JP2009264403A - Sealed rolling bearing unit and seal ring - Google Patents

Sealed rolling bearing unit and seal ring Download PDF

Info

Publication number
JP2009264403A
JP2009264403A JP2008111172A JP2008111172A JP2009264403A JP 2009264403 A JP2009264403 A JP 2009264403A JP 2008111172 A JP2008111172 A JP 2008111172A JP 2008111172 A JP2008111172 A JP 2008111172A JP 2009264403 A JP2009264403 A JP 2009264403A
Authority
JP
Japan
Prior art keywords
ring
inner ring
seal
peripheral surface
seal ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008111172A
Other languages
Japanese (ja)
Inventor
Yohei Kashiwakura
洋平 柏倉
Hiroki Sakaguchi
裕樹 坂口
Seisuke Takeda
精介 竹田
Yasushi Amano
靖 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008111172A priority Critical patent/JP2009264403A/en
Publication of JP2009264403A publication Critical patent/JP2009264403A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/768Sealings of ball or roller bearings between relatively stationary parts, i.e. static seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/388Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with four rows, i.e. four row tapered roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a structure capable of preventing the occurrence of a pressure difference between a rolling element arranging space 16 and an external space, even if the bearing temperature changes, in the structure for fluid-tightly blocking up mutual end surfaces in the axial direction of both inner ring elements 11 and 11 by a seal ring 7 installed in a recessed groove 18, by forming the recessed groove 18 on an inner peripheral surface of a butting part of the mutual end surfaces in the axial direction of a pair of inner ring elements 11 and 11. <P>SOLUTION: This seal ring 7 is constituted by combining an annular ring-shaped sealant and an annular ring-shaped or segmental annular ring-shaped core material for reinforcing this sealant. Among these, the sealant is made of a water repellent-oil repellent, ventilating and flexible raw material, and the core material is made of an elastic material. The sealant is pressed to a bottom surface of this recessed groove 18 based on elastic force of the core material in a state of installing the seal ring 7 in the recessed groove 18. The problem is solved by adopting such a constitution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば圧延機を構成するロールの両端部に設けたロールネックを支持装置に対して回転自在に支持する為に使用する密封型転がり軸受ユニットと、この密封型転がり軸受ユニットの転動体設置空間を密封する為に使用するシール環との改良に関する。   The present invention relates to, for example, a sealed rolling bearing unit used for rotatably supporting roll necks provided at both ends of a roll constituting a rolling mill with respect to a support device, and a rolling element of the sealed rolling bearing unit. The present invention relates to an improvement with a seal ring used for sealing an installation space.

金属材料に圧延加工を施す為の、圧延機を構成するロールは、軸方向両端面の中心部に設けたロールネックと呼ばれる円柱部を固定の支持装置に対し、例えば図8に示す様な密封型多列円すいころ軸受により回転自在に支持している。この図8に示した密封型多列円すいころ軸受は、特許文献1に記載されたもので、外輪1と、内輪2と、複数個の円すいころ3、3と、1対の円環状のシールホルダ4、4と、1対の摺接型のシールリング5、5と、1対のOリング6、6と、1個のシール環7とを備える。   A roll constituting a rolling mill for rolling a metal material is sealed as shown in FIG. 8, for example, with respect to a support device that fixes a cylindrical portion called a roll neck provided at the center of both axial end faces. It is rotatably supported by type multi-row tapered roller bearings. The sealed multi-row tapered roller bearing shown in FIG. 8 is described in Patent Document 1, and includes an outer ring 1, an inner ring 2, a plurality of tapered rollers 3, 3, and a pair of annular seals. Holders 4, 4, a pair of sliding contact type seal rings 5, 5, a pair of O-rings 6, 6, and one seal ring 7 are provided.

このうちの外輪1は、軸方向中央部に配置した1個の外輪素子8aと、軸方向両端部に配置した2個の外輪素子8b、8bと、軸方向に関して隣り合う、これら各外輪素子8a、8b同士の間に挟持する状態で設けた、それぞれが短円筒状である2個の外輪間座9、9とから成る。上記軸方向中央部に配置した1個の外輪素子8aの内周面には、それぞれが部分円すい凹面状の外輪軌道10、10を、2列形成している。又、上記軸方向両端部に配置した2個の外輪素子8b、8bの内周面にはそれぞれ、部分円すい凹面状の外輪軌道10を、1列ずつ形成している。従って、上記外輪1の内周面には、4列の外輪軌道10、10が設けられている。   Of these, the outer ring 1 includes one outer ring element 8a disposed in the central portion in the axial direction and two outer ring elements 8b and 8b disposed at both ends in the axial direction, which are adjacent to each other in the axial direction. , 8b, and two outer ring spacers 9, 9 each having a short cylindrical shape. Two rows of outer ring raceways 10 and 10 each having a conical concave shape are formed on the inner peripheral surface of one outer ring element 8a arranged in the central portion in the axial direction. Further, the outer ring raceway 10 having a partially conical concave shape is formed in each row on the inner peripheral surface of the two outer ring elements 8b, 8b arranged at both ends in the axial direction. Therefore, four rows of outer ring raceways 10 and 10 are provided on the inner peripheral surface of the outer ring 1.

又、上記内輪2は、互いの軸方向端面同士を突き当てた、1対の内輪素子11、11から成る。これら両内輪素子11、11の外周面にはそれぞれ、部分円すい凸面状の内輪軌道12、12を、2列ずつ形成している。従って、上記内輪2の外周面には、4列の内輪軌道12、12が設けられている。又、上記各円すいころ3、3は、上記4列の外輪軌道10、10と上記4列の内輪軌道12、12との間に、各列毎に複数個ずつ、保持器13、13により保持した状態で転動自在に設けられている。   The inner ring 2 is composed of a pair of inner ring elements 11, 11 that face each other in the axial direction. Two inner ring raceways 12 and 12 having a partially conical convex shape are formed on the outer peripheral surfaces of both inner ring elements 11 and 11 respectively. Therefore, four rows of inner ring raceways 12 and 12 are provided on the outer peripheral surface of the inner ring 2. The tapered rollers 3 and 3 are held by the cages 13 and 13 between the four rows of outer ring raceways 10 and 10 and the four rows of inner ring raceways 12 and 12, respectively. It is provided so that it can roll freely.

又、上記1対の円環状のシールホルダ4、4は、上記外輪1の軸方向両側に隣接配置している。そして、これら両シールホルダ4、4の内周面と、上記内輪2の軸方向両端部外周面との間に、それぞれ上記両シールリング5、5を組み付けている。これら両シールリング5、5はそれぞれ、円環状の芯金14と、この芯金14の内周縁部分に全周に亙り結合固定した円環状の弾性材15とを備える。そして、このうちの芯金14を上記両シールホルダ4、4に内嵌固定すると共に、上記弾性材15の先端縁を、上記内輪2の軸方向両端部外周面に摺接させている。これにより、上記外輪1の内周面と上記内輪2の外周面との間に存在する、転動体設置空間16の軸方向両端開口を密閉している。又、上記両シールホルダ4、4の外周面には、それぞれ係止溝17、17を全周に亙り形成すると共に、これら各係止溝17、17内に前記各Oリング6、6を係止している。自由状態で、これら各Oリング6、6の外径寸法は、上記各シールホルダ4、4の外径寸法よりも大きくなっている。   The pair of annular seal holders 4, 4 are disposed adjacent to both sides in the axial direction of the outer ring 1. The seal rings 5 and 5 are assembled between the inner peripheral surfaces of the seal holders 4 and 4 and the outer peripheral surfaces of both end portions of the inner ring 2 in the axial direction. Each of the seal rings 5 and 5 includes an annular cored bar 14 and an annular elastic member 15 that is coupled and fixed to the inner peripheral edge of the cored bar 14 over the entire circumference. Of these, the metal core 14 is fitted and fixed to the seal holders 4 and 4, and the leading edge of the elastic material 15 is brought into sliding contact with the outer peripheral surfaces of both end portions in the axial direction of the inner ring 2. Thereby, both axial direction opening of the rolling element installation space 16 which exists between the inner peripheral surface of the said outer ring | wheel 1 and the outer peripheral surface of the said inner ring | wheel 2 is sealed. Further, locking grooves 17 and 17 are formed on the outer peripheral surfaces of the seal holders 4 and 4 over the entire circumference, and the O-rings 6 and 6 are engaged in the locking grooves 17 and 17. It has stopped. In a free state, the outer diameter dimensions of the O-rings 6 and 6 are larger than the outer diameter dimensions of the seal holders 4 and 4.

又、上記両内輪素子11、11の軸方向端面同士の突き当て部の内周面には、これら両内輪素子11、11同士の間に掛け渡す状態で凹溝18を、全周に亙り形成している。そして、この凹溝18内に、前記シール環7を組み付けている。図9に詳示する様に、このシール環7は、ゴムにより全体を円環状に形成したシール材19と、このシール材19を補強する為の、金属製で円環状の芯材22とから成る。このうちのシール材19は、断面略矩形で全体を円環状に形成した基部23と、この基部23の全周から軸方向に延出する状態で形成された、径方向の肉厚が比較的小さい円環状のシールリップ24とを備える。この様なシール環7は、図示の様に凹溝18内に組み付けた状態で、上記シール材19を構成する基部23を、この凹溝18の底面及び軸方向両側壁面のうち、一方(図9の左方)の内輪素子11に対応する部分の全周に弾性的に接触させている。これと共に、上記シール材19を構成するシールリップ24の先端縁を、上記凹溝18の軸方向両側壁面のうち、他方(図9の右方)の内輪素子11に対応する部分の全周に弾性的に接触させている。これにより、上記両内輪素子11、11の軸方向端面同士の間を密閉している。   In addition, a concave groove 18 is formed on the inner peripheral surface of the abutting portion between the axial end surfaces of the inner ring elements 11, 11 so as to extend between the inner ring elements 11, 11. is doing. The seal ring 7 is assembled in the groove 18. As shown in detail in FIG. 9, the seal ring 7 is composed of a seal material 19 formed in a ring shape by rubber and a metal and ring-shaped core material 22 for reinforcing the seal material 19. Become. Of these, the sealing member 19 has a base portion 23 that is substantially rectangular in cross section and formed in an annular shape as a whole, and a radial thickness formed in a state extending in the axial direction from the entire circumference of the base portion 23. And a small annular seal lip 24. Such a seal ring 7 is assembled in the groove 18 as shown in the figure, and the base 23 constituting the seal material 19 is placed on one of the bottom surface and both axial side walls of the groove 18 (see FIG. 9) is elastically brought into contact with the entire circumference of the portion corresponding to the inner ring element 11. At the same time, the tip edge of the seal lip 24 constituting the seal material 19 is placed on the entire circumference of the portion corresponding to the other inner ring element 11 (on the right side in FIG. 9) of the axially opposite side walls of the groove 18. It is in elastic contact. Thereby, the space between the axial end surfaces of the inner ring elements 11 and 11 is sealed.

上述の様に構成する密封型多列円すいころ軸受ユニットにより、圧延機を構成するロールの軸方向端面の中心部に設けた円柱状のロールネック(図示せず)を、支持装置を構成するハウジング(図示せず)の内径側に回転自在に支持する場合には、このハウジングに上記外輪1及び1対のシールホルダ4、4を内嵌支持すると共に、上記ロールネックに上記内輪2を外嵌支持する。又、これに伴い、上記各シールホルダ4、4の外周面に形成した係止溝17、17の底面と、上記ハウジングの円筒状の内周面との間で、上記各Oリング6、6を弾性的に圧縮する。これにより、上記各シールホルダ4、4の外周面と上記ハウジングの内周面との間を密閉する。   A cylindrical roll neck (not shown) provided at the center of the axial end surface of the roll constituting the rolling mill by the sealed multi-row tapered roller bearing unit configured as described above is a housing constituting the support device. When the inner ring side (not shown) is rotatably supported, the outer ring 1 and the pair of seal holders 4 and 4 are fitted and supported on the housing, and the inner ring 2 is fitted on the roll neck. To support. Accordingly, the O-rings 6, 6 are provided between the bottom surfaces of the locking grooves 17, 17 formed on the outer peripheral surfaces of the seal holders 4, 4 and the cylindrical inner peripheral surface of the housing. Is elastically compressed. Thereby, the space between the outer peripheral surface of each of the seal holders 4 and 4 and the inner peripheral surface of the housing is sealed.

上述の様な密封型多列円すいころ軸受ユニットは、外部に冷却水や塵芥等の異物が存在する環境下で使用される。又、上述の様な密封型多列円すいころ軸受ユニットの場合、メンテナンス時等の交換性を考慮し、上記ロールネックの外周面と上記内輪2の内周面との嵌め合いは、隙間嵌め(ルーズフィット)にしている。この為、これら両周面同士の間で滑りが起こり、摩耗粉が発生する。従って、これら冷却水、塵芥等の異物、摩耗粉が存在する外部空間と、前記転動体設置空間16との間に存在する複数の連通路を、それぞれ前記1対のシールリング5、5と、上記1対のOリング6、6と、上記1個のシール環7とにより塞ぐ事で、上記転動体設置空間16を密封している。そして、この様な構成を採用する事により、上記外部空間から上記転動体設置空間16内に上記冷却水等が入り込む事を防止すると共に、この転動体設置空間16内に封入した潤滑用のグリースが上記外部空間に漏洩する事を防止している。   The sealed multi-row tapered roller bearing unit as described above is used in an environment where foreign matters such as cooling water and dust are present outside. Further, in the case of the sealed multi-row tapered roller bearing unit as described above, the fit between the outer peripheral surface of the roll neck and the inner peripheral surface of the inner ring 2 is a clearance fit ( Loose fit). For this reason, slip occurs between the two peripheral surfaces, and wear powder is generated. Therefore, a plurality of communication paths existing between the external space in which foreign matter such as cooling water, dust and the like, wear powder exists, and the rolling element installation space 16 are respectively connected to the pair of seal rings 5 and 5. The rolling element installation space 16 is sealed by closing with the pair of O-rings 6 and 6 and the single seal ring 7. Further, by adopting such a configuration, the cooling water or the like is prevented from entering the rolling element installation space 16 from the external space, and the lubricating grease sealed in the rolling element installation space 16 Is prevented from leaking into the external space.

ところで、上述したロールネック用の密封型多列円すいころ軸受ユニットの場合、運転時に高温になる事で、上記転動体設置空間16内の空気が膨張すると、この転動体設置空間16内の空気が、上記1対のシールリング5、5を構成する弾性材15、15の先端縁と上記内輪2の軸方向両端部外周面との摺接部(間部分)や、上記シール環7を構成するシールリップ24の先端縁と上記凹部18の内面との接触部(間部分)を通じて、外部空間に徐々に漏れ出す。尚、上述した従来構造の第1例の場合には、上記内輪2の軸方向両端部外周面に摺接する上記両弾性材15、15の先端縁と、上記凹部18の内面に接触する上記シールリップ24の先端縁とが、それぞれ外部空間側に向いて傾斜している。即ち、上記各摺接部及び上記接触部を通じて、上記転動体設置空間16内の空気が外部空間に漏れ出す傾向となった場合に、上記各摺接部及び上記接触部の一部に隙間が生じ易くなっている。この為、上記空気の漏れ出しは、容易に行われる。   By the way, in the case of the above-described sealed multi-row tapered roller bearing unit for the roll neck, when the air in the rolling element installation space 16 expands due to a high temperature during operation, the air in the rolling element installation space 16 A sliding contact portion (intersection) between the tip edges of the elastic members 15 and 15 constituting the pair of seal rings 5 and 5 and the outer peripheral surfaces of both end portions in the axial direction of the inner ring 2 and the seal ring 7 are constituted. Through the contact portion (intermediate portion) between the tip edge of the seal lip 24 and the inner surface of the concave portion 18, it gradually leaks into the external space. In the case of the first example of the above-described conventional structure, the seals that are in contact with the tip edges of the elastic members 15 and 15 that are in sliding contact with the outer peripheral surfaces of both ends in the axial direction of the inner ring 2 and the inner surfaces of the recesses 18. The tip edge of the lip 24 is inclined toward the outer space side. That is, when the air in the rolling element installation space 16 tends to leak into the external space through each sliding contact portion and the contact portion, there is a gap in each sliding contact portion and part of the contact portion. It tends to occur. For this reason, the leakage of the air is easily performed.

一方、その後、運転を停止して低温になる事で、上記転動体設置空間16内の空気が収縮すると、上記各摺接部及び上記接触部を通じて、外部空間の空気が上記転動体設置空間16内に吸い込まれる傾向となる。ところが、上述した従来構造の第1例の場合には、上記内輪2の軸方向両端部外周面に摺接する上記両弾性材15、15の先端縁と、上記凹部18の内面に接触する上記シールリップ24の先端縁とが、それぞれ外部空間側に向いて傾斜している。即ち、上記各摺接部や上記接触部を通じて、外部空間に存在する空気が上記転動体設置空間16内に吸い込まれる傾向となった場合に、上記各摺接部及び上記接触部の一部に隙間が生じにくくなっている。この為、上記空気の吸い込みが殆ど行われず、上記転動体設置空間16が負圧状態となる。そして、この様に転動体設置空間16が負圧状態となる結果、著しい場合には、上記各摺接部及び上記接触部を通じて、外部空間から上記転動体設置空間16内に上記冷却水が吸い込まれると言った不具合が発生する可能性があった。又、上記転動体設置空間16が負圧状態になると、外部空間の大気圧によって、上記両シールリング5、5を構成する弾性材15、15の先端縁が、上記内輪2の軸方向両端部外周面に強く押し付けられる。この結果、これら両弾性材15、15の先端縁の摩耗が促進され、これら両弾性材15、15のシール機能の低下速度が高まる。従って、その分だけ、上記冷却水が上記両摺接部を通じて上記転動体設置空間16内に、より引き込まれ易くなる。   On the other hand, when the air in the rolling element installation space 16 contracts after the operation is stopped and the temperature is lowered, the air in the external space is passed through the sliding contact part and the contact part. It tends to be sucked in. However, in the case of the first example of the conventional structure described above, the seals that contact the tip edges of the elastic members 15 and 15 that are in sliding contact with the outer peripheral surfaces of both axial ends of the inner ring 2 and the inner surfaces of the recesses 18. The tip edge of the lip 24 is inclined toward the outer space side. That is, when the air existing in the external space tends to be sucked into the rolling element installation space 16 through each sliding contact portion or the contact portion, the sliding contact portion and a part of the contact portion are provided. The gap is less likely to occur. Therefore, the air is hardly sucked, and the rolling element installation space 16 is in a negative pressure state. As a result of the negative pressure state of the rolling element installation space 16 as described above, the cooling water is sucked into the rolling element installation space 16 from the external space through each sliding contact part and the contact part. There was a possibility that a problem that occurred. Further, when the rolling element installation space 16 is in a negative pressure state, the leading edges of the elastic members 15 and 15 constituting the both seal rings 5 and 5 are caused by the atmospheric pressure of the outer space so that both ends of the inner ring 2 in the axial direction. Strongly pressed against the outer peripheral surface. As a result, the wear of the leading edges of both elastic members 15 and 15 is promoted, and the rate of decrease in the sealing function of both elastic members 15 and 15 is increased. Therefore, the cooling water is more easily drawn into the rolling element installation space 16 through the sliding contact portions.

上記冷却水が上記転動体設置空間16内に引き込まれると、この転動体設置空間16に存在するグリースの潤滑性能が損なわれ、軸受寿命が低下する。従って、この様な事態が発生するのを回避すべく、上記冷却水が上記両摺接部を通じて上記転動体設置空間16内に引き込まれる事を、有効に防止する必要がある。この為に具体的には、上記転動体設置空間16が負圧状態となる事を防止できる構造を実現する必要がある。   When the cooling water is drawn into the rolling element installation space 16, the lubrication performance of the grease existing in the rolling element installation space 16 is impaired, and the bearing life is reduced. Therefore, in order to avoid such a situation, it is necessary to effectively prevent the cooling water from being drawn into the rolling element installation space 16 through the sliding contact portions. Therefore, specifically, it is necessary to realize a structure capable of preventing the rolling element installation space 16 from becoming a negative pressure state.

この様な事情に鑑みて、特許文献2には、上述の図9に示したシール環7に代えて、図10に示す様なシール環7aを使用する構造が記載されている。この図10に示した従来構造の第2例を構成するシール環7aは、ゴムにより全体を円環状に形成したシール材19aと、このシール材19aの内周面の幅方向中央部に全周に亙り形成した係止溝20内に係止した、芯材である円環状スプリング21とを備える。そして、このうちのシール材19a(図10では便宜上、自由状態で示している。)の一部を、上記凹溝18の底面の幅方向両側部分及び両側壁面に全周に亙り接触させている。これと共に、上記円環状スプリング21の弾力により、上記シール材19aを上記凹溝18の底面に向け、径方向外方に付勢している。そして、この様な構成を採用する事により、上記シール環7aによって、1対の内輪素子11、11の軸方向端面同士の間を密閉している。これと共に、上記凹溝18の内面に対する上記シール材19aの締め代、並びに、上記円環状スプリング21の弾力を適度に調節する事により、高温時及び低温時にそれぞれ、上記凹溝18の内面と上記シール材19aとの接触部を通じて、転動体設置空間16(図8参照)と外部空間との間で空気のみが出入りできる様にし、その他の異物等が出入りするのを防止できる様にしている。   In view of such circumstances, Patent Document 2 describes a structure in which a seal ring 7a as shown in FIG. 10 is used instead of the seal ring 7 shown in FIG. The seal ring 7a constituting the second example of the conventional structure shown in FIG. 10 includes a seal material 19a formed entirely of rubber in an annular shape, and the entire circumference in the center in the width direction of the inner peripheral surface of the seal material 19a. And an annular spring 21 serving as a core material, which is locked in a locking groove 20 formed over the surface. A part of the sealing material 19a (shown in a free state for the sake of convenience in FIG. 10) is brought into contact with the entire circumference of both sides and both side walls of the bottom surface of the groove 18 in the width direction. . At the same time, the elastic force of the annular spring 21 urges the sealing material 19a toward the bottom surface of the concave groove 18 outward in the radial direction. And by employ | adopting such a structure, between the axial direction end surfaces of a pair of inner ring elements 11 and 11 is sealed with the said seal ring 7a. At the same time, by appropriately adjusting the tightening margin of the sealing material 19a with respect to the inner surface of the concave groove 18 and the elasticity of the annular spring 21, the inner surface of the concave groove 18 and the above-mentioned at high temperature and low temperature respectively. Through the contact portion with the sealing material 19a, only air can enter and exit between the rolling element installation space 16 (see FIG. 8) and the external space, and other foreign matters can be prevented from entering and exiting.

この様な従来構造の第2例によれば、上記転動体設置空間16が負圧状態になる事を有効に防止できる為、上述の従来構造の第1例で説明した様な不具合が発生する事を有効に防止できる。ところが、上述の様な従来構造の第2例の場合には、上記凹溝18の内面に対する上記シール材19aの締め代、並びに、上記円環状スプリング21の弾力を適度に調節する事が困難であり、この適度な調整を実現する為に高精度な寸法管理等が必要になる為、製造コストが嵩むと言った問題がある。尚、この調整によって、上記締め代及び弾力が小さくなり過ぎると、上記接触部を通じて外部空間から上記転動体設置空間16内に異物等が入り込み易くなったり、或いは、上記シール環7aの一部が径方向内方に垂れ下がって上記凹溝18外に突出し、メンテナンス時に内輪2の内径側からロールネックを抜き差しする際に、当該突出した部分がこのロールネックに干渉して破損すると言った不具合が発生する。反対に、上記締め代及び弾力が大きくなり過ぎると、低温時の通気性を失って、上述した従来構造の第1例の場合と同様の不具合が発生する。   According to the second example of such a conventional structure, it is possible to effectively prevent the rolling element installation space 16 from being in a negative pressure state, so that the problem described in the first example of the conventional structure described above occurs. Things can be effectively prevented. However, in the case of the second example of the conventional structure as described above, it is difficult to properly adjust the tightening margin of the sealing material 19a against the inner surface of the concave groove 18 and the elasticity of the annular spring 21. In addition, there is a problem that the manufacturing cost increases because highly accurate dimensional management or the like is necessary to realize this appropriate adjustment. In addition, if the tightening allowance and the elasticity are too small due to this adjustment, foreign matter or the like easily enters the rolling element installation space 16 from the external space through the contact portion, or a part of the seal ring 7a is formed. When the roll neck hangs inward in the radial direction and protrudes out of the groove 18 and is inserted and removed from the inner diameter side of the inner ring 2 during maintenance, the protruding portion interferes with the roll neck and breaks. To do. On the other hand, if the tightening allowance and elasticity are too large, the air permeability at low temperatures is lost and the same problem as in the first example of the conventional structure described above occurs.

又、前記特許文献1には、上述した従来構造の第1例の改良品として、図11に示す様な構造が記載されている。この図11に示した従来構造の第3例の場合には、シール環7′のシール材19′を構成するシールリップ24の軸方向中間部の円周方向複数個所に、それぞれ円形の薄肉部25を形成すると共に、これら各薄肉部25にそれぞれ、これら各薄肉部25を1対の半円形部分に2分割する、直径方向に亙る切れ目26を形成している。自由状態で、これら各切れ目26部分は、それぞれ閉じた状態になっている。この様に構成する従来構造の第3例の場合には、温度変化に伴って転動体設置空間16(図8参照)と外部空間との間に所定の圧力差が生じた場合に、次の様な圧力差の調整機能が働く。即ち、上記両空間同士の間の圧力差が所定値に達すると、この圧力差によって、上記各切れ目26部分が弾性的に広がる。そして、これら各切れ目26部分を通じて、上記両空間同士の間で空気が出入する事により、上記圧力差が上記所定値以下に抑えられる。この為、上記転動体設置空間16が過度な負圧状態になる事を有効に防止できる。従って、上述の従来構造の第1例で説明した不具合が発生する事を有効に防止できる。   Further, Patent Document 1 describes a structure as shown in FIG. 11 as an improved product of the first example of the conventional structure described above. In the case of the third example of the conventional structure shown in FIG. 11, circular thin-walled portions are respectively provided at a plurality of locations in the circumferential direction of the axially intermediate portion of the seal lip 24 constituting the seal material 19 'of the seal ring 7'. 25, and each thin portion 25 is formed with a cut 26 extending in the diametrical direction, which divides each thin portion 25 into a pair of semicircular portions. In the free state, each of the cut portions 26 is in a closed state. In the case of the third example of the conventional structure configured as described above, when a predetermined pressure difference is generated between the rolling element installation space 16 (see FIG. 8) and the external space as the temperature changes, Various pressure differential adjustment functions work. That is, when the pressure difference between the two spaces reaches a predetermined value, each of the cut portions 26 is elastically spread by the pressure difference. Then, air enters and exits between the two spaces through each of the cuts 26, whereby the pressure difference is suppressed to the predetermined value or less. For this reason, it can prevent effectively that the said rolling-element installation space 16 becomes an excessive negative pressure state. Therefore, it is possible to effectively prevent the occurrence of the problems described in the first example of the conventional structure described above.

ところが、この様な従来構造の第3例の場合には、上記シールリップ24の加工が面倒でコストが嵩む。しかも、上記切れ目26部分の開閉を適切に行わせて、上述した圧力差の調整機能を的確に発揮させる為には、凹溝18の内面に対する上記シールリップ24の締め代を適正に管理して、上記切れ目26部分の応力を適正にしておく必要がある。この為に具体的には、上記凹溝18、並びに、上記シールリップ24を含んで構成するシール材19′の寸法精度及び形状精度を、それぞれ十分に確保する必要がある。従って、その分だけ、上記凹溝18を形成する1対の内輪素子11、11の加工コスト、並びに、上記シール材19′を造る為の成形型のコストが嵩む。   However, in the case of the third example having such a conventional structure, the processing of the seal lip 24 is cumbersome and costly. In addition, in order to appropriately open and close the cut portion 26 and to exert the above-described pressure difference adjustment function appropriately, the tightening margin of the seal lip 24 with respect to the inner surface of the groove 18 is appropriately managed. It is necessary to make the stress of the cut portion 26 appropriate. For this purpose, it is necessary to sufficiently secure the dimensional accuracy and shape accuracy of the sealing material 19 ′ including the concave groove 18 and the sealing lip 24. Accordingly, the machining cost of the pair of inner ring elements 11 and 11 forming the concave groove 18 and the cost of the mold for producing the sealing material 19 ′ are increased accordingly.

特開2000−104747号公報JP 2000-104747 A 特開平9−329243号公報Japanese Patent Laid-Open No. 9-329243

本発明の密封型転がり軸受ユニット及びシール環は、上述の様な事情に鑑み、温度変化が生じる状況で、1対の内輪素子の軸方向端面同士の間の液密を保持できると共に、転動体設置空間と外部空間との間の圧力差をなくす事ができ、しかも凹溝を形成する上記各内輪素子の加工コスト、並びに、この凹溝内に組み付けるシール環の製造コストを抑えられる構造を実現すべく発明したものである。   The sealed-type rolling bearing unit and seal ring of the present invention are capable of maintaining liquid-tightness between the axial end faces of a pair of inner ring elements in a situation where temperature changes occur in view of the above-described circumstances, and rolling elements Realizes a structure that can eliminate the pressure difference between the installation space and the external space, and can reduce the processing cost of each inner ring element that forms the groove and the manufacturing cost of the seal ring to be assembled in the groove. Invented as much as possible.

本発明の対象となる密封型転がり軸受ユニットは、内周面に複列又は多列の外輪軌道を有する外輪と、外周面に複列又は多列の内輪軌道を有する内輪と、これら各外輪軌道とこれら各内輪軌道との間に、各列毎に複数個ずつ、転動自在に設けられた転動体と、上記外輪の内周面と上記内輪の外周面との間に存在する転動体設置空間の軸方向両端開口を塞ぐ1対の摺接型のシールリングとを備える。又、上記内輪は、それぞれがその外周面に上記内輪軌道を1列以上有し、且つ、互いの軸方向端面同士を突き当てた1対の内輪素子を含んで構成している。又、これら両内輪素子の軸方向端面同士の突き当て部の内周面に凹溝を、これら両内輪素子に掛け渡す状態で全周に亙り形成している。又、この凹溝内に、上記両内輪素子の軸方向端面同士の間を液密に塞ぐシール環を組み付けている。   A sealed-type rolling bearing unit that is an object of the present invention includes an outer ring having a double-row or multi-row outer ring raceway on an inner peripheral surface, an inner ring having a double-row or multi-row inner ring raceway on an outer peripheral surface, and each outer ring raceway. Between each of the inner ring raceways and the inner ring raceways, and a plurality of rolling elements provided in a freely rotatable manner for each row, and a rolling element installed between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. And a pair of sliding contact type seal rings that closes both axial openings of the space. Each of the inner rings includes a pair of inner ring elements each having one or more rows of the inner ring raceways on the outer peripheral surface thereof and abutting each other in the axial direction. In addition, a concave groove is formed on the inner peripheral surface of the abutting portion between the axial end surfaces of both inner ring elements over the entire circumference in a state of being spanned over both the inner ring elements. Further, a seal ring for liquid-tightly closing between the axial end surfaces of the inner ring elements is assembled in the concave groove.

特に、請求項1に記載した密封型転がり軸受ユニットに於いては、上記シール環は、撥水撥油性と通気性と弾性等の柔軟性とを有する素材により全体を円環状に構成したシール材と、弾性材により円環状又は欠円環状に構成した、このシール材を補強する為の芯材とを組み合わせる事により、全体を円環状に構成している。そして、上記芯材を弾性変形させる事に伴って上記シール材を一時的に変形させつつ、完成後の上記凹溝に対して着脱可能である。又、この凹溝内に上記シール環を組み付けた状態で、この凹溝の底面のうち上記両内輪素子に対応する部分の全周にそれぞれ、上記シール材が上記芯材の弾力に基づいて押し付けられる。これと共に、同じ状態で、上記シール環の全体が上記凹溝内に収まる。   In particular, in the sealed rolling bearing unit according to claim 1, the seal ring is formed of a material having water and oil repellency, air permeability, and flexibility such as elasticity as a whole in an annular shape. By combining the core material for reinforcing the sealing material, which is formed in an annular shape or a partially annular shape with an elastic material, the whole is configured in an annular shape. And it can attach or detach with respect to the said ditch | groove after completion, deforming the said sealing material temporarily with elastically deforming the said core material. In addition, with the seal ring assembled in the groove, the seal material is pressed against the entire circumference of the bottom surface of the groove corresponding to the inner ring elements based on the elasticity of the core material. It is done. At the same time, in the same state, the entire seal ring is accommodated in the concave groove.

又、請求項2に記載したシール環に於いては、撥水撥油性と通気性と柔軟性とを有する素材により全体を円環状に構成したシール材と、弾性材により円環状又は欠円環状に構成した、このシール材を補強する為の芯材とを組み合わせる事により、全体を円環状に構成している。そして、この芯材を弾性変形させる事に伴って上記シール材を一時的に変形させつつ、完成後の上記凹溝に対して着脱可能である。又、この凹溝内に組み付けた状態で、この凹溝の底面のうち上記両内輪素子に対応する部分の全周にそれぞれ、上記シール材が上記芯材の弾力に基づいて押し付けられる。これと共に、同じ状態で、全体が上記凹溝内に収まる。   According to a second aspect of the present invention, there is provided the seal ring according to claim 2, wherein the seal material is formed in a ring shape by a material having water and oil repellency, breathability and flexibility, and an annular shape or a non-circular shape by an elastic material. The whole is configured in an annular shape by combining with the core material for reinforcing this sealing material. And it can be attached or detached with respect to the said ditch | groove after completion, deform | transforming the said sealing material temporarily along with elastically deforming this core material. Further, in a state where it is assembled in the concave groove, the sealing material is pressed against the entire circumference of the portion corresponding to the inner ring elements on the bottom surface of the concave groove based on the elasticity of the core material. At the same time, in the same state, the whole fits in the concave groove.

尚、上記シール材を構成する為の、撥水撥油性と通気性と弾性等の柔軟性とを有する素材としては、例えば、撥水撥油剤を含浸させた耐熱性繊維材料や、コルクチップを固めて成形した、炭化コルクの如き通気性を有するコルク成形物を使用する事ができる。   Examples of materials having water / oil repellency, air permeability, and flexibility such as elasticity for constituting the sealing material include, for example, a heat resistant fiber material impregnated with a water / oil repellent and cork chips. A cork molded product having air permeability such as carbonized cork, which is solidified and molded, can be used.

又、上述の様な本発明を実施する場合に、好ましくは、上記シール環を構成する芯材として、通気性を有するもの(例えば、弾性を有する網目状の金属材により造ったもの)を使用する。又、上記芯材として、弾性を有する網目状の金属材により造ったものを使用する場合に、好ましくは、この芯材を、断面形状が外径側に開口するコ字形状であって、全体を欠円環状に構成したものとする。   In carrying out the present invention as described above, it is preferable to use a material having air permeability (for example, a material made of a mesh-like metal material having elasticity) as the core material constituting the seal ring. To do. In addition, when using a core made of a mesh-like metal material having elasticity as the core material, preferably, the core material has a U shape whose cross-sectional shape opens to the outer diameter side, It is assumed that is configured in a non-circular shape.

上述の様に、本発明の密封型転がり軸受ユニット及びシール環の場合には、シール環のシール材を構成する素材が、撥水撥油性と弾性等の柔軟性とを有しており、且つ、凹溝の底面のうち1対の内輪素子に対応する部分の全周にそれぞれ、上記シール材が芯材の弾力に基づいて押し付けられている(締め代を持って密接している)。この為、このシール材と上記凹溝の底面との間部分や、このシール材の内部を通じて、外部空間に存在する冷却水等の水分や摩耗粉スラッジ等の異物が転動体設置空間内に引き込まれたり、この転動体設置空間内に存在する潤滑用グリース等の油分が外部空間に漏洩したりする事を防止できる。   As described above, in the case of the sealed rolling bearing unit and the seal ring of the present invention, the material constituting the seal material of the seal ring has water and oil repellency and flexibility such as elasticity, and The sealing material is pressed on the entire circumference of the portion corresponding to the pair of inner ring elements on the bottom surface of the concave groove based on the elasticity of the core material (in close contact with the tightening margin). For this reason, foreign substances such as water such as cooling water and wear powder sludge existing in the external space are drawn into the rolling element installation space through the portion between the sealing material and the bottom surface of the concave groove and the inside of the sealing material. Or oil such as lubricating grease existing in the rolling element installation space can be prevented from leaking to the external space.

特に、本発明の場合、上記シール材を構成する素材は、通気性を有する為、このシール材によって空気が遮断される事はない。この為、温度変化に伴い、上記転動体設置空間が陽圧又は負圧になる傾向になった場合に、上記シール材の内部を通じて、上記転動体設置空間と外部空間との間で空気が出入できる。従って、これら両空間同士の間に圧力差が生じる事を防止できる。この結果、上記転動体設置空間が過度な負圧状態になる事や、この転動体設置空間の負圧状態が長時間継続して、1対のシールリングを構成する弾性材の先端縁(相手面に摺接させる端縁)の摩耗が促進される事を防止できる。この為、外部空間に存在する冷却水等が、上記両シールリングを構成する弾性材の先端縁と相手面との摺接部(間部分)を通じて、上記転動体設置空間内に引き込まれ易くなると言った不具合が発生する事を防止できる。   In particular, in the case of the present invention, since the material constituting the sealing material has air permeability, air is not blocked by the sealing material. Therefore, when the rolling element installation space tends to become positive or negative pressure due to temperature change, air enters and exits between the rolling element installation space and the external space through the inside of the sealing material. it can. Therefore, it is possible to prevent a pressure difference from occurring between these two spaces. As a result, the rolling element installation space is in an excessively negative pressure state, or the negative pressure state of the rolling element installation space continues for a long time. It is possible to prevent the wear of the edge) slidably contacting the surface from being accelerated. For this reason, when the cooling water etc. which exist in external space become easy to be drawn in in the said rolling element installation space through the sliding contact part (interposition part) of the front-end edge of the elastic material which comprises the said both seal rings, and the other party surface. It is possible to prevent the above-mentioned trouble from occurring.

又、本発明の場合には、完成後の凹溝に対してシール環を着脱できる為、メンテナンス時に軸受ユニットを分解する事なく、上記凹溝内のシール環の交換を行える。又、本発明の場合、上記シール材を構成する素材は、柔軟性を有する。この為、凹溝に多少の寸法誤差及び形状誤差があったとしても、上記シール材が柔軟に変形する事でこれら各誤差を吸収し、このシール材と上記凹溝の内面との接触状態を適正にできる。従って、この凹溝の寸法精度及び形状精度を厳正に管理する必要がない。又、上記シール材は、大判な繊維素材を切り出して造れる為、このシール材を造る際に高価な成形型を使用する必要がない。従って、上記凹溝を形成する1対の内輪素子の加工コスト、並びに、上記シール環の製造コストを十分に抑えらえる。   In the present invention, since the seal ring can be attached to and detached from the completed groove, the seal ring in the groove can be replaced without disassembling the bearing unit during maintenance. Moreover, in the case of this invention, the raw material which comprises the said sealing material has a softness | flexibility. For this reason, even if there are some dimensional errors and shape errors in the groove, the seal material flexibly deforms to absorb these errors, and the contact state between the seal material and the inner surface of the groove is It can be done properly. Therefore, it is not necessary to strictly manage the dimensional accuracy and shape accuracy of the groove. Further, since the sealing material can be produced by cutting out a large fiber material, it is not necessary to use an expensive mold when producing the sealing material. Therefore, the processing cost of the pair of inner ring elements forming the concave grooves and the manufacturing cost of the seal ring can be sufficiently suppressed.

尚、本発明を実施する場合に、上記シール環を構成する芯材として、通気性を有するもの(例えば、弾性を有する網目状の金属材により造ったもの)を使用すれば、このシール環全体の通気性を向上させる事ができる。又、上記芯材として、弾性を有する網目状の金属材により造ったものを使用する場合に、この芯材を、断面形状が外径側に開口するコ字形状であって、全体を欠円環状に構成したものとすれば、この芯材のばね剛性を十分に大きくできる。即ち、上記凹溝の底面に上記シール材を押し付けると共に、上記凹溝内に上記シール環全体を保持しておく為の、上記芯材の外径側に向く弾力を十分に大きくできる。   In the case of carrying out the present invention, if a material having air permeability (for example, one made of an elastic mesh metal material) is used as the core material constituting the seal ring, the entire seal ring is used. The air permeability of can be improved. In addition, when using a core made of an elastic mesh-like metal material as the core material, the core material has a U shape whose cross-sectional shape opens to the outer diameter side, and the whole is a missing circle. If it is configured in an annular shape, the spring rigidity of the core can be sufficiently increased. That is, the elastic force toward the outer diameter side of the core material for pressing the sealing material against the bottom surface of the concave groove and holding the entire seal ring in the concave groove can be sufficiently increased.

[実施の形態の第1例]
図1〜2は、本発明の実施の形態の第1例を示している。尚、本例の特徴は、1対の内輪素子11a、11aの軸方向端面同士の突き当て部の内周面に形成した凹溝18内に組み付けた、シール環7bにある。その他の部分の構造及び作用は、前述の図8に示した従来構造の第1例の場合とほぼ同様である。この為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分、並びに、上記従来構造の第1例と異なる部分を中心に説明する。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention. The feature of this example is the seal ring 7b assembled in the groove 18 formed in the inner peripheral surface of the abutting portion between the axial end surfaces of the pair of inner ring elements 11a, 11a. The structure and operation of other parts are almost the same as in the case of the first example of the conventional structure shown in FIG. For this reason, overlapping illustrations and explanations are omitted or simplified, and the following description will focus on features of this example and parts different from the first example of the conventional structure.

本例の場合、上記シール環7bは、撥水撥油剤を含浸させた耐熱性繊維材料により、断面矩形で全体を円環状に形成したシール材19bと、このシール材19bに対し、このシール材19bの内周面の表層部の幅方向中央部に埋め込んだ如き状態で結合した、ばね鋼製で欠円筒状の芯材22bとから成る。この様なシール環7bは、次の様にして上記凹溝18内に組み付ける。先ず、軸受ユニットを組み立てる事により、上記凹溝18を完成させる。そして、この状態で、図2に示す様に、上記芯材22bを矢印イ、イ方向(円周方向)に弾性変形させる(これに伴い上記シール材19bを一時的に変形させる)事に基づいて、上記シール環7bを弾性的に縮径させつつ、このシール環7bを内輪2の内径側に挿入する。そして、このシール環7bを上記凹溝18の内径側に移動させた状態で、このシール環7bの径寸法を弾性的に復元させる。これにより、図1に示す様に、このシール環7bを上記凹溝18内に組み付ける。   In the case of this example, the seal ring 7b is made of a heat-resistant fiber material impregnated with a water- and oil-repellent agent. It consists of a core material 22b made of spring steel and joined in a state of being embedded in the central portion in the width direction of the surface layer portion of the inner peripheral surface of 19b. Such a seal ring 7b is assembled in the concave groove 18 as follows. First, the groove 18 is completed by assembling the bearing unit. Then, in this state, as shown in FIG. 2, the core material 22b is elastically deformed in the directions of arrows a and i (circumferential direction) (accordingly, the seal material 19b is temporarily deformed). The seal ring 7b is inserted into the inner diameter side of the inner ring 2 while elastically reducing the diameter of the seal ring 7b. Then, in a state where the seal ring 7b is moved to the inner diameter side of the concave groove 18, the diameter dimension of the seal ring 7b is elastically restored. As a result, as shown in FIG. 1, the seal ring 7 b is assembled in the concave groove 18.

本例の場合、この様に凹溝18内にシール環7bを組み付けた状態で、この凹溝18の底面のうち1対の内輪素子11a、11aの端部内周面に対応する部分の全周にそれぞれ、上記シール材19bの外周面を、上記芯材22bの弾力に基づいて押し付けている(締め代を持たせて密接させている)。又、上記シール環7bの全体が上記凹溝18内に収まる様にしている。即ち、図1に示した状態で、上記芯材22b(及び上記シール材19b)の内径寸法d22bが、上記両内輪素子11a、11aの内径寸法d11aよりも少しだけ大きく(d22b>d11a)なる様にしている。又、上記シール材19bの幅寸法W19b を上記凹溝18の幅寸法W18よりも僅かに小さく(W19b <W18)する事により、上述の様にして凹溝18内にシール環7bを組み付ける作業を行い易くしている。尚、上記芯材22bの幅寸法W22bは、上記シール材19bの幅寸法W19bよりも小さく(W22b<W19b)なっている為、上記芯材22bによって上記凹溝18の開口部が完全に塞がれる事はない。 In the case of this example, with the seal ring 7b assembled in the concave groove 18, the entire circumference of the portion corresponding to the inner peripheral surface of the end portion of the pair of inner ring elements 11a, 11a in the bottom surface of the concave groove 18 is obtained. In addition, the outer peripheral surface of the sealing material 19b is pressed on the basis of the elasticity of the core material 22b (closely tightened). Further, the entire seal ring 7 b is set in the concave groove 18. That is, in the state shown in FIG. 1, the inner diameter d 22b of the core material 22b (and the sealing material 19b) is slightly larger than the inner diameter d 11a of the inner ring elements 11a and 11a (d 22b > d 11a ) to be Further, by making the width dimension W 19b of the sealing material 19b slightly smaller than the width dimension W 18 of the concave groove 18 (W 19b <W 18 ), the seal ring 7b is placed in the concave groove 18 as described above. It is easy to perform the work of assembling. Since the width dimension W 22b of the core material 22b is smaller than the width dimension W 19b of the seal material 19b (W 22b <W 19b ), the opening of the groove 18 is formed by the core material 22b. It is never completely blocked.

又、本例の場合には、互いに突き当てた、上記両内輪素子11a、11aの軸方向端面同士の間の円周方向1乃至複数箇所に、それぞれ転動体設置空間16(図8参照)と上記凹溝18とを連通する通気孔27を、径方向に亙り形成している。但し、本発明を実施する場合、この様な通気孔27は、必ずしも設ける必要はない。尚、本例の場合、メンテナンス時に上記凹溝18内から上記シール環7bを取り外す作業は、このシール環7bを弾性的に縮径させる事に基づいて行う事もできるし、軸受ユニットを分解する事に基づいて行う事もできる。   Further, in the case of this example, the rolling element installation space 16 (see FIG. 8) is provided at one or a plurality of locations in the circumferential direction between the axial end surfaces of the inner ring elements 11a and 11a, which are in contact with each other. A vent hole 27 communicating with the concave groove 18 is formed in the radial direction. However, when the present invention is carried out, such a vent hole 27 is not necessarily provided. In the case of this example, the operation of removing the seal ring 7b from the concave groove 18 during maintenance can be performed based on elastically reducing the diameter of the seal ring 7b, or disassembling the bearing unit. You can do it based on things.

上述の様に、本例の密封型転がり軸受ユニットの場合には、凹溝18内にシール環7bを組み付けた状態で、この凹溝18の底面のうち1対の内輪素子11a、11aに対応する部分にそれぞれ、撥水撥油剤を含浸させた耐熱性繊維材料により造ったシール材19bを、芯材22bの弾力に基づいて押し付けている。この為、上記シール材19bと上記凹溝18の底面との間部分や、このシール材19bの内部を通じて、外部空間に存在する冷却水等の水分や摩耗粉スラッジ等の異物が転動体設置空間16(図8参照)内に引き込まれたり、この転動体設置空間16内に存在する潤滑用グリース等の油分が外部空間に漏洩したりする事を防止できる。   As described above, in the case of the sealed type rolling bearing unit of the present example, the seal ring 7b is assembled in the concave groove 18 to correspond to the pair of inner ring elements 11a and 11a in the bottom surface of the concave groove 18. A sealing material 19b made of a heat-resistant fiber material impregnated with a water / oil repellent agent is pressed against each of the portions based on the elasticity of the core material 22b. Therefore, foreign matter such as water such as cooling water and wear powder sludge existing in the external space passes through the space between the sealing material 19b and the bottom surface of the concave groove 18 and the inside of the sealing material 19b. 16 (see FIG. 8), or oil such as lubricating grease existing in the rolling element installation space 16 can be prevented from leaking to the external space.

特に、本例の場合、上記シール材19bを構成する、撥水撥油剤を含浸させた耐熱性繊維材料は、通気性を有する為、このシール材19bによって空気が遮断される事はない。この為、運転時に生じる軸受温度の変化に伴い、上記転動体設置空間16が陽圧又は負圧になる傾向になった場合に、上記シール材19bの内部を通じて、上記転動体設置空間16と外部空間との間で空気が出入できる。特に、本例の場合には、互いに突き当てた、上記両内輪素子11a、11aの軸方向端面同士の間に、上記転動体設置空間16と上記凹溝18とを連通する通気孔27を設けている為、この転動体設置空間16と外部空間との間での空気の出入を円滑に行える。従って、これら両空間同士の間に圧力差が生じる事を防止できる。この結果、上記転動体設置空間16が過度な負圧状態になる事や、この転動体設置空間16の負圧状態が長時間継続して、1対のシールリング5、5を構成する弾性材15、15(図8参照)の先端縁の摩耗が促進される事を防止できる。この為、外部空間に存在する冷却水等が、上記両シールリング5、5を構成する弾性材15、15の先端縁と内輪2(全体構造は図8参照)の軸方向両端部外周面との摺接部(間部分)を通じて、上記転動体設置空間16内に引き込まれ易くなると言った不具合が発生する事を防止できる。   In particular, in the case of this example, the heat-resistant fiber material impregnated with the water and oil repellent that constitutes the sealing material 19b has air permeability, so that the air is not blocked by the sealing material 19b. For this reason, when the rolling element installation space 16 tends to become positive pressure or negative pressure due to the change in the bearing temperature that occurs during operation, the rolling element installation space 16 and the outside through the inside of the sealing material 19b. Air can enter and leave the space. In particular, in the case of this example, a vent hole 27 is provided between the axial end surfaces of the inner ring elements 11a and 11a that are in contact with each other, and communicates the rolling element installation space 16 and the concave groove 18. For this reason, air can smoothly enter and exit between the rolling element installation space 16 and the external space. Therefore, it is possible to prevent a pressure difference from occurring between these two spaces. As a result, the rolling element installation space 16 becomes in an excessively negative pressure state, or the negative pressure state of the rolling element installation space 16 continues for a long time, and the elastic material constituting the pair of seal rings 5 and 5. 15 and 15 (see FIG. 8) can be prevented from being accelerated at the leading edge. For this reason, the cooling water or the like existing in the outer space is caused by the leading edges of the elastic members 15 and 15 constituting the seal rings 5 and 5 and the outer peripheral surfaces of the axial ends of the inner ring 2 (see FIG. 8 for the entire structure) It is possible to prevent the occurrence of a problem that it is easy to be drawn into the rolling element installation space 16 through the sliding contact portion (interspace portion).

又、本例の場合には、完成後の凹溝18に対して上記シール環7bを着脱できる為、メンテナンス時に軸受ユニットを分解する事なく、上記凹溝18内のシール環7bの交換を行える。又、本例の場合、上記シール材19bを構成する、撥水撥油剤を含浸させた耐熱性繊維材料は、柔軟性を有する。この為、上記凹溝18に多少の寸法誤差及び形状誤差があったとしても、上記シール材19bが柔軟に変形する事でこれら各誤差を吸収し、このシール材19bの外周面と上記凹溝18の底面との接触状態を適正にできる。従って、この凹溝18の寸法精度及び形状精度を厳正に管理する必要がない。又、上記シール材19bは、大判な繊維素材を切り出して造れる為、このシール材19bを造る際に高価な成形型を使用する必要がない。従って、上記凹溝18を形成する1対の内輪素子11a、11aの加工コスト、並びに、上記シール環7bの製造コストを十分に抑えらえる。   In the case of this example, since the seal ring 7b can be attached to and detached from the completed concave groove 18, the seal ring 7b in the concave groove 18 can be replaced without disassembling the bearing unit during maintenance. . In the case of this example, the heat-resistant fiber material impregnated with the water / oil repellent that constitutes the sealing material 19b has flexibility. For this reason, even if there are some dimensional errors and shape errors in the concave groove 18, the sealing material 19 b flexibly deforms to absorb these errors, and the outer peripheral surface of the sealing material 19 b and the concave groove The contact state with the bottom surface of 18 can be made appropriate. Therefore, it is not necessary to strictly manage the dimensional accuracy and shape accuracy of the groove 18. Further, since the sealing material 19b can be manufactured by cutting out a large fiber material, it is not necessary to use an expensive mold when manufacturing the sealing material 19b. Therefore, the processing cost of the pair of inner ring elements 11a and 11a forming the concave groove 18 and the manufacturing cost of the seal ring 7b can be sufficiently suppressed.

又、本例の場合、上記シール環7bを構成する芯材22bは、ばね鋼により全体を欠円筒状に形成しており、そのばね剛性が、前述の図10に示した従来構造の第2例の環状スプリング21のばね剛性に比べて、十分に大きい。この為、この芯材22bの弾力によって、上記凹溝18の底面に上記シール材19bの外周面を、十分に強く押し付ける事ができる。これと共に、上記凹溝18内に組み付けた上記シール環7bの一部が径方向内方に垂れ下がり、上記両内輪素子11a、11aの内周面よりも径方向内方に突出すると言った不具合が発生する事を、上記芯材22bのばね剛性に基づいて確実に防止できる。従って、メンテナンス時、上記両内輪素子11a、11aの内径側にロールネックを抜き差しする際に、このロールネックが上記シール環7bと干渉すると言った不具合が発生する事を確実に防止できる。   In the case of this example, the core material 22b constituting the seal ring 7b is formed in a generally cylindrical shape with spring steel, and its spring rigidity is the second of the conventional structure shown in FIG. The spring rigidity of the annular spring 21 in the example is sufficiently large. For this reason, the outer peripheral surface of the sealing material 19b can be pressed sufficiently strongly against the bottom surface of the concave groove 18 by the elasticity of the core material 22b. At the same time, there is a problem that a part of the seal ring 7b assembled in the concave groove 18 hangs down radially inward and protrudes radially inward from the inner peripheral surfaces of the inner ring elements 11a and 11a. Occurrence can be reliably prevented based on the spring rigidity of the core member 22b. Accordingly, it is possible to reliably prevent a problem that the roll neck interferes with the seal ring 7b when the roll neck is inserted into and removed from the inner diameter side of the inner ring elements 11a and 11a during maintenance.

[実施の形態の第2例]
図3〜6は、本発明の実施の形態の第2例を示している。本例の場合も、上述した第1例の場合と同様、シール環7cを構成する芯材22cは、全体を欠円環状に形成している。但し、本例の場合には、この芯材22cを、ばね性の良好な網目状の金属材により造ると共に、この芯材22cの断面形状を、外径側を開口させたコ字形としている。そして、径方向外方に開口する、この芯材22cの内側に、シール材19bの径方向内半部を嵌め込む状態で装着している。又、本例の場合、上記芯材22cの幅寸法W22cは、上記シール材19bの径方向外半部の幅寸法W19bと同じく、凹溝18の幅寸法W18よりも僅かに小さい{W22c(=W19b)<W18}程度の大きさとしている。
[Second Example of Embodiment]
3 to 6 show a second example of the embodiment of the present invention. Also in the case of this example, as in the case of the first example described above, the core material 22c constituting the seal ring 7c is formed in a partially annular shape as a whole. However, in the case of this example, the core material 22c is made of a mesh-like metal material having good spring properties, and the cross-sectional shape of the core material 22c is a U-shape with an outer diameter side opened. And it mounts | wears in the state which fits the radial direction inner half part of the sealing material 19b inside this core material 22c opened to radial direction outward. In the case of this example, the width dimension W 22c of the core material 22c is slightly smaller than the width dimension W 18 of the concave groove 18 like the width dimension W 19b of the radially outer half of the sealing material 19b { The size is about W 22c (= W 19b ) <W 18 }.

上述の様に構成する本例の場合には、シール環7cを構成する芯材22cの素材が、網目状の金属材である為、この芯材22cの通気性を良好にできて、上記シール環7c全体の通気性を向上させる事ができる。又、上記芯材22cは、素材が網目状の金属材ではあるものの、その断面形状を、外径側を開口させたコ字形としている。この為、上述した第1例の場合と同様、上記芯材22cのばね剛性を、十分に大きくできる。又、この芯材22cの素材が、網目状の金属材である為、この芯材22cを製造する為の加工を容易に行える。更に、本例の場合には、外径側に開口する、上記芯材22cの内側に、上記シール材19bの径方向内半部を嵌め込む状態で装着できる為、上記シール環7cの組立作業を容易に行える。その他の構成及び作用は、上述した第1例の場合と同様である。   In the case of this example configured as described above, since the material of the core material 22c constituting the seal ring 7c is a net-like metal material, the air permeability of the core material 22c can be improved, and the seal The air permeability of the entire ring 7c can be improved. Moreover, although the core material 22c is a net-like metal material, the cross-sectional shape thereof is a U-shape with an outer diameter side opened. For this reason, as in the case of the first example described above, the spring rigidity of the core member 22c can be sufficiently increased. Further, since the material of the core material 22c is a net-like metal material, the processing for manufacturing the core material 22c can be easily performed. Furthermore, in the case of this example, since the inner half of the seal member 19b can be fitted inside the core member 22c that opens to the outer diameter side, the assembly operation of the seal ring 7c can be performed. Can be easily performed. Other configurations and operations are the same as those of the first example described above.

[実施の形態の第3例]
図7は、本発明の実施の形態の第3例を示している。本例の場合、シール環7dは、シール材19bの内周面の表層部の軸方向両端寄り部分に、ばね鋼製の線材により全体を円環状に形成した1対の芯材22d、22dを、それぞれ同心に埋め込んだ如き状態で結合して成る。そして、この様な構成を採用する事により、上記両芯材22d、22dを弾性変形させる(これに伴い上記シール材19bを一時的に変形させる)事で、上記シール環7dを弾性的に縮径できる(このシール環7dの外接円の直径を弾性的に小さくできる)様にしている。その他の構成及び作用は、(上記両芯材22d、22dのばね剛性を十分に大きくできる点を含めて、)前述した第1例の場合と同様である。
[Third example of embodiment]
FIG. 7 shows a third example of the embodiment of the present invention. In the case of this example, the seal ring 7d has a pair of core members 22d and 22d formed entirely in a ring shape by spring steel wires at the portions near both axial ends of the surface layer portion of the inner peripheral surface of the seal material 19b. They are combined in a state where they are embedded concentrically. By adopting such a configuration, the seal ring 7d is elastically contracted by elastically deforming both the core materials 22d and 22d (and thereby temporarily deforming the seal material 19b). The diameter can be increased (the diameter of the circumscribed circle of the seal ring 7d can be reduced elastically). Other configurations and operations are the same as in the case of the first example described above (including the point that the spring rigidity of both the core members 22d and 22d can be sufficiently increased).

以上に述べた様に、上述した実施の形態の各例の芯材22b〜22dのばね剛性は、前述の図10に示した従来構造の第2例の環状スプリング21のばね剛性に比べて、十分に大きくできる。この為、シール環を構成するシール材としてゴムを使用する構造(例えば、上記従来構造の第2例)で、当該シール環を構成する芯材として上記各芯材22b〜22dを(上記環状スプリング21の代わりに)使用すれば、凹溝の底面に対する上記シール材の押し付け力と、この凹溝内に上記シール環全体を保持しておく力とを、それぞれ(上記環状スプリング21を使用する場合に比べて)十分に大きくできる。   As described above, the spring stiffness of the core members 22b to 22d in each example of the embodiment described above is larger than that of the annular spring 21 of the second example of the conventional structure shown in FIG. Can be big enough. For this reason, in the structure using rubber as the seal material constituting the seal ring (for example, the second example of the conventional structure), the core materials 22b to 22d are used as the core material constituting the seal ring (the annular spring). If used, the pressing force of the sealing material against the bottom surface of the concave groove and the force for holding the entire seal ring in the concave groove are respectively (when the annular spring 21 is used). Can be large enough).

但し、前述した様に、上記シール環を構成するシール材としてゴムを使用すると、軸受温度が高くなる運転状態で(即ち高温時に)、転動体設置空間内の圧力が陽圧になる。そして、この転動体設置空間内の陽圧値が、1対の摺接型シールリングの封止力を越える値になると、これら両摺接型シールリングの摺接部を通じて、転動体設置空間内の空気が外部空間に漏れ出す。この為、高温時の転動体設置空間内の陽圧値は、上記両摺接型シールリングの封止力に見合った値になる。ところが、これら両摺接型シールリングの封止力に比べて、上記シール環の封止力が小さくなっていると、転動体設置空間内の陽圧値が上記両摺接型シールリングの封止力に見合う値になる前に、上記シール環の接触部を通じて、転動体設置空間内の空気が外部空間に漏れ出す。従って、その分だけ、高温時の転動体設置空間内の陽圧値が小さくなる。   However, as described above, when rubber is used as the seal material constituting the seal ring, the pressure in the rolling element installation space becomes a positive pressure in an operation state in which the bearing temperature becomes high (that is, at a high temperature). When the positive pressure value in the rolling element installation space exceeds the sealing force of the pair of sliding contact type seal rings, the rolling element installation space passes through the sliding contact portions of both sliding contact type seal rings. Air leaks into the external space. For this reason, the positive pressure value in the rolling element installation space at a high temperature becomes a value commensurate with the sealing force of the double sliding contact type seal ring. However, when the sealing force of the seal ring is smaller than the sealing force of the both sliding contact type seal rings, the positive pressure value in the rolling element installation space is increased. Before reaching a value that matches the stopping force, the air in the rolling element installation space leaks into the external space through the contact portion of the seal ring. Therefore, the positive pressure value in the rolling element installation space at a high temperature is reduced by that amount.

一方、高温時には、外部空間に、より多くの冷却水が存在する様になる。この為、高温時には、この冷却水の浸入防止機能を十分に発揮させる事が、特に重要となる。ところが、この冷却水の浸入防止機能は、転動体設置空間内の陽圧値が大きくなる程、高く発揮されるものである。この為、上述の様に高温時の転動体設置空間内の陽圧値が小さくなると、その分だけ、上記冷却水の浸入防止機能が低下すると言った不具合が発生する。又、上述の様に高温時の転動体設置空間内の陽圧値が小さくなる(高温時に転動体設置空間から外部空間に吐き出される空気の量が多くなる)と、その後、軸受温度が低下して、転動体設置空間内の圧力が負圧になった場合に、上記両摺接部を通じて、外部空間から転動体設置空間内に引き込まれる空気の量が多くなる。この為、この空気と共に上記冷却水が転動体設置空間内に、より引き込まれ易くなると言った不具合が発生する。   On the other hand, when the temperature is high, more cooling water is present in the external space. For this reason, it is particularly important that the cooling water intrusion preventing function is sufficiently exerted at high temperatures. However, this cooling water intrusion prevention function is more effective as the positive pressure value in the rolling element installation space increases. For this reason, as described above, when the positive pressure value in the rolling element installation space at a high temperature becomes small, there arises a problem that the cooling water intrusion prevention function is reduced accordingly. Further, as described above, when the positive pressure value in the rolling element installation space at a high temperature becomes small (the amount of air discharged from the rolling element installation space to the external space at a high temperature increases), the bearing temperature subsequently decreases. Thus, when the pressure in the rolling element installation space becomes negative, the amount of air drawn from the external space into the rolling element installation space through the both sliding contact portions increases. For this reason, the problem that the said cooling water with this air becomes easy to be drawn in into rolling-element installation space generate | occur | produces.

これに対し、上記シール環を構成する芯材として、前述した実施の形態の各例の芯材22b〜22dを使用すれば、凹溝の底面に対するシール材の押し付け力を十分に大きくできる為、上記シール環の封止力が、上記両摺接型シールリングの封止力よりも小さくなる事を有効に防止できる。この為、上述の様に高温時の転動体設置空間内の陽圧値が、上記両摺接型シールリングの封止力に見合う値よりも小さくなる事を、有効に防止できる。従って、上述した様な各不具合が発生する事を有効に防止できる。   On the other hand, if the core material 22b to 22d of each example of the embodiment described above is used as the core material constituting the seal ring, the pressing force of the seal material against the bottom surface of the concave groove can be sufficiently increased. It is possible to effectively prevent the sealing force of the seal ring from becoming smaller than the sealing force of the sliding contact type seal ring. For this reason, it can prevent effectively that the positive pressure value in the rolling element installation space at the time of high temperature becomes smaller than the value corresponding to the sealing force of the said both sliding contact type seal ring as mentioned above. Therefore, it is possible to effectively prevent the occurrence of the various problems as described above.

又、上記シール環を構成する芯材として、アルミニウム若しくはアルミニウム合金により、全体を円環状若しくは欠円環状に形成した芯材を使用すれば、この芯材の熱膨張に基づく拡径量を、同じく凹溝を備えた内輪の拡径量に比べて十分に大きくできる。この為、高温時に、上記凹溝の底面に対するシール材の押し付け力を十分に大きくできる。従って、高温時に、上記シール環の封止力が、上記両摺接型シールリングの封止力よりも小さくなる事を有効に防止できる。この為、高温時に、転動体設置空間内の陽圧値が、上記両摺接型シールリングの封止力に見合う値よりも小さくなる事を、有効に防止できる。従って、上述した様な各不具合が発生する事を有効に防止できる。   Moreover, if a core material that is formed in an annular shape or a not-annular shape as a whole by aluminum or an aluminum alloy is used as the core material constituting the seal ring, the amount of diameter expansion based on the thermal expansion of the core material is the same. It can be sufficiently larger than the diameter expansion of the inner ring provided with the concave groove. For this reason, the pressing force of the sealing material against the bottom surface of the concave groove can be sufficiently increased at a high temperature. Therefore, it is possible to effectively prevent the sealing force of the seal ring from becoming smaller than the sealing force of the sliding contact type seal ring at a high temperature. For this reason, it is possible to effectively prevent the positive pressure value in the rolling element installation space from becoming smaller than a value commensurate with the sealing force of the both sliding contact type seal ring at a high temperature. Therefore, it is possible to effectively prevent the occurrence of the various problems as described above.

尚、本発明を実施する場合には、凹溝の底面だけでなく、この凹溝の軸方向両側壁面にも、シール環を構成するシール材を接触させれば、このシール環の封止力をより大きくできる。又、本発明を実施する場合には、シール環を構成する芯材として、前述の図10に示した環状スプリングを使用する事もできる。   In the case of carrying out the present invention, the sealing force of the seal ring is not limited if the seal material constituting the seal ring is brought into contact with not only the bottom surface of the groove but also the axial side walls of the groove. Can be made larger. Moreover, when implementing this invention, the annular spring shown in the above-mentioned FIG. 10 can also be used as a core material which comprises a seal ring.

本発明の実施の形態の第1例を示す、図9と同様の図。The figure similar to FIG. 9 which shows the 1st example of embodiment of this invention. 第1例のシール環を構成する芯材を軸方向から見た図。The figure which looked at the core material which comprises the seal ring of a 1st example from the axial direction. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 第2例のシール環を構成する芯材の斜視図。The perspective view of the core material which comprises the seal ring of a 2nd example. 図4のA部拡大図。The A section enlarged view of FIG. 第2例のシール環を構成する芯材を軸方向から見た図。The figure which looked at the core material which comprises the seal ring of a 2nd example from the axial direction. 本発明の実施の形態の第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example of embodiment of this invention. 密封型多列円すいころ軸受の従来構造の第1例を示す半部断面図。The half part sectional view showing the 1st example of the conventional structure of a sealed type multi-row tapered roller bearing. 図8のB部拡大図。The B section enlarged view of FIG. 従来構造の第2例を示す、図9と同様の図。The figure similar to FIG. 9 which shows the 2nd example of conventional structure. 同第3例を示す、図9と同様の図。The figure similar to FIG. 9 which shows the 3rd example.

符号の説明Explanation of symbols

1 外輪
2 内輪
3 円すいころ
4 シールホルダ
5 シールリング
6 Oリング
7、7′、7a〜7d シール環
8a、8b 外輪素子
9 外輪間座
10 外輪軌道
11、11a 内輪素子
12 内輪軌道
13 保持器
14 芯金
15 弾性材
16 転動体設置空間
17 係止溝
18 凹溝
19、19′、19a、19b シール材
20 係止溝
21 環状スプリング
22、22b〜22d 芯材
23 基部
24 シールリップ
25 薄肉部
26 切れ目
27 通気孔
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Inner ring 3 Tapered roller 4 Seal holder 5 Seal ring 6 O ring 7, 7 ', 7a-7d Seal ring 8a, 8b Outer ring element 9 Outer ring spacer 10 Outer ring raceway 11, 11a Inner ring element 12 Inner ring raceway 13 Cage 14 Metal core 15 Elastic material 16 Rolling element installation space 17 Locking groove 18 Recessed groove 19, 19 ', 19a, 19b Sealing material 20 Locking groove 21 Annular spring 22, 22b-22d Core material 23 Base 24 Seal lip 25 Thin part 26 Cut 27 Vent

Claims (2)

内周面に複列又は多列の外輪軌道を有する外輪と、外周面に複列又は多列の内輪軌道を有する内輪と、これら各外輪軌道とこれら各内輪軌道との間に、各列毎に複数個ずつ、転動自在に設けられた転動体と、上記外輪の内周面と上記内輪の外周面との間に存在する転動体設置空間の軸方向両端開口を塞ぐ1対の摺接型のシールリングとを備え、上記内輪は、それぞれがその外周面に上記内輪軌道を1列以上有し、且つ、互いの軸方向端面同士を突き当てた1対の内輪素子を含んで構成したもので、これら両内輪素子の軸方向端面同士の突き当て部の内周面に凹溝を、これら両内輪素子に掛け渡す状態で全周に亙り形成しており、この凹溝内に、上記両内輪素子の軸方向端面同士の間を液密に塞ぐシール環を組み付けている密封型転がり軸受ユニットに於いて、このシール環は、撥水撥油性と通気性と柔軟性とを有する素材により全体を円環状に構成したシール材と、弾性材により円環状又は欠円環状に構成した、このシール材を補強する為の芯材とを組み合わせる事により、全体を円環状に構成したもので、この芯材を弾性変形させる事に伴って上記シール材を一時的に変形させつつ、完成後の上記凹溝に対して着脱可能なものであり、この凹溝内に上記シール環を組み付けた状態で、この凹溝の底面のうち上記両内輪素子に対応する部分の全周にそれぞれ、上記シール材が上記芯材の弾力に基づいて押し付けられると共に、上記シール環の全体が上記凹溝内に収まる事を特徴とする密封型転がり軸受ユニット。   An outer ring having a double-row or multi-row outer ring raceway on the inner peripheral surface, an inner ring having a double-row or multi-row inner ring raceway on the outer peripheral surface, and between each outer ring raceway and each inner ring raceway, for each row A pair of rolling elements provided in a freely rotatable manner, and a pair of sliding contacts that block both axial openings of the rolling element installation space existing between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. The inner ring includes a pair of inner ring elements each having one or more rows of the inner ring raceways on the outer peripheral surface thereof and abutting each other in the axial direction. Therefore, a concave groove is formed on the inner peripheral surface of the abutting portion between the axial end faces of both the inner ring elements, and is formed over the entire circumference in a state of spanning the two inner ring elements. A hermetic rolling bearing unit is assembled with a seal ring that tightly seals between the axial end faces of both inner ring elements. In this case, the seal ring is formed in a ring shape or a ring shape with an elastic material, and a seal material that is formed in a ring shape with a material having water and oil repellency, breathability, and flexibility. By combining with a core material to reinforce this seal material, the whole is configured in an annular shape, and after completion of the seal material, while temporarily deforming the seal material as the core material is elastically deformed In the state where the seal ring is assembled in the groove, the entire circumference of the portion corresponding to the inner ring elements on the bottom surface of the groove is A sealing type rolling bearing unit, wherein a sealing material is pressed on the basis of the elasticity of the core material, and the entire sealing ring is accommodated in the concave groove. 内周面に複列又は多列の外輪軌道を有する外輪と、外周面に複列又は多列の内輪軌道を有する内輪と、これら各外輪軌道とこれら各内輪軌道との間に、各列毎に複数個ずつ、転動自在に設けられた転動体と、上記外輪の内周面と上記内輪の外周面との間に存在する転動体設置空間の軸方向両端開口を塞ぐ1対の摺接型のシールリングとを備え、上記内輪は、それぞれがその外周面に上記内輪軌道を1列以上有し、且つ、互いの軸方向端面同士を突き当てた1対の内輪素子を含んで構成したもので、これら両内輪素子の軸方向端面同士の突き当て部の内周面に凹溝を、これら両内輪素子に掛け渡す状態で全周に亙り形成しており、この凹溝内に、上記両内輪素子の軸方向端面同士の間を液密に塞ぐシール環を組み付けている密封型転がり軸受ユニットを構成する、このシール環に於いて、撥水撥油性と通気性と柔軟性とを有する素材により全体を円環状に構成したシール材と、弾性材により円環状又は欠円環状に構成した、このシール材を補強する為の芯材とを組み合わせる事により、全体を円環状に構成しており、この芯材を弾性変形させる事に伴って上記シール材を一時的に変形させつつ、完成後の上記凹溝に対して着脱可能であり、この凹溝内に組み付けた状態で、この凹溝の底面のうち上記両内輪素子に対応する部分の全周にそれぞれ、上記シール材が上記芯材の弾力に基づいて押し付けられると共に、全体が上記凹溝内に収まる事を特徴とするシール環。   An outer ring having a double-row or multi-row outer ring raceway on the inner peripheral surface, an inner ring having a double-row or multi-row inner ring raceway on the outer peripheral surface, and between each outer ring raceway and each inner ring raceway, for each row A pair of rolling elements provided in a freely rotatable manner, and a pair of sliding contacts that block both axial openings of the rolling element installation space existing between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. The inner ring includes a pair of inner ring elements each having one or more rows of the inner ring raceways on the outer peripheral surface thereof and abutting each other in the axial direction. Therefore, a concave groove is formed on the inner peripheral surface of the abutting portion between the axial end faces of both the inner ring elements, and is formed over the entire circumference in a state of spanning the two inner ring elements. A hermetic rolling bearing unit is assembled with a seal ring that tightly seals between the axial end faces of both inner ring elements. In this seal ring, which constitutes a ring, it is configured in a ring shape or a non-circular ring shape by an elastic material, and a seal material which is configured as a whole by a material having water and oil repellency, breathability and flexibility. In addition, by combining with a core material for reinforcing this seal material, the whole is configured in an annular shape, while the core material is elastically deformed while temporarily deforming the seal material, It can be attached to and detached from the groove after completion, and the sealing material is attached to the entire circumference of the portion corresponding to the inner ring elements on the bottom surface of the groove in a state assembled in the groove. A seal ring that is pressed on the basis of the elasticity of the core material and that fits entirely within the groove.
JP2008111172A 2008-04-22 2008-04-22 Sealed rolling bearing unit and seal ring Pending JP2009264403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111172A JP2009264403A (en) 2008-04-22 2008-04-22 Sealed rolling bearing unit and seal ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111172A JP2009264403A (en) 2008-04-22 2008-04-22 Sealed rolling bearing unit and seal ring

Publications (1)

Publication Number Publication Date
JP2009264403A true JP2009264403A (en) 2009-11-12

Family

ID=41390511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111172A Pending JP2009264403A (en) 2008-04-22 2008-04-22 Sealed rolling bearing unit and seal ring

Country Status (1)

Country Link
JP (1) JP2009264403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107771252A (en) * 2015-06-29 2018-03-06 舍弗勒技术股份两合公司 Rolling bearing unit
CN113677904A (en) * 2019-03-21 2021-11-19 利勃海尔比伯拉赫零部件有限公司 Seal for large roller bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107771252A (en) * 2015-06-29 2018-03-06 舍弗勒技术股份两合公司 Rolling bearing unit
CN107771252B (en) * 2015-06-29 2020-09-29 舍弗勒技术股份两合公司 Rolling bearing unit
CN113677904A (en) * 2019-03-21 2021-11-19 利勃海尔比伯拉赫零部件有限公司 Seal for large roller bearing
CN113677904B (en) * 2019-03-21 2023-11-17 利勃海尔比伯拉赫零部件有限公司 Seal for large roller bearings

Similar Documents

Publication Publication Date Title
JP6070202B2 (en) Rolling bearing device and rolling roll backup roll using the same
JP6028409B2 (en) Self-aligning roller bearing with sealing device and manufacturing method thereof
EP2469110B1 (en) Sealing device and rolling bearing device provided with sealing device
JP2010174979A (en) Rolling bearing
JP2009264404A (en) Sealed rolling bearing unit and seal ring
JP2006207613A (en) Sealing device for rolling bearing and sealed rolling bearing
JP2010190241A (en) Self-aligning roller bearing
JP2009264403A (en) Sealed rolling bearing unit and seal ring
JP2000130594A (en) Seal pack
JP2008032042A (en) Rolling bearing device
JP2004052924A (en) Sealing for rolling bearing
JP4226401B2 (en) Oil seal for roll neck of rolling mill
JP2004332905A (en) Bearing device for rail vehicle
JP2008121820A (en) Seal device for rolling bearing
JP2009097665A (en) Bearing device
JP2015227671A (en) Sealing-type rolling bearing
JP5084575B2 (en) Sealing device and rolling bearing device
JP7522850B2 (en) Sealing device
JP2019019925A (en) Sealing device
JP2010216635A (en) Sealing device
JP2010090986A (en) Sealed rolling bearing
JP2008208868A (en) Spherical sliding bearing
JP2011033171A (en) Bearing device
WO2008050755A1 (en) Sealing device
JP2017223283A (en) Bearing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100318