JP2009265199A - Wavelength variable filter - Google Patents

Wavelength variable filter Download PDF

Info

Publication number
JP2009265199A
JP2009265199A JP2008111915A JP2008111915A JP2009265199A JP 2009265199 A JP2009265199 A JP 2009265199A JP 2008111915 A JP2008111915 A JP 2008111915A JP 2008111915 A JP2008111915 A JP 2008111915A JP 2009265199 A JP2009265199 A JP 2009265199A
Authority
JP
Japan
Prior art keywords
polarizer
wavelength
light
phase difference
retardation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008111915A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nakasendo
和之 中仙道
Mitsuru Fujita
満 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2008111915A priority Critical patent/JP2009265199A/en
Publication of JP2009265199A publication Critical patent/JP2009265199A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength variable filter equivalent to a multistage-structured Lyot filter, in which utility efficiency of light is high, an increase in the length/size of equipment is suppressed by decreasing the number of components, sharp and narrow-band characteristics of transmitting spectrum can be demonstrated in a wide wavelength band including short wavelength band. <P>SOLUTION: The wavelength filter 31 has first and second Babinet-Soleil phase plates 32 and 33 composed of two wedge-shaped double refraction plates, respectively. The inside double refraction plates 35 and 37 of both Babinet-Soleil phase plates are laminated with an incident side polarizer 38, an inside reflection film 40 and an emission side polarizer 39 interposed therebetween, and outside polarizers 42 to 44 and 46 to 48 and outside reflection films 45 and 49 are arranged on the respective principal surfaces of outer double refraction plates 34 and 36 along the advance direction of light beam. Incident light L1 is spectroscopically branched into s-polarized light and p-polarized light by an incident side polarizer, which pass through the inside of the first and the second Babinet-Soleil phase plates, respectively, while being multiply-reflected, combine with each other by an emission side polarizer and emitted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、透過する光の波長を特定の値及び/又は範囲に固定して又は可変的に制御するための波長可変フィルタに関する。   The present invention relates to a wavelength tunable filter for controlling or variably controlling the wavelength of transmitted light at a specific value and / or range.

従来、所望の波長領域の光を透過するために様々なバンドパスフィルタが使用されている。例えば、複屈折板を用いて狭帯域の光のみを透過させるバンドパスフィルタとしてリオフィルタが知られている(例えば、特許文献1〜3を参照)。図10は、リオフィルタの基本的構成を示している。同図に示すように、リオフィルタ1は、透過軸の平行な偏光子2a〜2dの間にそれぞれ複屈折板3a〜3cを、それらの結晶光学軸3a1〜3c1が前記偏光子の透過軸2a1〜2d1と45°をなすように配置する。複屈折板3a〜3cには、方解石や水晶等の一軸性結晶が用いられ、その厚さdi は2i−1d(i=1〜3)、即ちd、2d、4dとなるように構成される。特許文献1では、リオフィルタが、背面に反射鏡を配設した液晶表示パネルにおいてRGBの三原色の色純度を高くするために、該液晶表示パネルの表面に積層されている。このリオフィルタを構成するプラスチックフィルムは、液晶表示パネルの背面側から反射される光の透過スペクトルのピークがRGBに対応するように、その光学位相差を決定する。 Conventionally, various band-pass filters are used to transmit light in a desired wavelength region. For example, a rio filter is known as a bandpass filter that transmits only narrow-band light using a birefringent plate (see, for example, Patent Documents 1 to 3). FIG. 10 shows a basic configuration of the Rio filter. As shown in the figure, the Rio filter 1 includes birefringent plates 3a to 3c between polarizers 2a to 2d having parallel transmission axes, and crystal optical axes 3a1 to 3c1 are transmission axes 2a1 of the polarizers. Arranged at 45 ° with 2d1. The birefringent plates 3a to 3c are made of uniaxial crystals such as calcite and quartz, and have a thickness di of 2 i-1 d (i = 1 to 3), that is, d, 2d, and 4d. Is done. In Patent Document 1, a rio filter is stacked on the surface of a liquid crystal display panel in order to increase the color purity of the three primary colors of RGB in a liquid crystal display panel having a reflecting mirror on the back. The plastic film constituting the rio filter determines its optical phase difference so that the peak of the transmission spectrum of light reflected from the back side of the liquid crystal display panel corresponds to RGB.

上記リオフィルタは、使用する複屈折板によって透過スペクトルが特定の波長に固定される。そこで、複屈折板に代えて液晶セルを2枚の偏光子の間に挟んだ波長可変型オプティカル・バンドパスフィルタが知られている(例えば、特許文献2,3を参照)。このバンドパスフィルタの構成を図11に示す。同図において、バンドパスフィルタ11は、偏光子12a〜12dに挟まれた液晶セル13a〜13cへの印加電圧を適当に設定することにより、透過スペクトル波長を変化させる。特に図11のバンドパスフィルタは、透過軸12a1、12b1を直交させて配置した所謂クロスニコルの偏光子12a、12b間の液晶セル13aと、透過軸12b1〜12d1を平行に配置した所謂平行ニコルの偏光子12b〜12dで挟んだ2枚の液晶セル13b、13cとを組み合わせることにより、可視領域に残る2つの単色光のうち一方を除去するように構成されている。   The rio filter has its transmission spectrum fixed at a specific wavelength by the birefringent plate used. Therefore, a wavelength tunable optical bandpass filter in which a liquid crystal cell is sandwiched between two polarizers instead of a birefringent plate is known (see, for example, Patent Documents 2 and 3). The configuration of this bandpass filter is shown in FIG. In the figure, the band pass filter 11 changes the transmission spectrum wavelength by appropriately setting the voltage applied to the liquid crystal cells 13a to 13c sandwiched between the polarizers 12a to 12d. In particular, the band-pass filter shown in FIG. 11 is a so-called parallel Nicol liquid crystal cell 13a between so-called crossed Nicols polarizers 12a and 12b arranged so that transmission axes 12a1 and 12b1 are orthogonal to each other, and transmission axes 12b1 to 12d1 arranged in parallel. By combining the two liquid crystal cells 13b and 13c sandwiched between the polarizers 12b to 12d, one of the two monochromatic lights remaining in the visible region is removed.

更に、図11と同様の構成において、偏光子の間に液晶セルと位相差フィルムとからなる複合層を挟んだ波長可変フィルタが知られている(例えば、特許文献4を参照)。この波長可変フィルタの構成を図12に示す。同図において、波長可変フィルタ21は、偏光子22a〜22dに挟まれた各液晶セル23a〜23cにそれぞれ位相差フィルム24a〜24cが重ねて配置されている。この位相差フィルムによって、液晶セルのセル厚を必要最小限に抑え、それによるリタデーション値の減少を補充し、液晶の応答性低下を回避しつつ、狭半値幅の透過率ピークを発生させる。また、液晶セルのセル厚を透過順にd、2d、1.5dに設定することにより、1つの電圧印加装置を共有して全液晶セルに同じ制御電圧を印加し、透過スペクトルの波長を調整することができる。   Furthermore, a wavelength tunable filter having a configuration similar to that in FIG. 11 is known in which a composite layer composed of a liquid crystal cell and a retardation film is sandwiched between polarizers (see, for example, Patent Document 4). The configuration of this tunable filter is shown in FIG. In the figure, the wavelength tunable filter 21 is configured such that retardation films 24a to 24c are overlapped on liquid crystal cells 23a to 23c sandwiched between polarizers 22a to 22d, respectively. This retardation film suppresses the cell thickness of the liquid crystal cell to the necessary minimum, supplements the decrease in retardation value thereby, and generates a transmittance peak with a narrow half-value width while avoiding a decrease in the response of the liquid crystal. Also, by setting the cell thickness of the liquid crystal cell to d, 2d, and 1.5d in the order of transmission, the same control voltage is applied to all the liquid crystal cells by sharing one voltage application device, and the wavelength of the transmission spectrum is adjusted. be able to.

また、位相差を調整できる位相素子として、バビネソレイユ補償板が知られている(例えば、特許文献5を参照)。バビネソレイユ補償板は、光学軸が平行な2枚の楔状複屈折板からなる複屈折素子とそれらとは光学軸方向が直交する平行平面板とを有し、楔状複屈折板を互いに摺動させて複屈折素子の厚さを調整することにより、位相差を制御することができる。一般にバビネソレイユ補償板は、例えば光磁気記録の再生において楕円偏光を直線偏光に戻したり所望の位相差を与えるため、複屈折層を有する光学材料のギャップ厚を測定するために、又は液晶表示装置において液晶セルの表示の着色を解消するための位相差補償素子として使用されている(例えば、特許文献6〜8を参照)。   Further, as a phase element that can adjust the phase difference, a Babinet Soleil compensator is known (see, for example, Patent Document 5). The Babinet Soleil compensator has a birefringent element composed of two wedge-shaped birefringent plates whose optical axes are parallel to each other, and a parallel plane plate perpendicular to the optical axis direction, and slides the wedge-shaped birefringent plates relative to each other. Thus, the phase difference can be controlled by adjusting the thickness of the birefringent element. In general, a Babinet Soleil compensator is used for measuring the gap thickness of an optical material having a birefringent layer, for example, to return elliptically polarized light to linearly polarized light or to provide a desired phase difference in reproduction of magneto-optical recording, or for a liquid crystal display device. Is used as a phase difference compensation element for eliminating the coloring of the display of the liquid crystal cell (see, for example, Patent Documents 6 to 8).

特許第3000669号公報Japanese Patent No. 3000669 特許第3102012号公報Japanese Patent No. 3102012 特開2000−267127号公報JP 2000-267127 A 特開2005−115208号公報JP 2005-115208 A 特開昭63−113838号公報JP-A-63-113838 特開平3−40252号公報JP-A-3-40252 特開平9−5040号公報Japanese Patent Laid-Open No. 9-5040 実開平4−9016号公報Japanese Utility Model Publication 4-9016

しかしながら、リオフィルタ及び上述した従来の波長可変フィルタは、入射光を最初に偏光板で偏光する必要があるため、入射光量の半分が最初の偏光板で吸収又は反射されて失われ、光の利用効率が非常に低い。そこで出射光量を増すために光源の出力を大きくすると、光源ランプの寿命が短くなってコストが増大するという問題が生じる。更に、入射側の最初の偏光板によって、出射光の偏光方向が制限されるため、フィルタの利用の自由度が低い。   However, since the rio filter and the conventional wavelength tunable filter described above require that incident light be first polarized by the polarizing plate, half of the incident light amount is lost by being absorbed or reflected by the first polarizing plate, and the use of light. The efficiency is very low. Therefore, when the output of the light source is increased in order to increase the amount of emitted light, there is a problem that the life of the light source lamp is shortened and the cost is increased. Furthermore, since the polarization direction of the emitted light is limited by the first polarizing plate on the incident side, the degree of freedom in using the filter is low.

また、上述した従来の波長フィルタにおいて、2つの偏光子及びその間に挟まれた複屈折板又は液晶セル等の位相子を1ブロックとして、これを光路に沿って配置した多段構成は、透過スペクトルをより急峻にして狭帯域な透過特性が得られる反面、各構成要素が光軸に沿って直列に配置されるので、部品点数が多くなる。そのために、フィルタ全体を長大化・大型化させるという問題がある。特に多段構成の可変波長フィルタは、仕様の異なる複数の液晶セルが必要になるので、コストが増加する。   Further, in the above-described conventional wavelength filter, a multistage configuration in which two polarizers and a phase shifter such as a birefringent plate or a liquid crystal cell sandwiched between them are used as one block, and this is arranged along an optical path, a transmission spectrum is obtained. While a sharper and narrow band transmission characteristic can be obtained, each component is arranged in series along the optical axis, which increases the number of components. Therefore, there is a problem that the entire filter is lengthened and enlarged. In particular, a multi-stage variable wavelength filter requires a plurality of liquid crystal cells having different specifications, which increases costs.

また、液晶セルは、ITO(インジウム錫酸化物)膜等での反射により透過光量に損失を生じることに加えて、特に紫外域〜青色の短波長域の光を吸収する性質がある。そのため、上述したように液晶セルを用いた波長可変フィルタは、短波長域での透過率が大幅に低下するという問題がある。   Further, the liquid crystal cell has a property of absorbing light in a short wavelength range from ultraviolet to blue in addition to causing a loss in transmitted light amount due to reflection on an ITO (indium tin oxide) film or the like. Therefore, as described above, the wavelength tunable filter using the liquid crystal cell has a problem that the transmittance in a short wavelength region is significantly reduced.

更に、複数の液晶セルへの印加電圧を精密に制御するためには、液晶セル毎に独立した駆動制御回路が必要で、装置全体の構成及び制御が複雑になるという問題を生じる。しかも、液晶セルは、耐熱性が低く、透過波面収差が大きい等の問題がある。また、液晶セルは、その屈折率の印加電圧に対する応答が遅いため、印加電圧を連続的に変化させて透過波長を連続的に変化させることは、実用的に困難な場合がある。   Furthermore, in order to precisely control the voltage applied to the plurality of liquid crystal cells, an independent drive control circuit is required for each liquid crystal cell, which causes a problem that the configuration and control of the entire apparatus are complicated. Moreover, the liquid crystal cell has problems such as low heat resistance and large transmitted wavefront aberration. Moreover, since the liquid crystal cell has a slow response to the applied voltage of the refractive index, it may be practically difficult to continuously change the transmission wavelength by changing the applied voltage continuously.

しかも、従来の波長フィルタは、偏光子として位相差フィルムのような吸収型偏光子を使用するので、光学的損失が大きい。これに対し、ワイヤグリット偏光子やフォトニック結晶偏光子、輝度向上フィルム等の反射型偏光子は、一般に低損失かつ広帯域な光学特性を有し、耐熱性に優れた特徴を有する。しかしながら、従来の各光学要素を光路に沿って直列に配置した多段構成の波長フィルタに反射型偏光子を用いると、不要な反射光が生じて迷光となるので、良好な光学特性を得られない。   In addition, the conventional wavelength filter uses an absorption polarizer such as a retardation film as the polarizer, and therefore has a large optical loss. On the other hand, reflective polarizers such as wire grid polarizers, photonic crystal polarizers, and brightness enhancement films generally have low loss and broadband optical characteristics, and are excellent in heat resistance. However, if a reflective polarizer is used in a wavelength filter having a multi-stage configuration in which conventional optical elements are arranged in series along the optical path, unnecessary reflected light is generated and stray light cannot be obtained. .

本願発明者らは、バビネソレイユ補償板が水晶等の透過率が高い材料で形成され、複屈折素子の厚さを機械的に制御して位相差を調整するので、耐熱性が高く、短波長領域でも透過効率が高く、応答性が良い等の特徴に着目した。そして、上述した従来の問題点に鑑み、バビネソレイユ補償板を波長可変フィルタに適用することについて様々な検討を加えた結果、本発明を案出するに至ったものである。   The inventors of the present application have a high heat resistance and a short wavelength because the Babinet Soleil compensator is formed of a material having high transmittance such as quartz and adjusts the phase difference by mechanically controlling the thickness of the birefringent element. We focused on features such as high transmission efficiency and good responsiveness even in the region. In view of the above-described conventional problems, the present invention has been devised as a result of various studies on applying a Babinet Soleil compensation plate to a wavelength tunable filter.

そこで本発明の目的は、光の利用効率が高く、部品点数を少なくでき、それにより装置全体の長大化・大型化を抑制でき、しかも多段構造のリオフィルタと同等に、透過スペクトルが急峻で狭帯域特性を発揮し得ると共に、バビネソレイユ補償板を利用することにより、紫外域〜青色の短波長域を含む広い波長域の光について、より簡単かつ高精度に透過波長を可変制御し得る波長可変フィルタを実現することにある。   Accordingly, an object of the present invention is to provide a high light utilization efficiency, to reduce the number of parts, thereby suppressing an increase in the length and size of the entire apparatus, and a transmission spectrum that is steep and narrow as in a multistage rio filter. Wavelength tunable that can control the transmission wavelength more easily and with high accuracy for light in a wide wavelength range including the short wavelength range from ultraviolet to blue by using the Babinet Soleil compensator while exhibiting band characteristics To implement a filter.

本発明によれば、上記目的を達成するために、第1及び第2位相差素子と、入射側偏光子と、第1及び第2外側偏光子と、内側反射膜と、第1及び第2外側反射膜とを備え、第1及び第2位相差素子がそれぞれ、一端から他端に向けて厚さを薄くした楔状をなしかつ互いに対向させて配置され、各位相差素子の厚さを変化させるように相対的に変位可能な2枚の位相差板からなり、第1及び第2位相差素子がそれらの間に入射側偏光子と内側反射膜とを挟んで積層され、第1位相差素子の外側主面に第1外側偏光子と第1外側反射膜とが配置され、第2位相差素子の外側主面に第2外側偏光子と第2外側反射膜とが配置され、第1位相差素子に入射した光が入射側偏光子により反射光と透過光とに分光され、その反射光が、第1位相差素子内部を第1外側偏光子又は第1外側反射膜と内側反射膜とによって位相差素子の主面の法線方向に関して一定の角度をもって多重反射して透過し、透過光が、第2位相差素子内部を第2外側偏光子又は第2外側反射膜と内側反射膜とによって位相差素子の主面の法線方向に関して一定の角度をもって多重反射して透過するようにした波長可変フィルタが提供される。   According to the present invention, in order to achieve the above object, the first and second retardation elements, the incident side polarizer, the first and second outer polarizers, the inner reflection film, the first and second An outer reflection film, and the first and second phase difference elements are each arranged in a wedge shape with a thickness decreasing from one end to the other end and opposed to each other to change the thickness of each phase difference element The first and second phase difference elements are laminated with the incident-side polarizer and the inner reflection film sandwiched between them, and the first phase difference element The first outer polarizer and the first outer reflective film are disposed on the outer principal surface of the second retardation element, and the second outer polarizer and the second outer reflective film are disposed on the outer principal surface of the second retardation element. The light incident on the phase difference element is split into reflected light and transmitted light by the incident side polarizer, and the reflected light is reflected in the first phase difference element. The first outer polarizer or the first outer reflective film and the inner reflective film are multiple-reflected and transmitted at a certain angle with respect to the normal direction of the main surface of the phase difference element, and the transmitted light is transmitted through the second phase difference element. Is provided with a second outer polarizer or a second outer reflecting film and a second outer reflecting film and an inner reflecting film so as to allow multiple reflection at a certain angle with respect to the normal direction of the main surface of the phase difference element.

入射光が入射側偏光子により分光され、各分光がそれぞれ第1位相差素子及び第2位相差素子を透過して出射するので、高い光の利用効率が得られる。更に、少なくとも透過率が向上した分は、光源の出力を下げても同じ光量が維持確保されるので、光源ランプの寿命を従来よりも延長させることができる。そして、第1及び第2位相差素子において、それぞれの内部を多重反射しながら透過する光の光路に沿って隣接する2つの偏光子間の位相差は、該2つの偏光子間の光路長によって決定され、該位相差に対応して透過スペクトルのピーク波長が設定される。位相差素子は、それを構成する2枚の位相差板、即ち複屈折板を相対的に移動させて、その光学的厚さを変化させることにより、透過する光の波長を調整することができる。従って、各位相差素子について、従来のリオフィルタと同様のバンドパスフィルタとして透過スペクトル波長を自在に変化させ得る波長可変フィルタが実現される。   Incident light is split by the incident-side polarizer, and each of the split lights is transmitted through the first phase difference element and the second phase difference element, so that high light utilization efficiency can be obtained. Furthermore, since the same light quantity is maintained and secured even if the output of the light source is lowered, at least the amount of the improvement in the transmittance can extend the life of the light source lamp as compared with the conventional case. In the first and second retardation elements, the phase difference between the two polarizers adjacent to each other along the optical path of the light that passes through the respective internal reflections is determined by the optical path length between the two polarizers. The peak wavelength of the transmission spectrum is set corresponding to the phase difference. The retardation element can adjust the wavelength of light to be transmitted by relatively moving the two retardation plates constituting the retardation element, that is, the birefringence plate, and changing the optical thickness thereof. . Therefore, for each phase difference element, a wavelength tunable filter capable of freely changing the transmission spectrum wavelength is realized as a bandpass filter similar to the conventional rio filter.

また、多段構造のリオフィルタと同等の構成にする場合に、位相差素子の数を増やす必要が無く、それぞれ共通の第1及び第2位相差素子の外側主面に配置する第1及び第2外側偏光子の数を増やすだけでよいから、従来よりも部品点数を大幅に少なくすることができる。従って、装置全体の長大化・大型化及びコストの増加を抑制することができる。特に、部品点数が従来よりも格段に減少するので、製造過程や使用後の廃棄による環境への影響が少ないという点でも、極めて有利である。   In addition, in the case of a configuration equivalent to a multistage rio filter, it is not necessary to increase the number of phase difference elements, and the first and second elements arranged on the outer main surfaces of the common first and second phase difference elements, respectively. Since it is only necessary to increase the number of outer polarizers, the number of parts can be significantly reduced as compared with the conventional case. Therefore, it is possible to suppress an increase in the length and size of the entire apparatus and an increase in cost. In particular, since the number of parts is significantly reduced as compared with the prior art, it is extremely advantageous in that the environmental impact of the manufacturing process and disposal after use is small.

更に、水晶等からなる複屈折板を用いた位相差素子は、紫外域〜青色の短波長域でも高い透過率を発揮するので、短波長域を含む広い波長域の光について、透過波長を可変制御し得る波長可変フィルタを実現することができる。しかも、位相差素子は耐熱性が優れているので、液晶セルを用いた従来技術に比して、波長可変フィルタの耐熱性が大幅に向上する。   Furthermore, a retardation element using a birefringent plate made of quartz or the like exhibits high transmittance even in the short wavelength range from ultraviolet to blue, so that the transmission wavelength can be varied for light in a wide wavelength range including the short wavelength range. A tunable filter that can be controlled can be realized. In addition, since the phase difference element is excellent in heat resistance, the heat resistance of the wavelength tunable filter is greatly improved as compared with the conventional technique using a liquid crystal cell.

或る実施例では、前記波長可変フィルタが、積層した第1及び第2位相差素子に挟まれた出射側偏光子を更に有し、第1位相差素子内部を多重反射した光と第2位相差素子内部を多重反射した光とが、出射側偏光子により合成されて第1及び第2位相子から出射することにより、入射光量に比して損失の少ない光量の出射光が得られる。   In one embodiment, the wavelength tunable filter further includes an output-side polarizer sandwiched between the stacked first and second phase difference elements, and the second position of the light reflected by the multiple reflection inside the first phase difference element. The light that has undergone multiple reflection inside the phase difference element is combined by the output-side polarizer and emitted from the first and second phase shifters, so that emitted light with a light amount with less loss than the incident light amount can be obtained.

別の実施例では、第1位相差素子内部を透過する光の光路に沿って隣接する2つの偏光子間の位相差Γ1iが、該光路を透過する光の波長に対してΓ1i=2i−1×2π、(但し、i=1〜n、n:2以上の整数)の関係を満足し、かつ第2位相差素子内部を透過する光の光路に沿って隣接する2つの偏光子間の位相差Γ2iが、該光路を透過する光の波長に対してΓ2i=2i−1×2π、(但し、i=1〜n、n:2以上の整数)の関係を満足することにより、いずれも常に2πの整数倍となるので、第1及び第2位相差素子のそれぞれにおいて、従来のリオフィルタと同様のバンドパスフィルタとしての透過特性が得られる。 In another embodiment, the phase difference Γ 1i between two polarizers adjacent to each other along the optical path of light transmitted through the first phase difference element is Γ 1i = 2 with respect to the wavelength of light transmitted through the optical path. i-1 × 2π (where i = 1 to n 1 , n 1 : an integer greater than or equal to 2), and two adjacent adjacent optical paths of light passing through the second phase difference element The phase difference Γ 2i between the polarizers is Γ 2i = 2 i−1 × 2π with respect to the wavelength of light transmitted through the optical path (where i = 1 to n 2 , n 2 : an integer of 2 or more). By satisfying the relationship, both are always integral multiples of 2π, so that the transmission characteristics as a band-pass filter similar to the conventional rio filter can be obtained in each of the first and second phase difference elements.

更に別の実施例では、第1位相差素子内部の光路に沿って隣接する2つの偏光子及び第2位相差素子内部の光路に沿って隣接する2つの偏光子が、それぞれ平行ニコルの関係に配置されることにより、第1及び第2位相差素子のそれぞれにおいて、従来のリオフィルタと同様のバンドパスフィルタとしての透過特性が得られる。   In yet another embodiment, two polarizers adjacent along the optical path inside the first phase difference element and two polarizers adjacent along the optical path inside the second phase difference element are in a parallel Nicols relationship. As a result, the transmission characteristics as a band-pass filter similar to the conventional rio filter can be obtained in each of the first and second phase difference elements.

或る実施例では、第1及び第2位相差素子がそれぞれ2つの楔状複屈折板からなり、各位相差素子の対向する内側の複屈折板が、それらの間に入射側偏光子と内側反射膜とを挟んで一体に積層されていると、これを1つのアクチュエータで駆動することによって、第1及び第2位相差素子双方の透過スペクトル波長を同時に調整制御することができる。逆に、積層した内側の複屈折板を固定し、各位相差素子の外側の複屈折板を個別に又は一体に駆動することにより、第1及び第2位相差素子の透過スペクトル波長を別個に調整制御することもできる。   In one embodiment, each of the first and second retardation elements is composed of two wedge-shaped birefringent plates, and the inner birefringent plates facing each of the retardation elements are arranged between the incident side polarizer and the inner reflective film. When the two layers are integrally laminated, the transmission spectral wavelengths of both the first and second phase difference elements can be adjusted and controlled simultaneously by being driven by one actuator. Conversely, by fixing the laminated inner birefringent plates and driving the outer birefringent plates of each phase difference element individually or integrally, the transmission spectral wavelengths of the first and second phase difference elements are individually adjusted. It can also be controlled.

また、或る実施例では、第1位相差素子が楔角θ1の2つの楔状複屈折板からなり、第2位相差素子が楔角θ2の2つの楔状複屈折板からなり、楔角θ1と楔角θ2とが同じであることにより、両位相差素子の透過スペクトルを常に同じ波長にかつ同じ割合で調整制御することができる。これは、特に両位相差素子の透過光を合成して出射する場合に有利である。   In one embodiment, the first retardation element is composed of two wedge-shaped birefringent plates having a wedge angle θ1, and the second retardation element is composed of two wedge-shaped birefringent plates having a wedge angle θ2, and the wedge angle θ1 Since the wedge angle θ2 is the same, the transmission spectrum of both phase difference elements can always be adjusted and controlled at the same wavelength and in the same ratio. This is particularly advantageous when the transmitted light of both phase difference elements is synthesized and emitted.

別の実施例では、第1位相差素子が楔角θ1の2つの楔状複屈折板からなり、第2位相差素子が楔角θ2の2つの楔状複屈折板からなり、楔角θ1と楔角θ2とが異なることにより、各位相差素子の透過スペクトルを異なる波長にかつ異なる割合で調整制御することができる。これは、特に各位相差素子の透過光を別個に出射する場合に有利である。   In another embodiment, the first retardation element is composed of two wedge-shaped birefringent plates having a wedge angle θ1, and the second retardation element is composed of two wedge-shaped birefringent plates having a wedge angle θ2, and the wedge angle θ1 and the wedge angle Since θ2 is different, the transmission spectrum of each phase difference element can be adjusted and controlled to different wavelengths at different ratios. This is particularly advantageous when the transmitted light of each phase difference element is emitted separately.

或る実施例では、入射側偏光子がワイヤグリッド偏光子であると、p偏光及びs偏光のいずれについても高い透過率を発揮するので、高い光の利用効率を得ることができる。   In an embodiment, when the incident side polarizer is a wire grid polarizer, high transmittance can be obtained for both p-polarized light and s-polarized light.

別の実施例では、出射側偏光子がワイヤグリッド偏光子であると、同様にp偏光及びs偏光のいずれについても高い透過率を発揮するので、高い光の利用効率を得ることができる。   In another embodiment, when the output side polarizer is a wire grid polarizer, both the p-polarized light and the s-polarized light exhibit high transmittance, so that high light utilization efficiency can be obtained.

また、或る実施例では、外側偏光子がワイヤグリッド偏光子であると、第1及び第2位相子内部を透過する光を反射する場合に別個の反射手段を追加する必要がなく、部品点数をより少なくできるので、有利である。   Further, in an embodiment, when the outer polarizer is a wire grid polarizer, there is no need to add a separate reflecting means when reflecting light transmitted through the first and second phase shifters, and the number of components is reduced. This is advantageous.

別の実施例では、外側偏光子が吸収型偏光板であると、別個の反射手段を追加する必要があるとは言え、ワイヤグリッド偏光子のような反射による迷光を生じる虞が無く、そのために波長フィルタの特性を劣化させる虞がない。   In another embodiment, if the outer polarizer is an absorptive polarizing plate, it is not necessary to add a separate reflecting means, but there is no risk of stray light due to reflection as in a wire grid polarizer. There is no risk of degrading the characteristics of the wavelength filter.

別の実施例では、位相差素子を構成する第1及び第2位相差素子の少なくとも一方の2板の位相差板が、平行平板の一方の面をそのままにして反対側の面を所定の楔角で傾斜加工して形成され、その傾斜面を互いに対向させ、かつ互いに厚さの厚い方の端部と厚さの薄い方の端部とを同じ側にして互違いに配置されることにより、それらを互いに傾斜面に沿って相対的に動かして、位相差素子の光学的厚さを変化させることができる。更に別の実施例では、位相差素子を構成する第1及び第2位相差素子の少なくとも一方の2枚の位相差板が、平行平板の一方の面をそのままにして反対側の面を所定の楔角で傾斜加工して形成され、該一方の面を互いに対向させ、かつ互いに厚さの厚い方の端部と厚さの薄い方の端部とを同じ側にして互違いに配置される。   In another embodiment, the phase difference plate of at least one of the first and second phase difference elements constituting the phase difference element is configured such that one surface of the parallel plate is left as it is and the opposite surface is a predetermined wedge. By being inclined and processed at the corners, the inclined surfaces are opposed to each other, and the thicker end and the thinner end are arranged in a staggered manner on the same side. The optical thickness of the retardation element can be changed by moving them relative to each other along the inclined surface. In yet another embodiment, at least one of the first and second phase difference elements constituting the phase difference element has a phase difference plate with a surface on one side of the parallel plate being left as it is. Formed by inclining at a wedge angle, the one surface is opposed to each other, and the thicker end and the thinner end are arranged alternately on the same side. .

或る実施例では、第1及び第2位相差素子の少なくとも一方の2枚の位相差板が、それらの結晶光学軸を互いに平行に配置されることにより、透過光をその偏光方向をそのまま維持して透過させることができる。別の実施例では、第1及び第2位相差素子の少なくとも一方の2枚の位相差板が、それらの結晶光学軸を互いに直交させて配置されることにより、透過光をその偏光方向を90°回転させて透過させることができる。   In one embodiment, the two retardation plates of at least one of the first and second retardation elements are arranged in parallel with each other so that the transmitted light maintains its polarization direction as it is. And can be transmitted. In another embodiment, two retardation plates of at least one of the first and second retardation elements are arranged with their crystal optical axes orthogonal to each other, so that the transmitted light has a polarization direction of 90. It can be rotated and transmitted.

また或る実施例では、第1及び第2位相差素子の少なくとも一方が、その少なくとも一方の位相差板と組み合わせた平行平板の位相差板を更に有することにより、透過光の波長範囲を拡大することができる。   In one embodiment, at least one of the first and second phase difference elements further includes a parallel plate phase difference plate combined with at least one phase difference plate, thereby expanding the wavelength range of transmitted light. be able to.

以下に、添付図面を参照しつつ、本発明による波長フィルタの好適な実施例を詳細に説明する。尚、各図において、類似の構成要素には同一又は類似の参照符号を付して表すことにする。   Hereinafter, preferred embodiments of a wavelength filter according to the present invention will be described in detail with reference to the accompanying drawings. In each drawing, similar components are denoted by the same or similar reference numerals.

図1(A)〜(C)は、本発明による波長フィルタの第1実施例の構成を概略的に示している。本実施例の波長フィルタ31は、それぞれに一定の光学的厚さと該厚さに対する十分な長さとを有する位相差素子としての第1バビネソレイユ位相板32と第2バビネソレイユ位相板33とを備える。第1バビネソレイユ位相板32は、同じ楔角θ1を有する2枚の楔状複屈折板34,35を備える。第2バビネソレイユ位相板33は、同じ楔角θ2を有する2枚の楔状複屈折板36,37を備える。前記各複屈折板は水晶で形成され、又は他の類似の光学結晶材料で形成される。   1A to 1C schematically show the configuration of a first embodiment of a wavelength filter according to the present invention. The wavelength filter 31 of the present embodiment includes a first Babinet Soleil phase plate 32 and a second Babinet Soleil phase plate 33 as phase difference elements each having a certain optical thickness and a sufficient length with respect to the thickness. . The first Babinet Soleil phase plate 32 includes two wedge-shaped birefringent plates 34 and 35 having the same wedge angle θ1. The second Babinet Soleil phase plate 33 includes two wedge-shaped birefringent plates 36 and 37 having the same wedge angle θ2. Each birefringent plate is made of quartz or other similar optical crystal material.

図1(C)に示すように、第1バビネソレイユ位相板32は、上側の複屈折板34が楔板34と平行平板34とからなり、下側の複屈折板35が楔板のみからなる。前記上側複屈折板の楔板34及び下側複屈折板35は、平行平板の複屈折板の一方の面を研磨等により傾斜加工して、その傾斜面と平行平板面のままである反対側の面との間に所定の楔角θ1を画定するように形成したものである。同様に、第2バビネソレイユ位相板33は、下側の複屈折板36が楔板36と平行平板36とからなり、上側の複屈折板37が楔板のみからなる。前記下側複屈折板の楔板36及び上側複屈折板37は、同様に平行平板の複屈折板の一方の面を研磨等により傾斜加工して、その傾斜面と平行平板面のままである反対側の面との間に所定の楔角θ2を画定するように形成したものである。 As shown in FIG. 1 (C), first Babinet Soleil phase plate 32, the upper birefringent plate 34 is made of the wedge plate 34 1 and the parallel plate 34 2 which, under the birefringent plate 35 is only wedges Consists of. The wedge plate 34 1 and the lower birefringence plate 35 of the upper birefringent plate, one face of the birefringent plate of a parallel plate inclined processed by polishing or the like, which remains in its inclined surface parallel to the flat plate surface opposite It is formed so as to define a predetermined wedge angle θ1 with the side surface. Similarly, the second Babinet Soleil phase plate 33, the birefringence plate 36 of the lower side is from the wedge plate 36 1 and the parallel plate 36 2 which, above the birefringent plate 37 is made of only the wedge plate. The wedge plate 36 1 and the upper birefringent plate 37 of the lower birefringent plate, one surface of the birefringent plate similarly parallel plate inclined processed by polishing or the like, while the inclined surface parallel to the flat plate surface It is formed so as to define a predetermined wedge angle θ2 with respect to a certain opposite surface.

第1及び第2バビネソレイユ位相板32,33は、それぞれ前記2板の楔状複屈折板が、それらの傾斜面を互いに対向させ、互いに厚さの厚い方の端部と厚さの薄い方の端部とを同じ側にして互違いに配置されている。前記各バビネソレイユ位相板は、図示しないマイクロメータ等からなるアクチュエータによって、それぞれ2枚の複屈折板34,35及び36,37を相対的に該バビネソレイユ位相板の幅方向に動かし、その光学的厚さを変更して、透過光の波長を調整することができる。複屈折板34,35及び36,37は、対向する傾斜面を互いに接触させかつそれらを摺動させながら、又は対向する傾斜面を互いに空隙を挟んで離隔した状態で、相対的に動かすことができる。添付図面は、説明を分かり易くするために、前記複屈折板の対向する傾斜面を互いに離隔した状態を示している。   In the first and second Babinet Soleil phase plates 32 and 33, the two wedge-shaped birefringent plates are arranged so that their inclined surfaces are opposed to each other, and the thicker end portion and the thinner thickness portion are arranged. They are arranged in a staggered manner with the ends on the same side. Each of the Babinet Soleil phase plates is moved optically by moving the two birefringent plates 34, 35 and 36, 37 in the width direction of the Babinet Soleil phase plate by an actuator including a micrometer (not shown). The wavelength of transmitted light can be adjusted by changing the thickness. The birefringent plates 34, 35 and 36, 37 can be moved relative to each other while the opposed inclined surfaces are in contact with each other and slid therebetween, or the opposed inclined surfaces are separated from each other with a gap therebetween. it can. The attached drawings show a state in which the inclined surfaces facing each other of the birefringent plates are separated from each other for easy understanding.

第1バビネソレイユ位相板32において、楔板34と複屈折板35とは、それらの光学軸Op11,Op12が同じ向きにかつ前記バビネソレイユ位相板の長さ方向に対して45°の向きに配向されている。楔板34と平行平板34とは、光学軸Op11,Op13が互いに直交するようにかつそれぞれ前記バビネソレイユ位相板の長さ方向に対して45°の向きに配向される。第2バビネソレイユ位相板33において、楔板36と複屈折板37とは、それらの光学軸Op21,Op22が同じ向きにかつ前記バビネソレイユ位相板の長さ方向に対して45°の向きに配向されている。楔板36と平行平板36とは、光学軸Op21,Op23が互いに直交するようにかつそれぞれ前記バビネソレイユ位相板の長さ方向に対して45°の向きに配向される。 In the first Babinet Soleil phase plate 32, the wedge plate 34 1 and the birefringent plate 35, into their optical axes Op 11, the orientation of Op12 45 ° is relative to the length direction of and the Babinet Soleil phase plate in the same direction Oriented. The wedge plate 34 1 and the parallel plate 34 2, the optical axis Op 11, Op 13 is oriented at 45 ° orientation relative to the longitudinal direction of and each of the Babinet Soleil phase plate so as to be perpendicular to each other. In the second Babinet Soleil phase plate 33, the wedge plate 36 1 and the birefringent plate 37, into their optical axes Op21, the orientation of Op22 45 ° is relative to the length direction of and the Babinet Soleil phase plate in the same direction Oriented. The wedge plate 36 1 and the parallel plate 36 2, the optical axis Op21, Op23 is oriented at 45 ° orientation relative to the longitudinal direction of and each of the Babinet Soleil phase plate so as to be perpendicular to each other.

第1バビネソレイユ位相板32と第2バビネソレイユ位相板33とは、互いに対向する内側主面の間に即ち内側の複屈折板35と複屈折板37との間に、入射側及び出射側偏光子38,39と内側反射ミラー40とを挟んで上下に積層され、両端において接着剤41で一体に接合される。前記第1バビネソレイユ位相板の外側主面即ち外側の複屈折板34の一方(図中左側)の端部32a付近を光入射口とし、他方の(図中右側)の端部32b付近を光出射口とし、光が前記バビネソレイユ位相板の駆動方向と直交する向きに、その長さ方向に沿って図中左から右へ進行するようにする。この光の進行方向に沿って、入射側偏光子38、内側反射ミラー40及び出射側偏光子39が順に配置される。   The first Babinet Soleil phase plate 32 and the second Babinet Soleil phase plate 33 are arranged between the inner principal surfaces facing each other, that is, between the inner birefringent plate 35 and the birefringent plate 37, and incident side and outgoing side polarized light. The members 38 and 39 and the inner reflection mirror 40 are stacked on top and bottom, and are joined together with an adhesive 41 at both ends. The outer principal surface of the first Babinet Soleil phase plate, that is, the vicinity of one end 32a (the left side in the figure) of the outer birefringent plate 34 is used as a light incident port, and the vicinity of the other end part 32b (the right side in the figure) is light. The light exit is used so that light travels from the left to the right in the drawing along the length direction in a direction perpendicular to the driving direction of the Babinet Soleil phase plate. An incident-side polarizer 38, an inner reflection mirror 40, and an exit-side polarizer 39 are arranged in this order along the light traveling direction.

第1バビネソレイユ位相板32の外側主面即ち外側の複屈折板34の上面には、第1外側偏光子42〜44と第1外側反射膜45とが設けられる。図中左側から右側へ前記光の進行方向に沿って、最初に2つの第1外側偏光子42,43が、次に第1外側反射膜45が、最後に第1外側偏光子44が順に配置される。第2バビネソレイユ位相板33の外側主面即ち外側の複屈折板36の下面には、第2外側偏光子46〜48と第2外側反射膜49とが設けられる。同様に、図中左側から右側へ前記光の進行方向に沿って、最初に2つの第2外側偏光子46,47が、次に第2外側反射膜49が、最後に第2外側偏光子48が順に配置される。   First outer polarizers 42 to 44 and a first outer reflective film 45 are provided on the outer principal surface of the first Babinet Soleil phase plate 32, that is, the upper surface of the outer birefringent plate 34. From the left side to the right side in the figure, the first first outer polarizers 42 and 43, the first outer reflective film 45, and the first outer polarizer 44 are arranged in this order in the light traveling direction. Is done. Second outer polarizers 46 to 48 and a second outer reflecting film 49 are provided on the outer principal surface of the second Babinet Soleil phase plate 33, that is, the lower surface of the outer birefringent plate 36. Similarly, in the drawing, from the left side to the right side, the two second outer polarizers 46 and 47, the second outer reflection film 49, and finally the second outer polarizer 48 are finally formed along the light traveling direction. Are arranged in order.

本実施例では、前記入射側及び出射側偏光子と前記第1及び第2外側偏光子とが、ワイヤグリッド偏光子からなる。ワイヤグリッド偏光子は、透明基板の表面に金属細線を周期的に透過波長よりも短い一定の周期で格子状に配列され、格子の周期方向と垂直な振動成分の光を反射し、かつ平行な振動成分の光を透過させるという特性を有する。波長フィルタ31への入射光と前記第1バビネソレイユ位相板の外側複屈折板上面の法線とを含む平面(図1(B)の紙面)に対して垂直な直線偏光をs偏光として図中黒丸点●で、平行な直線偏光をp偏光として図中短い両端矢印で表す。前記入射側及び出射側偏光子は、入射光をその偏光方向によって透過又は反射するように分光するものであれば、ワイヤグリッド偏光子以外の様々な公知の偏光子を用いることができる。内側反射膜40、第1及び第2外側反射膜45,49は、例えばAl,Ag,Au等の金属膜や誘電体多層膜により形成される。   In the present embodiment, the incident side and output side polarizers and the first and second outer polarizers are wire grid polarizers. Wire grid polarizers are arranged on a transparent substrate surface in the form of a lattice of metal thin wires periodically with a constant period shorter than the transmission wavelength, reflect the light of vibration components perpendicular to the periodic direction of the lattice, and are parallel to each other It has the characteristic of transmitting light of vibration components. In the figure, s-polarized light is linearly polarized light perpendicular to a plane (the paper surface of FIG. 1B) including light incident on the wavelength filter 31 and the normal line of the upper surface of the outer birefringent plate of the first Babinet Soleil phase plate. A black circle dot ● represents parallel linearly polarized light as p-polarized light and is represented by a short double-ended arrow in the figure. As the incident side and emission side polarizers, various known polarizers other than the wire grid polarizer can be used as long as they split the incident light so as to be transmitted or reflected depending on the polarization direction. The inner reflection film 40 and the first and second outer reflection films 45 and 49 are formed of a metal film such as Al, Ag, Au, or a dielectric multilayer film, for example.

本実施例では、前記第1外側偏光子、入射側及び出射側偏光子の格子を第1バビネソレイユ位相板32の幅方向に整合させて、その周期方向が前記バビネソレイユ位相板の光学軸Op11〜Op13と45°の角度をなし、かつ前記バビネソレイユ位相板の長さ方向と一致するように配向する。また、前記第2外側偏光子の格子を第2バビネソレイユ位相板33の長さ方向に整合させて、その周期方向が前記バビネソレイユ位相板の光学軸Op21〜Op23と45°の角度をなし、かつ前記バビネソレイユ位相板の幅方向と一致するように配向する。例えば前記各偏光子の格子の向きは、図1(A)〜(C)において多数の平行な細い縦線で表す。   In this embodiment, the gratings of the first outer polarizer, the incident side and the output side polarizer are aligned with the width direction of the first Babinet Soleil phase plate 32, and the periodic direction thereof is the optical axis Op11 of the Babinet Soleil phase plate. It is oriented so as to form an angle of 45 ° with .about.Op13 and coincide with the length direction of the Babinet Soleil phase plate. The grating of the second outer polarizer is aligned with the length direction of the second Babinet Soleil phase plate 33, and the periodic direction forms an angle of 45 ° with the optical axes Op21 to Op23 of the Babinet Soleil phase plate, And it orients so that it may correspond with the width direction of the said Babinet Soleil phase plate. For example, the orientation of the grating of each polarizer is represented by a number of parallel thin vertical lines in FIGS.

このように波長フィルタ31は、第1バビネソレイユ位相板32、入射側偏光子38、第1外側偏光子42〜44、内側反射ミラー40、第1外側反射膜45及び出射側偏光子39からなる第1波長フィルタ部と、第2バビネソレイユ位相板33、入射側偏光子38、第2外側偏光子46〜48、内側反射ミラー40、第2外側反射膜49及び出射側偏光子39からなる第2波長フィルタ部と一体に備える。本実施例によれば、入射側偏光子38、内側反射ミラー40及び出射側偏光子39が共通するので、部品点数が少なくかつ構成が簡単になる。   As described above, the wavelength filter 31 includes the first Babinet Soleil phase plate 32, the incident side polarizer 38, the first outer polarizers 42 to 44, the inner reflection mirror 40, the first outer reflection film 45, and the emission side polarizer 39. A first wavelength filter unit, a second Babinet Soleil phase plate 33, an incident side polarizer 38, second outer polarizers 46 to 48, an inner reflection mirror 40, a second outer reflection film 49, and an output side polarizer 39. Provided integrally with the two-wavelength filter section. According to the present embodiment, since the incident side polarizer 38, the inner reflection mirror 40, and the output side polarizer 39 are common, the number of components is reduced and the configuration is simplified.

波長フィルタ31への入射光L1は、前記光入射口から第1バビネソレイユ位相板32を透過して入射側偏光子38に入射し、s偏光成分とp偏光成分とに分光される。s偏光は、前記入射側偏光子により前記バビネソレイユ位相板の主面の法線方向に関して所定の角度φをもって反射され、第1バビネソレイユ位相板32内部を前記法線方向に関して同じ反射角度φで多重反射しながら透過する。p偏光は、前記入射側偏光子を透過して第2バビネソレイユ位相板33に入射し、その中を同様に前記法線方向に関して同じ反射角度θで多重反射しながら透過する。   Incident light L1 entering the wavelength filter 31 passes through the first Babinet Soleil phase plate 32 from the light incident port, enters the incident-side polarizer 38, and is split into an s-polarized component and a p-polarized component. The s-polarized light is reflected by the incident-side polarizer at a predetermined angle φ with respect to the normal direction of the principal surface of the Babinet Soleil phase plate, and the first Babinet Soleil phase plate 32 is reflected at the same reflection angle φ with respect to the normal direction. Transmits with multiple reflections. The p-polarized light is transmitted through the incident-side polarizer and is incident on the second Babinet Soleil phase plate 33, and is transmitted therethrough while being subjected to multiple reflection at the same reflection angle θ with respect to the normal direction.

前記入射側偏光子により反射されたs偏光Lsは、第1バビネソレイユ位相板32を透過して最初の第1外側偏光子38に反射される。次にs偏光Lsは、内側反射膜40に反射されることにより前記第1バビネソレイユ位相板を1度往復透過し、2番目の第1外側偏光子43に反射される。更にs偏光Lsは、前記内側反射膜と第1外側反射膜45とにより3度反射されて、前記第1バビネソレイユ位相板を2度往復透過し、最後の第1外側偏光子44に反射される。第1外側偏光子44から反射されたs偏光Lsは、更に前記第1バビネソレイユ位相板を透過して出射側偏光子39に反射され、再び前記第1バビネソレイユ位相板を透過して前記光出射口から外部に出射する。   The s-polarized light Ls reflected by the incident side polarizer passes through the first Babinet Soleil phase plate 32 and is reflected by the first first outer polarizer 38. Next, the s-polarized light Ls is reflected by the inner reflective film 40, and then reciprocates once through the first Babinet Soleil phase plate, and is reflected by the second first outer polarizer 43. Further, the s-polarized light Ls is reflected three times by the inner reflection film and the first outer reflection film 45, reciprocates twice through the first Babinet Soleil phase plate, and is reflected by the last first outer polarizer 44. The The s-polarized light Ls reflected from the first outer polarizer 44 further passes through the first Babinet Soleil phase plate, is reflected by the output-side polarizer 39, and passes through the first Babinet Soleil phase plate again to transmit the light. The light exits from the exit.

第1バビネソレイユ位相板32は、その主面間を光が一度透過する間に360°の位相差が与えられるように構成されている。前記各偏光子は、s偏光Lsの光路に沿って隣接する2つの前記偏光子、即ち入射側偏光子38と第1外側偏光子42、第1外側偏光子42と第1外側偏光子43、第1外側偏光子43と第1外側偏光子44の位相差が、順に360°、720°、1440°に、即ち2n−1×2π、(n:1〜3)となるように配置されている。前記第1波長フィルタ部は、このように位相差が常に2πの整数倍となるので、従来のリオフィルタと同様のバンドパスフィルタとしての透過特性が得られる。 The first Babinet Soleil phase plate 32 is configured such that a phase difference of 360 ° is given while light is once transmitted between its main surfaces. Each polarizer includes two polarizers adjacent to each other along the optical path of s-polarized light Ls, that is, an incident-side polarizer 38 and a first outer polarizer 42, a first outer polarizer 42 and a first outer polarizer 43, It arrange | positions so that the phase difference of the 1st outer side polarizer 43 and the 1st outer side polarizer 44 may become 360 degrees, 720 degrees, and 1440 degrees in order, ie, 2n-1 * 2 (pi), (n: 1-3). ing. Since the first wavelength filter section always has an integer multiple of 2π in this way, transmission characteristics as a bandpass filter similar to the conventional rio filter can be obtained.

更に隣接する前記2つの偏光子同士は、前記ワイヤグリッド偏光子の格子の周期方向を上述したように配向したことにより、それぞれ透過軸を互いに平行にした平行ニコルの関係に配置されている。従って、前記入射側偏光子により反射されたs偏光Lsは、その偏光方向を維持したまま、第1バビネソレイユ位相板32を透過する。   Further, the two adjacent polarizers are arranged in a parallel Nicol relationship in which the transmission axes are parallel to each other by aligning the periodic direction of the grating of the wire grid polarizer as described above. Therefore, the s-polarized light Ls reflected by the incident-side polarizer passes through the first Babinet Soleil phase plate 32 while maintaining the polarization direction.

前記入射側偏光子を透過したp偏光Lpは、第2バビネソレイユ位相板33を透過して最初の第2外側偏光子46に入射し、反射される。次にp偏光Lpは、内側反射膜40に反射されることにより前記第2バビネソレイユ位相板を1度往復透過し、2番目の第2外側偏光子47に入射し、反射される。更にp偏光Lpは、前記内側反射膜と第2外側反射膜49とにより3度反射されて、前記第2バビネソレイユ位相板を2度往復透過し、最後の第2外側偏光子48に入射し、反射される。第2外側偏光子48から反射されたp偏光Lpは、更に前記第2バビネソレイユ位相板を透過して出射側偏光子39に入射し、該出射側偏光子及び前記第1バビネソレイユ位相板を透過して前記光出射口から外部に出射する。   The p-polarized light Lp that has passed through the incident-side polarizer passes through the second Babinet Soleil phase plate 33, enters the first second outer polarizer 46, and is reflected. Next, the p-polarized light Lp is reflected by the inner reflective film 40, and then reciprocates once through the second Babinet Soleil phase plate, and is incident on the second second outer polarizer 47 and reflected. Further, the p-polarized light Lp is reflected three times by the inner reflection film and the second outer reflection film 49, reciprocates twice through the second Babinet Soleil phase plate, and enters the last second outer polarizer 48. , Reflected. The p-polarized light Lp reflected from the second outer polarizer 48 further passes through the second Babinet Soleil phase plate and enters the output-side polarizer 39, and the output-side polarizer and the first Babinet Soleil phase plate are transmitted through the second Babinet Soleil phase plate. The light passes through and exits from the light exit.

第2バビネソレイユ位相板33は、その主面間を光が一度透過する間に360°の位相差が与えられるように構成されている。前記各偏光子は、p偏光Lpの光路に沿って隣接する2つの前記偏光子、即ち入射側偏光子38と第2外側偏光子46、第2外側偏光子46と第2外側偏光子47、第2外側偏光子47と第2外側偏光子48の位相差が、順に360°、720°、1440°に、即ち2n−1×2π、(n:1〜3)となるように配置されている。前記第2波長フィルタ部は、このように位相差が常に2πの整数倍となるので、従来のリオフィルタと同様のバンドパスフィルタとしての透過特性が得られる。 The second Babinet Soleil phase plate 33 is configured such that a phase difference of 360 ° is given while light is once transmitted between the principal surfaces. Each polarizer includes two polarizers adjacent to each other along the optical path of p-polarized light Lp, that is, an incident-side polarizer 38 and a second outer polarizer 46, a second outer polarizer 46 and a second outer polarizer 47, The second outer polarizer 47 and the second outer polarizer 48 are arranged so that the phase difference is sequentially 360 °, 720 °, 1440 °, that is, 2 n−1 × 2π, (n: 1 to 3). ing. Since the phase difference of the second wavelength filter unit is always an integer multiple of 2π, transmission characteristics as a bandpass filter similar to the conventional rio filter can be obtained.

更に隣接する前記2つの偏光子同士は、前記ワイヤグリッド偏光子の格子の周期方向を上述したように配向したことにより、それぞれ透過軸を互いに平行にした平行ニコルの関係に配置されている。従って、前記入射側偏光子を透過したp偏光Lpは、その偏光方向を維持したまま、第2バビネソレイユ位相板33を透過する。   Further, the two adjacent polarizers are arranged in a parallel Nicol relationship in which the transmission axes are parallel to each other by aligning the periodic direction of the grating of the wire grid polarizer as described above. Therefore, the p-polarized light Lp that has passed through the incident-side polarizer passes through the second Babinet Soleil phase plate 33 while maintaining its polarization direction.

第1バビネソレイユ位相板32を透過したs偏光と第2バビネソレイユ位相板33を透過したp偏光とは、出射側偏光子39により合成され、1つの出射光L2として前記光出射口から入射光L1とは異なる方向に出射する。これにより、入射光量に比して出射光量の損失が少なく、光利用効率の高い波長フィルタ31が実現される。更に、波長フィルタ31は、前記第1及び第2波長フィルタ部において、第1及び第2バビネソレイユ位相板32,33が、その外側主面に設けられる偏光子の数に拘わらず、共通化されて1つだけで済むことに加えて、前記第1及び第2フィルタ部間において、前記入射側偏光子、内側反射膜及び出射側偏光子が共通化されているので、部品点数を大幅に少なくしかつ装置全体の長大化・大型化を抑制することができる。   The s-polarized light that has been transmitted through the first Babinet Soleil phase plate 32 and the p-polarized light that has been transmitted through the second Babinet Soleil phase plate 33 are combined by the output-side polarizer 39 to be incident light from the light output port as one output light L2. The light is emitted in a direction different from L1. Thereby, the wavelength filter 31 with less loss of the amount of emitted light than the amount of incident light and high light utilization efficiency is realized. Further, in the first and second wavelength filter units, the wavelength filter 31 has the first and second Babinet Soleil phase plates 32 and 33 in common regardless of the number of polarizers provided on the outer principal surface thereof. In addition to the fact that only one is required, the incident side polarizer, the inner reflection film, and the output side polarizer are shared between the first and second filter sections, so that the number of components is greatly reduced. In addition, the overall length and size of the apparatus can be suppressed.

本実施例の波長可変フィルタ31は、第1及び第2バビネソレイユ位相板32,33において前記アクチュエータを駆動することにより、それらを透過する光の波長が変化するので、透過スペクトル波長を自在に変化させることができる。特に水晶からなる複屈折板を用いた前記バビネソレイユ位相板は、紫外域〜青色の短波長域でも高い透過率を発揮する。従って、短波長域を含む広い波長域の光について、透過スペクトル波長を可変制御し得る波長可変フィルタが実現される。しかも、バビネソレイユ位相板は耐熱性が優れているので、液晶セルを用いた従来技術に比して、波長可変フィルタ31の耐熱性が大幅に向上する。   In the wavelength tunable filter 31 of this embodiment, by driving the actuators in the first and second Babinet Soleil phase plates 32 and 33, the wavelength of light passing through them changes, so that the transmission spectrum wavelength can be freely changed. Can be made. In particular, the Babinet Soleil phase plate using a birefringent plate made of quartz exhibits high transmittance even in a short wavelength range from ultraviolet to blue. Therefore, a tunable filter capable of variably controlling the transmission spectrum wavelength for light in a wide wavelength range including a short wavelength range is realized. In addition, since the Babinet Soleil phase plate is excellent in heat resistance, the heat resistance of the wavelength tunable filter 31 is greatly improved as compared with the conventional technique using a liquid crystal cell.

図2(A)〜(D)は、波長可変フィルタ31の波長特性、即ち透過スペクトルのピークの透過率をシミュレーションした結果を示している。図2(A)〜(D)は、それぞれ第1バビネソレイユ位相板32を透過して出射する光の光路に沿って図1(B)に示す各位置P1〜P4における光の波長に関する透過率の変化を示している。ここで、λは特定波長即ち入射光の波長であり、λは各位置P1〜P4における透過光又は出射光の波長である。同図において、実線は、第1バビネソレイユ位相板32の光学的厚さが基準値である場合を、破線は、該バビネソレイユ位相板をその光学的厚さを基準値よりも薄くした場合を表している。 2A to 2D show the results of simulating the wavelength characteristics of the wavelength tunable filter 31, that is, the transmittance of the peak of the transmission spectrum. FIGS. 2A to 2D show transmittances relating to the wavelengths of light at the positions P1 to P4 shown in FIG. 1B along the optical path of the light transmitted through the first Babinet Soleil phase plate 32, respectively. Shows changes. Here, λ 0 is a specific wavelength, that is, a wavelength of incident light, and λ is a wavelength of transmitted light or outgoing light at each of the positions P1 to P4. In the figure, the solid line indicates the case where the optical thickness of the first Babinet Soleil phase plate 32 is a reference value, and the broken line indicates the case where the optical thickness of the Babinet Soleil phase plate is made thinner than the reference value. Represents.

入射後に、入射側偏光子38から反射した後の前記光路の位置P1では、光の透過率は全波長範囲において50%一定である(図2(A))。第1外側偏光子42から反射した後の前記光路の位置P2は、最初に隣接する前記偏光子間の透過特性を示し、前記特定波長の整数倍となる波長でピークを有する(図2(B))。次に隣接する前記偏光子間の透過特性は、前記特定波長の1/2波長の整数倍の波長でピークを有するから、第1外側偏光子43から反射した後の前記光路の位置P3では、これと図2(B)とを重ね合わせた透過特性を示す(図2(C))。最後に隣接する前記偏光子間の透過特性は、前記特定波長の1/4波長の整数倍の波長でピークを有するから、第1外側偏光子44から反射した後の位置P4では、更にこれを図2(C)に重ね合わせた透過特性を示す(図2(D))。   After the incidence, at the position P1 of the optical path after being reflected from the incident-side polarizer 38, the light transmittance is constant 50% in the entire wavelength range (FIG. 2A). The position P2 of the optical path after being reflected from the first outer polarizer 42 first shows transmission characteristics between the adjacent polarizers, and has a peak at a wavelength that is an integer multiple of the specific wavelength (FIG. 2B )). Next, since the transmission characteristics between the adjacent polarizers have a peak at a wavelength that is an integral multiple of ½ wavelength of the specific wavelength, at the position P3 of the optical path after being reflected from the first outer polarizer 43, The transmission characteristics obtained by superimposing this and FIG. 2B are shown (FIG. 2C). Finally, since the transmission characteristic between the adjacent polarizers has a peak at a wavelength that is an integral multiple of a quarter wavelength of the specific wavelength, this is further reduced at the position P4 after being reflected from the first outer polarizer 44. FIG. 2C shows the superimposed transmission characteristics (FIG. 2D).

隣接する前記偏光子間の各透過スペクトルのピークは、前記特定波長の整数倍の波長で全て重なるので、前記第1波長フィルタ部は、図2(D)に示すように、前記特定波長の整数倍で急峻なピークを有する透過特性が得られる。ここで、前記アクチュエータを駆動して第1バビネソレイユ位相板32の光学的厚さを変化させると、その透過特性は、図2(A)〜(D)に破線で例示するように、ピーク波長が高波長側又は低波長側にシフトする。尚、第2バビネソレイユ位相板33の前記第2波長フィルタ部の透過特性は、前記第1波長フィルタ部と同じであるので、説明を省略する。   Since the peaks of the transmission spectra between the adjacent polarizers all overlap at a wavelength that is an integral multiple of the specific wavelength, the first wavelength filter unit is an integer of the specific wavelength as shown in FIG. Transmission characteristics having double and steep peaks can be obtained. Here, when the optical thickness of the first Babinet Soleil phase plate 32 is changed by driving the actuator, the transmission characteristics are such that the peak wavelength is as shown by a broken line in FIGS. Shift to the high wavelength side or the low wavelength side. Note that the transmission characteristics of the second wavelength filter unit of the second Babinet Soleil phase plate 33 are the same as those of the first wavelength filter unit, and thus description thereof is omitted.

図3は、第1実施例の変形例の構成を概略的に示している。本実施例の波長フィルタ31は、出射側偏光子39がその偏光方向を紙面に対して平行に配向したものである点において、第1実施例と異なる。即ち、出射側偏光子39は、ワイヤグリッド偏光子の前記格子の周期方向を第1実施例の出射側偏光子39に対して90°回転させた向きに配置している。 FIG. 3 schematically shows a configuration of a modification of the first embodiment. The wavelength filter 31 1 of this embodiment is different from that of the first embodiment in that the output side polarizer 39 1 has its polarization direction oriented parallel to the paper surface. That is, the exit side polarizer 39 1 is arranged periodic direction of the grating of the wire grid polarizer in a direction rotated 90 ° with respect to the exit side polarizer 39 of the first embodiment.

第1バビネソレイユ位相板32を透過して最後の第1外側偏光子44に反射されたs偏光は、出射側偏光子39を透過する。第2バビネソレイユ位相板33を透過して最後の第2外側偏光子48に反射されたp偏光は、出射側偏光子39により反射される。第1バビネソレイユ位相板32及び第2バビネソレイユ位相板33をそれぞれ透過したs偏光とp偏光とは、出射側偏光子39により合成されて、第1バビネソレイユ位相板32側の前記光出射口の裏側に位置する第2位相子33の外側主面の端部33b(図中右側)付近を光出射口として、外部へ入射光L1と同じ方向に出射する。本実施例では、このように出射光L2の向きを変えることができる。他の構成は、図1の波長フィルタ31と同一であるので、詳細な説明は省略する。 S polarized light reflected on the first outer polarizer 44 of the last transmitted through the first Babinet Soleil phase plate 32 is transmitted through the exit side polarizer 39 1. P polarized light reflected on the second Babinet Soleil phase plate 33 and the second outer polarizer 48 of the last pass through the is reflected by the exit side polarizer 39 1. The first Babinet Soleil phase plate 32 and the second Babinet Soleil phase plate 33 a s polarized light transmitted respectively p-polarized light, is synthesized by the exit side polarizer 39 1, the first Babinet Soleil phase plate 32 side the light exit The vicinity of the end 33b (right side in the figure) of the outer main surface of the second phase shifter 33 located on the back side of the mouth is used as a light exit, and the light is emitted to the outside in the same direction as the incident light L1. In this embodiment, the direction of the emitted light L2 can be changed in this way. Other configurations are the same as those of the wavelength filter 31 of FIG.

図4は、第1実施例の別の変形例の構成を概略的に示している。本実施例の波長フィルタ31は、図2の実施例と同様に出射側偏光子39の偏光方向を紙面に対して平行に配向したことに加えて、入射側偏光子38をその偏光方向が紙面に対して平行に配向したものであり、かつ第1外部偏光子42〜44及び第2外部偏光子46〜48の偏光方向を第1実施例とは逆にした点において、第1実施例と異なる。第1外部偏光子42〜44は、その偏光方向が紙面に対して平行に配向され、かつ第2外部偏光子46〜48は、その偏光方向が紙面に対して垂直に配向されている。 FIG. 4 schematically shows the configuration of another modification of the first embodiment. Wavelength filter 312 of the present embodiment, in addition to oriented parallel examples similarly to the polarization direction of the output-side polarizer 39 1 of FIG. 2 with respect to the paper surface, the polarized light incident side polarizer 38 1 The direction is oriented parallel to the paper surface, and the polarization directions of the first external polarizers 42 1 to 44 1 and the second external polarizers 46 1 to 48 1 are opposite to those of the first embodiment. However, this is different from the first embodiment. The first external polarizers 42 1 to 44 1 have their polarization directions oriented parallel to the paper surface, and the second external polarizers 46 1 to 48 1 have their polarization directions oriented perpendicular to the paper surface. ing.

これにより、入射光L1は、前記光入射口から第1バビネソレイユ位相板32を透過し、入射側偏光子38によりp偏光成分が反射されて、第1バビネソレイユ位相板32内部を多重反射しながら透過する。s偏光成分は、入射側偏光子38を透過して第2バビネソレイユ位相板33に入射し、その中を多重反射しながら透過する。前記第1バビネソレイユ位相板及び第2バビネソレイユ位相板をそれぞれ透過したp偏光とs偏光とは、出射側偏光子39により合成されて、第1バビネソレイユ位相板32側の前記光出射口から外部に出射する。このように、s偏光及びp偏光がいずれの第1及び第2バビネソレイユ位相板32,33を透過するかは、自由に設定することができる。他の構成は、図1の波長フィルタ31と同一であるので、詳細な説明は省略する。 Thus, the incident light L1 is transmitted through the first Babinet Soleil phase plate 32 from the light entrance, is reflected p-polarized light component by the incident side polarizer 38 1, multiple reflections within the first Babinet Soleil phase plate 32 While transmitting. s-polarized light component is incident on the second Babinet Soleil phase plate 33 is transmitted through the incident side polarizer 38 1, it transmits with multiple reflections therein. Wherein the first Babinet Soleil phase plate and the 2 p-polarized light Babinet Soleil phase plate were respectively transmit and s-polarized light, is synthesized by the exit side polarizer 39 1, the light emission opening of the first Babinet Soleil phase plate 32 side To the outside. As described above, it can be freely set as to which of the first and second Babinet Soleil phase plates 32 and 33 s-polarized light and p-polarized light are transmitted. Other configurations are the same as those of the wavelength filter 31 of FIG.

図5は、第1実施例の更に別の変形例の構成を概略的に示している。本実施例の波長フィルタ31は、出射側偏光子39を省略し、かつ最後の第1外側偏光子44が図3の実施例と同様に偏光方向を紙面に対して平行に配向したものである点において、第1実施例と異なる。これにより、第1バビネソレイユ位相板32内部を透過したs偏光は、最後の第1外側偏光子44に入射し、これを透過してそのまま外部に出射する。第2バビネソレイユ位相板33内部を透過したp偏光は、最後の第2外側偏光子48に入射して反射される。反射されたp偏光は、前記第2バビネソレイユ位相板、接着剤41及び第1バビネソレイユ位相板32を透過して外部に出射する。この場合、接着剤41は、波長フィルタ31の所望の透過波長域で十分な光透過性を有するものが好ましい。 FIG. 5 schematically shows the configuration of still another modification of the first embodiment. Wavelength filter 313 of the present embodiment omits the exit side polarizer 39, and which one end of the first outer polarizer 44 is oriented parallel to the embodiment similarly to the paper surface of the polarization direction in FIG. 3 This is different from the first embodiment. As a result, the s-polarized light transmitted through the first Babinet Soleil phase plate 32 is incident on the last first outer polarizer 44, is transmitted therethrough, and is emitted to the outside as it is. The p-polarized light transmitted through the second Babinet Soleil phase plate 33 enters the last second outer polarizer 48 and is reflected. The reflected p-polarized light is transmitted through the second Babinet Soleil phase plate, the adhesive 41 and the first Babinet Soleil phase plate 32, and is emitted to the outside. In this case, the adhesive 41 is preferably one that has sufficient optical transparency at the desired transmission wavelength range of the wavelength filter 31 3.

このように本実施例によれば、所望の波長域で異なる偏光成分の2つの光を別個に取り出すことができる。また、第1バビネソレイユ位相板32と第2バビネソレイユ位相板33とを互いに異なる光学的厚さに設定すると、2つの異なる波長の光を取り出すことができる。これは、例えば第1バビネソレイユ位相板32の楔角θ1と第2バビネソレイユ位相板33の楔角θ2とが異なるように設定したり、各バビネソレイユ位相板を別個に駆動すればよい。更に別の実施例では、別個に出射した2つの光を、波長フィルタ31の外側に配置した偏光ビームスプリッタや複屈折板等の光学手段によって合成することができる。 As described above, according to this embodiment, two lights having different polarization components in a desired wavelength region can be extracted separately. Further, when the first Babinet Soleil phase plate 32 and the second Babinet Soleil phase plate 33 are set to different optical thicknesses, light of two different wavelengths can be extracted. For example, the wedge angle θ1 of the first Babinet Soleil phase plate 32 may be set to be different from the wedge angle θ2 of the second Babinet Soleil phase plate 33, or each Babinet Soleil phase plate may be driven separately. In yet another embodiment, it can be synthesized by separately emitting the two beams of the wavelength filter 31 third polarization beam splitter and a birefringent plate such as an optical means arranged outside.

図6(A)〜(D)は、波長可変フィルタ31の波長特性、即ち透過スペクトルのピークの透過率をシミュレーションした結果を示している。図6(A)〜(D)は、それぞれ第1バビネソレイユ位相板32を透過して出射する光の光路に沿って図5(B)に示す各位置P1〜P4における光の波長に関する透過率の変化を示している。ここで、λは特定波長即ち入射光の波長であり、λは各位置P1〜P4における透過光又は出射光の波長である。同図において、実線は、第1バビネソレイユ位相板32の光学的厚さが基準値である場合を、破線は、該バビネソレイユ位相板をその光学的厚さを基準値よりも薄くした場合を表している。 FIG 6 (A) ~ (D) shows the wavelength characteristics of the wavelength tunable filter 31 3, i.e. the results of simulation of the transmittance of the peak of the transmission spectrum. 6 (A) to 6 (D) respectively show transmittances relating to the wavelengths of light at the positions P1 to P4 shown in FIG. 5 (B) along the optical path of the light transmitted through the first Babinet Soleil phase plate 32 and emitted. Shows changes. Here, λ 0 is a specific wavelength, that is, a wavelength of incident light, and λ is a wavelength of transmitted light or outgoing light at each of the positions P1 to P4. In the figure, the solid line indicates the case where the optical thickness of the first Babinet Soleil phase plate 32 is a reference value, and the broken line indicates the case where the optical thickness of the Babinet Soleil phase plate is made thinner than the reference value. Represents.

入射後に、入射側偏光子38から反射した後の前記光路の位置P1では、光の透過率は全波長範囲において50%一定である(図6(A))。第1外側偏光子42から反射した後の前記光路の位置P2は、最初に隣接する前記偏光子間の透過特性を示し、前記特定波長の整数倍となる波長でピークを有する(図6(B))。次に隣接する前記偏光子間の透過特性は、前記特定波長の1/2波長の整数倍の波長でピークを有するから、第1外側偏光子43から反射した後の前記光路の位置P3では、これと図6(B)とを重ね合わせた透過特性を示す(図6(C))。最後に隣接する前記偏光子間の透過特性は、前記特定波長の1/4波長の整数倍の波長でピークを有するから、第1外側偏光子44から出射した後の位置P4では、更にこれを図6(C)に重ね合わせた透過特性を示す(図2(D))。   After the incidence, at the position P1 of the optical path after being reflected from the incident side polarizer 38, the light transmittance is constant 50% in the entire wavelength range (FIG. 6A). The position P2 of the optical path after being reflected from the first outer polarizer 42 first shows transmission characteristics between the adjacent polarizers, and has a peak at a wavelength that is an integral multiple of the specific wavelength (FIG. 6B )). Next, since the transmission characteristics between the adjacent polarizers have a peak at a wavelength that is an integral multiple of ½ wavelength of the specific wavelength, at the position P3 of the optical path after being reflected from the first outer polarizer 43, A transmission characteristic obtained by superimposing this on FIG. 6B is shown (FIG. 6C). Finally, since the transmission characteristic between the adjacent polarizers has a peak at a wavelength that is an integral multiple of a quarter wavelength of the specific wavelength, this is further reduced at the position P4 after being emitted from the first outer polarizer 44. FIG. 6C shows the superimposed transmission characteristics (FIG. 2D).

隣接する前記偏光子間の各透過スペクトルのピークは、前記特定波長の整数倍の波長で全て重なるので、前記第1波長フィルタ部は、図6(D)に示すように、前記特定波長の整数倍で急峻なピークを有する透過特性が得られる。ここで、前記アクチュエータを駆動して第1バビネソレイユ位相板32の光学的厚さを変化させると、その透過特性は、図6(A)〜(D)に破線で例示するように、ピーク波長が高波長側又は低波長側にシフトする。尚、第2バビネソレイユ位相板33の前記第2波長フィルタ部の透過特性は、前記第1波長フィルタ部と同じであるので、説明を省略する。   Since the peaks of the transmission spectra between the adjacent polarizers all overlap at a wavelength that is an integral multiple of the specific wavelength, the first wavelength filter unit is an integer of the specific wavelength as shown in FIG. Transmission characteristics having double and sharp peaks can be obtained. Here, when the optical thickness of the first Babinet Soleil phase plate 32 is changed by driving the actuator, the transmission characteristics are shown in FIG. 6A to FIG. Shift to the high wavelength side or the low wavelength side. Note that the transmission characteristics of the second wavelength filter unit of the second Babinet Soleil phase plate 33 are the same as those of the first wavelength filter unit, and thus description thereof is omitted.

図7は、第1実施例の更に別の変形例の構成を概略的に示している。本実施例の波長フィルタ31は、前記第1及び第2外側偏光子をワイヤグリッド偏光子から吸収型偏光子に置き換えた点において、第1実施例と異なる。吸収型偏光子としては、例えば樹脂フィルム又はシートを用いた二色性偏光板がある。吸収型偏光子は、所定波長又は波長範囲の光を透過する性質を有するので、その裏側に反射膜を設ける必要がある。 FIG. 7 schematically shows the configuration of still another modification of the first embodiment. Wavelength filter 31 4 of this embodiment, in that replaced the absorptive polarizer said first and second outer polarizer from the wire grid polarizer, different from the first embodiment. As an absorptive polarizer, there is a dichroic polarizing plate using a resin film or a sheet, for example. Since the absorption polarizer has a property of transmitting light of a predetermined wavelength or wavelength range, it is necessary to provide a reflective film on the back side thereof.

第1バビネソレイユ位相板32の外側主面には、吸収型偏光子からなる第1外側偏光子50,51が第1実施例の第1外側偏光子42,43の位置に、吸収型偏光子からなる第1外側偏光子52が第1実施例の第1外側偏光子44の位置にそれぞれ配置され、かつそれらに第1外側反射膜53と第1外側反射膜54とが積層されている。第2バビネソレイユ位相板33の外側主面には、吸収型偏光子からなる第2外側偏光子55,56が第1実施例の第2外側偏光子46,47の位置に、吸収型偏光子からなる第2外側偏光子52が第1実施例の第2外側偏光子48の位置にそれぞれ配置され、かつそれらに第1外側反射膜58と第1外側反射膜59とが積層されている。他の構成は、図1の波長フィルタ31と同一であるので、詳細な説明は省略する。   On the outer principal surface of the first Babinet Soleil phase plate 32, first outer polarizers 50 and 51 made of absorption polarizers are positioned at the positions of the first outer polarizers 42 and 43 of the first embodiment. The first outer polarizers 52 are respectively arranged at the positions of the first outer polarizers 44 of the first embodiment, and the first outer reflective film 53 and the first outer reflective film 54 are laminated thereon. On the outer principal surface of the second Babinet Soleil phase plate 33, second outer polarizers 55 and 56 made of absorption polarizers are positioned at the positions of the second outer polarizers 46 and 47 of the first embodiment. The second outer polarizers 52 are respectively arranged at the positions of the second outer polarizers 48 of the first embodiment, and the first outer reflection film 58 and the first outer reflection film 59 are laminated thereon. Other configurations are the same as those of the wavelength filter 31 of FIG.

本実施例においても、前記各偏光子の偏光方向を図4の実施例のように変えることができる。また本実施例は、図5の実施例のように構成して出射側偏光子39を省略し、かつ第1外側偏光子44の偏光方向を変えて、異なる偏光成分の2つの光を別個に取り出することができる。また、第1バビネソレイユ位相板32と第2バビネソレイユ位相板33とを互いに異なる光学的厚さに設定して、2つの異なる波長の光を取り出すことができる。   Also in this embodiment, the polarization direction of each polarizer can be changed as in the embodiment of FIG. Further, the present embodiment is configured as in the embodiment of FIG. 5, omits the exit side polarizer 39, and changes the polarization direction of the first outer polarizer 44 to separately separate two lights of different polarization components. Can be taken out. In addition, the first and second Babinet Soleil phase plates 32 and 33 can be set to different optical thicknesses to extract light having two different wavelengths.

図8は、第1実施例の更に別の変形例の構成を概略的に示している。本実施例の波長フィルタ31は、図2の実施例において、図5の実施例と同様に前記第1及び第2外側偏光子をワイヤグリッド偏光子から吸収型偏光子に置き換えたものである。本実施例によれば、前記第1及び第2バビネソレイユ位相板を透過したs偏光とp偏光とを、出射側偏光子39で合成し、第2バビネソレイユ位相板33の外側主面の端部33b(図中右側)付近を光出射口として、外部へ入射光L1と同じ方向に出射することができる。他の構成は、図1の波長フィルタ31と同一であるので、詳細な説明は省略する。 FIG. 8 schematically shows the configuration of still another modification of the first embodiment. Wavelength filters 31 5 of the present embodiment, in the embodiment of FIG. 2 are replaced with absorptive polarizer EXAMPLE similarly to the first and second outer polarizer of Figure 5 from the wire grid polarizer . According to the present embodiment, the s-polarized light and p-polarized light transmitted through the first and second Babinet Soleil phase plate, synthesized by the exit side polarizer 39 1, the outer main surface of second Babinet Soleil phase plate 33 The vicinity of the end portion 33b (right side in the figure) can be used as a light emission port to be emitted to the outside in the same direction as the incident light L1. Other configurations are the same as those of the wavelength filter 31 of FIG.

図9は、本発明による波長フィルタの第2実施例の構成を概略的に示している。本実施例の波長フィルタ61は、第1及び第2バビネソレイユ位相板62,63が第1実施例よりも短く、かつそれらの間に挟まれた出射側偏光子69が、入射側偏光子68と内側反射膜70との間に配置されている。第1バビネソレイユ位相板62の外側主面には、ワイヤグリッド偏光子からなる第1外側偏光子72と第1外側反射膜73とが配置されている。第2バビネソレイユ位相板63の外側主面には、ワイヤグリッド偏光子からなる第2外側偏光子75と第2外側反射膜76とが配置されている。積層した第1及び第2バビネソレイユ位相板62,63には、それぞれ光の入射方向とは反対側の端面に垂直反射膜74,77が設けられている。   FIG. 9 schematically shows the configuration of a second embodiment of the wavelength filter according to the present invention. In the wavelength filter 61 of this embodiment, the first and second Babinet Soleil phase plates 62 and 63 are shorter than those of the first embodiment, and the exit side polarizer 69 sandwiched between them is an entrance side polarizer 68. And the inner reflective film 70. A first outer polarizer 72 made of a wire grid polarizer and a first outer reflecting film 73 are disposed on the outer main surface of the first Babinet Soleil phase plate 62. A second outer polarizer 75 made of a wire grid polarizer and a second outer reflection film 76 are disposed on the outer principal surface of the second Babinet Soleil phase plate 63. The laminated first and second Babinet Soleil phase plates 62 and 63 are provided with vertical reflecting films 74 and 77 on the end faces opposite to the light incident direction, respectively.

入射側偏光子68に反射された入射光L1のs偏光成分は、第1バビネソレイユ位相板62を透過して第1外側偏光子72に反射される。次にs偏光は、内側反射膜70に反射されて前記第1バビネソレイユ位相板を1度往復透過し、再び第1外側偏光子72に反射される。更にs偏光は、前記内側反射膜と垂直反射膜74と第1外側反射膜73とにより4度反射されて、前記第1バビネソレイユ位相板を2度往復透過し、再び第1外側偏光子72に反射されて出射側偏光子69に入射する。このように第1バビネソレイユ位相板62内部を多重反射して透過したs偏光は、出射側偏光子69を透過し、第2バビネソレイユ位相板63を透過して外部に出射する。   The s-polarized component of the incident light L 1 reflected by the incident side polarizer 68 passes through the first Babinet Soleil phase plate 62 and is reflected by the first outer polarizer 72. Next, the s-polarized light is reflected by the inner reflective film 70, reciprocates once through the first Babinet Soleil phase plate, and is reflected by the first outer polarizer 72 again. Further, the s-polarized light is reflected four times by the inner reflection film, the vertical reflection film 74, and the first outer reflection film 73, reciprocates twice through the first Babinet Soleil phase plate, and again returns to the first outer polarizer 72. And is incident on the exit-side polarizer 69. In this way, the s-polarized light that has passed through the first Babinet Soleil phase plate 62 after multiple reflection is transmitted through the output-side polarizer 69, transmitted through the second Babinet Soleil phase plate 63, and emitted to the outside.

前記入射側偏光子を透過した入射光L1のp偏光成分は、第2バビネソレイユ位相板63を透過して第2外側偏光子75に反射される。次にp偏光は、内側反射膜70に反射されて前記第2バビネソレイユ位相板を1度往復透過し、再び第2外側偏光子75に反射される。更にp偏光は、前記内側反射膜と垂直反射膜77と第2外側反射膜76とにより4度反射されて、前記第2バビネソレイユ位相板を2度往復透過し、再び第2外側偏光子75に反射されて出射側偏光子69に入射する。このように第2バビネソレイユ位相板63内部を多重反射して透過したp偏光は、出射側偏光子69に反射され、第2バビネソレイユ位相板63を透過して外部に出射する。   The p-polarized component of the incident light L1 that has passed through the incident side polarizer is transmitted through the second Babinet Soleil phase plate 63 and reflected by the second outer polarizer 75. Next, the p-polarized light is reflected by the inner reflection film 70, reciprocates once through the second Babinet Soleil phase plate, and is reflected by the second outer polarizer 75 again. Further, the p-polarized light is reflected four times by the inner reflection film, the vertical reflection film 77, and the second outer reflection film 76, is transmitted twice through the second Babinet Soleil phase plate, and is again transmitted to the second outer polarizer 75. And is incident on the exit-side polarizer 69. The p-polarized light that has been transmitted through the second Babinet Soleil phase plate 63 after being reflected in this way is reflected by the output-side polarizer 69, passes through the second Babinet Soleil phase plate 63, and exits to the outside.

第1実施例と同様に、第1及び第2バビネソレイユ位相板62,63は、それらの主面間を光が一度透過する間に360°の位相差が与えられるように構成されている。入射側偏光子68、出射側偏光子69、第1及び第2外側偏光子72,75は、第1及び第2バビネソレイユ位相板62,63の光路に沿って隣接する2つの前記偏光子の位相差が、順に360°、720°、1440°に、即ち2n−1×2π、(n:1〜3)となるように配置されている。このように位相差が常に2πの整数倍となるので、従来のリオフィルタと同様のバンドパスフィルタとしての透過特性が得られる。 Similar to the first embodiment, the first and second Babinet Soleil phase plates 62 and 63 are configured such that a phase difference of 360 ° is given while light is once transmitted between the principal surfaces. The incident side polarizer 68, the output side polarizer 69, and the first and second outer polarizers 72 and 75 are the two polarizers adjacent to each other along the optical path of the first and second Babinet Soleil phase plates 62 and 63. It arrange | positions so that a phase difference may become 360 degrees, 720 degrees, and 1440 degrees in order, ie, 2n-1 * 2 (pi), (n: 1-3). Thus, since the phase difference is always an integral multiple of 2π, transmission characteristics as a bandpass filter similar to the conventional rio filter can be obtained.

第1バビネソレイユ位相板62を透過したs偏光と第2バビネソレイユ位相板63を透過したp偏光とは、出射側偏光子69で合成され、1つの出射光L2として、第2バビネソレイユ位相板63の外側主面の光出射口から出射する。これにより、入射光量に比して出射光量の損失が少なく、光利用効率の高い波長フィルタ61が実現される。更に、波長フィルタ61は、前記第1及び第2バビネソレイユ位相板を透過する光が前記端面で折り返されて双方向に進行するので、第1実施例よりも更に部品点数を大幅に少なくでき、かつ特に装置の長さ寸法を小型化することができる。 The s-polarized light that has been transmitted through the first Babinet Soleil phase plate 62 and the p-polarized light that has been transmitted through the second Babinet Soleil phase plate 63 are synthesized by the output-side polarizer 69, and the second Babinet Soleil phase plate is obtained as one output light L 2. The light exits from the light exit port of the outer main surface of 63. As a result, the wavelength filter 61 having a high light utilization efficiency with less loss of the emitted light amount than the incident light amount is realized. Further, the wavelength filter 61 is configured such that the light transmitted through the first and second Babinet Soleil phase plates is folded at the end face and travels in both directions, so that the number of components can be significantly reduced compared to the first embodiment. In particular, the length of the device can be reduced.

上記各実施例の第1及び第2バビネソレイユ位相板32,33,62,63は、図1に関連して上述したように、それぞれ2枚の複屈折板の一方が楔板と平行平板とから構成されている。このように平行平板の複屈折板を組み合わせることによって、バビネソレイユ位相板の位相差を0°から無限大までの広い範囲で自由に設定できるので、透過波長範囲を高い自由度をもって設計することができる。   As described above with reference to FIG. 1, each of the first and second Babinet Soleil phase plates 32, 33, 62, and 63 in each of the above embodiments is configured such that one of the two birefringent plates is a wedge plate and a parallel plate. It is composed of By combining parallel birefringent plates in this way, the phase difference of the Babinet Soleil phase plate can be set freely in a wide range from 0 ° to infinity, so the transmission wavelength range can be designed with a high degree of freedom. it can.

別の実施例では、以下に例示するように、上記実施例と異なる様々な構成のバビネソレイユ位相板を用いることができる。尚、本明細書では、説明を簡単にするため、以下に図1の第1バビネソレイユ板32に関連して説明するが、第2バビネソレイユ板についても同様の構成を適用し得ることは言うまでもない。   In another embodiment, as illustrated below, various configurations of the Babinet Soleil phase plate different from the above embodiment can be used. In this specification, in order to simplify the explanation, the following description will be made in relation to the first babynet soleil plate 32 of FIG. 1, but it goes without saying that the same configuration can be applied to the second babynet soleil plate. Yes.

図10に示すバビネソレイユ位相板32は、図1の第1バビネソレイユ板32から平行平板34を省略したものである。従って、上側の複屈折板34は楔板だけで構成される。複屈折板34,35の光学軸Op1,Op2は、図1の実施例と同様に、同じ向きにかつ前記バビネソレイユ位相板の長さ方向に対して45°の向きに配向されている。この場合、前記第1〜第3偏光子及び前記上側反射ミラーは、楔板の平行平板面34c上に設けられる。このように2枚の楔板だけでバビネソレイユ位相板を構成することによって、部品点数を最小にし、フィルタ全体の構成を簡単にかつより小型にすることができる。 Babinet Soleil phase plate 32 1 shown in FIG. 10 is obtained by omitting the parallel plate 34 2 from the first Babinet Soleil plate 32 of FIG. 1. Accordingly, the upper birefringent plate 34 is composed only of a wedge plate. The optical axes Op1 and Op2 of the birefringent plates 34 and 35 are oriented in the same direction and at an angle of 45 ° with respect to the length direction of the Babinet Soleil phase plate, as in the embodiment of FIG. In this case, the first to third polarizers and the upper reflection mirror are provided on the parallel plate surface 34c of the wedge plate. In this way, by configuring the Babinet Soleil phase plate with only two wedge plates, the number of parts can be minimized, and the overall configuration of the filter can be made simpler and more compact.

図11に示すバビネソレイユ位相板32は、図1の第1バビネソレイユ板32において、両複屈折板34,35をそれぞれ上下逆向きにし、かつ上側複屈折板34の平行平板34と下側複屈折板35の平行平板面35cとを対向させて配置している。楔板34及び複屈折板35の光学軸Op1,Op2は同じ向きにかつ前記バビネソレイユ位相板の長さ方向に対して45°の向きに配向され、平行平板34の光学軸Op3は楔板34の光学軸Op1に対して互いに直交するように配向される。この場合、前記第1〜第3偏光子及び前記上側反射ミラーは楔板34の傾斜面34d上に設けられ、前記下側反射ミラーは下側複屈折板34の傾斜面上に設けられる。本実施例のバビネソレイユ位相板32は、位相差を調整する際に、両複屈折板34,35をその対向面の面方向と平行に、それらを前記対向面で摺接させた状態でも、より円滑に駆動することができる。 Babinet Soleil phase plate 32 2 shown in FIG. 11, in the first Babinet Soleil plate 32 in FIG. 1, and upside down both birefringent plates 34 and 35, and the parallel plate 34 2 and the lower upper birefringent plate 34 The side birefringent plate 35 is arranged to face the parallel flat plate surface 35c. Wedge plate 34 1 and the optical axis of the birefringent plate 35 Op1, Op2 is oriented at 45 ° orientation with respect to the length direction of the same direction and the Babinet Soleil phase plate, the optical axis Op3 of the parallel plate 34 2 is wedge It is oriented perpendicular to each other with respect to the optical axis Op1 plate 34 1. In this case, the first to third polarizer and the upper reflection mirror provided on the wedge plate 34 1 of the inclined surface on 34d, the lower reflection mirror is provided on the inclined surface of the lower birefringent plate 34. Babinet Soleil phase plate 32 2 of the present embodiment, when adjusting the phase difference, the two birefringent plates 34, 35 parallel to the surface direction of the opposing surface, even those in the state of being sliding contact with the opposing surface , It can be driven more smoothly.

図12に示すバビネソレイユ位相板32は、図11のバビネソレイユ位相板32において、図10の実施例と同様に平行平板34を省略したものである。上側の複屈折板34は楔板だけで構成され、その平行平板面34cと下側複屈折板35の平行平板面35cとを対向させて配置される。これにより、バビネソレイユ位相板32の位相差を調整する際に、両複屈折板34,35をその対向する平行平板面の面方向と平行に、それらを前記平行平板面で摺接させた状態であっても、円滑に駆動できる。更に、2枚の楔板だけでバビネソレイユ位相板を構成することによって、部品点数を最小にし、フィルタ全体の構成を簡単にかつより小型にすることができる。 Babinet Soleil phase plate 32 3 shown in FIG. 12, the Babinet Soleil phase plate 32 2 of FIG. 11 is obtained by omitting Example similarly to the parallel plate 34 2 of FIG. 10. The upper birefringent plate 34 is composed only of a wedge plate, and the parallel flat plate surface 34c and the parallel flat plate surface 35c of the lower birefringent plate 35 are arranged to face each other. Thus, when adjusting the phase difference of the Babinet Soleil phase plate 32 3, both birefringent plates 34, 35 parallel to the surface direction of the parallel flat plate surface to its opposite, was sliding them in the parallel flat plate surface Even in the state, it can be driven smoothly. Furthermore, by configuring the Babinet Soleil phase plate with only two wedge plates, the number of parts can be minimized, and the overall configuration of the filter can be made simpler and more compact.

図13に示すバビネソレイユ位相板32は、図11の実施例において、各複屈折板34,35が、その傾斜面34d,35dにそれぞれ同じ楔角θの楔状ガラス板78,79を貼り合わせて、平行平板に形成されている。これにより、前記第1〜第3偏光子、前記上側反射ミラー及び下側反射ミラーは、それぞれ楔板78の上面及び楔板79の下面即ち平行平板面に設けられるので、その位置合わせが簡単で製造が容易になる。また、複屈折板34,35は、バビネソレイユ位相板32の位相差を調整する際に、それらを対向面で摺接させた状態であっても、円滑に駆動できる。 Babinet Soleil phase plate 32 shown in FIG. 13. 4, in the embodiment of FIG. 11, the birefringent plate 34 and 35, the inclined surface 34d, bonding the wedge-shaped glass plate 78, 79 of the same wedge angle θ respectively 35d And formed in parallel flat plates. Accordingly, the first to third polarizers, the upper reflection mirror, and the lower reflection mirror are provided on the upper surface of the wedge plate 78 and the lower surface of the wedge plate 79, that is, the parallel flat plate surface, respectively, so that the alignment is easy. Easy to manufacture. Further, the birefringent plate 34 and 35, when adjusting the phase difference of the Babinet Soleil phase plate 32 4, even them in a state of being sliding in the opposing surface, can be smoothly driven.

図14に示すバビネソレイユ位相板32は、図13の実施例において、図10の実施例と同様に上側複屈折板34から平行平板34を省略したものである。これにより、部品点数を少なくし、構成を簡単にすることができる。上側複屈折板34は、楔板34に楔状ガラス板78を貼り合わせて平行平板に形成され、同様に楔状ガラス板79を貼り合わせて平行平板に形成した下側複屈折板35と対向させて配置される。従って、複屈折板34,35は、バビネソレイユ位相板32の位相差を調整する際に、それらを対向面で摺接させた状態であっても、円滑に駆動できる。 Babinet Soleil phase plate 32 5 shown in FIG. 14, in the embodiment of FIG. 13 is obtained by omitting the parallel plate 34 2 from the upper birefringent plate 34 as with the embodiment of FIG. 10. Thereby, the number of parts can be reduced and the configuration can be simplified. Upper birefringent plate 34 is bonded to the wedge-shaped glass plate 78 in the wedge plate 34 1 is formed in a parallel plate, similarly to face the lower birefringent plate 35 by bonding wedge glass plate 79 formed in a parallel plate Arranged. Thus, the birefringent plate 34 and 35, when adjusting the phase difference of the Babinet Soleil phase plate 32 5, even them in a state of being sliding in the opposing surface, can be smoothly driven.

図15に示すバビネソレイユ位相板32は、図10の実施例において、複屈折板34,35の光学軸Op1,Op2が、いずれも前記バビネソレイユ位相板の長さ方向と同じ向きに配向されている。一般に複屈折板は、その外周形状に関して光学軸を水平又は垂直な向きに配向すると、特に楔板の加工において製造が簡単になるので有利である。尚、この場合には、複屈折板34,35の光学軸の向きに対応して、バビネソレイユ位相板32の上側及び下側主面に設けられる偏光子の偏光軸を、図1の実施例の場合から45°回転させた向きに配向する必要がある。 Babinet Soleil phase plate 32 6 shown in FIG. 15, in the embodiment of FIG. 10, the optical axis Op1 of the birefringent plate 34, 35, Op2 are both oriented in the same direction as the longitudinal direction of the Babinet Soleil phase plate ing. In general, it is advantageous to orient the optical axis in the horizontal or vertical orientation with respect to the outer peripheral shape of the birefringent plate, since this makes it easy to manufacture especially in processing of a wedge plate. In this case, corresponding to the orientation of the optical axis of the birefringent plate 35, the polarization axis of the polarizer provided on the upper and lower principal surface of the Babinet Soleil phase plate 32 6, the implementation of FIG. 1 It is necessary to orient in the direction rotated by 45 ° from the case of the example.

更に別の実施例では、図13及び図14の実施例において、複屈折板34,35をそれぞれ上下逆向きにし、かつそれらに貼り付けた楔状ガラス板78,79同士を対向させて配置することができる。また、これら様々な構成のバビネソレイユ位相板は、図3乃至図5、図7乃至図9の各実施例についても、同様に適用することができる。   In still another embodiment, the birefringent plates 34 and 35 are turned upside down in the embodiment shown in FIGS. 13 and 14, and the wedge-shaped glass plates 78 and 79 attached to them are arranged to face each other. Can do. Also, these various configurations of the Babinet Soleil phase plate can be similarly applied to the embodiments of FIGS. 3 to 5 and FIGS. 7 to 9.

本発明は、上記実施例に限定されるものでなく、その技術的範囲内で様々な変形又は変更を加えて実施することができる。例えば、上記各波長フィルタは、2段構造に又は4段以上の多段構造に構成することができる。また、波長フィルタの入射位置、出射位置、反射位置は、上記各実施例以外の様々な位置に設定することができる。   The present invention is not limited to the above embodiments, and can be implemented with various modifications or changes within the technical scope thereof. For example, each wavelength filter can be configured in a two-stage structure or a multistage structure having four or more stages. Further, the incident position, the emission position, and the reflection position of the wavelength filter can be set at various positions other than the above embodiments.

(A)図は、本発明による波長可変フィルタの第1実施例を概略的に示す平面図、(B)図は光の進行方向に沿って示す側面図、(C)図は入射側の端面図。(A) is a plan view schematically showing a first embodiment of a wavelength tunable filter according to the present invention, (B) is a side view showing the traveling direction of light, and (C) is an end face on the incident side. Figure. (A)〜(D)図はそれぞれ第1実施例の透過特性を示す線図。(A)-(D) are diagrams each showing the transmission characteristics of the first embodiment. (A)図は、第1実施例の変形例を概略的に示す平面図、(B)図は光の進行方向に沿って示す側面図、(C)図は入射側の端面図。(A) is a plan view schematically showing a modification of the first embodiment, (B) is a side view along the light traveling direction, and (C) is an end view on the incident side. (A)図は、第1実施例の別の変形例を概略的に示す平面図、(B)図は光の進行方向に沿って示す側面図、(C)図は入射側の端面図。FIG. 5A is a plan view schematically showing another modification of the first embodiment, FIG. 5B is a side view showing the traveling direction of light, and FIG. 5C is an end view on the incident side. (A)図は、第1実施例の更に別の変形例を概略的に示す平面図、(B)図は光の進行方向に沿って示す側面図、(C)図は入射側の端面図。(A) is a plan view schematically showing still another modification of the first embodiment, (B) is a side view showing along the traveling direction of light, and (C) is an end view on the incident side. . (A)〜(D)図はそれぞれ図5の実施例の透過特性を示す線図。FIGS. 6A to 6D are diagrams each showing transmission characteristics of the embodiment of FIG. (A)図は、第1実施例の更に別の変形例を概略的に示す平面図、(B)図はその光の進行方向に沿って示す側面図、(C)図はその入射側の端面図。(A) is a plan view schematically showing still another modification of the first embodiment, (B) is a side view showing the traveling direction of the light, and (C) is the incident side. End view. (A)図は、第1実施例の更に別の変形例を概略的に示す平面図、(B)図は光の進行方向に沿って示す側面図、(C)図は入射側の端面図。(A) is a plan view schematically showing still another modification of the first embodiment, (B) is a side view showing along the traveling direction of light, and (C) is an end view on the incident side. . (A)図は、本発明による波長可変フィルタの第2実施例を概略的に示す平面図、(B)図はその光の進行方向に沿って示す側面図、(C)図はその入射側の端面図。(A) is a plan view schematically showing a second embodiment of a wavelength tunable filter according to the present invention, (B) is a side view showing the light traveling direction, and (C) is an incident side thereof. End view. (A)図は、バビネソレイユ位相板の別の構成を示す側面図、(B)図はその平面図。(A) The figure is a side view which shows another structure of a baby-brain soleil phase plate, (B) The figure is the top view. (A)図は、バビネソレイユ位相板の更に別の構成を示す側面図、(B)図はその平面図。(A) The figure is a side view which shows another structure of a baby-brain soleil phase plate, (B) The figure is the top view. (A)図は、バビネソレイユ位相板の更に別の構成を示す側面図、(B)図はその平面図。(A) The figure is a side view which shows another structure of a baby-brain soleil phase plate, (B) The figure is the top view. (A)図は、バビネソレイユ位相板の更に別の構成を示す側面図、(B)図はその平面図。(A) The figure is a side view which shows another structure of a baby-brain soleil phase plate, (B) The figure is the top view. (A)図は、バビネソレイユ位相板の更に別の構成を示す側面図、(B)図はその平面図。(A) The figure is a side view which shows another structure of a baby-brain soleil phase plate, (B) The figure is the top view. (A)図は、バビネソレイユ位相板の更に別の構成を示す側面図、(B)図はその平面図。(A) The figure is a side view which shows another structure of a baby-brain soleil phase plate, (B) The figure is the top view. リオフィルタの基本的構成を示す図。The figure which shows the basic composition of a Rio filter. 液晶セルを用いた従来例の構成図。The block diagram of the prior art example using a liquid crystal cell. 液晶セルを用いた別の従来例の構成図。The block diagram of another prior art example using a liquid crystal cell.

符号の説明Explanation of symbols

1…リオフィルタ、2a〜2d,12a〜12d,22a〜22d…偏光子、2a1〜2d1,12a1〜12d11…透過軸、3a〜3c…複屈折板、3a1〜3c1…光学軸、4…光軸、11…バンドパスフィルタ、13a〜13c,23a〜23c…液晶セル、21…波長可変フィルタ、24a〜24c…位相差フィルム、31,31〜31,61…波長可変フィルタ、32,32〜32,33,62,63…バビネソレイユ位相板、34〜37,64〜67…楔状複屈折板、34,36,64,66…楔板、34,36,64,66…平行平板、38,38,68…入射側偏光子、39,39,69…出射側偏光子、40,70…内側反射膜、41,71…接着剤、42〜44,42〜44,50〜52,72…第1外側偏光子、45,45,53,54,73…第1外側反射膜、46〜48,46〜48,55〜57,75…第2外側偏光子、49,49,58,59,76…第2外側反射膜、74,77…垂直反射膜、78,79…楔状ガラス板。 DESCRIPTION OF SYMBOLS 1 ... Rio filter, 2a-2d, 12a-12d, 22a-22d ... Polarizer, 2a1-2d1, 12a1-12d11 ... Transmission axis, 3a-3c ... Birefringent plate, 3a1-3c1 ... Optical axis, 4 ... Optical axis , 11 ... band pass filters, 13a to 13c, 23a to 23c ... liquid crystal cells, 21 ... wavelength tunable filters, 24a to 24c ... phase difference films, 31, 31 1 to 31 6 , 61 ... wavelength tunable filters, 32, 32 1 32 6 , 33, 62, 63... Babinet Soleil phase plate, 34 to 37, 64 to 67... Wedge-shaped birefringent plate, 34 1 , 36 1 , 64 1 , 66 1 ... Wedge plate, 34 2 , 36 2 , 64 2 , 66 2 ... parallel flat plates, 38, 38 1 , 68 ... incident side polarizer, 39, 39 1 , 69 ... output side polarizer, 40, 70 ... inner reflection film, 41, 71 ... adhesive, 42 to 44 , 42 1 to 44 1, 0~52,72 ... first outer polarizer, 45, 45 1, 53,54,73 ... first outer reflective film, 46~48,46 1-48 1, 55~57,75 ... second outer polarizer 49, 49 1 , 58, 59, 76 ... second outer reflection film, 74, 77 ... vertical reflection film, 78, 79 ... wedge-shaped glass plate.

Claims (16)

第1及び第2位相差素子と、入射側偏光子と、第1及び第2外側偏光子と、内側反射膜と、第1及び第2外側反射膜とを備え、
前記第1及び第2位相差素子がそれぞれ、一端から他端に向けて厚さを薄くした楔状をなしかつ互いに対向させて配置され、前記各位相差素子の厚さを変化させるように相対的に変位可能な2枚の位相差板からなり、
前記第1及び第2位相差素子がそれらの間に前記入射側偏光子と前記内側反射膜とを挟んで積層され、前記第1位相差素子の外側主面に前記第1外側偏光子と前記第1外側反射膜とが配置され、前記第2位相差素子の外側主面に前記第2外側偏光子と前記第2外側反射膜とが配置され、
前記第1位相差素子に入射した光が前記入射側偏光子により反射光と透過光とに分光され、前記反射光が、前記第1位相差素子内部を前記第1外側偏光子又は前記第1外側反射膜と前記内側反射膜とによって前記位相差素子主面の法線方向に関して付定の角度をもって多重反射して透過し、前記透過光が、前記第2位相差素子内部を前記第2外側偏光子又は前記第2外側反射膜と前記内側反射膜とによって前記位相差素子主面の法線方向に関して付定の角度をもって多重反射して透過することを特徴とする波長可変フィルタ。
A first and second retardation element, an incident side polarizer, a first and second outer polarizer, an inner reflection film, and a first and second outer reflection film;
Each of the first and second phase difference elements is disposed in a wedge shape with a thickness decreasing from one end to the other end and facing each other, so that the thickness of each of the phase difference elements is relatively changed. It consists of two displaceable retardation plates,
The first and second retardation elements are stacked with the incident-side polarizer and the inner reflective film sandwiched therebetween, and the first outer polarizer and the outer surface of the first retardation element are stacked on each other. A first outer reflection film is disposed, and the second outer polarizer and the second outer reflection film are disposed on an outer main surface of the second retardation element,
Light incident on the first phase difference element is split into reflected light and transmitted light by the incident side polarizer, and the reflected light passes through the first outer phase polarizer or the first inside the first phase difference element. The outer reflection film and the inner reflection film are multiple-reflected and transmitted at a fixed angle with respect to the normal direction of the phase difference element main surface, and the transmitted light passes through the second phase difference element inside the second outer side. A wavelength tunable filter characterized in that it is subjected to multiple reflection at a fixed angle with respect to a normal direction of the main surface of the phase difference element by a polarizer or the second outer reflection film and the inner reflection film.
積層した前記第1及び第2位相差素子間に挟まれた出射側偏光子を更に有し、前記第1位相差素子内部を多重反射した光と前記第2位相差素子内部を多重反射した光とが、前記出射側偏光子により合成されて前記第1及び第2位相差素子から出射することを特徴とする請求項1記載の波長可変フィルタ。   The light further includes an output-side polarizer sandwiched between the stacked first and second phase difference elements, and light that has undergone multiple reflections within the first phase difference element and light that has undergone multiple reflections within the second phase difference element Are synthesize | combined by the said output side polarizer, and are radiate | emitted from the said 1st and 2nd phase difference element, The wavelength variable filter of Claim 1 characterized by the above-mentioned. 前記第1位相差素子内部を透過する光の光路に沿って隣接する2つの前記偏光子間の位相差Γ1iが、前記光路を透過する光の波長に対してΓ1i=2i−1×2π、(但し、i=1〜n、n:2以上の整数)の関係を満足し、かつ前記第2位相差素子内部を透過する光の光路に沿って隣接する2つの前記偏光子間の位相差Γ2iが、前記光路を透過する光の波長に対してΓ2i=2i−1×2π、(但し、i=1〜n、n:2以上の整数)の関係を満足することを特徴とする請求項1又は2記載の波長可変フィルタ。 The phase difference Γ 1i between the two polarizers adjacent to each other along the optical path of the light transmitted through the first phase difference element is Γ 1i = 2 i−1 × with respect to the wavelength of the light transmitted through the optical path. The two polarizers satisfying the relationship of 2π (where i = 1 to n 1 , n 1 : an integer of 2 or more) and adjacent to each other along the optical path of light transmitted through the second phase difference element Phase difference Γ 2i between the wavelengths of light passing through the optical path Γ 2i = 2 i−1 × 2π (where i = 1 to n 2 , n 2 : an integer of 2 or more) 3. The wavelength tunable filter according to claim 1, wherein the wavelength tunable filter is satisfied. 前記第1位相差素子内部の前記光路に沿って隣接する2つの前記偏光子及び前記第2位相差素子内部の前記光路に沿って隣接する2つの前記偏光子が、それぞれ平行ニコルの関係に配置されていることを特徴とする請求項1乃至3のいずれか記載の波長可変フィルタ。   Two polarizers adjacent along the optical path inside the first phase difference element and two polarizers adjacent along the optical path inside the second phase difference element are arranged in a parallel Nicols relationship, respectively. The tunable filter according to claim 1, wherein the tunable filter is provided. 前記第1及び第2位相差素子がそれぞれ2つの楔状複屈折板からなり、前記各位相差素子の対向する内側の前記複屈折板が、それらの間に前記入射側偏光子と前記内側反射膜とを挟んで一体に積層されていることを特徴とする請求項1乃至4のいずれか記載の波長フィルタ。   Each of the first and second retardation elements is composed of two wedge-shaped birefringent plates, and the inner birefringent plates facing each of the retardation elements are disposed between the incident-side polarizer and the inner reflective film. The wavelength filter according to any one of claims 1 to 4, wherein the wavelength filters are integrally laminated with a gap therebetween. 前記第1位相差素子が楔角θ1の2つの楔状複屈折板からなり、第2位相差素子が楔角θ2の2つの楔状複屈折板からなり、楔角θ1と楔角θ2とが同じであることを特徴とする請求項1乃至5のいずれか記載の波長フィルタ。   The first retardation element is composed of two wedge-shaped birefringent plates having a wedge angle θ1, and the second retardation element is composed of two wedge-shaped birefringent plates having a wedge angle θ2, and the wedge angle θ1 and the wedge angle θ2 are the same. The wavelength filter according to claim 1, wherein the wavelength filter is provided. 前記第1位相差素子が楔角θ1の2つの楔状複屈折板からなり、第2位相差素子が楔角θ2の2つの楔状複屈折板からなり、楔角θ1と楔角θ2とが異なることを特徴とする請求項1乃至5のいずれか記載の波長フィルタ。   The first retardation element is composed of two wedge-shaped birefringent plates having a wedge angle θ1, and the second retardation element is composed of two wedge-shaped birefringent plates having a wedge angle θ2, and the wedge angle θ1 and the wedge angle θ2 are different. The wavelength filter according to claim 1, wherein: 前記入射側偏光子がワイヤグリッド偏光子であることを特徴とする請求項1乃至7のいずれか記載の波長フィルタ。   The wavelength filter according to claim 1, wherein the incident side polarizer is a wire grid polarizer. 前記出射側偏光子がワイヤグリッド偏光子であることを特徴とする請求項2記載の波長フィルタ。   The wavelength filter according to claim 2, wherein the output side polarizer is a wire grid polarizer. 前記外側偏光子がワイヤグリッド偏光子であることを特徴とする請求項1乃至9のいずれか記載の波長フィルタ。   The wavelength filter according to claim 1, wherein the outer polarizer is a wire grid polarizer. 前記外側偏光子が吸収型偏光板であることを特徴とする請求項1乃至9のいずれか記載の波長フィルタ。   The wavelength filter according to claim 1, wherein the outer polarizer is an absorptive polarizing plate. 前記第1及び第2位相差素子の少なくとも一方の前記2板の位相差板が、平行平板の一方の面をそのままにして反対側の面を所定の楔角で傾斜加工して形成され、その傾斜面を互いに対向させ、かつ互いに厚さの厚い方の端部と厚さの薄い方の端部とを同じ側にして互違いに配置されることを特徴とする請求項1乃至11のいずれか記載の波長フィルタ。   The two retardation plates of at least one of the first and second retardation elements are formed by inclining the opposite surface with a predetermined wedge angle while leaving one surface of the parallel plate as it is, The inclined surfaces are opposed to each other, and the thicker end portion and the thinner end portion are arranged on the same side, and the inclined surfaces are alternately arranged. Or the wavelength filter described. 前記第1及び第2位相差素子の少なくとも一方の前記2枚の位相差板が、平行平板の一方の面をそのままにして反対側の面を所定の楔角で傾斜加工して形成され、前記一方の面を互いに対向させ、かつ互いに厚さの厚い方の端部と厚さの薄い方の端部とを同じ側にして互違いに配置されることを特徴とする請求項1乃至11のいずれか記載の波長フィルタ。   The two retardation plates of at least one of the first and second retardation elements are formed by inclining the opposite surface with a predetermined wedge angle while leaving one surface of the parallel plate as it is, 12. One of the surfaces according to claim 1, wherein one surface is opposed to each other, and the thicker end portion and the thinner end portion are arranged on the same side and are alternately arranged. Any one of the wavelength filters. 前記第1及び第2位相差素子の少なくとも一方の前記2枚の位相差板が、それらの結晶光学軸を互いに平行に配置されることを特徴とする請求項1乃至13のいずれか記載の波長フィルタ。   The wavelength according to any one of claims 1 to 13, wherein the two phase difference plates of at least one of the first and second phase difference elements are arranged so that their crystal optical axes are parallel to each other. filter. 前記第1及び第2位相差素子の少なくとも一方の前記2枚の位相差板が、それらの結晶光学軸を互いに直交させて配置されることを特徴とする請求項1乃至13のいずれか記載の波長フィルタ。   The two retardation plates of at least one of the first and second retardation elements are arranged with their crystal optical axes orthogonal to each other. Wavelength filter. 前記第1及び第2位相差素子の少なくとも一方が、少なくとも一方の前記位相差板と組み合わせた平行平板の位相差板を更に有することを特徴とする請求項1乃至15のいずれか記載の波長フィルタ。   16. The wavelength filter according to claim 1, wherein at least one of the first and second retardation elements further includes a parallel plate retardation plate combined with at least one of the retardation plates. .
JP2008111915A 2008-04-22 2008-04-22 Wavelength variable filter Withdrawn JP2009265199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111915A JP2009265199A (en) 2008-04-22 2008-04-22 Wavelength variable filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111915A JP2009265199A (en) 2008-04-22 2008-04-22 Wavelength variable filter

Publications (1)

Publication Number Publication Date
JP2009265199A true JP2009265199A (en) 2009-11-12

Family

ID=41391167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111915A Withdrawn JP2009265199A (en) 2008-04-22 2008-04-22 Wavelength variable filter

Country Status (1)

Country Link
JP (1) JP2009265199A (en)

Similar Documents

Publication Publication Date Title
US20230168514A1 (en) Waveguide Device with Uniform Output Illumination
EP2764399B1 (en) Polarization conversion systems with polarization gratings and related fabrication methods
US7379242B2 (en) Polarization beam splitter and projection apparatus having the same
JP2022091982A (en) Waveguide with uniform output illumination
EP2936220B1 (en) Polarization conversion systems with geometric phase holograms
KR100833809B1 (en) Image display element, and image display device
US7562984B2 (en) Polarizing beam splitter and projection apparatus having the same
JP4415334B2 (en) Non-absorbing polarization color filter and liquid crystal display device incorporating the same
KR20190058593A (en) An apparatus for combining light beams interacting with adjacent pixels of an optical modulator
JPH04212102A (en) Dichroic mirror and projection type display device using this mirror
KR20060049201A (en) Polarization beam splitter and liquid crystal projector apparatus
WO2013122214A1 (en) Optical film
JP2000131684A (en) Liquid crystal display element
JP3849923B2 (en) Liquid crystal display
JP5136185B2 (en) Wavelength filter
JP2009237146A (en) Wavelength filter
JP2009265199A (en) Wavelength variable filter
JP2011186252A (en) Polarization converting element
JP2009265198A (en) Wavelength filter
JP2009237147A (en) Wavelength filter
JP2007304229A (en) Optical element and projection apparatus
JP2009265197A (en) Wavelength variable filter
KR101424348B1 (en) Polarizing element and liquid crystal display device including the same
JP7476073B2 (en) Display device
JP2009265195A (en) Wavelength variable filter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705