the difference between the first and the first is that the judgment of the wall surface unevenness performed in the control means 5 using the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g is different during the rotation operation of the main body 1. The configuration is the same as that of the third embodiment, and the same operation is given the same step number and description thereof is omitted.

図18に示すように、外周移動動作を終了後、本体1が第1の方向に移動中(図13のステップ10)、前方に壁13を検知して本体1を停止し、外周移動動作時に壁13に平行合わせをして方向検知手段3の方向出力を初期化してから、所定時間(例えば5分)以上経過していた場合、または、所定時間(5分)の未経過の場合でも、内部移動動作開始後の方向転換回数が所定の回数(例えば4回)に達した場合に、制御手段5は走行手段7を制御し、その場で本体1を時計方向に第1の所定角度(例えば25°)だけ回転させ(ステップ50)、同時に制御手段5は光測距センサ2f、2gの検知距離Df、Dgを記憶する。その後、制御手段5は本体1を反時計方向に第2の所定角度(例えば50°、第1の所定角度の2倍)だけ回転させ、同時に光測距センサ2f、2gの検知距離Df、Dgを記憶する(ステップ51)。さらに制御手段5は本体1を時計方向に所定の角度(例えば25°)だけ回転させ、同時に光測距センサ2f、2gの検知距離Df、Dgを記憶する(ステップ52)。その後制御手段5は(ステップ50)から(ステップ52)の動作で得られた光測距センサ2f、2gの検知距離Df、Dgの履歴値を基に壁面の凹凸判定を行う。   As shown in FIG. 18, after the outer peripheral movement operation is finished, the main body 1 is moving in the first direction (step 10 in FIG. 13), and the main body 1 is stopped by detecting the wall 13 in the forward direction. Even if a predetermined time (for example, 5 minutes) or more has elapsed since the direction output of the direction detecting means 3 was initialized by parallel alignment with the wall 13, or even if the predetermined time (for 5 minutes) has not elapsed, When the number of direction changes after the start of the internal movement operation reaches a predetermined number of times (for example, 4 times), the control unit 5 controls the traveling unit 7, and the main body 1 is rotated clockwise at a first predetermined angle ( For example, the control means 5 stores the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g. Thereafter, the control means 5 rotates the main body 1 counterclockwise by a second predetermined angle (for example, 50 °, twice the first predetermined angle) and simultaneously detects the detection distances Df, Dg of the optical distance measuring sensors 2f, 2g. Is stored (step 51). Further, the control means 5 rotates the main body 1 clockwise by a predetermined angle (for example, 25 °) and simultaneously stores the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g (step 52). Thereafter, the control means 5 determines the unevenness of the wall surface based on the history values of the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g obtained by the operations of (Step 50) to (Step 52).

図19は、(ステップ50)から(ステップ52)の動作で得られた光測距センサ2f、2gの検知距離Df、Dgの変化を示す図である。図19に示すように、本体1が回転して角度が変化すると共に光測距センサ2f、2gの検知距離Df、Dgは変化し、図18のステップ50の動作前の光測距センサ2f、2gの検知距離をDfsp、Dgspで示し、ステップ50動作後の検知距離をDfcw25、Dgcw25、さらにステップ51の動作後の検知距離をDfccw25、Dgccw25で示し、ステップ52の動作後の検知距離は最初のDfsp、Dgspで示す。図18の(ステップ53)で制御手段5は光測距センサ2f、2gの検知距離の履歴から検知距離の連続性とDf、Dgが同じとなる点(図19のPP)を平行点と仮定し、その点から検知距離DfとDgが角度に対し線対称であるかどうか(例えば平行点PPから反時計方向のDfの履歴と、時計方向のDgの履歴と平行点PPで線対称の関係か否か)を判定し壁の平面性を判定する。検知距離DfとDgがそれぞれ本体1の回転に伴い、連続的に変化し、かつ平行点から角度に対し線対称であれば壁は平面であると判定する(ステップ53)。平面であると判定した場合、制御手段5は検知距離Df、Dgが同じである(図19のPP)角度を平行点として、平行点PPまでの角度差(|App―Asp|)を求める(ステップ54)。角度差が予め設定された角度差(例えば±3°)以上の場合には、平行合わせ動作後の方向検知手段3の方向を新たに直進の目標方向とする(ステップ56)。そして、前述のように目標方向を変更後、計時手段12が計時する経過時間をリセットし(ステップ57)、再度、計時手段12が計時する経過時間が予め設定された所定時間(例えば5分)、経過するまでは、前記方向検知手段3の方向補正は行わない。そして、(ステップ58)で制御手段5は実施の形態1と同様に本体1の方向転換を行い、直進動作を再開する。また、(ステップ55)で予め設定された角度差(例えば±3°)未満の場合にはそのまま、本体1の方向転換を行い、直進動作を再開する。   FIG. 19 is a diagram illustrating changes in the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g obtained by the operations from (Step 50) to (Step 52). As shown in FIG. 19, as the body 1 rotates and the angle changes, the detection distances Df and Dg of the optical distance measuring sensors 2f and 2g change, and the optical distance measuring sensor 2f before the operation of step 50 in FIG. The detection distance of 2g is indicated by Dfsp and Dgsp, the detection distance after the operation of step 50 is indicated by Dfcw25 and Dgcw25, the detection distance after the operation of step 51 is indicated by Dfccw25 and Dgccw25, and the detection distance after the operation of step 52 is the first detection distance It is indicated by Dfsp and Dgsp. In FIG. 18 (step 53), the control means 5 assumes from the history of the detection distances of the optical distance measuring sensors 2f and 2g that the continuity of the detection distance and the point where Df and Dg are the same (PP in FIG. 19) are parallel points. Whether or not the detection distances Df and Dg are line symmetric with respect to the angle from the point (for example, the history of Df in the counterclockwise direction from the parallel point PP and the relationship of line symmetry in the history of the Dg in the clockwise direction and the parallel point PP) Or not) to determine the flatness of the wall. If the detection distances Df and Dg change continuously with the rotation of the main body 1 and are symmetrical with respect to the angle from the parallel point, it is determined that the wall is a plane (step 53). If it is determined that the plane is a plane, the control means 5 obtains an angle difference (| App−Asp |) to the parallel point PP, with the detection distances Df and Dg being the same (PP in FIG. 19) as parallel points. Step 54). If the angle difference is equal to or greater than a preset angle difference (for example, ± 3 °), the direction of the direction detecting means 3 after the parallel alignment operation is newly set as the straight target direction (step 56). Then, after the target direction is changed as described above, the elapsed time that the time measuring means 12 measures is reset (step 57), and the elapsed time that the time measuring means 12 measures is set again for a predetermined time (for example, 5 minutes). Until the time elapses, the direction correction of the direction detection means 3 is not performed. In (Step 58), the control means 5 changes the direction of the main body 1 in the same manner as in the first embodiment, and resumes the straight-ahead operation. Further, when the angle difference is smaller than the preset angle difference (for example, ± 3 °) in (Step 55), the direction of the main body 1 is changed as it is, and the straight running operation is resumed.

このように、光測距センサ2f、2gの検知距離が予め設定された距離(設定距離M:例えば15cm)以下で連続的に変化し、その距離差Ldも予め設定された距離差(例え
ば3cm)以下で、かつ、一定の状態で予め設定された距離(設定距離N:例えば10cm)、移動すると制御手段5は検知している壁が凹凸の無い平面と判定し、さらに、停止した場所で本体1を時計方向と反時計方向に回転した際の壁との検知距離の履歴からも、壁の平面性(凹凸の有無)を判断した上で、本体の移動方向の補正を行う(本体1が第1の方向に移動中であれば、認識した平行点の方向に第1の方向を補正し、第2の方向に移動中であれば、認識した平行点の方向に第2の方向を補正する)。
As described above, the detection distances of the optical distance measuring sensors 2f and 2g continuously change below a preset distance (set distance M: for example, 15 cm), and the distance difference Ld is also set to a preset distance difference (for example, 3 cm). ) In the following and a predetermined distance (set distance N: 10 cm, for example) in a constant state, the control means 5 determines that the detected wall is a flat surface without unevenness, and further, at a place where it has stopped. The movement direction of the main body is corrected after judging the flatness of the wall (presence of unevenness) from the history of the detection distance from the wall when the main body 1 is rotated clockwise and counterclockwise (main body 1). Is moving in the first direction, the first direction is corrected in the direction of the recognized parallel point, and if moving in the second direction, the second direction is corrected in the direction of the recognized parallel point. to correct).

以上のように、本実施の形態においては、直進中に本体1側面に検知した壁の平面性(凹凸の有無)を確認し、所定の条件に合致すれば、その地点で本体1を時計方向、反時計方向に回転させ、回転動作時の側面の障害物検知手段2の検知距離の連続性を判断して壁面及び壁面の平面性の判断を行い、障害物検知手段2により本体1側面に検知した障害物との距離変化を基に本体移動方向の補正値を求めて移動方向の補正を行うことにより、方向補正に不適な間違った壁で方向ズレ補正処理を行う事を防ぐことができる。また、補正を行う場所での壁の平面性の判断を行うことにより、方向補正に不適な間違った壁で方向ズレ補正処理を行う事を防ぎ、本体1の移動精度の低下及び、清掃残りの発生を防ぐことも可能にできる。   As described above, in the present embodiment, the flatness of the wall (presence of unevenness) detected on the side surface of the main body 1 during straight traveling is confirmed, and if the predetermined condition is met, the main body 1 is rotated clockwise at that point. Rotate counterclockwise, determine the continuity of the detection distance of the obstacle detection means 2 on the side surface during the rotation operation, and determine the wall surface and the flatness of the wall surface. By correcting the movement direction by obtaining a correction value in the main body movement direction based on the distance change with the detected obstacle, it is possible to prevent the direction deviation correction process from being performed on the wrong wall that is inappropriate for the direction correction. . Further, by determining the flatness of the wall at the place where correction is performed, it is possible to prevent the direction deviation correction process from being performed on the wrong wall that is inappropriate for the direction correction, and to reduce the movement accuracy of the main body 1 and the remaining cleaning. It is also possible to prevent the occurrence.

尚、本実施の形態4では制御手段5は本体1を直進中に本体1側面に検知した壁に対して、平面性の確認後、本体1を時計方向と、反時計方向に回転させその時の障害物検知手段2の測定距離の変化から再度、壁面の平面性を確認して方向合わせを行うとしたが、これに限定されるものではなく、実施の形態1と同様に、本体1前方に壁13を検知して本体1を方向転換した後、時計方向と、反時計方向に回転させ、障害物検知手段2の距離検知により同様の方向合わせ動作を行っても良い。   In the fourth embodiment, the control means 5 rotates the main body 1 clockwise and counterclockwise after confirming the flatness with respect to the wall detected on the side surface of the main body 1 while the main body 1 is traveling straight. From the change in the measurement distance of the obstacle detection means 2, the flatness of the wall surface is confirmed and the direction is adjusted. However, the present invention is not limited to this. After detecting the wall 13 and changing the direction of the main body 1, the same direction alignment operation may be performed by rotating the clockwise and counterclockwise directions and detecting the distance of the obstacle detection means 2.

また、本体1を直進中に本体1側面に検知した壁に対して、障害物検知手段2の検知距離より壁の連続性を判断して壁面及び壁面の凹凸の判断後、凹凸の有る平面な壁でないと判断した場合には、そのままで直進を行うとしたが、平面な壁でない場合には平行合わせに不適な壁13と判断し、本体1を所定距離(例えば20cm)移動させ、再度本体1を時計方向及び反時計方向に回転させ凹凸の判定を行うようにしても同様な効果を有するものである。   Further, with respect to the wall detected on the side surface of the main body 1 while the main body 1 is traveling straight, the wall continuity is determined from the detection distance of the obstacle detection means 2 and the wall surface and the unevenness of the wall surface are determined. If it is determined that it is not a wall, it is assumed that the straight movement is performed as it is. However, if it is not a flat wall, it is determined that the wall 13 is not suitable for parallel alignment, the main body 1 is moved by a predetermined distance (for example, 20 cm), Even if 1 is rotated clockwise and counterclockwise to determine the unevenness, the same effect is obtained.

(実施の形態5)
次に、本発明の実施の形態5における自律走行装置について説明する。
(Embodiment 5)
Next, the autonomous mobile device in Embodiment 5 of the present invention will be described.

本実施の形態では、実施の形態1、2で説明した各手段は、CPU(またはマイコン)、RAM、ROM、記憶装置、I/Oなどを備えた電気・情報機器、コンピュータ、サーバーなどのハードリソースを協働させるプログラムの形態で実施させるものである。   In the present embodiment, each means described in the first and second embodiments includes hardware such as a CPU (or microcomputer), an RAM / ROM, a storage device, an electrical / information device including an I / O, a computer, a server, and the like. It is implemented in the form of a program for cooperating resources.

本プログラムの形態であれば、磁気メディアや光メディアなどの記録媒体に記録したりインターネットなどの通信回路を用いて配信したりすることで新しい機能の配布・更新やそのインストール作業が簡単にできる。   In the form of this program, it is possible to easily distribute and update new functions and install them by recording them on a recording medium such as magnetic media or optical media, or distributing them using a communication circuit such as the Internet.

以上のように、本発明にかかる自律走行装置およびこの装置を機能させるためのプログラムは、本体が移動領域内を移動中に本体移動方向のズレを精度良く補正できるため、自走式掃除機や監視用ロボット、その他のロボットなどに適用できる。   As described above, the autonomous traveling device according to the present invention and the program for causing the device to function can correct the displacement of the main body moving direction with high accuracy while the main body is moving in the moving region. It can be applied to surveillance robots and other robots.

本発明の実施の形態1に係る自律走行装置の構成を示すブロック構成図The block block diagram which shows the structure of the autonomous traveling apparatus which concerns on Embodiment 1 of this invention. 同自立走行装置の障害物検知手段2の詳細を説明する図The figure explaining the detail of the obstacle detection means 2 of the self-supporting traveling apparatus 同自律走行装置の動作フロー図Operation flow diagram of the autonomous traveling device 同自律走行装置の動作を説明する図The figure explaining operation of the autonomous running device 同自律走行装置の光測距センサの検知特性を示す図The figure which shows the detection characteristic of the optical ranging sensor of the autonomous running device 同自律走行装置の移動軌跡を示す図The figure which shows the movement locus of the autonomous running device 同自律走行装置の移動方向に誤差が生じた時の移動軌跡を示す図The figure which shows the movement locus when an error arises in the movement direction of the autonomous traveling device 同自律走行装置の内部移動動作時の動作フロー図Operation flow diagram during internal movement of the autonomous traveling device 同自律走行装置の方向補正動作を説明する図The figure explaining direction correction operation of the autonomous traveling device 本発明の実施の形態2に係る自律走行装置の障害物検知手段の詳細構成説明図Detailed configuration explanatory diagram of the obstacle detection means of the autonomous mobile device according to the second embodiment of the present invention 同自律走行装置の動作を説明する図The figure explaining operation of the autonomous running device 同自律走行装置の動作フロー図Operation flow diagram of the autonomous traveling device 本発明の実施の形態3に係る自律走行装置の動作フロー図Operation flow diagram of autonomous mobile device according to Embodiment 3 of the present invention 同自律走行装置の動作の説明図Explanatory drawing of the operation of the autonomous traveling device 同自律走行装置の動作の説明図Explanatory drawing of the operation of the autonomous traveling device 同自律走行装置の光測距センサの検知特性を示す図The figure which shows the detection characteristic of the optical ranging sensor of the autonomous running device 同自律走行装置の光測距センサの検知特性を示す図The figure which shows the detection characteristic of the optical ranging sensor of the autonomous running device 本発明の実施の形態4に係る自律走行装置の動作フロー図Operation flow diagram of autonomous mobile device according to Embodiment 4 of the present invention 同自律走行装置の光測距センサの検知特性を示す図The figure which shows the detection characteristic of the optical ranging sensor of the autonomous running device

符号の説明Explanation of symbols

1 本体
2 障害物検知手段
3 方向検知手段
4 距離認識手段
5 制御手段
6 位置認識手段
7 走行手段
8 緩衝手段
9 駆動輪
10 従輪
11 設定入力手段
12 計時手段
DESCRIPTION OF SYMBOLS 1 Main body 2 Obstacle detection means 3 Direction detection means 4 Distance recognition means 5 Control means 6 Position recognition means 7 Traveling means 8 Buffer means 9 Drive wheel 10 Sub-wheel 11 Setting input means 12 Timing means

Claims (8)

本体の前面と側面に設置され障害物の有無または前記障害物までの距離を検知する障害物検知手段と、前記本体の移動方向を検知する方向検知手段と、前記本体を移動走行させる走行手段と、前記各検知手段の出力信号に基づいて前記走行手段を制御する制御手段とを備え、前記制御手段は、前記方向検知手段の出力を補正して本体移動方向の補正を行う際に壁面との角度に応じて方向ズレ補正処理の実行か否かの判断を動作経過時間か方向転換の回数のどちらかの早いほうの条件成立で行う自律走行装置。 Obstacle detection means installed on the front and side of the main body for detecting the presence or absence of an obstacle or the distance to the obstacle, direction detection means for detecting the movement direction of the main body, and traveling means for moving the main body to move Control means for controlling the travel means based on the output signals of the detection means, and the control means corrects the output of the direction detection means and corrects the movement direction of the main body. An autonomous traveling device that determines whether or not to execute a direction deviation correction process according to an angle when the operation elapsed time or the number of direction changes is satisfied, whichever is earlier. 制御手段は、本体が移動領域を走行中に障害物検知手段で検知した前方の壁面を基に本体移動方向の補正を行う請求項1に記載の自律走行装置。 The autonomous traveling device according to claim 1, wherein the control means corrects the moving direction of the main body based on a front wall surface detected by the obstacle detecting means while the main body is traveling in the moving region. 制御手段は、本体移動方向の補正後、本体が直進中に本体側面に検知した壁との距離の変化に基づき、本体移動方向の補正角度を検証する請求項1または2に記載の自律走行装置。 The autonomous traveling device according to claim 1 or 2, wherein the control means verifies the correction angle in the main body moving direction based on a change in the distance to the wall detected on the side surface of the main body while the main body moves straight after correction of the main body moving direction. . 制御手段は、本体移動方向の補正実施の可否判定に利用する壁面の角度の判定値を、動作経過時間に応じて変更する請求項1から3の何れかに記載の自律走行装置。 The autonomous traveling device according to any one of claims 1 to 3, wherein the control unit changes a determination value of the angle of the wall surface used for determining whether or not correction of the main body moving direction can be performed according to the operation elapsed time. 制御手段は、本体が直進中に本体側面に検知した壁との距離の変化に基づき、本体移動方向の補正角度を検証後、側面の壁と予め設定された角度範囲内に本体の移動方向がない場合に補正動作をやり直す請求項1から4の何れかに記載の自律走行装置。 The control means, after verifying the correction angle of the main body moving direction based on the change in the distance between the main body and the wall detected on the side surface of the main body, the main body moving direction is within a preset angle range with the side wall. The autonomous traveling device according to any one of claims 1 to 4, wherein the correction operation is performed again when there is not. 制御手段は、本体を時計方向或いは反時計方向に回転させ、障害物検知手段により本体側面に検知した障害物との距離変化を基に本体移動方向の補正を行う請求項1から5の何れかに記載の自律走行装置。 6. The control unit according to claim 1, wherein the control unit rotates the main body in a clockwise direction or a counterclockwise direction, and corrects the main body moving direction based on a change in distance from the obstacle detected on the side surface of the main body by the obstacle detection unit. The autonomous traveling device described in 1. 制御手段は、本体側面の障害物検知手段で検知する検知距離の連続性を判断して壁面及び壁面の凹凸の判断を行う請求項1から5の何れかに記載の自律走行装置。 The autonomous traveling device according to any one of claims 1 to 5, wherein the control unit determines the continuity of the detection distance detected by the obstacle detection unit on the side surface of the main body to determine the wall surface and the unevenness of the wall surface. 請求項1〜7のいずれか1項に記載の自律走行装置の手段の全てもしくは一部としてコンピュータに機能させるためのプログラム。 The program for making a computer function as all or one part of the means of the autonomous running apparatus of any one of Claims 1-7.
JP2008112338A 2008-04-23 2008-04-23 Autonomous traveling device and program for making the same device function Pending JP2009265801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112338A JP2009265801A (en) 2008-04-23 2008-04-23 Autonomous traveling device and program for making the same device function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112338A JP2009265801A (en) 2008-04-23 2008-04-23 Autonomous traveling device and program for making the same device function

Publications (1)

Publication Number Publication Date
JP2009265801A true JP2009265801A (en) 2009-11-12

Family

ID=41391605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112338A Pending JP2009265801A (en) 2008-04-23 2008-04-23 Autonomous traveling device and program for making the same device function

Country Status (1)

Country Link
JP (1) JP2009265801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032655A (en) * 2010-12-30 2016-03-10 アイロボット コーポレイション Coverage robot navigation
CN107765697A (en) * 2016-08-23 2018-03-06 苏州宝时得电动工具有限公司 From mobile device and from mobile device control method
JP2020501282A (en) * 2016-12-29 2020-01-16 珠海市一微半導体有限公司Amicro Semiconductor Co., Ltd. Path planning method for intelligent robot
JP2020119599A (en) * 2020-04-20 2020-08-06 ヤンマーパワーテクノロジー株式会社 Autonomous travel system
JP6951539B1 (en) * 2020-12-07 2021-10-20 株式会社ユアテック Self-propelled equipment, measurement methods, and programs

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032655A (en) * 2010-12-30 2016-03-10 アイロボット コーポレイション Coverage robot navigation
CN107765697A (en) * 2016-08-23 2018-03-06 苏州宝时得电动工具有限公司 From mobile device and from mobile device control method
CN107765697B (en) * 2016-08-23 2023-11-03 苏州宝时得电动工具有限公司 Self-moving device and self-moving device control method
JP2020501282A (en) * 2016-12-29 2020-01-16 珠海市一微半導体有限公司Amicro Semiconductor Co., Ltd. Path planning method for intelligent robot
US11022976B2 (en) * 2016-12-29 2021-06-01 Amicro Semiconductor Corporation Path planning method of intelligent robot
JP2020119599A (en) * 2020-04-20 2020-08-06 ヤンマーパワーテクノロジー株式会社 Autonomous travel system
JP7083445B2 (en) 2020-04-20 2022-06-13 ヤンマーパワーテクノロジー株式会社 Autonomous driving system
JP6951539B1 (en) * 2020-12-07 2021-10-20 株式会社ユアテック Self-propelled equipment, measurement methods, and programs
JP2022090251A (en) * 2020-12-07 2022-06-17 株式会社ユアテック Self-propelled device, measurement method, and program

Similar Documents

Publication Publication Date Title
JP4142021B2 (en) Coordinate correction method for robot cleaner and robot cleaner system using the same
JP2007213180A (en) Movable body system
JP2008242908A (en) Autonomous driving device and program for making the device function
JP2009265801A (en) Autonomous traveling device and program for making the same device function
CN108137040B (en) Parking mode determination device
US20060238156A1 (en) Self-moving robot capable of correcting movement errors and method for correcting movement errors of the same
JP2017088112A (en) Steering control device for vehicle
JP2007071536A (en) Object detection device and object detection method
KR101945734B1 (en) System for robot and method for driving the same
JPH10240343A (en) Autonomously traveling vehicle
JP6289546B2 (en) Parking assistance device
WO2014125810A1 (en) Obstruction detection device
JPH02103413A (en) Apparatus for detecting steering position of self-propelled vehicle
WO2016047201A1 (en) Obstacle determination device and obstacle determination method
JP5906432B2 (en) Ultrasonic sensor system
JP2006193011A (en) Parking supporting device
JP2017151726A (en) Collision predicting device
JP5918597B2 (en) Parking space detector
US8014900B2 (en) System and method for detecting traveling state
JP4645542B2 (en) Parking space detection device
JP2007219960A (en) Position deviation detection device
JP2009104444A (en) Autonomous traveling device and program
JP2012247400A (en) Autonomous mobile system, method of controlling the same, and program
WO2019205032A1 (en) Positioning method, device, robot, system, and storage medium
JP2009157558A (en) Autonomous traveling device and program for making the device functionalize