JP2009264682A - Water heat source air conditioner - Google Patents

Water heat source air conditioner Download PDF

Info

Publication number
JP2009264682A
JP2009264682A JP2008116322A JP2008116322A JP2009264682A JP 2009264682 A JP2009264682 A JP 2009264682A JP 2008116322 A JP2008116322 A JP 2008116322A JP 2008116322 A JP2008116322 A JP 2008116322A JP 2009264682 A JP2009264682 A JP 2009264682A
Authority
JP
Japan
Prior art keywords
heat source
water
valve
source water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008116322A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
憲二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008116322A priority Critical patent/JP2009264682A/en
Publication of JP2009264682A publication Critical patent/JP2009264682A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water heat source air conditioner capable of increasing a temperature range of water that can be used as heat source water by controlling the temperature of the heat source water flowing into a water heat exchanger, reducing power consumption, and increasing cooling and heating capacities. <P>SOLUTION: The water heat source air conditioner is equipped with: a heat pump unit 30 sequentially connecting by pipes a compressor 31, a four-way valve 32, the water heat exchanger 33, an expansion valve 34, and an air conditioning refrigerant heat exchanger 35; a fan coil unit 10 stored in the same box as the heat pump unit 30 and comprising a heat source water system 11 and a fan coil 12 through which the heat source water W supplied through the heat source water system 11 flows; a first opening and closing valve 13 provided between an inlet of the heat source water W and an inlet of the water heat exchanger 33; a second opening and closing valve 14 provided at a position for bypassing the inlet of the heat source water W and an outlet of the fan coil 12; a temperature sensor 15 provided between the inlet of the heat source water W and the first opening and closing valve 13; and a control means 16 for controlling the first opening and closing valve 13 and the second opening and closing valve 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水熱源空気調和機に関する。   The present invention relates to a water heat source air conditioner.

ビル等においては、蓄熱水槽内の冷温水(以下、このような水を「熱源水」という。)を建物内の空調対象室に配置したファンコイルユニットや水熱源ヒートポンプユニットに循環させて空気調和を行う水熱源空調方式が普及している。   In buildings, etc., air conditioning is achieved by circulating cold / hot water in a heat storage tank (hereinafter referred to as “heat source water”) to a fan coil unit or a water heat source heat pump unit that is placed in a room subject to air conditioning in the building. A water heat source air conditioning system is widely used.

前者のファンコイルユニットを使用する方式では、空調用コイル(空気対水熱交換器)に蓄熱水槽内の熱源水を循環させて空気と熱源水との間で熱交換を行う。この方式は、廉価に済む点が利点として挙げられる。   In the former method using the fan coil unit, heat source water in the heat storage water tank is circulated through an air conditioning coil (air-to-water heat exchanger) to exchange heat between the air and the heat source water. The advantage of this method is that it is inexpensive.

一方、後者の水熱源ヒートポンプユニットは、水側熱交換器に熱源水を循環させ、この水側熱交換器を凝縮器または蒸発器とし、空気側熱交換器を蒸発器または凝縮器としたヒートポンプの可動によって熱源水を熱源として空気側熱交換器で冷風又は温風を得る方式である。この方式の利点は、建物内の廃熱回収や冷房運転と暖房運転とが共存する場合に熱を無駄なく総合的に利用することができる点を挙げることができる。   On the other hand, the latter water heat source heat pump unit circulates the heat source water in the water side heat exchanger, this water side heat exchanger is a condenser or an evaporator, and the air side heat exchanger is an evaporator or a condenser. This is a system in which cold air or hot air is obtained with an air-side heat exchanger using heat source water as a heat source. The advantage of this method can be that heat can be used comprehensively without waste when the waste heat recovery in the building and the cooling operation and the heating operation coexist.

そのため、前者及び後者の方式を組み合わせて利用される場合も多いが、冷凍機や冷却塔等の熱源機器のを設置するための機械室や設備が大がかりになる、空調用消費電力の平準化が困難との問題点も抱える。   For this reason, the former and the latter methods are often used in combination, but the machine room and equipment for installing heat source equipment such as refrigerators and cooling towers become large, and the leveling of power consumption for air conditioning is reduced. There is also a problem with difficulty.

そこで、以下に示す特許文献1では、これらの問題点を解決するべく、三方弁を切り替えることにより、熱源水がファンコイルと水熱交換器の両方に通水する運転と、ファンコイルをバイパスして熱源水が水熱交換器のみを通水する運転との2種類の運転を行うことができる水熱源空気調和機が開示されている。そして、熱源水の温度が高い場合の冷房運転、熱源水の温度が低い場合の暖房運転を行う場合には、後者、すなわちファンコイルをバイパスして水熱交換器にのみ熱源水を通水させてヒートポンプ冷凍サイクルの運転を行う。
特公平7−104019号公報
Therefore, in Patent Document 1 shown below, in order to solve these problems, by switching the three-way valve, the operation in which the heat source water passes through both the fan coil and the water heat exchanger, and the fan coil is bypassed. Thus, a water heat source air conditioner that can perform two types of operation, that is, an operation in which heat source water passes only through a water heat exchanger, is disclosed. When cooling operation is performed when the temperature of the heat source water is high and heating operation is performed when the temperature of the heat source water is low, the latter, that is, the fan coil is bypassed and only the water heat exchanger is allowed to pass the heat source water. To operate the heat pump refrigeration cycle.
Japanese Patent Publication No. 7-104019

しかしながら、上述の特許文献1に開示されている水熱源空気調和機では、以下の点に対する考慮がなされていない。   However, in the water heat source air conditioner disclosed in Patent Document 1 described above, the following points are not considered.

すなわち、熱源水の温度が高い場合の冷房運転、熱源水の温度が低い場合の暖房運転を行う場合において、例えば、冷房運転において凝縮器として作用する水熱交換器に通水する熱源水の温度が高いと運転効率が低下するとともに、凝縮圧力が設計値を超えてしまうことから圧縮機が停止してしまうことが多い。   That is, when performing cooling operation when the temperature of the heat source water is high and heating operation when the temperature of the heat source water is low, for example, the temperature of the heat source water that passes through the water heat exchanger that acts as a condenser in the cooling operation If it is high, the operating efficiency is lowered, and the compressor often stops because the condensation pressure exceeds the design value.

一方、暖房運転において蒸発器として作用する水熱交換器に通水する熱源水の温度が低いと運転効率が低下するだけではなく、水熱交換器の凍結や冷媒の液バックといった現象を引き起こしてしまうことが生ずる。   On the other hand, if the temperature of the heat source water passing through the water heat exchanger that acts as an evaporator in the heating operation is low, not only the operation efficiency is lowered, but also the water heat exchanger freezes and the refrigerant backs up. It happens.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、水熱交換器に流入する熱源水の温度を調節することで熱源水として使用可能な水の温度範囲を拡大できるとともに消費電力の低下、冷暖房能力の増大を図ることのできる水熱源空気調和機を提供することである。   The present invention has been made to solve the above problems, and the object of the present invention is to expand the temperature range of water that can be used as heat source water by adjusting the temperature of the heat source water flowing into the water heat exchanger. Another object is to provide a water heat source air conditioner that can reduce power consumption and increase air conditioning capability.

本発明の実施の形態に係る第1の特徴は、水熱源空気調和機において、圧縮機、四方弁、熱源水と冷媒との間で熱交換する水熱交換器、膨張弁、空調用冷媒熱交換器を順次配管接続したヒートポンプユニットと、ヒートポンプユニットと同一筐体内に収納され、熱源水が通水する熱源水系統と熱源水系統を通して供給される熱源水が通水するファンコイルとから構成されるファンコイルユニットと、熱源水の入口と水熱交換器の入口との間に設けられる第1の開閉弁と、熱源水の入口とファンコイルの出口とをバイパスする位置に設けられる第2の開閉弁と、熱源水の入口と第1の開閉弁との間に設けられる温度センサと、温度センサからの情報に基づいて第1の開閉弁と第2の開閉弁とを制御する制御手段とを備える。   A first feature according to an embodiment of the present invention is that, in a water heat source air conditioner, a compressor, a four-way valve, a water heat exchanger that exchanges heat between the heat source water and the refrigerant, an expansion valve, and refrigerant heat for air conditioning A heat pump unit in which exchangers are connected by piping, a heat source water system that is housed in the same housing as the heat pump unit, and a fan coil through which the heat source water supplied through the heat source water system passes. A fan coil unit, a first on-off valve provided between the inlet of the heat source water and the inlet of the water heat exchanger, and a second provided at a position bypassing the inlet of the heat source water and the outlet of the fan coil. An on-off valve, a temperature sensor provided between the inlet of the heat source water and the first on-off valve, and control means for controlling the first on-off valve and the second on-off valve based on information from the temperature sensor; Is provided.

本発明の実施の形態に係る第2の特徴は、水熱源空気調和機において、圧縮機、四方弁、熱源水と冷媒との間で熱交換する水熱交換器、膨張弁、空調用冷媒熱交換器を順次配管接続したヒートポンプユニットと、ヒートポンプユニットと同一筐体内に収納され、熱源水が通水する熱源水系統と熱源水系統を通して供給される熱源水が通水するファンコイルとから構成されるファンコイルユニットと、熱源水の入口と水熱交換器の入口との間に設けられる開閉弁と、熱源水の入口とファンコイルの入口との間に設けられる流量調整弁と、水熱交換器の入口直前であって開閉弁を通過した熱源水とファンコイルを通過した熱源水とが混合される位置に設けられる温度センサと、温度センサからの情報に基づいて開閉弁と流量調整弁とを制御する制御手段とを備える。   The second feature of the embodiment of the present invention is that, in the water heat source air conditioner, the compressor, the four-way valve, the water heat exchanger for exchanging heat between the heat source water and the refrigerant, the expansion valve, and the refrigerant heat for air conditioning A heat pump unit in which exchangers are connected by piping, a heat source water system that is housed in the same housing as the heat pump unit, and a fan coil through which the heat source water supplied through the heat source water system passes. Water heat exchange, a fan coil unit, an on-off valve provided between the inlet of the heat source water and the inlet of the water heat exchanger, a flow rate adjusting valve provided between the inlet of the heat source water and the inlet of the fan coil A temperature sensor provided at a position where the heat source water that has passed through the on-off valve and the heat source water that has passed through the fan coil are mixed just before the inlet of the vessel, and the on-off valve and the flow rate adjustment valve based on information from the temperature sensor Control system And means.

本発明によれば、水熱交換器に流入する熱源水の温度を調節することで熱源水として使用可能な水の温度範囲を拡大できるとともに消費電力の低下、冷暖房能力の増大を図ることのできる水熱源空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature range of the water which can be used as heat source water can be expanded by adjusting the temperature of the heat source water which flows into a water heat exchanger, and also reduction of power consumption and increase in air conditioning capability can be aimed at. A water heat source air conditioner can be provided.

(第1の実施の形態)
以下、本発明の第1の実施の形態について図面を参照して詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施の形態における水熱源空気調和機1の全体構成を示す模式図である。   FIG. 1 is a schematic diagram showing an overall configuration of a water heat source air conditioner 1 according to a first embodiment of the present invention.

図1に示すように、水熱源空気調和機1は、大きく分けてファンコイルユニット10とヒートポンプユニット30とから構成される。なお、本発明の実施の形態においては、ファンコイルユニット10とヒートポンプユニット30とは同一筐体内に収納されているが、両ユニットは別のユニットとして設置されても良い。   As shown in FIG. 1, the water heat source air conditioner 1 is roughly composed of a fan coil unit 10 and a heat pump unit 30. In the embodiment of the present invention, the fan coil unit 10 and the heat pump unit 30 are housed in the same housing, but both units may be installed as separate units.

ファンコイルユニット10は、図示しない蓄熱水槽に貯められている熱源水Wをユニット内に通水させる熱源水系統11と、ファンコイル12と、第1の開閉弁13と、第2の開閉弁14と、温度センサ15と、第1の開閉弁13や第2の開閉弁14の開閉を制御する制御手段16とから構成される。   The fan coil unit 10 includes a heat source water system 11 through which heat source water W stored in a heat storage water tank (not shown) is passed, a fan coil 12, a first on-off valve 13, and a second on-off valve 14. And a temperature sensor 15 and a control means 16 for controlling the opening and closing of the first on-off valve 13 and the second on-off valve 14.

ファンコイル12は、いわゆる熱交換器であり熱源水系統11内を通水する熱源水が持つ熱を利用して室内の空気との熱交換を行う。   The fan coil 12 is a so-called heat exchanger, and performs heat exchange with indoor air using heat of heat source water that passes through the heat source water system 11.

第1の開閉弁13は、熱源水Wの入口とヒートポンプユニット30を構成する水熱交換器の入口との間に設けられる(図1においては「SV1」と表わしている。)。また、第2の開閉弁14は、熱源水Wの入口とファンコイル12の出口とをバイパスする位置に設けられる(図1においては「SV2」と表わしている。)。温度センサ15は熱源水Wの入口と第1の開閉弁13との間に設けられ熱源水Wの温度を測定する。なお、第1の開閉弁13、第2の開閉弁14は、例えば、本発明の実施の形態では水用電動2方弁を使用しているが、熱源水系統11内を流れる熱源水Wの流れを制御できる弁であればどのような弁を使用しても構わない。   The first on-off valve 13 is provided between the inlet of the heat source water W and the inlet of the water heat exchanger constituting the heat pump unit 30 (denoted as “SV1” in FIG. 1). The second on-off valve 14 is provided at a position that bypasses the inlet of the heat source water W and the outlet of the fan coil 12 (indicated as “SV2” in FIG. 1). The temperature sensor 15 is provided between the inlet of the heat source water W and the first on-off valve 13 and measures the temperature of the heat source water W. The first on-off valve 13 and the second on-off valve 14 use, for example, an electric water two-way valve in the embodiment of the present invention, but the heat source water W flowing in the heat source water system 11 is used. Any valve can be used as long as it can control the flow.

第1の開閉弁13、第2の開閉弁14、温度センサ15は制御手段16に接続されている。制御手段16は、温度センサ15からの熱源水Wの温度情報を基に第1の開閉弁13や第2の開閉弁14の開閉を制御する。なお、図1では制御手段16は上述した3つの構成要素にのみ接続されてそれらのみを制御しているように記載されているが、他の構成要素、例えば、送風機20や後述するヒートポンプユニット30を構成する圧縮機や四方弁の制御も行っている。   The first on-off valve 13, the second on-off valve 14, and the temperature sensor 15 are connected to the control means 16. The control means 16 controls the opening / closing of the first on-off valve 13 and the second on-off valve 14 based on the temperature information of the heat source water W from the temperature sensor 15. In FIG. 1, the control means 16 is described as being connected to and controlling only the above-described three components, but other components such as a blower 20 and a heat pump unit 30 described later are described. It also controls the compressor and four-way valve that make up.

ヒートポンプユニット30は、圧縮機31と、四方弁32と、熱源水Wと冷媒との間で熱交換する水熱交換器33と、膨張弁34と、空調用冷媒熱交換器35とからなり、これらを順次配管接続されることによりヒートポンプ式冷凍サイクルSが構成される。このヒートポンプ式冷凍サイクルS内は、冷媒が循環する。水熱交換器33には、上述したファンコイルユニット10内に配設される熱源水系統11が接続され熱源水Wが供給される。水熱交換器33内では、冷媒と熱源水Wとの間で熱交換が行われる。   The heat pump unit 30 includes a compressor 31, a four-way valve 32, a water heat exchanger 33 that exchanges heat between the heat source water W and the refrigerant, an expansion valve 34, and an air conditioning refrigerant heat exchanger 35. The heat pump type refrigeration cycle S is configured by connecting these components sequentially by piping. In the heat pump refrigeration cycle S, the refrigerant circulates. The heat source water system 11 disposed in the fan coil unit 10 is connected to the water heat exchanger 33 and supplied with heat source water W. In the water heat exchanger 33, heat is exchanged between the refrigerant and the heat source water W.

次に、図1に示した水熱源空気調和機1の動作の流れを運転モードごとに説明する。図2は、本発明の実施の形態における水熱源空気調和機1において行われる運転モードとそれぞれの運転モードが行われる際の第1の開閉弁13と第2の開閉弁14の弁動作との関係を示す表である。なお、図2においては、第1の開閉弁13を「SV1」と、第2の開閉弁14を「SV2」と表わしている。   Next, the operation flow of the water heat source air conditioner 1 shown in FIG. 1 will be described for each operation mode. FIG. 2 shows the operation modes performed in the water heat source air conditioner 1 according to the embodiment of the present invention and the valve operations of the first on-off valve 13 and the second on-off valve 14 when the respective operation modes are performed. It is a table | surface which shows a relationship. In FIG. 2, the first on-off valve 13 is represented as “SV1”, and the second on-off valve 14 is represented as “SV2”.

まず、「ファンコイル単独運転」モードについて説明する。ファンコイルユニット10のみを運転し、ヒートポンプユニット30を運転しない場合には、制御手段16は第1の開閉弁13及び第2の開閉弁14のいずれも閉動作とする制御を行う。このような制御を行うことによって、熱源水Wの全量が、熱源水系統11内をファンコイル12、水熱交換器33の順に循環する。これによって、熱源水Wの水温に応じた冷房、或いは暖房効果を発揮させることができる。ファンコイル12を通水した熱源水Wは、水熱交換器33においてヒートポンプ式冷凍サイクルSの冷媒との間で熱交換を行うことなく水熱源空気調和機1の外部に排出される。   First, the “fan coil single operation” mode will be described. When only the fan coil unit 10 is operated and the heat pump unit 30 is not operated, the control means 16 performs control for closing both the first on-off valve 13 and the second on-off valve 14. By performing such control, the entire amount of the heat source water W is circulated through the heat source water system 11 in the order of the fan coil 12 and the water heat exchanger 33. Thereby, the cooling according to the water temperature of the heat source water W or the heating effect can be exhibited. The heat source water W that has passed through the fan coil 12 is discharged outside the water heat source air conditioner 1 without exchanging heat with the refrigerant of the heat pump refrigeration cycle S in the water heat exchanger 33.

次に「ファンコイル+ヒートポンプ運転」モードの場合についてである。この運転モードは、上述した「ファンコイル単独運転」にヒートポンプユニット30の運転も加え、両ユニットを運転するモードであるので、第1の開閉弁13及び第2の開閉弁14のいずれも閉動作とする制御が行われる。両開閉弁が閉動作とされることによって、熱源水Wの全量が、熱源水系統11内をファンコイル12、水熱交換器33の順に循環する。さらにこの運転モードではヒートポンプユニット30も運転するので、水熱交換器33において、冷媒と熱源水Wとの間で熱交換が行われる。水熱交換器33に送られた熱源水Wは、冷房運転時の冷却水、或いは、暖房運転時の熱源水として使用される。その後熱交換が行われた熱源水Wは、水熱源空気調和機1の外部へ排出される。   Next, the case of the “fan coil + heat pump operation” mode will be described. This operation mode is a mode in which the operation of the heat pump unit 30 is added to the above-described “fan coil single operation” and both units are operated. Therefore, both the first on-off valve 13 and the second on-off valve 14 are closed. Control is performed. By closing both the on-off valves, the entire amount of the heat source water W circulates in the heat source water system 11 in the order of the fan coil 12 and the water heat exchanger 33. Further, since the heat pump unit 30 is also operated in this operation mode, heat exchange is performed between the refrigerant and the heat source water W in the water heat exchanger 33. The heat source water W sent to the water heat exchanger 33 is used as cooling water during cooling operation or heat source water during heating operation. Thereafter, the heat source water W that has undergone heat exchange is discharged to the outside of the water heat source air conditioner 1.

熱源水Wの水温が高い場合に水熱源空気調和機1を用いて冷房運転を行うと、上述したように運転効率が低下するとともに、凝縮圧力が設計値を超えてしまうことから圧縮機31が停止してしまうことも考えられる。そこで、このような状態下で冷房運転を行う場合には、制御手段16は以下に説明する制御を行う。なお、この熱源水Wの水温が高い場合に水熱源空気調和機1を用いて冷房運転を行う際の運転モードを、便宜上図2の表に示すように「中間期冷房運転」と表わす。   When the cooling operation is performed using the water source air conditioner 1 when the water temperature of the heat source water W is high, the operation efficiency is reduced as described above, and the condensing pressure exceeds the design value. It is also possible to stop. Therefore, when the cooling operation is performed in such a state, the control means 16 performs the control described below. In addition, when the water temperature of this heat source water W is high, the operation mode when performing the cooling operation using the water heat source air conditioner 1 is expressed as “intermediate cooling operation” as shown in the table of FIG. 2 for convenience.

制御手段16は、温度センサ15からの熱源水Wの温度情報に基づいて中間期冷房運転を行うか判断する。ここで中間期冷房運転に移行するかの判断基準となる熱源水Wの温度は、例えば、25℃というように予め任意に定めておくことができる。従って、この場合は熱源水Wの温度が25℃以上の場合に中間期冷房運転に移行する。   The control means 16 determines whether or not to perform the intermediate cooling operation based on the temperature information of the heat source water W from the temperature sensor 15. Here, the temperature of the heat source water W, which is a criterion for determining whether to shift to the intermediate cooling operation, can be arbitrarily determined in advance, for example, 25 ° C. Therefore, in this case, when the temperature of the heat source water W is 25 ° C. or higher, the intermediate phase cooling operation is started.

中間期冷房運転が行われる際には、制御手段16は、第1の開閉弁13を開き、第2の開閉弁14を閉める制御を行う。このような制御が行われることによって、ファンコイルユニット10に送られた熱源水Wは、第2の開閉弁14が閉動作となっているためファンコイル12に通水されるとともに(このような熱源水Wを便宜上「熱源水W1」という)、ファンコイル12と水熱交換器33の圧損差に応じて開動作とされる第1の開閉弁13によってファンコイル12には向かわずそのまま水熱交換器33に通水される(このような熱源水Wを便宜上「熱源水W2」という)。   When the intermediate cooling operation is performed, the control unit 16 performs control to open the first on-off valve 13 and close the second on-off valve 14. By performing such control, the heat source water W sent to the fan coil unit 10 is passed through the fan coil 12 (such as this) because the second on-off valve 14 is closed. The heat source water W is referred to as “heat source water W1” for the sake of convenience), and the first on-off valve 13 that is opened according to the pressure loss difference between the fan coil 12 and the water heat exchanger 33 is not directly directed to the fan coil 12 but directly Water is passed through the exchanger 33 (such heat source water W is referred to as “heat source water W2” for convenience).

ファンコイル12を通った熱源水W1は、ファンコイル12での熱交換によってその温度が下がる。一方、第1の開閉弁13を通った熱源水W2はその温度が維持されたまま水熱交換器33に向かう。但し、水熱交換器33の直前で熱源水W1と熱源水W2とが混合されるため、熱源水W2の温度は下がる。従って水熱交換器33には水熱源空気調和機1に供給された熱源水W2の温度よりも低い温度の熱源水W3が供給される。水熱交換器33に供給された熱源水W3はさらに、ヒートポンプユニット30の冷媒との間で熱交換が行われ水熱源空気調和機1の外部に排水される。   The temperature of the heat source water W <b> 1 that has passed through the fan coil 12 decreases due to heat exchange in the fan coil 12. On the other hand, the heat source water W2 that has passed through the first on-off valve 13 goes to the water heat exchanger 33 while maintaining its temperature. However, since the heat source water W1 and the heat source water W2 are mixed immediately before the water heat exchanger 33, the temperature of the heat source water W2 decreases. Therefore, the heat source water W3 having a temperature lower than the temperature of the heat source water W2 supplied to the water heat source air conditioner 1 is supplied to the water heat exchanger 33. The heat source water W <b> 3 supplied to the water heat exchanger 33 is further exchanged with the refrigerant of the heat pump unit 30 and discharged outside the water heat source air conditioner 1.

一方、熱源水Wの水温が低い場合に水熱源空気調和機1を用いて暖房運転を行うと、上述したように運転効率が低下するとともに、水熱交換器の凍結や冷媒の液バックといった現象を引き起こしてしまうことも考えられる。そこで、このような状態下で暖房運転を行う場合には、制御手段16は以下に説明する制御を行う。なお、この熱源水Wの水温が低い場合に水熱源空気調和機1を用いて暖房運転を行う際の運転モードを、便宜上図2の表に示すように「中間期暖房運転」と表わす。   On the other hand, when the heating operation is performed using the water source air conditioner 1 when the water temperature of the heat source water W is low, the operation efficiency decreases as described above, and the phenomenon such as freezing of the water heat exchanger and liquid back of the refrigerant occurs. It is also possible to cause Therefore, when the heating operation is performed in such a state, the control means 16 performs the control described below. In addition, when the water temperature of this heat source water W is low, the operation mode when performing the heating operation using the water heat source air conditioner 1 is expressed as “intermediate heating operation” as shown in the table of FIG. 2 for convenience.

制御手段16は、温度センサ15からの熱源水Wの温度情報に基づいて中間期暖房運転を行うか判断する。ここで中間期冷房運転に移行するかの判断基準となる熱源水Wの温度は、例えば、25℃というように予め任意に定めておくことができる。従って、この場合は熱源水Wの温度が25℃未満の場合に中間期暖房運転に移行する。   The control means 16 determines whether to perform the intermediate heating operation based on the temperature information of the heat source water W from the temperature sensor 15. Here, the temperature of the heat source water W, which is a criterion for determining whether to shift to the intermediate cooling operation, can be arbitrarily determined in advance, for example, 25 ° C. Therefore, in this case, when the temperature of the heat source water W is less than 25 ° C., the intermediate period heating operation is started.

中間期暖房運転が行われる際には、制御手段16は、第1の開閉弁13を開き、第2の開閉弁14を閉める制御を行う。このような制御が行われることによって、ファンコイルユニット10に送られた熱源水Wは、第2の開閉弁14が閉動作となっているためファンコイル12に通水されるとともに(このような熱源水Wを便宜上「熱源水W1」という)、ファンコイル12と水熱交換器33の圧損差に応じて開動作とされる第1の開閉弁13によってファンコイル12には向かわずそのまま水熱交換器33に通水される(このような熱源水Wを便宜上「熱源水W2」という)。   When the intermediate heating operation is performed, the control unit 16 performs control to open the first on-off valve 13 and close the second on-off valve 14. By performing such control, the heat source water W sent to the fan coil unit 10 is passed through the fan coil 12 (such as this) because the second on-off valve 14 is closed. The heat source water W is referred to as “heat source water W1” for the sake of convenience), and the first on-off valve 13 that is opened according to the pressure loss difference between the fan coil 12 and the water heat exchanger 33 is not directly directed to the fan coil 12 but directly Water is passed through the exchanger 33 (such heat source water W is referred to as “heat source water W2” for convenience).

ファンコイル12を通った熱源水W1は、ファンコイル12での熱交換によってその温度が上がる。一方、第1の開閉弁13を通った熱源水W2はその温度が維持されたまま水熱交換器33に向かう。但し、水熱交換器33の直前で熱源水W1と熱源水W2とが混合されるため、熱源水W2の温度は上がる。従って水熱交換器33にはファンコイル12に通水された熱源水W1の温度よりも高い温度の熱源水Wが供給される。水熱交換器33に供給された熱源水Wはさらに、ヒートポンプユニット30の冷媒との間で熱交換が行われ水熱源空気調和機1の外部に排水される。   The temperature of the heat source water W <b> 1 that has passed through the fan coil 12 rises due to heat exchange in the fan coil 12. On the other hand, the heat source water W2 that has passed through the first on-off valve 13 goes to the water heat exchanger 33 while maintaining its temperature. However, since the heat source water W1 and the heat source water W2 are mixed immediately before the water heat exchanger 33, the temperature of the heat source water W2 rises. Therefore, the heat source water W having a temperature higher than the temperature of the heat source water W1 passed through the fan coil 12 is supplied to the water heat exchanger 33. The heat source water W supplied to the water heat exchanger 33 is further subjected to heat exchange with the refrigerant of the heat pump unit 30 and discharged to the outside of the water heat source air conditioner 1.

「送風運転」の場合は、制御手段16は第1の開閉弁13及び第2の開閉弁14のいずれも開動作となるように制御する。両開閉弁を開くことによって、熱源水Wは水熱交換器33にそのほぼ全量が供給される。そのため、ファンコイル12に熱源水Wは供給されないことになる。   In the case of “air blowing operation”, the control means 16 controls so that both the first on-off valve 13 and the second on-off valve 14 are opened. By opening both on-off valves, almost all of the heat source water W is supplied to the water heat exchanger 33. Therefore, the heat source water W is not supplied to the fan coil 12.

以上説明したような構成及び運転制御方法を採用することによって、ヒートポンプユニット内の水熱交換器に流入させる熱源水の温度を調整することが可能となる。そのため、これまではファンコイルユニット、ヒートポンプユニットでは利用することができなかった温度の熱源水までも利用することができるようになり、利用可能な温度範囲が拡大することで廃棄する熱源水の量を減少させることができるためより省エネルギーに資する水熱源空気調和機を提供することができる。また、ファンコイルユニット、ヒートポンプユニットの運転に最適な温度の熱源水をそれぞれのユニットに供給することができるため運転にかかる消費電力の低下、運転能力の増加を達成することが可能となる水熱源空気調和機を提供できる。さらに、送風運転の際に節水弁を外付けで取り付ける必要がないので、簡易な構成の水熱源空気調和機を提供することができる。   By adopting the configuration and operation control method as described above, it is possible to adjust the temperature of the heat source water flowing into the water heat exchanger in the heat pump unit. Therefore, heat source water at a temperature that could not be used with fan coil units and heat pump units until now can be used, and the amount of heat source water to be discarded by expanding the usable temperature range. Therefore, it is possible to provide a water heat source air conditioner that contributes to energy saving. In addition, since water source water having the optimum temperature for the operation of the fan coil unit and the heat pump unit can be supplied to each unit, it is possible to achieve a reduction in power consumption and an increase in operation capacity for operation. Air conditioner can be provided. Furthermore, since it is not necessary to attach a water-saving valve externally at the time of air blowing operation, a water heat source air conditioner having a simple configuration can be provided.

なお、中間期冷房運転、或いは中間期暖房運転に関し、上述した説明においては「25℃」という具体的な温度を挙げて説明したが、いずれの運転においても、それらの運転に移行する温度は任意に設定することができる。   In addition, in the above description, the intermediate temperature cooling operation or the intermediate period heating operation has been described with a specific temperature of “25 ° C.”, but in any operation, the temperature at which the operation is shifted is arbitrary. Can be set to

また、本発明の実施の形態においては温度センサ15を設けてこの温度センサ15で測定された温度に基づいて運転モードの切り替えを行うように説明をしたが、例えば、温度センサを設けず運転モードの切り替えは使用者の手動によって行うように構成しても構わない。   In the embodiment of the present invention, the temperature sensor 15 is provided and the operation mode is switched based on the temperature measured by the temperature sensor 15. However, for example, the operation mode is not provided without the temperature sensor. Switching may be performed manually by the user.

(第2の実施の形態)
次に本発明の第2の実施の形態について説明する。なお、第2の実施の形態において、上述の第1の実施の形態において説明した構成要素と同一の構成要素には同一の符号を付し、同一の構成要素の説明は重複するので省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. Note that, in the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description of the same components is omitted because it is duplicated.

第1の実施の形態と相違するのは、ファンコイルユニット40の構成機器及びそれらの設置位置である。その他の水熱源空気調和機がファンコイルユニットとヒートポンプユニットとから構成される等、主要な構成は同一である。   The difference from the first embodiment is the components of the fan coil unit 40 and their installation positions. The other main components are the same, such as other water heat source air conditioners including a fan coil unit and a heat pump unit.

具体的には、図3の本発明の第2の実施の形態における水熱源空気調和機40の全体構成を示す模式図に示されているように、ファンコイルユニット50は、図示しない蓄熱水槽に貯められている熱源水Wをユニット内に通す熱源水系統11と、ファンコイル12と、開閉弁51と、流量調整弁52と、温度センサ53と、開閉弁51や流量調整弁52の開閉を制御する制御手段16とから構成される。   Specifically, as shown in the schematic diagram showing the overall configuration of the water heat source air conditioner 40 in the second embodiment of the present invention in FIG. 3, the fan coil unit 50 is installed in a heat storage water tank (not shown). The heat source water system 11 for passing the stored heat source water W through the unit, the fan coil 12, the on-off valve 51, the flow rate adjustment valve 52, the temperature sensor 53, the on-off valve 51 and the flow rate adjustment valve 52 are opened and closed. And control means 16 for controlling.

開閉弁51は、熱源水Wの入口とヒートポンプユニット30を構成する水熱交換器33の入口との間に設けられる(図3においては「SV」と表わしている。)。また、流量調整弁52は、熱源水Wの入口とファンコイル12の入口との間の位置に設けられる(図3においては「MV」と表わしている。)。温度センサ53は、水熱交換器33の入口直前であって開閉弁51を通過した熱源水Wとファンコイル12を通過した熱源水Wとが混合される位置に設けられ、水熱交換器33に供給される熱源水Wの温度を測定する。   The on-off valve 51 is provided between the inlet of the heat source water W and the inlet of the water heat exchanger 33 constituting the heat pump unit 30 (indicated as “SV” in FIG. 3). The flow rate adjusting valve 52 is provided at a position between the inlet of the heat source water W and the inlet of the fan coil 12 (indicated as “MV” in FIG. 3). The temperature sensor 53 is provided immediately before the inlet of the water heat exchanger 33 and is provided at a position where the heat source water W that has passed through the on-off valve 51 and the heat source water W that has passed through the fan coil 12 are mixed. The temperature of the heat source water W supplied to is measured.

なお、開閉弁51は、例えば、本発明の実施の形態では水用電動2方弁を使用しているが、熱源水系統11内を流れる熱源水Wの流れを制御できる弁であればどのような弁を使用しても構わない。また、流量調整弁52は本発明の実施の形態においては、例えば、水用電動比例弁を使用しているが、熱源水系統11内を流れる熱源水Wの流量を制御できる弁であればどのような弁を使用しても構わない。   The on-off valve 51 uses, for example, an electric two-way water valve in the embodiment of the present invention, but any valve that can control the flow of the heat source water W flowing in the heat source water system 11 is used. You may use a simple valve. Further, in the embodiment of the present invention, for example, an electric proportional valve for water is used as the flow rate adjusting valve 52. However, any flow control valve 52 can control the flow rate of the heat source water W flowing in the heat source water system 11. Such a valve may be used.

開閉弁51、流量調整弁52、温度センサ53は制御手段16に接続されている。制御手段16は、温度センサ53からの熱源水Wの温度情報を基に開閉弁51や流量調整弁52の開閉を制御する。なお、図3では制御手段16は上述した3つの構成要素にのみ接続されてそれらのみを制御しているように記載されているが、例えば、送風機20や後述するヒートポンプユニット30を構成する各構成機器の制御に用いられている。   The on-off valve 51, the flow rate adjustment valve 52, and the temperature sensor 53 are connected to the control means 16. The control means 16 controls the opening / closing of the opening / closing valve 51 and the flow rate adjusting valve 52 based on the temperature information of the heat source water W from the temperature sensor 53. In FIG. 3, the control unit 16 is described as being connected to and controlling only the above-described three components. For example, each component configuring the blower 20 and the heat pump unit 30 described below. Used to control equipment.

ヒートポンプユニット30の一構成機器である水熱交換器33には、上述したファンコイルユニット50内に配設される熱源水系統11が接続され熱源水Wが供給される。水熱交換器33内では、冷媒と熱源水Wとの間で熱交換が行われる。   The heat source water system 11 disposed in the above-described fan coil unit 50 is connected to the water heat exchanger 33 which is one component device of the heat pump unit 30 and supplied with the heat source water W. In the water heat exchanger 33, heat is exchanged between the refrigerant and the heat source water W.

次に、図3に示した水熱源空気調和機40の動作の流れを運転モードごとに説明する。図4は、本発明の実施の形態における水熱源空気調和機40において行われる運転モードとそれぞれの運転モードが行われる際の開閉弁51と流量調整弁52の弁動作との関係を示す表である。なお、図4においては、開閉弁51を「SV」と、流量調整弁52を「MV」と表わしている。   Next, the operation flow of the water heat source air conditioner 40 shown in FIG. 3 will be described for each operation mode. FIG. 4 is a table showing the relationship between the operation modes performed in the water heat source air conditioner 40 according to the embodiment of the present invention and the valve operations of the on-off valve 51 and the flow rate adjustment valve 52 when the respective operation modes are performed. is there. In FIG. 4, the on-off valve 51 is represented as “SV” and the flow rate adjustment valve 52 is represented as “MV”.

まず、「ファンコイル単独運転」モードについて説明する。ファンコイルユニット50のみを運転し、ヒートポンプユニット30を運転しない場合には、制御手段16は開閉弁51を閉状態とし、流量調整弁52は水熱源空気調和機40に要求された能力に応じてその開度量を調整する制御を行う。このように要求された能力に応じてファンコイル12に供給する熱源水Wの量を調整することによって、きめ細かく冷暖房の能力を制御することができる。ファンコイル12を通水した熱源水Wは、水熱交換器33においてヒートポンプ式冷凍サイクルSの冷媒との間で熱交換を行うことなく水熱源空気調和機40の外部に排出される。   First, the “fan coil single operation” mode will be described. When only the fan coil unit 50 is operated and the heat pump unit 30 is not operated, the control means 16 closes the on-off valve 51, and the flow rate adjustment valve 52 depends on the capacity required for the water source air conditioner 40. Control to adjust the amount of opening is performed. By adjusting the amount of the heat source water W supplied to the fan coil 12 in accordance with the required capacity in this way, it is possible to finely control the cooling / heating capacity. The heat source water W that has passed through the fan coil 12 is discharged outside the water heat source air conditioner 40 without exchanging heat with the refrigerant of the heat pump refrigeration cycle S in the water heat exchanger 33.

次に「ファンコイル+ヒートポンプ運転」モードの場合についてである。この運転モードは、上述した「ファンコイル単独運転」にヒートポンプユニット30の運転も加え、両ユニットを運転するモードであるので、ヒートポンプユニット30の能力を最大限発揮させるように制御手段16は流量調整弁52を制御する。   Next, the case of the “fan coil + heat pump operation” mode will be described. Since this operation mode is a mode in which the operation of the heat pump unit 30 is added to the above-described “fan coil single operation” and both units are operated, the control means 16 adjusts the flow rate so as to maximize the capability of the heat pump unit 30. The valve 52 is controlled.

すなわち、開閉弁51を閉動作とするとともに、流量調整弁52を全開にする制御が行われる。このような制御が行われることによって、熱源水Wの全量が、熱源水系統11内ファンコイル12に供給され、水熱交換器33にも循環する。従って、水熱交換器33に水熱源空気調和機40に供給された熱源水Wの全量が供給され、冷媒と熱源水Wとの間で最大限熱交換が行われる。水熱交換器33に送られた熱源水Wは、冷房運転時の冷却水、或いは、暖房運転時の熱源水として使用される。その後熱交換が行われた熱源水Wは、水熱源空気調和機40の外部へ排出される。   That is, control is performed so that the on-off valve 51 is closed and the flow rate adjustment valve 52 is fully opened. By performing such control, the entire amount of the heat source water W is supplied to the fan coil 12 in the heat source water system 11 and is also circulated to the water heat exchanger 33. Accordingly, the entire amount of the heat source water W supplied to the water heat source air conditioner 40 is supplied to the water heat exchanger 33, and maximum heat exchange is performed between the refrigerant and the heat source water W. The heat source water W sent to the water heat exchanger 33 is used as cooling water during cooling operation or heat source water during heating operation. Thereafter, the heat source water W that has undergone heat exchange is discharged to the outside of the water heat source air conditioner 40.

熱源水Wの水温が高い場合に水熱源空気調和機40を用いて冷房運転を行うと、上述したように運転効率が低下するとともに、凝縮圧力が設計値を超えてしまうことから圧縮機31が停止してしまうことも考えられる。そこで、このような状態下で冷房運転を行う場合には、制御手段16は以下に説明する制御を行う。なお、この熱源水Wの水温が高い場合に水熱源空気調和機1を用いて冷房運転を行う際の運転モードを、便宜上図4の表に示すように「中間期冷房運転」と表わす。   When the cooling operation is performed using the water heat source air conditioner 40 when the water temperature of the heat source water W is high, the operation efficiency is reduced as described above, and the condensation pressure exceeds the design value. It is also possible to stop. Therefore, when the cooling operation is performed in such a state, the control means 16 performs the control described below. In addition, when the water temperature of this heat source water W is high, the operation mode when performing the cooling operation using the water heat source air conditioner 1 is expressed as “intermediate cooling operation” as shown in the table of FIG. 4 for convenience.

制御手段16は、温度センサ53からの熱源水Wの温度情報に基づいて中間期冷房運転を行うか判断する。ここで中間期冷房運転に移行するかの判断基準となる熱源水Wの温度は予め任意に定めておくことができる。特に、第2の実施の形態においては、開状態か閉状態の2つの状態しかない開閉弁ではなく流量調整弁52を使用することからきめ細かく熱源水系統11内に流れる熱源水Wの量を調整することができるので、判断基準となる温度も細かく設定することが可能となる。   The control means 16 determines whether or not to perform the intermediate cooling operation based on the temperature information of the heat source water W from the temperature sensor 53. Here, the temperature of the heat source water W, which is a criterion for determining whether to shift to the intermediate cooling operation, can be arbitrarily determined in advance. In particular, in the second embodiment, the amount of the heat source water W flowing in the heat source water system 11 is finely adjusted because the flow rate adjustment valve 52 is used instead of the open / close valve having only two states of the open state and the closed state. Therefore, it is possible to finely set the temperature that is the determination criterion.

第2の実施の形態においては、例えば、水熱交換器33に供給される熱源水Wの温度を「25℃以上35℃未満」と「35℃以上」の2段階に分けて設定している。水熱交換器33に供給される熱源水Wの温度が「35℃以上」である場合には、制御手段16は開閉弁51を開状態にし、流量調整弁52を全開となるように制御する。このような制御が行われることによって、ファンコイルユニット50に送られた熱源水Wは、流量調整弁52が全開状態となっているためファンコイル12に通水されるとともに(このような熱源水Wを便宜上「熱源水W1」という)、ファンコイル12と水熱交換器33の圧損差に応じて同じく開状態とされる開閉弁51によってファンコイル12には向かわずそのまま水熱交換器33に通水される(このような熱源水Wを便宜上「熱源水W2」という)。   In the second embodiment, for example, the temperature of the heat source water W supplied to the water heat exchanger 33 is set in two stages of “25 ° C. or more and less than 35 ° C.” and “35 ° C. or more”. . When the temperature of the heat source water W supplied to the water heat exchanger 33 is “35 ° C. or higher”, the control means 16 controls the open / close valve 51 to be open and the flow rate adjustment valve 52 to be fully open. . By performing such control, the heat source water W sent to the fan coil unit 50 is passed through the fan coil 12 because the flow rate adjustment valve 52 is fully open (such heat source water). W is referred to as “heat source water W1” for the sake of convenience) and is not directed to the fan coil 12 by the on-off valve 51 that is also opened according to the pressure loss difference between the fan coil 12 and the water heat exchanger 33, and is directly passed to the water heat exchanger 33. Water is passed (such heat source water W is referred to as “heat source water W2” for convenience).

ファンコイル12を通った熱源水W1は、ファンコイル12での熱交換によってその温度が下がる。一方、開閉弁51を通った熱源水W2はその温度が維持されたまま水熱交換器33に向かう。但し、水熱交換器33の直前で熱源水W1と熱源水W2とが混合されるため、熱源水W2の温度は下がる。従って水熱交換器33には水熱源空気調和機40に供給された熱源水W2の温度よりも低い温度の熱源水W3が供給される。水熱交換器33に供給された熱源水W3はさらに、ヒートポンプユニット30の冷媒との間で熱交換が行われ水熱源空気調和機40の外部に排水される。   The temperature of the heat source water W <b> 1 that has passed through the fan coil 12 decreases due to heat exchange in the fan coil 12. On the other hand, the heat source water W2 that has passed through the on-off valve 51 goes to the water heat exchanger 33 while maintaining its temperature. However, since the heat source water W1 and the heat source water W2 are mixed immediately before the water heat exchanger 33, the temperature of the heat source water W2 decreases. Accordingly, the heat source water W3 having a temperature lower than the temperature of the heat source water W2 supplied to the water heat source air conditioner 40 is supplied to the water heat exchanger 33. The heat source water W3 supplied to the water heat exchanger 33 is further subjected to heat exchange with the refrigerant of the heat pump unit 30 and discharged to the outside of the water heat source air conditioner 40.

さらに、温度センサ53からの情報によって制御手段16が水熱交換器33に供給される熱源水Wの温度が「25℃以上35℃未満」であると判断した場合には、上述したような高温の熱源水Wが水熱交換器33に供給されることによる弊害は生じないと考えられる。そこで、水熱源空気調和機40の冷房能力を発揮させる点に重点を置き、温度センサ53からの情報に基づいて制御手段16は流量調整弁52の開度量を調整する。このような制御によって、上述したような冷房運転時に発生しうる弊害が生ずることを回避しつつ最大限冷房能力を高めることができる。   Further, when the control unit 16 determines that the temperature of the heat source water W supplied to the water heat exchanger 33 is “25 ° C. or more and less than 35 ° C.” based on information from the temperature sensor 53, the high temperature as described above. It is considered that no adverse effect is caused by supplying the heat source water W to the water heat exchanger 33. Therefore, with emphasis on the point that the cooling capacity of the water heat source air conditioner 40 is exhibited, the control means 16 adjusts the opening amount of the flow rate adjustment valve 52 based on information from the temperature sensor 53. Such control makes it possible to increase the cooling capacity to the maximum while avoiding the adverse effects that may occur during the cooling operation as described above.

一方、熱源水Wの水温が低い場合に水熱源空気調和機40を用いて暖房運転を行うと、上述したように運転効率が低下するとともに、水熱交換器の凍結や冷媒の液バックといった現象を引き起こしてしまうことも考えられる。そこで、このような状態下で暖房運転を行う場合には、制御手段16は以下に説明する制御を行う。なお、この熱源水Wの水温が低い場合に水熱源空気調和機40を用いて暖房運転を行う際の運転モードを、便宜上図4の表に示すように「中間期暖房運転」と表わす。   On the other hand, when heating operation is performed using the water source air conditioner 40 when the temperature of the heat source water W is low, the operation efficiency is reduced as described above, and the phenomenon such as freezing of the water heat exchanger and liquid back of the refrigerant is caused. It is also possible to cause Therefore, when the heating operation is performed in such a state, the control means 16 performs the control described below. In addition, when the water temperature of the heat source water W is low, the operation mode when performing the heating operation using the water source air conditioner 40 is represented as “intermediate heating operation” as shown in the table of FIG. 4 for convenience.

制御手段16は、温度センサ53からの熱源水Wの温度情報に基づいて中間期暖房運転を行うか判断する。ここで中間期暖房運転に移行するかの判断基準となる熱源水Wの温度は予め任意に定めておくことができる。特に、第2の実施の形態においては、流量調整弁52を使用することからきめ細かく熱源水系統11内に流れる熱源水Wの量を調整することができるので、判断基準となる温度も細かく設定することが可能となる。   The control means 16 determines whether to perform the intermediate heating operation based on the temperature information of the heat source water W from the temperature sensor 53. Here, the temperature of the heat source water W, which is a criterion for determining whether to shift to the intermediate heating operation, can be arbitrarily determined in advance. In particular, in the second embodiment, since the amount of the heat source water W flowing in the heat source water system 11 can be finely adjusted because the flow rate adjustment valve 52 is used, the temperature that becomes the determination reference is also set finely. It becomes possible.

第2の実施の形態においては、例えば、水熱交換器33に供給される熱源水Wの温度を「15℃ないし25℃」の範囲と「15℃以下」の範囲の2つの範囲に分けて設定している。水熱交換器33に供給される熱源水Wの温度が「15℃以下」である場合には、制御手段16は開閉弁51を開状態にし、流量調整弁52を全開となるように制御する。このような制御が行われることによって、ファンコイルユニット50に送られた熱源水Wは、流量調整弁52が全開状態となっているためファンコイル12に通水されるとともに(このような熱源水Wを便宜上「熱源水W1」という)、ファンコイル12と水熱交換器33の圧損差に応じて同じく開状態とされる開閉弁51によってファンコイル12には向かわずそのまま水熱交換器33に通水される(このような熱源水Wを便宜上「熱源水W2」という)。   In the second embodiment, for example, the temperature of the heat source water W supplied to the water heat exchanger 33 is divided into two ranges of “15 ° C. to 25 ° C.” and “15 ° C. or less”. It is set. When the temperature of the heat source water W supplied to the water heat exchanger 33 is “15 ° C. or lower”, the control means 16 controls the open / close valve 51 to be opened and the flow rate adjustment valve 52 to be fully opened. . By performing such control, the heat source water W sent to the fan coil unit 50 is passed through the fan coil 12 because the flow rate adjustment valve 52 is fully open (such heat source water). W is referred to as “heat source water W1” for the sake of convenience) and is not directed to the fan coil 12 by the on-off valve 51 that is also opened according to the pressure loss difference between the fan coil 12 and the water heat exchanger 33, and is directly passed to the water heat exchanger 33. Water is passed (such heat source water W is referred to as “heat source water W2” for convenience).

ファンコイル12を通った熱源水W1は、ファンコイル12での熱交換によってその温度が上がる。一方、開閉弁51を通った熱源水W2はその温度が維持されたまま水熱交換器33に向かう。但し、水熱交換器33の直前で熱源水W1と熱源水W2とが混合されるため、熱源水W2の温度は上がる。従って水熱交換器33には水熱源空気調和機40に供給された熱源水W2の温度よりも高い温度の熱源水W3が供給される。水熱交換器33に供給された熱源水W3はさらに、ヒートポンプユニット30の冷媒との間で熱交換が行われ水熱源空気調和機40の外部に排水される。   The temperature of the heat source water W <b> 1 that has passed through the fan coil 12 rises due to heat exchange in the fan coil 12. On the other hand, the heat source water W2 that has passed through the on-off valve 51 goes to the water heat exchanger 33 while maintaining its temperature. However, since the heat source water W1 and the heat source water W2 are mixed immediately before the water heat exchanger 33, the temperature of the heat source water W2 rises. Therefore, the heat source water W3 having a temperature higher than the temperature of the heat source water W2 supplied to the water heat source air conditioner 40 is supplied to the water heat exchanger 33. The heat source water W3 supplied to the water heat exchanger 33 is further subjected to heat exchange with the refrigerant of the heat pump unit 30 and discharged to the outside of the water heat source air conditioner 40.

さらに、温度センサ53からの情報によって制御手段16が水熱交換器33に供給される熱源水Wの温度が「15℃ないし25℃」の範囲内にあると判断した場合には、上述したような低温の熱源水Wが水熱交換器33に供給されることによる弊害は生じないと考えられる。そこで、水熱源空気調和機40の暖房能力を発揮させる点に重点を置き、温度センサ53からの情報に基づいて制御手段16は流量調整弁52の開度量を調整する。このような制御によって、上述したような暖房運転時に発生しうる弊害が生ずることを回避しつつ最大限暖房能力を高めることができる。   Further, when the control unit 16 determines that the temperature of the heat source water W supplied to the water heat exchanger 33 is within the range of “15 ° C. to 25 ° C.” based on the information from the temperature sensor 53, as described above. It is considered that no adverse effect is caused by supplying the low-temperature heat source water W to the water heat exchanger 33. Therefore, with emphasis on the point that the heating capacity of the water heat source air conditioner 40 is exhibited, the control means 16 adjusts the opening amount of the flow rate adjustment valve 52 based on information from the temperature sensor 53. By such control, it is possible to increase the heating capacity to the maximum while avoiding the adverse effects that may occur during the heating operation as described above.

「送風運転」の場合は、制御手段16は開閉弁51を開状態とし、流量調整弁52を全閉状態となるように制御する。このように制御することによって、熱源水Wは水熱交換器33にそのほぼ全量が供給される。そのため、ファンコイル12に熱源水Wは供給されないことになる。   In the case of “air blowing operation”, the control means 16 controls the on-off valve 51 to be opened and the flow rate adjustment valve 52 to be fully closed. By controlling in this way, almost all of the heat source water W is supplied to the water heat exchanger 33. Therefore, the heat source water W is not supplied to the fan coil 12.

以上説明したような構成及び運転制御方法を採用することによって、ヒートポンプユニット内の水熱交換器に流入させる熱源水の温度を調整することが可能となる。そのため、これまではファンコイルユニット、ヒートポンプユニットでは利用することができなかった温度の熱源水までも利用することができるようになり、利用可能な温度範囲が拡大することで廃棄する熱源水の量を減少させることができるためより省エネルギーに資する水熱源空気調和機を提供することができる。特に流量調整弁を利用することによって温度センサからの情報に基づいたきめ細かな制御を行うことができるため、ファンコイルユニット、ヒートポンプユニットの運転に最適な温度の熱源水をそれぞれのユニットに供給することができる。従って運転にかかる消費電力の低下、運転能力の増加を達成することが可能となる水熱源空気調和機を提供できる。さらに、送風運転の際に節水弁を外付けで取り付ける必要がないので、簡易な構成の水熱源空気調和機を提供することができる。   By adopting the configuration and operation control method as described above, it is possible to adjust the temperature of the heat source water flowing into the water heat exchanger in the heat pump unit. Therefore, heat source water at a temperature that could not be used with fan coil units and heat pump units until now can be used, and the amount of heat source water to be discarded by expanding the usable temperature range. Therefore, it is possible to provide a water heat source air conditioner that contributes to energy saving. In particular, by using a flow control valve, it is possible to perform fine control based on information from the temperature sensor, so supply heat source water at the optimum temperature for the operation of the fan coil unit and heat pump unit to each unit. Can do. Therefore, it is possible to provide a water heat source air conditioner that can achieve a reduction in power consumption and an increase in operation capacity. Furthermore, since it is not necessary to attach a water-saving valve externally at the time of air blowing operation, a water heat source air conditioner having a simple configuration can be provided.

なお、この発明は、上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

本発明の第1の実施の形態における水熱源空気調和機の全体構成を示す模式図である。It is a mimetic diagram showing the whole water heat source air harmony machine composition in a 1st embodiment of the present invention. 本発明の第1の実施の形態における水熱源空気調和機において行われる運転モードとそれぞれの運転モードが行われる際の第1の開閉弁と第2の開閉弁の弁動作との関係を示す表である。The table | surface which shows the relationship between the operation mode performed in the water-source air conditioner in the 1st Embodiment of this invention, and the valve operation of the 1st on-off valve when each operation mode is performed. It is. 本発明の第2の実施の形態における水熱源空気調和機の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the water-heat-source air conditioner in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における水熱源空気調和機において行われる運転モードとそれぞれの運転モードが行われる際の第1の開閉弁と第2の開閉弁の弁動作との関係を示す表である。The table | surface which shows the relationship between the operation mode performed in the water-source air conditioner in the 2nd Embodiment of this invention, and the valve operation of the 1st on-off valve when each operation mode is performed. It is.

符号の説明Explanation of symbols

1…水熱源空気調和機、10…ファンコイルユニット、11…熱源水系統、12…ファンコイル、13…第1の開閉弁、14…第2の開閉弁、15…温度センサ、16…制御手段、20…ファン、30…ヒートポンプユニット、31…圧縮機、32…四方弁、33…水熱交換器、34…膨張弁、S…ヒートポンプ式冷凍サイクル、W…熱源水   DESCRIPTION OF SYMBOLS 1 ... Water heat source air conditioner, 10 ... Fan coil unit, 11 ... Heat source water system, 12 ... Fan coil, 13 ... 1st on-off valve, 14 ... 2nd on-off valve, 15 ... Temperature sensor, 16 ... Control means , 20 ... Fan, 30 ... Heat pump unit, 31 ... Compressor, 32 ... Four-way valve, 33 ... Water heat exchanger, 34 ... Expansion valve, S ... Heat pump refrigeration cycle, W ... Heat source water

Claims (10)

圧縮機、四方弁、熱源水と冷媒との間で熱交換する水熱交換器、膨張弁、空調用冷媒熱交換器を順次配管接続したヒートポンプユニットと、
前記ヒートポンプユニットと同一筐体内に収納され、前記熱源水が通る熱源水系統と前記熱源水系統を通して供給される前記熱源水が通るファンコイルとから構成されるファンコイルユニットと、
前記熱源水の入口と前記水熱交換器の入口との間に設けられる第1の開閉弁と、
前記熱源水の入口と前記ファンコイルの出口とをバイパスする位置に設けられる第2の開閉弁と、
前記熱源水の入口と前記第1の開閉弁との間に設けられる温度センサと、
前記温度センサからの情報に基づいて前記第1の開閉弁と前記第2の開閉弁とを制御する制御手段と、
を備えることを特徴とする水熱源空気調和機。
A heat pump unit in which a compressor, a four-way valve, a water heat exchanger for exchanging heat between the heat source water and the refrigerant, an expansion valve, and a refrigerant heat exchanger for air conditioning are sequentially connected by piping;
A fan coil unit that is housed in the same housing as the heat pump unit, and includes a heat source water system through which the heat source water passes and a fan coil through which the heat source water supplied through the heat source water system passes;
A first on-off valve provided between the inlet of the heat source water and the inlet of the water heat exchanger;
A second on-off valve provided at a position that bypasses the inlet of the heat source water and the outlet of the fan coil;
A temperature sensor provided between the heat source water inlet and the first on-off valve;
Control means for controlling the first on-off valve and the second on-off valve based on information from the temperature sensor;
A water heat source air conditioner comprising:
前記ヒートポンプ式冷凍サイクルが冷房運転を行うときであって、前記温度センサからの情報である熱源水の温度が所定の温度以上であるときは、前記制御手段は前記第1の開閉弁を開き、前記第2の開閉弁を閉じる制御を行うことを特徴とする請求項1に記載の水熱源空気調和機。   When the heat pump refrigeration cycle performs cooling operation, and the temperature of the heat source water, which is information from the temperature sensor, is equal to or higher than a predetermined temperature, the control means opens the first on-off valve, The water heat source air conditioner according to claim 1, wherein the second on-off valve is controlled to be closed. 前記ヒートポンプ式冷凍サイクルが暖房運転を行うときであって、前記温度センサからの情報である熱源水の温度が所定の温度以下であるときは、前記制御手段は前記第1の開閉弁を開き、前記第2の開閉弁を閉じる制御を行うことを特徴とする請求項1に記載の水熱源空気調和機。   When the heat pump refrigeration cycle performs heating operation, and the temperature of the heat source water, which is information from the temperature sensor, is equal to or lower than a predetermined temperature, the control means opens the first on-off valve, The water heat source air conditioner according to claim 1, wherein the second on-off valve is controlled to be closed. 前記ヒートポンプ式冷凍サイクルが送風運転を行うとき、或いは、前記熱源水が供給停止となるときは、前記制御手段は前記第1の開閉弁及び前記第2の開閉弁を開く制御を行うことを特徴とする請求項1に記載の水熱源空気調和機。   When the heat pump refrigeration cycle performs a blowing operation or when the heat source water is stopped, the control means performs control to open the first on-off valve and the second on-off valve. The water heat source air conditioner according to claim 1. 圧縮機、四方弁、熱源水と冷媒との間で熱交換する水熱交換器、膨張弁、空調用冷媒熱交換器を順次配管接続したヒートポンプユニットと、
前記ヒートポンプユニットと同一筐体内に収納され、前記熱源水が通る熱源水系統と前記熱源水系統を通して供給される前記熱源水が通るファンコイルとから構成されるファンコイルユニットと、
前記熱源水の入口と前記水熱交換器の入口との間に設けられる開閉弁と、
前記熱源水の入口と前記ファンコイルの入口との間に設けられる流量調整弁と、
前記水熱交換器の入口直前であって前記開閉弁を通過した熱源水と前記ファンコイルを通過した熱源水とが混合される位置に設けられる温度センサと、
前記温度センサからの情報に基づいて前記開閉弁と前記流量調整弁とを制御する制御手段と、
を備えることを特徴とする水熱源空気調和機。
A heat pump unit in which a compressor, a four-way valve, a water heat exchanger for exchanging heat between the heat source water and the refrigerant, an expansion valve, and a refrigerant heat exchanger for air conditioning are sequentially connected by piping;
A fan coil unit that is housed in the same housing as the heat pump unit, and includes a heat source water system through which the heat source water passes and a fan coil through which the heat source water supplied through the heat source water system passes;
An on-off valve provided between the inlet of the heat source water and the inlet of the water heat exchanger;
A flow rate adjusting valve provided between the inlet of the heat source water and the inlet of the fan coil;
A temperature sensor provided immediately before the water heat exchanger at the position where the heat source water that has passed through the on-off valve and the heat source water that has passed through the fan coil are mixed;
Control means for controlling the on-off valve and the flow rate adjustment valve based on information from the temperature sensor;
A water heat source air conditioner comprising:
前記ヒートポンプ式冷凍サイクルが冷房運転を行うときであって、前記温度センサからの情報である混合熱源水の温度が所定の範囲内であるときは、前記制御手段は前記開閉弁を開き、前記流量調整弁を前記混合熱源水の温度に応じた開度とする制御を行うことを特徴とする請求項5に記載の水熱源空気調和機。   When the heat pump refrigeration cycle performs a cooling operation and the temperature of the mixed heat source water, which is information from the temperature sensor, is within a predetermined range, the control means opens the on-off valve, and the flow rate The water heat source air conditioner according to claim 5, wherein the adjustment valve is controlled to have an opening degree corresponding to the temperature of the mixed heat source water. 前記ヒートポンプ式冷凍サイクルが冷房運転を行うときであって、前記温度センサからの情報である混合熱源水の温度が所定の範囲の上限を超えたときは、前記制御手段は前記開閉弁を開き、前記流量調整弁を全開とする制御を行うことを特徴とする請求項5に記載の水熱源空気調和機。   When the heat pump refrigeration cycle performs a cooling operation, and the temperature of the mixed heat source water, which is information from the temperature sensor, exceeds the upper limit of a predetermined range, the control means opens the on-off valve, The water heat source air conditioner according to claim 5, wherein control is performed to fully open the flow rate adjustment valve. 前記ヒートポンプ式冷凍サイクルが暖房運転を行うときであって、前記温度センサからの情報である混合熱源水の温度が所定の範囲内であるときは、前記制御手段は前記開閉弁を開き、前記流量調整弁を前記混合熱源水の温度に応じた開度とする制御を行うことを特徴とする請求項5に記載の水熱源空気調和機。   When the heat pump refrigeration cycle performs heating operation and the temperature of the mixed heat source water, which is information from the temperature sensor, is within a predetermined range, the control means opens the on-off valve, and the flow rate The water heat source air conditioner according to claim 5, wherein the adjustment valve is controlled to have an opening degree corresponding to the temperature of the mixed heat source water. 前記ヒートポンプ式冷凍サイクルが暖房運転を行うときであって、前記温度センサからの情報である混合熱源水の温度が所定の範囲の下限を下回ったときは、前記制御手段は前記開閉弁を開き、前記流量調整弁を全開とする制御を行うことを特徴とする請求項5に記載の水熱源空気調和機。   When the heat pump refrigeration cycle performs heating operation, and the temperature of the mixed heat source water, which is information from the temperature sensor, falls below a lower limit of a predetermined range, the control means opens the on-off valve, The water heat source air conditioner according to claim 5, wherein control is performed to fully open the flow rate adjustment valve. 前記ヒートポンプ式冷凍サイクルが送風運転を行うとき、或いは、前記熱源水が供給停止となるときは、前記制御手段は前記開閉弁を全開にし、前記流量調整弁を全閉とする制御を行うことを特徴とする請求項5に記載の水熱源空気調和機。   When the heat pump refrigeration cycle performs a blowing operation or when the supply of heat source water is stopped, the control means performs control to fully open the on-off valve and fully close the flow rate adjustment valve. The water heat source air conditioner according to claim 5, wherein
JP2008116322A 2008-04-25 2008-04-25 Water heat source air conditioner Pending JP2009264682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116322A JP2009264682A (en) 2008-04-25 2008-04-25 Water heat source air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116322A JP2009264682A (en) 2008-04-25 2008-04-25 Water heat source air conditioner

Publications (1)

Publication Number Publication Date
JP2009264682A true JP2009264682A (en) 2009-11-12

Family

ID=41390744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116322A Pending JP2009264682A (en) 2008-04-25 2008-04-25 Water heat source air conditioner

Country Status (1)

Country Link
JP (1) JP2009264682A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620371A (en) * 2012-04-17 2012-08-01 安徽京奥制冷设备有限公司 Evaporative condenser heat pump air-conditioning unit
CN103307676A (en) * 2013-06-03 2013-09-18 广东申菱空调设备有限公司 Energy-saving type adjustable air volume dew-point control cooling system and control method thereof
JP2016211825A (en) * 2015-05-13 2016-12-15 三菱電機ビルテクノサービス株式会社 Air conditioning system
WO2019043935A1 (en) * 2017-09-04 2019-03-07 三菱電機株式会社 Temperature adjustment device, relay device, load device, and refrigeration cycle device
WO2020065984A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Air conditioner control device, outdoor unit, relay device, heat source device, and air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620371A (en) * 2012-04-17 2012-08-01 安徽京奥制冷设备有限公司 Evaporative condenser heat pump air-conditioning unit
CN102620371B (en) * 2012-04-17 2014-06-25 安徽京奥制冷设备有限公司 Evaporative condenser heat pump air-conditioning unit
CN103307676A (en) * 2013-06-03 2013-09-18 广东申菱空调设备有限公司 Energy-saving type adjustable air volume dew-point control cooling system and control method thereof
CN103307676B (en) * 2013-06-03 2016-08-10 广东申菱环境系统股份有限公司 A kind of energy-saving adjustable air volume dew point controls cooling system and control method thereof
JP2016211825A (en) * 2015-05-13 2016-12-15 三菱電機ビルテクノサービス株式会社 Air conditioning system
WO2019043935A1 (en) * 2017-09-04 2019-03-07 三菱電機株式会社 Temperature adjustment device, relay device, load device, and refrigeration cycle device
JPWO2019043935A1 (en) * 2017-09-04 2020-10-01 三菱電機株式会社 Temperature control device, relay device, load device, and refrigeration cycle device
WO2020065984A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Air conditioner control device, outdoor unit, relay device, heat source device, and air conditioner
JPWO2020065984A1 (en) * 2018-09-28 2021-08-30 三菱電機株式会社 Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner

Similar Documents

Publication Publication Date Title
US9115931B2 (en) Air-conditioning apparatus
US9322562B2 (en) Air-conditioning apparatus
JP5306449B2 (en) Air conditioner
US9593872B2 (en) Heat pump
US9441851B2 (en) Air-conditioning apparatus
JP3886977B2 (en) Combined air conditioning system
US9557083B2 (en) Air-conditioning apparatus with multiple operational modes
WO2012104891A1 (en) Air-conditioning device
WO2011099063A1 (en) Air-conditioning device
JP2006258343A (en) Air conditioning system
EP2908070B1 (en) Air conditioning device
WO2017203655A1 (en) Heat pump type air conditioning and hot water supplying device
US10359207B2 (en) Air-conditioning apparatus
CN104838218A (en) Air conditioner device
EP2584285B1 (en) Refrigerating air-conditioning device
JP6120943B2 (en) Air conditioner
US10436463B2 (en) Air-conditioning apparatus
JP2009264682A (en) Water heat source air conditioner
JP2013104583A (en) Air-conditioning water heater
JP2008196794A (en) Heat pump hot water supply cooling/heating apparatus
CN108779938B (en) Air conditioner hot water supply system
KR20070074302A (en) Air conditioner and method of controlling the same
JPWO2011117922A1 (en) Air conditioner
JPWO2011099059A1 (en) Air conditioner
JPH10185333A (en) Air conditioning equipment