JP2009264237A - Exhaust reflux rate measuring device - Google Patents

Exhaust reflux rate measuring device Download PDF

Info

Publication number
JP2009264237A
JP2009264237A JP2008114706A JP2008114706A JP2009264237A JP 2009264237 A JP2009264237 A JP 2009264237A JP 2008114706 A JP2008114706 A JP 2008114706A JP 2008114706 A JP2008114706 A JP 2008114706A JP 2009264237 A JP2009264237 A JP 2009264237A
Authority
JP
Japan
Prior art keywords
exhaust gas
fresh air
water vapor
vapor concentration
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008114706A
Other languages
Japanese (ja)
Inventor
Hidetaka Ozawa
英隆 小沢
Taichi Yoshikawa
太一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008114706A priority Critical patent/JP2009264237A/en
Publication of JP2009264237A publication Critical patent/JP2009264237A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0418Air humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust reflux rate measuring device capable of accurately obtaining a rate of reflux exhaust contained in mixed gas of fresh charge and the reflux exhaust sucked in by an internal combustion engine provided with an exhaust reflux passage, in other words, an exhaust reflux rate. <P>SOLUTION: A water vapor concentration MCW in the fresh charge is calculated based on a fresh charge humidity Ha1 to be detected and a fresh charge temperature Ta1 and a sonic speed Va2 of the fresh charge at a temperature Tin is calculated based on the water vapor concentration MCW and the temperature Tin of the mixed gas of the fresh air and the reflux exhaust (S12-S16). A sonic speed Vf of the reflux exhaust at the temperature Tin is calculated corresponding to the water vapor concentration MCW, a rate of gas component contained in the reflux exhaust and the temperature Tin (S17, S18). An exhaust reflux rate REGR is calculated by using a sonic speed Vin of the mixed gas detected by an ultrasonic sensor, a sonic speed Va2 of the fresh charge and the sonic speed Vf of the reflux exhaust (S19). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気還流通路を備える内燃機関において排気還流率を計測する排気還流率計測装置に関する。   The present invention relates to an exhaust gas recirculation rate measuring device that measures an exhaust gas recirculation rate in an internal combustion engine having an exhaust gas recirculation passage.

特許文献1には、内燃機関の吸入空気中の特定成分の濃度を測定するガス濃度センサが示されている。このガス濃度センサは、被測定ガス(測定対象ガス)中において超音波が一定距離を伝播するのに要する伝播時間、換言すれば被測定ガスの音速に基づいて、特定成分の濃度を検出するものである。   Patent Document 1 discloses a gas concentration sensor that measures the concentration of a specific component in the intake air of an internal combustion engine. This gas concentration sensor detects the concentration of a specific component based on the propagation time required for ultrasonic waves to propagate a certain distance in the gas to be measured (measuring gas), in other words, based on the sound velocity of the gas to be measured. It is.

特開2000−241399号公報JP 2000-241399 A

内燃機関に吸入されるガス中には、濃度測定の対象となる特定成分(例えば蒸発燃料)以外の他の成分(水蒸気、還流される排気)が含まれており、被測定ガスの音速は、他の成分の影響も受ける。そのため、他の成分の濃度が変化すると、被測定ガスの音速と特定成分の濃度との関係も変化し、特定成分濃度の測定精度が低下する。内燃機関に吸入される新気中には少なからず水蒸気が含まれており、排気系から還流される還流排気中には燃焼により生成された水蒸気も含まれる。   The gas sucked into the internal combustion engine contains other components (steam, exhaust gas to be recirculated) other than a specific component (evaporated fuel) whose concentration is to be measured. Also affected by other ingredients. Therefore, when the concentrations of other components change, the relationship between the sound velocity of the gas to be measured and the concentration of the specific component also changes, and the measurement accuracy of the specific component concentration decreases. The fresh air sucked into the internal combustion engine contains a lot of water vapor, and the recirculated exhaust gas recirculated from the exhaust system also contains water vapor generated by combustion.

特許文献1は、ガス濃度センサを、吸気通路に供給される蒸発燃料の濃度の測定に適用する例と、水蒸気の濃度を測定する例とを示しているが、蒸発燃料濃度と水蒸気濃度との関係(被測定ガスにおける両者の比率)に着目して、正確な蒸発燃料濃度を測定する手法を示していない。したがって、特許文献1に示されたガス濃度センサ及びそのセンサを用いたガス濃度測定手法を、新気と還流排気との混合ガス中の還流排気の割合である排気還流率の測定にそのまま適用することはできない。   Patent Document 1 shows an example in which the gas concentration sensor is applied to the measurement of the concentration of the evaporated fuel supplied to the intake passage and the example of measuring the concentration of the water vapor. Focusing on the relationship (the ratio of both in the gas to be measured), no method for measuring the exact fuel vapor concentration is shown. Therefore, the gas concentration sensor disclosed in Patent Document 1 and the gas concentration measurement method using the sensor are directly applied to the measurement of the exhaust gas recirculation rate, which is the ratio of the recirculated exhaust gas in the mixed gas of fresh air and recirculated exhaust gas. It is not possible.

本発明は上述した点を考慮してなされたものであり、排気還流通路を備える内燃機関に吸入される新気と還流排気との混合ガスに含まれる還流排気の比率、すなわち排気還流率を精度よく求めることができる排気還流率計測装置を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and accurately determines the ratio of the recirculated exhaust gas contained in the mixed gas of fresh air and recirculated exhaust gas that is sucked into the internal combustion engine having the exhaust recirculation passage, that is, the exhaust gas recirculation rate. An object of the present invention is to provide an exhaust gas recirculation rate measuring device that can be obtained well.

上記目的を達成するため請求項1に記載の発明は、排気還流通路(7)を備える内燃機関に吸入される新気と還流排気との混合ガスに含まれる前記還流排気の割合である排気還流率(REGR)を計測する排気還流率計測装置であって、前記新気の音速(Va2)を求める第1音速取得手段と、前記還流排気の音速(Vf)を求める第2音速取得手段と、前記混合ガスの音速(Vin)を求める第3音速取得手段と、前記新気の音速(Va2)と前記還流排気の音速(Vf)と前記混合ガスの音速(Vin)とに基づいて前記排気還流率(REGR)を算出する排気還流率算出手段とを備えることを特徴とするものを提供する。   In order to achieve the above object, the invention according to claim 1 is an exhaust gas recirculation that is a ratio of the recirculated exhaust gas contained in a mixed gas of fresh air and recirculated exhaust gas that is sucked into an internal combustion engine having an exhaust gas recirculation passage (7). An exhaust gas recirculation rate measuring device for measuring a rate (REGR), a first sonic speed acquisition means for determining a sound speed (Va2) of the fresh air, a second sonic speed acquisition means for determining a sound speed (Vf) of the recirculated exhaust gas, The exhaust gas recirculation is based on a third acoustic velocity acquisition means for obtaining the acoustic velocity (Vin) of the mixed gas, the acoustic velocity (Va2) of the fresh air, the acoustic velocity (Vf) of the reflux exhaust, and the acoustic velocity (Vin) of the mixed gas. An exhaust gas recirculation rate calculating means for calculating a rate (REGR) is provided.

請求項2に記載の発明は、請求項1に記載の排気還流率計測装置において、前記混合ガスの温度(Tin)を検出する混合ガス温度検出手段(14)と、前記新気中の水蒸気濃度(MCW)を取得する水蒸気濃度取得手段とを備え、前記第1音速取得手段は、前記混合ガスの温度(Tin)と前記新気中の水蒸気濃度(MCW)とに基づいて、前記新気の音速(Va2)を算出することを特徴とする。   The invention according to claim 2 is the exhaust gas recirculation rate measuring device according to claim 1, wherein the mixed gas temperature detecting means (14) for detecting the temperature (Tin) of the mixed gas, and the water vapor concentration in the fresh air Water vapor concentration acquisition means for acquiring (MCW), the first sonic speed acquisition means based on the temperature (Tin) of the mixed gas and the water vapor concentration (MCW) in the fresh air. The speed of sound (Va2) is calculated.

請求項3に記載の発明は、請求項1または2に記載の排気還流率計測装置において、前記混合ガスの温度(Tin)を検出する混合ガス温度検出手段(14)と、前記新気中の水蒸気濃度(MCW)を取得する水蒸気濃度取得手段と、前記新気中の水蒸気濃度(MCW)に基づいて前記還流排気中の水蒸気濃度(n(5)+0.944)を推定する水蒸気濃度推定手段とを備え、前記第2音速取得手段は、前記混合ガスの温度(Tin)と前記還流排気中の水蒸気濃度(n(5)+0.944)とに基づいて、前記還流排気の音速(Vf)を算出することを特徴とする。   According to a third aspect of the present invention, in the exhaust gas recirculation rate measuring device according to the first or second aspect, a mixed gas temperature detecting means (14) for detecting a temperature (Tin) of the mixed gas; Water vapor concentration acquisition means for acquiring water vapor concentration (MCW), and water vapor concentration estimation means for estimating the water vapor concentration (n (5) +0.944) in the recirculated exhaust based on the water vapor concentration (MCW) in the fresh air And the second sonic velocity acquisition means is configured to calculate the sonic velocity (Vf) of the recirculated exhaust gas based on the temperature (Tin) of the mixed gas and the water vapor concentration (n (5) +0.944) in the recirculated exhaust gas. Is calculated.

請求項4に記載の発明は、請求項2または3に記載の排気還流率計測装置において、前記水蒸気濃度取得手段は、前記新気の温度(Ta1)を検出する新気温度検出手段(12)と、前記新気の湿度(Ha1)を検出する新気湿度検出手段(11)とを有し、検出した新気温度(Ta1)及び新気湿度(Ha1)に基づいて前記新気中の水蒸気濃度(MCW)を算出することを特徴とする。   According to a fourth aspect of the present invention, in the exhaust gas recirculation rate measuring apparatus according to the second or third aspect, the water vapor concentration acquisition means detects a fresh air temperature detection means (12) for detecting the fresh air temperature (Ta1). And fresh air humidity detecting means (11) for detecting the fresh air humidity (Ha1), and based on the detected fresh air temperature (Ta1) and fresh air humidity (Ha1), water vapor in the fresh air The concentration (MCW) is calculated.

請求項5に記載の発明は、請求項1から4の何れか1項に記載の排気還流率計測装置において、前記第3音速取得手段は、超音波を送信する超音波送信手段と、前記混合ガスを介して前記超音波を受信する超音波受信手段とを有し、前記超音波の送信時点から受信時点までの伝播時間(TL)に基づいて、前記混合ガスの音速(Vin)を求めることを特徴とする。   According to a fifth aspect of the present invention, in the exhaust gas recirculation rate measuring device according to any one of the first to fourth aspects, the third sonic velocity acquisition means includes an ultrasonic transmission means for transmitting ultrasonic waves, and the mixing Ultrasonic wave receiving means for receiving the ultrasonic wave via a gas, and obtaining a sound velocity (Vin) of the mixed gas based on a propagation time (TL) from the transmission time point to the reception time point of the ultrasonic wave It is characterized by.

請求項1に記載の発明によれば、新気の音速、還流排気の音速、及び新気と還流排気の混合ガスの音速が求められ、これらの音速に基づいて排気還流率が算出される。機関に吸入される混合ガスの音速は、混合ガスの構成要素である新気と還流排気の音速、及び新気と還流排気の比率に依存して変化する。したがって、混合ガス、新気、及び還流排気の各音速を用いることにより、混合ガスに含まれる還流排気の割合である排気還流率を精度良く算出することができる。   According to the first aspect of the present invention, the sound speed of the fresh air, the sound speed of the recirculated exhaust gas, and the sound speed of the mixed gas of the fresh air and the recirculated exhaust gas are obtained, and the exhaust gas recirculation rate is calculated based on these sound speeds. The speed of sound of the mixed gas sucked into the engine changes depending on the speed of sound of fresh air and recirculated exhaust, which are components of the mixed gas, and the ratio of fresh air and recirculated exhaust. Therefore, the exhaust gas recirculation rate, which is the ratio of the recirculated exhaust gas contained in the mixed gas, can be accurately calculated by using the sound speeds of the mixed gas, fresh air, and recirculated exhaust gas.

請求項2に記載の発明によれば、新気中の水蒸気濃度が取得され、混合ガスの温度と新気中の水蒸気濃度とに基づいて、新気の音速が算出される。新気の音速は、水蒸気濃度及び温度によって変化するので、混合ガスの温度と新気中の水蒸気濃度とに基づいて新気の音速を算出することにより、還流排気と混合された状態での新気の音速を正確に算出することができる。また新気の音速を求めるために超音波センサを用いる必要が無く、コストを低減することができる。   According to the invention described in claim 2, the water vapor concentration in the fresh air is acquired, and the sound speed of the fresh air is calculated based on the temperature of the mixed gas and the water vapor concentration in the fresh air. Since the sound speed of fresh air varies depending on the water vapor concentration and temperature, calculating the sound speed of fresh air based on the temperature of the mixed gas and the water vapor concentration in the fresh air allows the new air in the state mixed with the recirculated exhaust gas. Qi sound speed can be calculated accurately. In addition, it is not necessary to use an ultrasonic sensor to obtain the fresh sound speed, and the cost can be reduced.

請求項3に記載の発明によれば、新気中の水蒸気濃度に基づいて還流排気中の水蒸気濃度が推定され、混合ガスの温度と還流排気中の水蒸気濃度とに基づいて、還流排気の音速が算出される。還流排気に含まれる成分のうち、水蒸気以外の成分の比率は、標準的な燃料の完全燃焼を前提とすることにより算出可能であるが、水蒸気の比率は新気中の水蒸気濃度に依存して変化する。したがって、新気中の水蒸気濃度に基づいて推定された還流排気中の水蒸気濃度と、混合ガスの温度とを用いることにより、新気と混合された状態での還流排気の音速を正確に算出することができる。また還流排気の音速を求めるために超音波センサを用いる必要が無く、コストを低減することができる。   According to the third aspect of the present invention, the water vapor concentration in the recirculated exhaust gas is estimated based on the water vapor concentration in the fresh air, and the sound velocity of the recirculated exhaust gas is determined based on the temperature of the mixed gas and the water vapor concentration in the recirculated exhaust gas. Is calculated. Of the components contained in the recirculated exhaust, the proportion of components other than water vapor can be calculated on the premise of complete combustion of standard fuel, but the water vapor proportion depends on the water vapor concentration in the fresh air. Change. Therefore, by using the water vapor concentration in the recirculated exhaust estimated based on the water vapor concentration in the fresh air and the temperature of the mixed gas, the sound velocity of the recirculated exhaust in a state mixed with the fresh air is accurately calculated. be able to. Further, it is not necessary to use an ultrasonic sensor for obtaining the sound velocity of the recirculated exhaust gas, and the cost can be reduced.

請求項4に記載の発明によれば、検出した新気温度及び新気湿度に基づいて新気中の水蒸気濃度が算出される。空気中の飽和水蒸気圧は、テテンスの式を用いることにより、新気温度から算出できるので、飽和水蒸気圧と検出湿度から、正確な水蒸気濃度を得ることができる。   According to the fourth aspect of the present invention, the water vapor concentration in the fresh air is calculated based on the detected fresh air temperature and fresh air humidity. Since the saturated water vapor pressure in the air can be calculated from the fresh air temperature by using the Tetens equation, an accurate water vapor concentration can be obtained from the saturated water vapor pressure and the detected humidity.

請求項5に記載の発明によれば、超音波の送信時点から受信時点までの伝播時間に基づいて混合ガスの音速を精度良く算出することができる。   According to the fifth aspect of the present invention, the sound velocity of the mixed gas can be calculated with high accuracy based on the propagation time from the transmission time point of ultrasonic waves to the reception time point.

以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。内燃機関(以下単に「エンジン」という)1は、例えば4気筒を有し、エンジン1の吸気管2の途中にはスロットル弁3が配されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention. An internal combustion engine (hereinafter simply referred to as “engine”) 1 has, for example, four cylinders, and a throttle valve 3 is disposed in the middle of an intake pipe 2 of the engine 1.

燃料噴射弁6は図示しない吸気弁の少し上流側に各気筒毎に設けられており、各噴射弁は図示しない燃料ポンプに接続されていると共に電子制御ユニット(以下「ECU」という)5に電気的に接続されて当該ECU5からの信号により燃料噴射弁6の開弁時間が制御される。   A fuel injection valve 6 is provided for each cylinder slightly upstream of an intake valve (not shown). Each injection valve is connected to a fuel pump (not shown) and electrically connected to an electronic control unit (hereinafter referred to as “ECU”) 5. The valve opening time of the fuel injection valve 6 is controlled by a signal from the ECU 5.

エンジン1の排気管4と吸気管2のスロットル弁下流側との間には、排気還流通路7が設けられており、排気還流通路7には排気還流量を制御する排気還流制御弁(以下「EGR弁」という)8が設けられている。EGR弁8がECU5に接続されており、ECU5によりEGR弁8の弁開度が制御される。   An exhaust gas recirculation passage 7 is provided between the exhaust pipe 4 of the engine 1 and the throttle valve downstream side of the intake pipe 2, and an exhaust gas recirculation control valve (hereinafter “ EGR valve ") 8 is provided. The EGR valve 8 is connected to the ECU 5, and the valve opening degree of the EGR valve 8 is controlled by the ECU 5.

吸気管2のスロットル弁3の上流側には、エンジン1に吸入される新気の湿度Ha1を検出する湿度センサ11及び新気の温度Ta1を検出する新気温度センサ12が設けられている。また吸気管2と排気還流通路7との接続部の下流側には、新気と還流排気の混合ガスの音速Vinを検出する超音波センサ13と、混合ガスの温度Tinを検出する混合ガス温度センサ14とが設けられている。これらのセンサ11〜14の検出信号は、ECU5に供給される。またECU5には大気圧PAを検出する大気圧センサ15が接続されており、その検出信号がECU5に供給される。   On the upstream side of the throttle valve 3 of the intake pipe 2, a humidity sensor 11 for detecting the fresh air humidity Ha1 sucked into the engine 1 and a fresh air temperature sensor 12 for detecting the fresh air temperature Ta1 are provided. Further, on the downstream side of the connection portion between the intake pipe 2 and the exhaust gas recirculation passage 7, an ultrasonic sensor 13 for detecting the sonic velocity Vin of the mixed gas of fresh air and the recirculated exhaust gas, and a mixed gas temperature for detecting the temperature Tin of the mixed gas A sensor 14 is provided. Detection signals from these sensors 11 to 14 are supplied to the ECU 5. Further, an atmospheric pressure sensor 15 for detecting the atmospheric pressure PA is connected to the ECU 5, and the detection signal is supplied to the ECU 5.

ECU5は、各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理回路(以下「CPU」という)、CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路、EGR弁8及び燃料噴射弁6に駆動信号を供給する出力回路等から構成される。ECU5は、各種センサの検出信号に基づいて、燃料噴射弁6の開弁時間の制御、及びEGR弁8の開度制御(EGR流量制御)を行うとともに、排気還流率REGRの算出を行う。   The ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, etc., and a central processing circuit (hereinafter “CPU”). A storage circuit for storing various calculation programs executed by the CPU and calculation results, an output circuit for supplying drive signals to the EGR valve 8 and the fuel injection valve 6, and the like. The ECU 5 controls the valve opening time of the fuel injection valve 6 and the opening degree control (EGR flow rate control) of the EGR valve 8 and calculates the exhaust gas recirculation rate REGR based on detection signals from various sensors.

本実施形態では、上記センサ11〜15及びECU5によって、排気還流率計測装置が構成される。   In the present embodiment, the exhaust gas recirculation rate measuring device is configured by the sensors 11 to 15 and the ECU 5.

図2は、本実施形態における排気還流率REGRの算出手法の概要を説明するための図である。新気GAが、還流排気GEGRと混合され、混合ガスGMXが生成される。混合ガスGMXには燃料噴射弁6により燃料が噴射され、燃料空気混合気として燃焼室1aに供給される。すなわち、本明細書においては「混合ガス」は、新気と還流排気とが混合したガスであって、燃料が噴射(混合)される前のガスを意味するものとする。   FIG. 2 is a diagram for explaining an outline of a method for calculating the exhaust gas recirculation rate REGR in the present embodiment. The fresh air GA is mixed with the recirculated exhaust gas GEGR to generate a mixed gas GMX. Fuel is injected into the mixed gas GMX by the fuel injection valve 6 and supplied to the combustion chamber 1a as a fuel-air mixture. That is, in this specification, the “mixed gas” is a gas in which fresh air and recirculated exhaust gas are mixed, and means a gas before fuel is injected (mixed).

燃焼室1aからは、燃料空気混合気が燃焼した後のガス(既燃ガス)がフィードガスGFとして排出される。フィードガスGFの一部が排気還流通路7を介して還流排気GEGRとして吸気管2に還流される。   From the combustion chamber 1a, the gas (burned gas) after the fuel-air mixture burns is discharged as the feed gas GF. A part of the feed gas GF is recirculated to the intake pipe 2 through the exhaust gas recirculation passage 7 as recirculation exhaust gas GEGR.

本実施形態では、混合ガス温度Tinにおける新気GAの音速(新気中における音の伝播速度)Va2、還流排気GEGRの音速Vf、及び超音波センサ13により検出される混合ガスGMXの音速Vinを用いて、排気還流率REGRが算出される。新気の音速Va2は、検出される新気湿度Ha1、新気温度Ta1、及び混合ガス温度Tinに応じて算出され、還流排気の音速Vfは、フィードガス(還流排気)に含まれる成分の比率及び混合ガス温度Tinに応じて算出される。   In the present embodiment, the sound speed of the fresh gas GA (sound propagation speed in fresh air) Va2, the sound speed Vf of the recirculated exhaust gas GEGR, and the sound speed Vin of the mixed gas GMX detected by the ultrasonic sensor 13 at the mixed gas temperature Tin. Using this, the exhaust gas recirculation rate REGR is calculated. The sonic speed Va2 of the fresh air is calculated according to the detected fresh air humidity Ha1, the fresh air temperature Ta1, and the mixed gas temperature Tin, and the sonic speed Vf of the recirculated exhaust gas is a ratio of components contained in the feed gas (recirculated exhaust gas). And is calculated according to the mixed gas temperature Tin.

図3は、排気還流率REGRを算出する処理のフローチャートであり、この処理はECU5のCPUで所定時間毎に実行される。
ステップS11では、センサにより検出される新気温度Ta1、新気湿度Ha1、混合ガス温度Tin、混合ガス音速Vin、及び大気圧PAを読み込む。ステップS12では、下記式(1)に新気温度Ta1[℃]を適用して、温度Ta1における空気(標準大気圧)中の飽和水蒸気圧Esat[hPa]を算出する。式(1)はテテンス(Tetens)の式として周知のものである。

Figure 2009264237
FIG. 3 is a flowchart of a process for calculating the exhaust gas recirculation rate REGR, and this process is executed by the CPU of the ECU 5 every predetermined time.
In step S11, the fresh air temperature Ta1, the fresh air humidity Ha1, the mixed gas temperature Tin, the mixed gas sound velocity Vin, and the atmospheric pressure PA detected by the sensor are read. In step S12, the fresh air temperature Ta1 [° C.] is applied to the following equation (1) to calculate the saturated water vapor pressure Esat [hPa] in the air (standard atmospheric pressure) at the temperature Ta1. Equation (1) is well known as the Tetens equation.
Figure 2009264237

ステップS13では、ステップS12で算出した飽和水蒸気圧Esat及び検出した新気湿度Ha1[%]を下記式(2)に適用し、新気中の水蒸気圧PWを算出する。
PW=East×Ha1/100 (2)
In step S13, the saturated water vapor pressure Estat calculated in step S12 and the detected fresh air humidity Ha1 [%] are applied to the following equation (2) to calculate the fresh water vapor pressure PW.
PW = East × Ha1 / 100 (2)

ステップS14では、水蒸気圧PW及び大気圧PAを下記式(3)に適用して新気中の水蒸気モル濃度MCWを算出し、さらに水蒸気モル濃度MCW[%]を下記式(4)に適用して、新気中の乾燥空気(湿度0%の空気)のモル濃度MCA[%]を算出する。
MCW=(PW/PA)×100 (3)
MCA=100−MCW (4)
In step S14, the water vapor pressure PW and the atmospheric pressure PA are applied to the following equation (3) to calculate the water vapor molar concentration MCW in fresh air, and the water vapor molar concentration MCW [%] is applied to the following equation (4). Then, the molar concentration MCA [%] of dry air (air with 0% humidity) in fresh air is calculated.
MCW = (PW / PA) × 100 (3)
MCA = 100-MCW (4)

ステップS15では、混合ガス温度Tin[℃]を下記式(5)及び(6)に適用し、温度Tinにおける新気中の水蒸気の音速VW[m/s]及び新気中の乾燥空気の音速VA[m/s]を算出する。式(5)のκW及びMWは、それぞれ水蒸気の比熱比及び分子量であり、式(6)のκA及びMAは、それぞれ乾燥空気の比熱比及び等価分子量(乾燥空気の各成分の分子量及び各成分のモル比率から算出される)である。また式(5)及び(6)のRは気体定数である。

Figure 2009264237
In step S15, the mixed gas temperature Tin [° C.] is applied to the following formulas (5) and (6), the sound velocity VW [m / s] of the water vapor in the fresh air and the sound velocity of the dry air in the fresh air at the temperature Tin. VA [m / s] is calculated. ΚW and MW in formula (5) are the specific heat ratio and molecular weight of water vapor, respectively, and κA and MA in formula (6) are the specific heat ratio and equivalent molecular weight of dry air (molecular weight and components of dry air, respectively). Calculated from the molar ratio of Moreover, R of Formula (5) and (6) is a gas constant.
Figure 2009264237

ステップS16では、ステップS14で算出したモル濃度MCW,MCA、及びステップS15で算出した音速VW,VAを下記式(7)に適用し、温度Tinにおける新気の音速Va2を算出する。
Va2=(VW×MCW+VA×MCA)/100 (7)
In step S16, the molar concentrations MCW and MCA calculated in step S14 and the sound speeds VW and VA calculated in step S15 are applied to the following equation (7) to calculate the fresh sound speed Va2 at the temperature Tin.
Va2 = (VW × MCW + VA × MCA) / 100 (7)

ステップS17では、モル濃度MCW及びMCAに応じてフィードガスの成分比率、すなわちフィードガスに含まれる各成分のモル比率を算出する。以下この算出手法を詳細に説明する。   In step S17, the component ratio of the feed gas, that is, the molar ratio of each component contained in the feed gas is calculated according to the molar concentrations MCW and MCA. Hereinafter, this calculation method will be described in detail.

先ず温度20℃、湿度30%で窒素(N2)、酸素(O2)、アルゴン(Ar)、二酸化炭素(CO2)、水蒸気(H2O)を成分とする空気中で燃料が燃焼したときに理論空燃比が14.7となる標準的なガソリンの組成式をCH1.888とする。このガソリンCH1.888の燃焼の反応式は下記式(8)で与えられる。
CH1.888+1.472O2 → CO2+0.944H2O (8)
First, at a temperature of 20 ° C. and a humidity of 30%, the fuel burned in air containing nitrogen (N 2 ), oxygen (O 2 ), argon (Ar), carbon dioxide (CO 2 ), and water vapor (H 2 O) as components. A standard gasoline composition formula that sometimes gives a stoichiometric air-fuel ratio of 14.7 is CH 1.888 . The reaction formula of combustion of this gasoline CH 1.888 is given by the following formula (8).
CH 1.888 + 1.472 O 2 → CO 2 + 0.944H 2 O (8)

空気を構成する窒素、酸素、アルゴン、二酸化炭素、及び水蒸気のモル比率を示すモル比率パラメータをそれぞれn(1),n(2),n(3),n(4),及びn(5)で表すものとすると、ガソリンCH1.888が燃焼するときの反応式は下記式(9)で与えられる。 The molar ratio parameters indicating the molar ratios of nitrogen, oxygen, argon, carbon dioxide, and water vapor constituting the air are n (1), n (2), n (3), n (4), and n (5), respectively. When the gasoline CH 1.888 is burned, the reaction formula is given by the following formula (9).

n(1)N2+n(2)O2+n(3)Ar+n(4)CO2+n(5)H2O+CH1.888
→ n(1)N2+n(3)Ar+(n(4)+1)CO2+(n(5)+0.944)H2
(9)
ここで、乾燥空気を構成する成分のモル比率はほぼ下記式(10)で示される。
2:O2:Ar:CO2=78.06:21:0.9:0.04 (10)
n (1) N 2 + n (2) O 2 + n (3) Ar + n (4) CO 2 + n (5) H 2 O + CH 1.888
→ n (1) N 2 + n (3) Ar + (n (4) +1) CO 2 + (n (5) +0.944) H 2 O
(9)
Here, the molar ratio of the components constituting the dry air is approximately represented by the following formula (10).
N 2 : O 2 : Ar: CO 2 = 78.06: 21: 0.9: 0.04 (10)

空気中の水蒸気モル濃度CMW[%]が既知であると、下記式(11)により、乾燥空気濃度CMAを示す係数aを算出し、係数aと式(10)の関係を用いて、水蒸気を含む空気を構成する成分のモル比率は下記式(12)で与えられる。
a=(100-MCW)/100=MCA/100 (11)
2:O2:Ar:CO2:H2
=78.06a:21a:0.9a:0.04a:MCW (12)
If the water vapor molar concentration CMW [%] in the air is known, the coefficient a indicating the dry air concentration CMA is calculated by the following equation (11), and the water vapor is determined using the relationship between the coefficient a and the equation (10). The molar ratio of the component which comprises the air to contain is given by following formula (12).
a = (100-MCW) / 100 = MCA / 100 (11)
N 2 : O 2 : Ar: CO 2 : H 2 O
= 78.06a: 21a: 0.9a: 0.04a: MCW (12)

ここで、燃焼反応を示す式(8)の酸素の係数1.472に着目し、式(12)の「21a」が1.472となるように(1.472/21a)を乗算すると、下記式(13)が得られる。
2:O2:Ar:CO2:H2
=5.472:1.472:0.063:0.003:7.01MCW/MCA (13)
Here, paying attention to the oxygen coefficient 1.472 of the equation (8) indicating the combustion reaction, and multiplying (1.472 / 21a) so that “21a” of the equation (12) becomes 1.472, Equation (13) is obtained.
N 2 : O 2 : Ar: CO 2 : H 2 O
= 5.472: 1.472: 0.063: 0.003: 7.01MCW / MCA (13)

よって式(9)に含まれるモル比率パラメータn(1)〜n(4)は下記のようになり、n(5)は下記式(14)で与えられる。
n(1)=5.472,n(2)=1.472,n(3)=0.063,n(4)=0.003
n(5)=7.01×MCW/MCA (14)
Therefore, the molar ratio parameters n (1) to n (4) included in the equation (9) are as follows, and n (5) is given by the following equation (14).
n (1) = 5.472, n (2) = 1.472, n (3) = 0.063, n (4) = 0.003
n (5) = 7.01 × MCW / MCA (14)

図3のステップS18では、混合ガス温度Tinを用いて、フィードガス(還流排気)の成分である窒素、アルゴン、二酸化炭素、及び水蒸気の音速V(1),V(3),V(4),及びV(5)を算出する。水蒸気の音速V(5)は、ステップS15で算出した音速VWである。音速V(1),V(3),及びV(4)は、式(5)の比熱比κ及び分子量Mをそれぞれの成分に対応する数値を適用することにより、算出される。   In step S18 of FIG. 3, using the mixed gas temperature Tin, the sound velocities V (1), V (3), and V (4) of nitrogen, argon, carbon dioxide, and water vapor, which are components of the feed gas (reflux exhaust). , And V (5). The sound velocity V (5) of water vapor is the sound velocity VW calculated in step S15. The sound velocities V (1), V (3), and V (4) are calculated by applying specific heat ratios κ and molecular weights M in Equation (5) corresponding to the respective components.

そして、モル比率パラメータn(1),n(3)〜n(5)及び音速V(1),V(3)〜V(5)を下記式(15)に適用し、還流排気(フィードガス)の音速Vfを算出する。

Figure 2009264237
Then, the molar ratio parameters n (1), n (3) to n (5) and the sonic velocities V (1), V (3) to V (5) are applied to the following equation (15) to return the exhaust gas (feed gas). ) Is calculated.
Figure 2009264237

ステップS19では、ステップS16で算出した新気の音速Va2、ステップS18で算出した還流排気の音速Vf、及び検出された混合ガスの音速Vinを下記式(16)に適用し、排気還流率REGRを算出する。

Figure 2009264237
In step S19, the sound speed Va2 of fresh air calculated in step S16, the sound speed Vf of the recirculated exhaust gas calculated in step S18, and the sound speed Vin of the detected mixed gas are applied to the following equation (16), and the exhaust gas recirculation rate REGR is calculated. calculate.
Figure 2009264237

式(16)は以下のようにして導出される。混合ガス中の新気と還流排気のモル比率をx:yとすると、混合ガスの音速Vinは下記式(17)で与えられ、排気還流率REGRは下記式(18)で与えられる。これらの式(17)及び(18)から式(16)が得られる。
Vin=(Va2×x+Vf×y)/(x+y) (17)
REGR=y/(x+y) (18)
Equation (16) is derived as follows. Assuming that the molar ratio between the fresh air and the recirculated exhaust gas in the mixed gas is x: y, the sound velocity Vin of the mixed gas is given by the following equation (17), and the exhaust gas recirculation rate REGR is given by the following equation (18). From these equations (17) and (18), equation (16) is obtained.
Vin = (Va2 × x + Vf × y) / (x + y) (17)
REGR = y / (x + y) (18)

本実施形態では、図3の処理により算出された排気還流率REGRがエンジン運転状態(エンジン負荷及びエンジン回転数)に応じて設定される目標排気還流率REGRTと一致するように、EGR弁8の開度制御が行われる。   In the present embodiment, the EGR valve 8 of the EGR valve 8 is adjusted so that the exhaust gas recirculation rate REGR calculated by the processing of FIG. 3 matches the target exhaust gas recirculation rate REGRT set according to the engine operating state (engine load and engine speed). Opening control is performed.

次に超音波センサ13の構成及び音速の検出手法ついて説明する。図4は、超音波センサ13の構成を示すブロック図であり、超音波センサ13は、信号発生部21と、送信部22と、受信部23と、増幅部24と、整流部25と、ローパスフィルタ(LPF)26,29と、トリガ信号生成部27と、FV変換部28とを備えている。送信部22及び受信部23は、吸気管2の内壁に互いに対向する位置に取り付けられている。   Next, the configuration of the ultrasonic sensor 13 and the sound speed detection method will be described. FIG. 4 is a block diagram showing the configuration of the ultrasonic sensor 13. The ultrasonic sensor 13 includes a signal generator 21, a transmitter 22, a receiver 23, an amplifier 24, a rectifier 25, and a low pass. Filters (LPF) 26 and 29, a trigger signal generation unit 27, and an FV conversion unit 28 are provided. The transmitter 22 and the receiver 23 are attached to the inner wall of the intake pipe 2 at positions facing each other.

信号発生部21は、図5(d)に示すトリガ信号STGに応じて図5(a)に示すバースト状の送信信号ST(ST1,ST2,ST3,…)を発生する。送信部22は、送信信号STを音波に変換して出力する。受信部23は、送信部22から距離Lを隔てて設けられており、送信される音波を図5(b)に示す受信信号SR(SR1,SR2,SR3,…)に変換する。受信信号SR1,SR2,及びSR3は、それぞれ送信信号ST1,ST2,及びST3に対応する。すなわち送信信号STは、距離Lを音波が伝播するのに要する伝播時間TLだけ遅れて受信部23で受信される。   The signal generator 21 generates burst-like transmission signals ST (ST1, ST2, ST3,...) Shown in FIG. 5A in response to the trigger signal STG shown in FIG. The transmission unit 22 converts the transmission signal ST into a sound wave and outputs it. The receiving unit 23 is provided at a distance L from the transmitting unit 22, and converts the transmitted sound wave into received signals SR (SR1, SR2, SR3,...) Shown in FIG. Reception signals SR1, SR2, and SR3 correspond to transmission signals ST1, ST2, and ST3, respectively. That is, the transmission signal ST is received by the receiving unit 23 with a delay of the propagation time TL required for the sound wave to propagate through the distance L.

増幅部24は、受信信号SRを増幅し、整流部25は受信信号SRを全波整流する。LPF26は全波整流された受信信号の高周波成分を除去し、図5(c)に示す検波信号SRFを出力する。トリガ信号生成部27は、検波信号SRFを閾値VTHで二値化し、トリガ信号STGを生成する。このトリガ信号STGは、信号発生部21に供給されるとともに、FV変換部28に供給される。   The amplification unit 24 amplifies the reception signal SR, and the rectification unit 25 performs full-wave rectification on the reception signal SR. The LPF 26 removes the high frequency component of the reception signal subjected to full-wave rectification, and outputs a detection signal SRF shown in FIG. The trigger signal generation unit 27 binarizes the detection signal SRF with the threshold value VTH to generate a trigger signal STG. This trigger signal STG is supplied to the signal generator 21 and also to the FV converter 28.

FV変換部28は、トリガ信号STGの周波数FTを、その周波数FTに比例する電圧に変換して出力する。LPF29は、FV変換部28から出力される信号の高周波成分を除去し、周波数FTを示す周波数信号VFTを出力する。   The FV converter 28 converts the frequency FT of the trigger signal STG into a voltage proportional to the frequency FT and outputs the voltage. The LPF 29 removes the high frequency component of the signal output from the FV conversion unit 28 and outputs a frequency signal VFT indicating the frequency FT.

伝播時間TLは周波数FTの逆数として求められ、混合ガスの音速Vinは、(L/TL)であって周波数信号VFTに比例する。したがって、周波数信号VFTに適当な係数を乗算することにより、音速Vinが得られる。このとき伝播時間TLに信号処理に伴う遅延時間が含まれないように補正を行うことにより、正確な音速Vinが得られる。   The propagation time TL is obtained as the reciprocal of the frequency FT, and the sound velocity Vin of the mixed gas is (L / TL) and is proportional to the frequency signal VFT. Therefore, the sound speed Vin can be obtained by multiplying the frequency signal VFT by an appropriate coefficient. At this time, by correcting so that the propagation time TL does not include a delay time associated with signal processing, an accurate sound speed Vin can be obtained.

以上のように本実施形態では、新気の音速Va2及び還流排気の音速Vfが算出されるとともに、新気と還流排気の混合ガスの音速Vinが検出され、これらの音速に基づいて排気還流率REGRが算出される。混合ガスの音速Vinは、混合ガスの構成要素である新気と還流排気の音速Va2,Vf、及び新気と還流排気の比率(すなわち排気還流率)に依存して変化する。したがって、混合ガス、新気、及び還流排気の音速Vin,Va2,Vfを用いることにより、混合ガスに含まれる還流排気の割合である排気還流率REGRを精度良く算出することができる。   As described above, in this embodiment, the sonic velocity Va2 of fresh air and the sonic velocity Vf of recirculated exhaust gas are calculated, and the sonic velocity Vin of the mixed gas of fresh air and recirculated exhaust gas is detected, and the exhaust gas recirculation rate is based on these sound velocities. REGR is calculated. The sonic speed Vin of the mixed gas changes depending on the sonic velocities Va2 and Vf of the fresh air and the recirculated exhaust, and the ratio of the fresh air and the recirculated exhaust (that is, the exhaust recirculation rate). Therefore, the exhaust gas recirculation ratio REGR, which is the ratio of the recirculated exhaust gas contained in the mixed gas, can be accurately calculated by using the sonic velocities Vin, Va2, Vf of the mixed gas, fresh air, and recirculated exhaust gas.

また新気中の水蒸気濃度CMWが、新気温度Ta1及び新気湿度Ha1に応じて算出され、混合ガスの温度Tinと新気中の水蒸気濃度CMWとに基づいて、新気の音速Va2が算出される。新気の音速は、水蒸気濃度及び温度によって変化するので、混合ガスの温度と新気中の水蒸気濃度とに基づいて新気の音速を算出することにより、還流排気と混合された状態での新気の音速Va2を正確に算出することができる。また新気の音速Va2を求めるために超音波センサを用いる必要が無く、コストを低減することができる。   Further, the water vapor concentration CMW in the fresh air is calculated according to the fresh air temperature Ta1 and the fresh air humidity Ha1, and the sound velocity Va2 of the fresh air is calculated based on the temperature Tin of the mixed gas and the water vapor concentration CMW in the fresh air. Is done. Since the sound speed of fresh air varies depending on the water vapor concentration and temperature, calculating the sound speed of fresh air based on the temperature of the mixed gas and the water vapor concentration in the fresh air allows the new air in the state mixed with the recirculated exhaust gas. Qi sound velocity Va2 can be accurately calculated. Further, it is not necessary to use an ultrasonic sensor to obtain the fresh sound speed Va2, and the cost can be reduced.

さらに新気中の水蒸気濃度CMWに基づいて還流排気中の水蒸気濃度を示すモル比率パラメータ(n(5)+0.944)が算出され、混合ガスの温度Tinに応じて還流排気中の各成分の音速V(1)〜V(5)が算出される。そして、音速V(1)〜V(5)とモル比率パラメータ(n(5)+0.944)とを用いて、式(15)により還流排気の音速Vfが算出される。還流排気に含まれる成分のうち、水蒸気以外の成分のモル比率パラメータn(1),n(3),及び(n(4)+1)は、空気成分の標準的な比率及び標準的な燃料であるガソリンCH1.888の燃焼式(8)を前提とすることにより算出可能であるが、水蒸気の比率は新気中の水蒸気濃度に依存して変化する。したがって、新気中の水蒸気濃度MCWに基づいて推定された還流排気中の水蒸気濃度を示すモル比率パラメータ(n(5)+0.944)と、混合ガス温度Tinとを用いることにより、新気と混合された状態での還流排気の音速Vfを正確に算出することができる。また還流排気の音速Vfを求めるために超音波センサを用いる必要が無く、コストを低減することができる。 Further, a molar ratio parameter (n (5) +0.944) indicating the water vapor concentration in the recirculated exhaust gas is calculated based on the water vapor concentration CMW in the fresh air, and each component in the recirculated exhaust gas is determined according to the temperature Tin of the mixed gas. The sound speeds V (1) to V (5) are calculated. Then, using the sound speeds V (1) to V (5) and the molar ratio parameter (n (5) +0.944), the sound speed Vf of the recirculated exhaust gas is calculated by the equation (15). Among the components contained in the reflux exhaust, the molar ratio parameters n (1), n (3), and (n (4) +1) of components other than water vapor are the standard ratio of air components and standard fuel. Although it can be calculated by assuming a combustion formula (8) of a certain gasoline CH 1.888 , the ratio of water vapor changes depending on the water vapor concentration in fresh air. Therefore, by using the molar ratio parameter (n (5) +0.944) indicating the water vapor concentration in the recirculated exhaust estimated based on the water vapor concentration MCW in the fresh air and the mixed gas temperature Tin, The sound velocity Vf of the recirculated exhaust gas in the mixed state can be accurately calculated. Further, it is not necessary to use an ultrasonic sensor for obtaining the sound velocity Vf of the recirculated exhaust gas, and the cost can be reduced.

また新気中の水蒸気濃度CMWは空気中の飽和水蒸気圧Esatと検出新気湿度Ha1から算出される。飽和水蒸気圧Esatは、テテンスの式(式(1))を用いることにより、新気温度Ta1から算出できるので、正確な水蒸気濃度を得ることができる。   Further, the water vapor concentration CMW in the fresh air is calculated from the saturated water vapor pressure Estat in the air and the detected fresh air humidity Ha1. The saturated water vapor pressure Esat can be calculated from the fresh air temperature Ta1 by using the Tetens equation (equation (1)), so that an accurate water vapor concentration can be obtained.

また超音波センサ13を用いることにより、超音波の送信時点から受信時点までの伝播時間TLに基づいて混合ガスの音速Vinを精度良く算出することができる。   Further, by using the ultrasonic sensor 13, the sound velocity Vin of the mixed gas can be accurately calculated based on the propagation time TL from the ultrasonic transmission time to the reception time.

本実施形態では、湿度センサ11が新気湿度検出手段に相当し、新気温度センサ12が新気温度検出手段に相当し、混合ガス温度センサ14が混合ガス温度検出手段に相当する。また湿度センサ11、新気温度センサ12、混合ガス温度センサ14及びECU5が第1音速取得手段及び第2音速取得手段を構成し、超音波センサ13が第3音速取得手段を構成し、ECU5が排気還流率算出手段及び水蒸気濃度推定手段を構成する。また湿度センサ11、新気温度センサ12、及びECU5が水蒸気濃度取得手段を構成する。より具体的には、図3のステップS11〜S16が第1音速取得手段に相当し、ステップS11〜S14,S17,及びS18が第2音速取得手段に相当し、ステップS19が排気還流率算出手段に相当し、ステップS11〜S14が水蒸気濃度取得手段に相当し、ステップS17が水蒸気濃度推定手段に相当する。また図4の信号発生部21及び送信部22が超音波送信手段に相当し、受信部23が超音波受信手段に相当する。   In the present embodiment, the humidity sensor 11 corresponds to fresh air humidity detection means, the fresh air temperature sensor 12 corresponds to fresh air temperature detection means, and the mixed gas temperature sensor 14 corresponds to mixed gas temperature detection means. Further, the humidity sensor 11, the fresh air temperature sensor 12, the mixed gas temperature sensor 14 and the ECU 5 constitute first sonic velocity acquisition means and second sonic velocity acquisition means, the ultrasonic sensor 13 constitutes third sonic velocity acquisition means, and the ECU 5 An exhaust gas recirculation rate calculating means and a water vapor concentration estimating means are configured. Further, the humidity sensor 11, the fresh air temperature sensor 12, and the ECU 5 constitute a water vapor concentration acquisition means. More specifically, steps S11 to S16 in FIG. 3 correspond to the first sound speed acquisition means, steps S11 to S14, S17, and S18 correspond to the second sound speed acquisition means, and step S19 corresponds to the exhaust gas recirculation rate calculation means. Steps S11 to S14 correspond to the water vapor concentration acquisition means, and step S17 corresponds to the water vapor concentration estimation means. Further, the signal generation unit 21 and the transmission unit 22 in FIG. 4 correspond to an ultrasonic transmission unit, and the reception unit 23 corresponds to an ultrasonic reception unit.

なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、図3の処理では、ステップS12〜S16の演算により、温度Tinにおける新気の音速Va2を算出するようにしたが、図6に示すように空気の温度Ta1及び湿度Ha1から音速Va1を算出するマップを予め作成しておき、このマップを用いて検出された温度Ta1及び湿度Ha1から音速Va1を算出し、この温度Ta1における音速Va1を下記式(20)により温度Tinにおける音速Va2に換算するようにしてもよい。

Figure 2009264237
The present invention is not limited to the embodiment described above, and various modifications can be made. For example, in the process of FIG. 3, the fresh sound velocity Va2 at the temperature Tin is calculated by the calculation of steps S12 to S16. However, as shown in FIG. 6, the sound velocity Va1 is calculated from the air temperature Ta1 and the humidity Ha1. A map to be used is prepared in advance, and the sound velocity Va1 is calculated from the detected temperature Ta1 and humidity Ha1 using this map, and the sound velocity Va1 at the temperature Ta1 is converted to the sound velocity Va2 at the temperature Tin by the following equation (20). You may do it.
Figure 2009264237

また音速の算出式は、下記式(21)〜(24)のように成分毎に知られている近似式を用いてもよい。算出される音速の単位は[m/s]である。
V(1)=337+0.85Tin (21)
V(3)=319+0.57Tin (22)
V(4)=258+0.87Tin (23)
V(5)=404.8+0.68Tin (24)
The calculation formula for the sound speed may be an approximate expression known for each component, such as the following expressions (21) to (24). The unit of the calculated sound speed is [m / s].
V (1) = 337 + 0.85Tin (21)
V (3) = 319 + 0.57Tin (22)
V (4) = 258 + 0.87Tin (23)
V (5) = 404.8 + 0.68Tin (24)

また吸気管2のスロットル弁3の下流側に超音波センサを設けて、新気温度Ta1における音速Va1を検出し、音速Va1を温度Tinにおける音速Va2に変換するようにしてもよい。還流排気の音速Vfも同様に求めることができる。例えば排気還流通路7に超音波センサ及び温度センサを設けて、音速Vf1及び還流排気温度TEGRを検出し、検出した音速Vf1を温度Tinにおける音速Vfに変換するようにしてもよい。   Further, an ultrasonic sensor may be provided on the downstream side of the throttle valve 3 in the intake pipe 2 to detect the sonic speed Va1 at the fresh air temperature Ta1 and convert the sonic speed Va1 into the sonic speed Va2 at the temperature Tin. The sound velocity Vf of the recirculated exhaust gas can be obtained similarly. For example, an ultrasonic sensor and a temperature sensor may be provided in the exhaust gas recirculation passage 7 to detect the sonic velocity Vf1 and the recirculated exhaust gas temperature TEGR, and the detected sonic velocity Vf1 may be converted into the sonic velocity Vf at the temperature Tin.

また特許文献1に記載されているように、超音波センサを用いて被測定ガス中の水蒸気濃度を検出することができるので、吸気管2のスロットル弁3の下流側に設けた超音波センサにより新気中の水蒸気濃度を検出するようにしてもよい。また排気還流通路7に設けた超音波センサにより還流排気中の水蒸気濃度を検出するようにしてよい。   Further, as described in Patent Document 1, since the water vapor concentration in the gas to be measured can be detected using an ultrasonic sensor, an ultrasonic sensor provided on the downstream side of the throttle valve 3 of the intake pipe 2 is used. You may make it detect the water vapor | steam density | concentration in fresh air. Further, the water vapor concentration in the recirculated exhaust gas may be detected by an ultrasonic sensor provided in the exhaust recirculation passage 7.

また上述した実施形態では、大気圧PAを検出して式(3)に適用したが、式(3)のPAを平均的な大気圧、例えば「101.3kPa」に設定してもよい。   In the embodiment described above, the atmospheric pressure PA is detected and applied to the equation (3). However, the PA of the equation (3) may be set to an average atmospheric pressure, for example, “101.3 kPa”.

また本発明は、ガソリン内燃機関だけでなく、ディーゼル内燃機関にも適用可能である。さらに本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどの制御にも適用が可能である。   The present invention is applicable not only to gasoline internal combustion engines but also to diesel internal combustion engines. Furthermore, the present invention can also be applied to the control of a marine vessel propulsion engine such as an outboard motor having a vertical crankshaft.

本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。It is a figure which shows the structure of the internal combustion engine and its control apparatus concerning one Embodiment of this invention. 排気還流率の算出手法を説明するための図である。It is a figure for demonstrating the calculation method of an exhaust gas recirculation rate. 排気還流率を算出する処理のフローチャートである。It is a flowchart of the process which calculates an exhaust gas recirculation rate. 超音波センサの構成を示すブロック図である。It is a block diagram which shows the structure of an ultrasonic sensor. 超音波センサの動作を説明するための波形図である。It is a wave form diagram for demonstrating operation | movement of an ultrasonic sensor. 湿度及び温度から音速を算出するためのマップを示す図である。It is a figure which shows the map for calculating a sound speed from humidity and temperature.

符号の説明Explanation of symbols

1 内燃機関
2 吸気管
4 排気管
5 電子制御ユニット(第1音速取得手段、第2音速取得手段、排気還流率算出手段、水蒸気濃度取得手段、水蒸気濃度推定手段)
6 排気還流通路
11 湿度センサ(新気湿度検出手段)
12 新気温度センサ(新気温度検出手段)
13 超音波センサ(第3音速取得手段)
14 混合ガス温度センサ(混合ガス温度検出手段)
21 信号発生部(超音波送信手段)
22 送信部(超音波送信手段)
23 受信部(超音波受信手段)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Intake pipe 4 Exhaust pipe 5 Electronic control unit (1st sound speed acquisition means, 2nd sound speed acquisition means, exhaust gas recirculation rate calculation means, water vapor concentration acquisition means, water vapor concentration estimation means)
6 Exhaust gas recirculation passage 11 Humidity sensor (fresh air humidity detection means)
12 Fresh air temperature sensor (new air temperature detection means)
13 Ultrasonic sensor (third sound speed acquisition means)
14 Mixed gas temperature sensor (mixed gas temperature detection means)
21 Signal generator (ultrasonic transmission means)
22 Transmitter (Ultrasonic Transmitter)
23 Receiver (Ultrasonic Receiver)

Claims (5)

排気還流通路を備える内燃機関に吸入される新気と還流排気との混合ガスに含まれる前記還流排気の割合である排気還流率を計測する排気還流率計測装置であって、
前記新気の音速を求める第1音速取得手段と、
前記還流排気の音速を求める第2音速取得手段と、
前記混合ガスの音速を求める第3音速取得手段と、
前記新気の音速と前記還流排気の音速と前記混合ガスの音速とに基づいて前記排気還流率を算出する排気還流率算出手段とを備えることを特徴とする排気還流率計測装置。
An exhaust gas recirculation rate measuring device that measures an exhaust gas recirculation rate that is a ratio of the recirculated exhaust gas contained in a mixed gas of fresh air and recirculated exhaust gas that is sucked into an internal combustion engine having an exhaust gas recirculation passage,
First sound speed obtaining means for obtaining the fresh sound speed;
Second sonic velocity acquisition means for determining the sonic velocity of the reflux exhaust;
Third sound speed acquisition means for determining the sound speed of the mixed gas;
An exhaust gas recirculation rate measuring device comprising exhaust gas recirculation rate calculating means for calculating the exhaust gas recirculation rate based on a sound speed of the fresh air, a sound speed of the recirculated exhaust gas, and a sound speed of the mixed gas.
前記混合ガスの温度を検出する混合ガス温度検出手段と、
前記新気中の水蒸気濃度を取得する水蒸気濃度取得手段とを備え、
前記第1音速取得手段は、前記混合ガスの温度と前記新気中の水蒸気濃度とに基づいて、前記新気の音速を算出することを特徴とする請求項1に記載の排気還流率計測装置。
Mixed gas temperature detecting means for detecting the temperature of the mixed gas;
Water vapor concentration acquisition means for acquiring the water vapor concentration in the fresh air,
2. The exhaust gas recirculation rate measuring device according to claim 1, wherein the first sonic velocity acquisition unit calculates the sonic velocity of the fresh air based on a temperature of the mixed gas and a water vapor concentration in the fresh air. .
前記混合ガスの温度を検出する混合ガス温度検出手段と、
前記新気中の水蒸気濃度を取得する水蒸気濃度取得手段と、
前記新気中の水蒸気濃度に基づいて前記還流排気中の水蒸気濃度を推定する水蒸気濃度推定手段とを備え、
前記第2音速取得手段は、前記混合ガスの温度と前記還流排気中の水蒸気濃度とに基づいて、前記還流排気の音速を算出することを特徴とする請求項1または2に記載の排気還流率計測装置。
Mixed gas temperature detecting means for detecting the temperature of the mixed gas;
Water vapor concentration acquisition means for acquiring the water vapor concentration in the fresh air;
Water vapor concentration estimating means for estimating the water vapor concentration in the recirculated exhaust gas based on the water vapor concentration in the fresh air,
3. The exhaust gas recirculation rate according to claim 1, wherein the second sonic speed acquisition unit calculates a sonic speed of the recirculated exhaust gas based on a temperature of the mixed gas and a water vapor concentration in the recirculated exhaust gas. Measuring device.
前記水蒸気濃度取得手段は、前記新気の温度を検出する新気温度検出手段と、前記新気の湿度を検出する新気湿度検出手段とを有し、検出した新気温度及び新気湿度に基づいて前記新気中の水蒸気濃度を算出することを特徴とする請求項2または3に記載の排気還流率計測装置。   The water vapor concentration acquisition means includes fresh air temperature detection means for detecting the fresh air temperature and fresh air humidity detection means for detecting the fresh air humidity. The exhaust gas recirculation rate measuring apparatus according to claim 2 or 3, wherein a water vapor concentration in the fresh air is calculated based on the calculation result. 前記第3音速取得手段は、超音波を送信する超音波送信手段と、前記混合ガスを介して前記超音波を受信する超音波受信手段とを有し、前記超音波の送信時点から受信時点までの伝播時間に基づいて、前記混合ガスの音速を求めることを特徴とする請求項1から4の何れか1項に記載の排気還流率計測装置。   The third sound speed acquisition unit includes an ultrasonic transmission unit that transmits ultrasonic waves and an ultrasonic reception unit that receives the ultrasonic waves via the mixed gas, from the transmission time point to the reception time point of the ultrasonic waves. The exhaust gas recirculation rate measuring apparatus according to any one of claims 1 to 4, wherein a sound speed of the mixed gas is obtained based on a propagation time of the exhaust gas.
JP2008114706A 2008-04-25 2008-04-25 Exhaust reflux rate measuring device Withdrawn JP2009264237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114706A JP2009264237A (en) 2008-04-25 2008-04-25 Exhaust reflux rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114706A JP2009264237A (en) 2008-04-25 2008-04-25 Exhaust reflux rate measuring device

Publications (1)

Publication Number Publication Date
JP2009264237A true JP2009264237A (en) 2009-11-12

Family

ID=41390383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114706A Withdrawn JP2009264237A (en) 2008-04-25 2008-04-25 Exhaust reflux rate measuring device

Country Status (1)

Country Link
JP (1) JP2009264237A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012890B1 (en) * 2016-01-18 2016-10-25 三菱電機株式会社 Control device and control method for internal combustion engine
JP6058102B1 (en) * 2015-10-07 2017-01-11 三菱電機株式会社 Control device for internal combustion engine and control method for internal combustion engine
JP6143910B1 (en) * 2016-03-30 2017-06-07 三菱電機株式会社 Control device and control method for internal combustion engine
JP2019529768A (en) * 2016-09-22 2019-10-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレン Functional monitoring of solenoid valves for fuel injectors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058102B1 (en) * 2015-10-07 2017-01-11 三菱電機株式会社 Control device for internal combustion engine and control method for internal combustion engine
JP2017072059A (en) * 2015-10-07 2017-04-13 三菱電機株式会社 Control device of internal combustion engine and control method of internal combustion engine
JP6012890B1 (en) * 2016-01-18 2016-10-25 三菱電機株式会社 Control device and control method for internal combustion engine
JP6143910B1 (en) * 2016-03-30 2017-06-07 三菱電機株式会社 Control device and control method for internal combustion engine
JP2017180234A (en) * 2016-03-30 2017-10-05 三菱電機株式会社 Control device for internal combustion engine and its controlling method
JP2019529768A (en) * 2016-09-22 2019-10-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレン Functional monitoring of solenoid valves for fuel injectors
US10767579B2 (en) 2016-09-22 2020-09-08 Robert Bosch Gmbh Monitoring the function of solenoid valves for fuel injection systems

Similar Documents

Publication Publication Date Title
US5452576A (en) Air/fuel control with on-board emission measurement
US9267452B2 (en) Method and apparatus for measuring and controlling the EGR rate in a combustion engine
US20130036792A1 (en) Gas sensor apparatus and concentration measurement method
EP1316706A3 (en) Air-fuel ratio control system for internal combustion engines
US6438947B2 (en) Method for adapting a raw NOx concentration value of an internal combustion engine operating with an excess of air
US7690370B2 (en) Fuel injection controller for internal combustion engine
RU2009118213A (en) METHOD FOR CONTROL VALVE OF EXHAUST GASES AND THROTTLE BODY IN THE INTERNAL COMBUSTION ENGINE
JP2009264237A (en) Exhaust reflux rate measuring device
JP2001124745A (en) Measuring method for propagation time of ultrasonic waves, measuring method for pressure of gas, measuring method for flow rate of gas and gas sensor
JP4173565B2 (en) Method for determining the load signal of an internal combustion engine with external exhaust gas recirculation
CN107489552B (en) Oil injection control method, device and system and vehicle
JP2908934B2 (en) How to correct the intake air value
JP2002243536A (en) Ultrasonic wave propagation time measuring method and gas concentration sensor
US11898508B2 (en) Internal combustion engine control device
CN105649755A (en) Method for determining scavenging ratio of turbocharged gasoline engine
JP2005054586A (en) Fuel supply device for liquefied petroleum gas internal combustion engine
JP2747720B2 (en) Ignition timing control device for spark ignition type internal combustion engine
JP2005307804A (en) Exhaust pressure estimating device for internal combustion engine
JP2014034948A (en) Egr rate estimating device and egr rate estimating method of internal combustion engine
KR102045699B1 (en) Method for determining air mass in an internal combustion engine
CN109883719B (en) Scavenging amount measuring method for supercharged direct injection gasoline engine
JP3531221B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04294266A (en) Measuring apparatus for fuel property and controller for internal combustion engine
US20020179071A1 (en) Apparatus and method for controlling air-fuel ratio of engine
JPS63201528A (en) Volume flow rate measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705