JP2009263711A - Heat treatment apparatus for welding area of electro-resistance welded tube - Google Patents

Heat treatment apparatus for welding area of electro-resistance welded tube Download PDF

Info

Publication number
JP2009263711A
JP2009263711A JP2008113783A JP2008113783A JP2009263711A JP 2009263711 A JP2009263711 A JP 2009263711A JP 2008113783 A JP2008113783 A JP 2008113783A JP 2008113783 A JP2008113783 A JP 2008113783A JP 2009263711 A JP2009263711 A JP 2009263711A
Authority
JP
Japan
Prior art keywords
surface side
induction heating
heat treatment
tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008113783A
Other languages
Japanese (ja)
Other versions
JP5233388B2 (en
Inventor
Kazuhito Kenmochi
一仁 剣持
Yoshitomo Okabe
能知 岡部
Hiroyasu Yokoyama
泰康 横山
Masahito Suzuki
雅仁 鈴木
Shigeto Sakashita
重人 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008113783A priority Critical patent/JP5233388B2/en
Publication of JP2009263711A publication Critical patent/JP2009263711A/en
Application granted granted Critical
Publication of JP5233388B2 publication Critical patent/JP5233388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of the conventional technique that the equipment length of a heat treatment apparatus increases, and an enormous running cost is necessitated, resulting in nonefficient electro-resistance welded tube manufacture. <P>SOLUTION: The heat treatment apparatus for subjecting a welding area of the electro-resistance welded tube constituted by welding unwelded seam part 21 of an open tube 20 by an electro-resistance welding equipment 1 to heat treatment on an outlet side of an electro-resistance welding equipment, is provided with an external surface side induction heating means 2 having a plurality of induction heating stands 13 arranged on an external surface side of the tube in a material passage direction, and an internal surface side induction heating means 3 having a plurality of magnetic flux generation units 4 held with bars 6 on an internal surface side of the tube and arranged in a material passage direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電縫管溶接部の熱処理装置に関し、詳しくは、電縫管溶接部の靭性等を向上させるための熱処理の実施に用いる、電縫管溶接部の熱処理装置に関する。   The present invention relates to a heat treatment apparatus for an electric resistance welded portion, and more particularly, to a heat treatment apparatus for an electric resistance welded portion used for performing heat treatment for improving the toughness of the electric resistance welded portion.

通常、電縫管は、熱延帯板を連続的に通材しながら、ロール成形装置によりオープン管へと成形し、次いでオープン管の未溶接シーム部(オープン管の周方向両端部であり、帯板の幅方向両端部に相当する)を、電縫溶接機により、融点以上に加熱し、該加熱した未溶接シーム部を突き合わせて圧着するという方法で、溶接して管となすことにより製造される。電縫溶接装置は、未溶接シーム部に高周波電流を流してジュール熱を集中させる溶融加熱手段(誘導コイル等)と、加熱し溶融した未溶接シーム部を突き合わせて圧着するスクイズロールを有する。未溶接シーム部を電縫溶接装置で溶接してなる溶接部およびその周辺は、この溶接の際に急速加熱かつ急速冷却されたため、母材である熱延帯板に比較して組織、硬度、成分等が溶接のままの不均一な状態であり、加工性、靭性、耐食性等が低下する。   Usually, the ERW pipe is formed into an open pipe by a roll forming device while continuously passing the hot-rolled strip, and then the unwelded seam portion of the open pipe (the circumferential ends of the open pipe, It is manufactured by welding to a pipe by a method in which the belt is heated to the melting point or higher by an electric seam welder, and the heated unwelded seam part is abutted and crimped. Is done. The electric seam welding apparatus has a melting and heating means (induction coil or the like) that causes high-frequency current to flow through an unwelded seam portion to concentrate Joule heat, and a squeeze roll that abuts and presses the heated and melted unwelded seam portion. Since the welded part formed by welding the unwelded seam part with an electric seam welding device and its surroundings were rapidly heated and cooled rapidly during this welding, the structure, hardness, The components and the like are in a non-uniform state as welded, and workability, toughness, corrosion resistance and the like are reduced.

したがって、前記溶接部およびその周辺の溶接熱影響部(総称して電縫管溶接部)には、加工性、靭性、耐食性等を母材並みとするために熱処理を施す必要があり、前記スクイズロールの出側に誘導加熱式の熱処理装置を設置し、これを用いて、溶接直後の電縫管溶接部を熱処理するようにしている。
この熱処理装置は、従来、一般に電縫管溶接部の管外面側に誘導加熱スタンドを通材方向に沿って直列に複数スタンド配置し、これら誘導加熱スタンドにより磁束を発生させて、電縫管溶接部に誘導電流を生じさせ、その抵抗熱により熱処理を行う。
Therefore, it is necessary to heat-treat the welded part and the welded heat-affected part around the welded part (collectively, an electric-welded pipe welded part) in order to make the workability, toughness, corrosion resistance, and the like comparable to the base material. An induction heating type heat treatment apparatus is installed on the exit side of the roll, and is used to heat treat the welded portion immediately after welding.
Conventionally, this heat treatment apparatus generally has a plurality of induction heating stands arranged in series along the material direction on the outer surface side of the welded portion of the ERW pipe welded portion, and generates a magnetic flux by these induction heating stands, so that the ERW pipe welding is performed. An induced current is generated in the part, and heat treatment is performed by the resistance heat.

したがって、従来の熱処理装置では、管外面側からのみの加熱となるため、特に厚物を主体に肉厚全体を加熱することが困難であり、必然的に管外面側と管内面側とで温度差が生じていた。この温度差は管の肉厚が厚いほど増大し、厚肉になると管外面温度と管内面温度のいずれか一方が目標温度を外れて、問題となることが多かった。例えば、厚肉高靭性ラインパイプ用電縫管を製造する場合、管内面側まで充分焼準して靭性を向上させようとして、管外面側の誘導電流を増加させると、管外面温度が目標温度を超え、粗大なベイナイト組織が発生し、硬度が増加して靭性がさらに低下する。反面、粗大なベイナイト組織が発生しないように管外面側の誘導電流を減少させると、管内面側に溶接のままの未変態組織が残留し、ほとんど目標靭性が得られない問題が生じていた。   Therefore, in the conventional heat treatment apparatus, since heating is performed only from the outer surface side of the pipe, it is difficult to heat the entire thickness, particularly thick materials, and the temperature is inevitably increased between the outer surface side of the pipe and the inner surface side of the pipe. There was a difference. This temperature difference increases as the wall thickness of the pipe increases. When the pipe wall becomes thicker, either the pipe outer surface temperature or the pipe inner surface temperature deviates from the target temperature, which often causes a problem. For example, when manufacturing ERW pipes for thick and high toughness line pipes, if the induced current on the pipe outer surface side is increased in order to improve the toughness by sufficiently normalizing the pipe inner surface side, the pipe outer surface temperature becomes the target temperature. And a coarse bainite structure is generated, the hardness increases and the toughness further decreases. On the other hand, if the induced current on the tube outer surface side is reduced so that a coarse bainite structure is not generated, an untransformed structure remains as welded on the tube inner surface side, and the target toughness is hardly obtained.

そこで、これらの問題に対処すべく、誘導加熱した後に伝熱時間を充分確保して管外面側と管内面側の温度差を低減する手段が採られていた。すなわち、前記スタンドを数多く直列に配置した長尺設備を設置して徐々に加熱するなどの対策である。しかし、設備長が長くなる(スタンド数が多くなる)と設備投資コストだけでなく、投入電力が増大して多大なランニングコストが必要であり、また、造管時のトラブルにより停止した場合に熱処理不均一部分が増えて材料の大幅な歩留まり低下をきたす問題もある。   Therefore, in order to cope with these problems, a means for reducing the temperature difference between the tube outer surface side and the tube inner surface side by securing a sufficient heat transfer time after induction heating has been adopted. That is, measures are taken such as installing a long facility in which a large number of the stands are arranged in series and gradually heating them. However, if the equipment length becomes long (the number of stands increases), not only the capital investment cost but also the input power increases and a great running cost is required. There is also a problem that the non-uniform portion increases and the yield of the material is greatly reduced.

これらの問題の解決手段として、特許文献1や特許文献2に示されるとおり、Ac変態点を超える特定の目標温度まで加熱した後、一旦冷却し、さらに加熱するという方法が知られている。
特開昭59-129729号公報 特開平6-220547号公報
As means for solving these problems, as shown in Patent Document 1 and Patent Document 2, a method of heating to a specific target temperature exceeding the Ac 3 transformation point, cooling once, and further heating is known.
JP 59-129729 A JP-A-6-220547

しかし、特許文献1や特許文献2に示される従来技術では、Ac変態点を超える特定の目標温度までの加熱パターンは特に規定されておらず、また、加熱途中で冷却することから、それらの提案前と同様、熱処理装置の設備長が長くなり、多大な投入電力により多大なランニングコストがかかって、非効率的な電縫管製造を余儀なくされる課題があった。 However, in the conventional techniques shown in Patent Document 1 and Patent Document 2, a heating pattern up to a specific target temperature exceeding the Ac 3 transformation point is not particularly defined, and since cooling is performed during heating, As before the proposal, the equipment length of the heat treatment apparatus becomes long, and a large running cost is required due to a large amount of input power, which causes a problem of inefficient manufacture of the ERW pipe.

本発明は、前記課題を解決するためになされたものであり、その要旨構成は以下のとおりである。
(請求項1)
帯材を連続的に通材しつつ、ロール成形してオープン管とし、該オープン管の未溶接シーム部を電縫溶接装置で溶接してなる電縫管溶接部に対し、前記電縫溶接装置の出側で熱処理を施す電縫管溶接部の熱処理装置であって、管外面側に誘導加熱スタンドを通材方向に複数配置してなる外面側誘導加熱手段と、管内面側に磁束発生ユニットをバーで保持して通材方向に複数配置してなる内面側誘導加熱手段とを有することを特徴とする電縫管溶接部の熱処理装置。
(請求項2)
前記誘導加熱スタンドと前記磁束発生ユニットとを同数ずつとし、通材方向の配置順が同順である誘導加熱スタンド、磁束発生ユニット同士をほぼ同じ通材方向位置に配置したことを特徴とする請求項1に記載の電縫管溶接部の熱処理装置。
The present invention has been made to solve the above problems, and the gist of the present invention is as follows.
(Claim 1)
While the strip material is continuously passed, the above-mentioned ERW welding device is applied to an ERW welded portion formed by roll forming an open tube and welding an unwelded seam portion of the open tube with an ERW welding device. A heat treatment apparatus for an electric-welded pipe welded portion that performs heat treatment on the outlet side of the pipe, and includes an outer surface-side induction heating means in which a plurality of induction heating stands are arranged in the material direction on the tube outer surface side, and a magnetic flux generation unit on the tube inner surface side A heat treatment apparatus for an electric-welded pipe welded portion, comprising: an inner surface-side induction heating means that is held in a bar and is arranged in the material passing direction.
(Claim 2)
The induction heating stand and the magnetic flux generation units are arranged in the same number, and the induction heating stand and the magnetic flux generation units that are arranged in the same order in the material passing direction are arranged at substantially the same material passing position. Item 2. An apparatus for heat-treating an electric-welded pipe weld according to Item 1.

本発明によれば、少ないスタンド数で電縫管溶接部の熱処理が可能であり、溶接部の靭性等に優れる電縫管を効率良く製造することが可能である。   According to the present invention, it is possible to heat-treat an ERW welded portion with a small number of stands, and it is possible to efficiently manufacture an ERW tube that is excellent in the toughness of the welded portion.

従来、電縫管の製造ラインにおいて、電縫溶接装置出側の熱処理装置では、長尺の設備とせざるを得ず、多大なランニングコストがかかることが課題となっていた。この原因は、従来の熱処理装置の加熱手段が管外面側のみに設置され、管外面側からのみ加熱しているため、肉厚全体を均一に加熱することが困難であり、必然的に管内外面間に温度差が生じるためであり、また、この温度差は間の肉厚が厚いほど増大して、厚肉になると管内外面の一方が目標温度から外れやすくなる、長尺の設備にして加熱を徐々に行って加熱時間を長くとり、熱伝導により内面温度を上昇させる必要があるという点にあった。   Conventionally, in the production line of the ERW pipe, the heat treatment apparatus on the outlet side of the ERW welding apparatus has to be a long facility, and it has been a problem that a great running cost is required. This is because the heating means of the conventional heat treatment apparatus is installed only on the outer surface side of the tube and is heated only from the outer surface side of the tube, so it is difficult to uniformly heat the entire thickness, and inevitably the inner and outer surfaces of the tube The temperature difference increases as the wall thickness increases, and when the wall thickness increases, one of the inner and outer surfaces of the pipe is easily removed from the target temperature. It was necessary to increase the inner surface temperature by conducting heat and gradually increasing the heating time.

そこで、発明者らは加熱手段に着目し、検討した結果、設備が短くとも充分な加熱が可能であって、管外面側を過加熱させず、管内面側の加熱不足を防ぐには、管外面側のみならず管内面側にも誘導加熱手段を設置して、それらを用いて電縫管溶接部を加熱することが有効であることを把握した。
すなわち、従来の管外面側のみの加熱手段では、目標となるAc変態点+αの温度域に加熱する際、特に、肉厚が厚くなるほど、管外面側が目標温度に到達した場合でも管内面側の温度は目標温度にならない場合が多かった。そのため管外面側に設置した誘導加熱手段の設備長さを長くして熱伝導を利用しながら徐々に加熱せざるを得ず、非効率的な電縫管製造がなされていたわけである。
Therefore, the inventors focused on the heating means, and as a result of examination, in order to prevent insufficient heating on the tube inner surface side without overheating the tube outer surface side even if the equipment is short, It has been found that it is effective to install induction heating means not only on the outer surface side but also on the inner surface side of the tube and use them to heat the ERW pipe welded part.
That is, with the conventional heating means only on the tube outer surface side, when heating to the target Ac 3 transformation point + α temperature range, the tube inner surface side even when the tube outer surface side reaches the target temperature, especially as the wall thickness increases. In many cases, the temperature of did not reach the target temperature. For this reason, the length of the induction heating means installed on the outer surface side of the pipe must be lengthened and gradually heated while utilizing heat conduction, and inefficient ERW pipe manufacturing has been performed.

そこで、効率良く加熱する装置として、管外面側のみならず管内面側にも誘導加熱手段を設置して、管外面側、管内面側の双方から加熱すれば、肉厚が厚い場合でもその約1/2を加熱すればよいことになり、効率良く加熱できるわけである。
管外面側の誘導加熱手段(外面側誘導加熱手段)は、従来の誘導加熱スタンドを用いて構成できるが、本発明ではそのスタンド数を従来よりも少なくすることができるのである。
Therefore, as an apparatus for efficient heating, if induction heating means is installed not only on the tube outer surface side but also on the tube inner surface side and heated from both the tube outer surface side and the tube inner surface side, even if the wall thickness is thick, about It is only necessary to heat 1/2, and it can be efficiently heated.
The induction heating means on the tube outer surface side (outer surface induction heating means) can be configured using a conventional induction heating stand, but in the present invention, the number of the stands can be reduced as compared with the conventional one.

管内面側の誘導加熱手段(内面側誘導加熱手段)は、管内面側に磁束発生ユニットをバーで保持して通材方向に複数配置して構成される。磁束発生ユニットは、管内面側に装入できて、電縫管溶接部の管内面側に誘導電流を効率良く発生させることが可能な磁束の発生源として機能するものである限りにおいて、その構成材料や、構造、形状、寸法は特に限定されない。   The pipe inner surface side induction heating means (inner surface side induction heating means) is configured by holding a plurality of magnetic flux generating units on the inner surface side of the pipe with a bar and arranging them in the material passing direction. As long as the magnetic flux generation unit functions as a magnetic flux generation source that can be inserted into the inner surface of the tube and can efficiently generate an induced current on the inner surface of the welded portion of the ERW tube, The material, structure, shape, and dimensions are not particularly limited.

また、温度を高精度に制御して効率良く加熱するには、前記誘導加熱スタンドと前記磁束発生ユニットとを同数ずつとし、通材方向の配置順が同順である誘導加熱スタンド、磁束発生ユニットをほぼ同じ通材方向位置に配置するとよい。こうすることで、温度を制御するための磁束密度の制御が容易になるからである。   In addition, in order to efficiently control the temperature with high accuracy, the induction heating stand and the magnetic flux generation unit have the same number of the induction heating stands and the magnetic flux generation units, and the arrangement order in the material passing direction is the same order. May be arranged at substantially the same position in the material passing direction. This is because it becomes easy to control the magnetic flux density for controlling the temperature.

以下、実施例に基づいて説明する。
(本発明例)
図1は、本発明の1例を示す模式図である。電縫溶接装置1は、連続的に通材されるオープン管20の未溶接シーム部21を融点以上に加熱する誘導コイル10、および該加熱された未溶接シーム部21を圧着して電縫管溶接部を形成させるスクイズロール11を有する。なお、オープン管20は、図示しない上流側のロール成形装置により、帯材を連続的に通材しつつロール成形して形成されたものである。この電縫溶接装置1の出側、好ましくは、図示のように、溶接ビード切削用の切削バイト12の出側に、本発明の1例とした電縫管溶接部の熱処理装置が設置されている。この熱処理装置は、管外面側に誘導加熱スタンド13を通材方向に4スタンド配置してなる外面側誘導加熱手段2と、管内面側に磁束発生ユニット4をバー6で保持して通材方向に4ユニット配置してなる内面側誘導加熱手段3とを有する。バー6は中空のバーであり、その中空内には管内面側の磁束発生ユニット4へ通電する通電板8が装入され、該通電板8は、未溶接シーム部21の相互対面間隙を通って、管外面側に置かれた給電手段7と接続し、この給電手段7から給電される。したがって、管外面側の給電手段7から通電板8を介して管内面側の磁束発生ユニット4への給電が可能である。
Hereinafter, a description will be given based on examples.
(Example of the present invention)
FIG. 1 is a schematic diagram showing an example of the present invention. The electric seam welding apparatus 1 crimps the induction coil 10 that heats the unwelded seam portion 21 of the open pipe 20 that is continuously passed through to the melting point or higher, and the heated unwelded seam portion 21 so as to crimp the electric welded pipe. A squeeze roll 11 is formed to form a weld. Note that the open pipe 20 is formed by roll forming with a continuous roll material passing through an upstream roll forming apparatus (not shown). On the exit side of this electric seam welding apparatus 1, and preferably on the exit side of the cutting bit 12 for welding bead cutting, as shown in the drawing, a heat treatment apparatus for an electric resistance welded portion as an example of the present invention is installed. Yes. This heat treatment apparatus has an outer surface side induction heating means 2 in which four induction heating stands 13 are arranged in the material direction on the outer surface side of the tube, and a magnetic flux generating unit 4 held by a bar 6 on the inner surface side of the tube. And 4 units of inner surface side induction heating means 3. The bar 6 is a hollow bar, and an energizing plate 8 for energizing the magnetic flux generating unit 4 on the inner surface side of the tube is inserted into the hollow bar, and the energizing plate 8 passes through the mutual facing gap of the unwelded seam portion 21. Then, it is connected to the power supply means 7 placed on the outer surface side of the pipe, and power is supplied from this power supply means 7. Therefore, it is possible to supply power from the power supply means 7 on the outer surface side of the tube to the magnetic flux generation unit 4 on the inner surface side of the tube via the energizing plate 8.

さらに、好適形態として、同数4つずつとした誘導加熱スタンド13と磁束発生ユニット4の、通材方向位置が同順のもの同士を、ほぼ同じ通材方向位置に配置した。
また、外面側誘導加熱手段2の各誘導加熱スタンド13および内面側誘導加熱手段3の各磁束発生ユニット4の出側にそれぞれ温度計9を配置し、各温度計9の計測値に基く各誘導加熱スタンド13および/または各磁束発生ユニット4への給電量調整による電縫管溶接部の管外面側と管内面側の双方の温度制御を可能としている。
Furthermore, as a preferred embodiment, the same number of induction heating stands 13 and magnetic flux generation units 4 having the same passing direction position are arranged at substantially the same passing direction position.
Further, a thermometer 9 is arranged on the exit side of each induction heating stand 13 of the outer surface side induction heating means 2 and each magnetic flux generation unit 4 of the inner surface side induction heating means 3, and each induction based on the measured value of each thermometer 9. It is possible to control the temperature on both the outer surface side and the inner surface side of the welded portion of the ERW pipe by adjusting the amount of power supplied to the heating stand 13 and / or each magnetic flux generation unit 4.

質量%で0.05%C−0.2%Si−1.4%Mnを含有する組成の鋼(Ac変態点が860℃)の帯材を、通材させつつ、レベラでの平坦化矯正に続きロール成形装置でオープン管に成形し、該オープン管の未溶接シーム部を電縫溶接装置で溶接して、外径600mm、肉厚19.1mmの電縫管とし、引続いて図1に示した熱処理装置を用いて電縫管溶接部を熱処理した。該熱処理後の電縫管溶接部について、次の試験を行った。
1)組織試験:肉厚断面の組織を光学顕微鏡で調べた。
2)シャルピー試験:JIS Z 2242の規定に準拠して、衝撃試験片(Vノッチ試験片)を採取した。試験片の採取位置は、管長手方向の異なる10箇所で、試験片長さ方向を管周接線方向に平行とし、試験片ノッチ位置を電縫管溶接部の幅(管周方向での延在範囲)中心位置に合わせて、電縫管溶接部の肉厚中心部位から採取した。これら試験片を用いて、JIS Z 2242の規定に準拠して、試験温度:−46℃でシャルピー衝撃試験を実施し、吸収エネルギーおよび脆性破面率を求めた。
(従来例)
従来例の熱処理装置は、図1の熱処理装置において、内面側誘導加熱手段3を削除し、外面側誘導加熱手段2のスタンド数を4から7に増やして構成された。
Flattening with a leveler while passing a strip of steel (Ac 3 transformation point is 860 ° C.) containing 0.05% C-0.2% Si-1.4% Mn by mass% Following straightening, it is formed into an open tube with a roll forming device, and the unwelded seam of the open tube is welded with an electric resistance welding device to form an electric resistance tube with an outer diameter of 600 mm and a wall thickness of 19.1 mm. 1 was heat-treated using the heat treatment apparatus shown in FIG. The following test was performed on the welded portion of the electric resistance welded tube after the heat treatment.
1) Structure test: The structure of the thick section was examined with an optical microscope.
2) Charpy test: An impact test piece (V-notch test piece) was collected in accordance with JIS Z 2242. The test specimens were collected at 10 locations in the pipe longitudinal direction, with the test specimen length direction parallel to the pipe circumferential tangent direction, and the test specimen notch position as the width of the ERW pipe welded portion (extended range in the pipe circumferential direction). ) The sample was taken from the thickness center part of the welded part of the ERW pipe according to the center position. Using these test pieces, a Charpy impact test was performed at a test temperature of −46 ° C. in accordance with the provisions of JIS Z 2242, and the absorbed energy and the brittle fracture surface ratio were determined.
(Conventional example)
The heat treatment apparatus of the conventional example is configured by deleting the inner surface side induction heating means 3 and increasing the number of stands of the outer surface side induction heating means 2 from 4 to 7 in the heat treatment apparatus of FIG.

本発明例で用いたのと同様の帯材を、電縫溶接までは同様の工程で、同様のサイズの電縫管とし、引続いて前記従来例の熱処理装置を用いて電縫管溶接部を熱処理した。該熱処理後の電縫管溶接部について、本発明例と同様の試験を行った。
組織試験の結果によると、本発明例による電縫管では、電縫管溶接部の肉厚断面全体にほぼ均一なフェライト−パーライト組織が観察され、Ac変態点超の目標温度に達して充分焼準されたことを示した。一方、従来例による電縫管では、管内面側にAc変態点超の目標温度にかろうじて達したことを示す組織が観察され、管外面側には靭性を低下させる粗大ベイナイト組織の発達が観察された。
The same strip material as used in the present invention example was made into an ERW pipe of the same size in the same process until ERW welding, and subsequently the ERW pipe welded portion was used using the heat treatment apparatus of the conventional example. Was heat treated. The same test as in the example of the present invention was performed on the welded portion after the heat treatment.
According to the results of the structure test, in the ERW pipe according to the present invention, a substantially uniform ferrite-pearlite structure is observed over the entire thickness cross section of the ERW weld zone, and the target temperature exceeding the Ac 3 transformation point is sufficiently reached. It showed that it was normalized. On the other hand, in the electric-resistance-welded pipe according to the conventional example, is organized to indicate that barely reaches the inner surface side to the target temperature of the Ac 3 transformation point than is observed, the development of coarse bainite structures to reduce the toughness in Kangaimen side observation It was done.

シャルピー試験の結果を表1に示す。表1より、本発明例による電縫管では、電縫管溶接部の熱処理装置のスタンド数が少ないにもかかわらず、溶接部の吸収エネルギーが高く脆性破面率が小さくて、靭性が良好であって製品の信頼性が高い。これに対し、従来例による電縫管では、電縫管溶接部の熱処理装置のスタンド数が多いのに、溶接部の吸収エネルギーが低く脆性破面率が大きくて、靭性が低下しており製品の信頼性に乏しい。   The results of the Charpy test are shown in Table 1. From Table 1, in the ERW pipe according to the example of the present invention, although the number of stands of the heat treatment device for the ERW pipe welded portion is small, the absorbed energy of the welded portion is high, the brittle fracture surface ratio is small, and the toughness is good. And the reliability of the product is high. On the other hand, in the case of the ERW pipe according to the conventional example, although the number of the heat treatment devices for the ERW welded part is large, the absorbed energy of the welded part is low, the brittle fracture surface ratio is large, and the toughness is reduced. Poor reliability.

Figure 2009263711
Figure 2009263711

本発明の1例を示す模式図である。It is a schematic diagram which shows one example of this invention.

符号の説明Explanation of symbols

1 電縫溶接装置
2 外面側誘導加熱手段
3 内面側誘導加熱手段
4 磁束発生ユニット
5 電縫管
6 バー
7 給電手段
8 通電板
9 温度計
10 誘導コイル
11 スクイズロール
12 切削バイト
13 誘導加熱スタンド
20 オープン管
21 未溶接シーム部
DESCRIPTION OF SYMBOLS 1 Electric resistance welding apparatus 2 Outer surface side induction heating means 3 Inner surface side induction heating means 4 Magnetic flux generation unit 5 Electric resistance pipe 6 Bar 7 Power supply means 8 Current supply plate 9 Thermometer
10 induction coil
11 Squeeze Roll
12 Cutting tool
13 Induction heating stand
20 open tube
21 Unwelded seam

Claims (2)

帯材を連続的に通材しつつ、ロール成形してオープン管とし、該オープン管の未溶接シーム部を電縫溶接装置で溶接してなる電縫管溶接部に対し、前記電縫溶接装置の出側で熱処理を施す電縫管溶接部の熱処理装置であって、管外面側に誘導加熱スタンドを通材方向に複数配置してなる外面側誘導加熱手段と、管内面側に磁束発生ユニットをバーで保持して通材方向に複数配置してなる内面側誘導加熱手段とを有することを特徴とする電縫管溶接部の熱処理装置。   While the strip material is continuously passed, the above-mentioned ERW welding device is applied to an ERW welded portion formed by roll forming an open tube and welding an unwelded seam portion of the open tube with an ERW welding device. A heat treatment apparatus for an electric-welded pipe welded portion that performs heat treatment on the outlet side of the pipe, and includes an outer surface-side induction heating means in which a plurality of induction heating stands are arranged in the material direction on the tube outer surface side, and a magnetic flux generation unit on the tube inner surface side A heat treatment apparatus for an electric resistance welded portion having an inner surface side induction heating means which is held by a bar and is arranged in the material passing direction. 前記誘導加熱スタンドと前記磁束発生ユニットとを同数ずつとし、通材方向の配置順が同順である誘導加熱スタンド、磁束発生ユニット同士をほぼ同じ通材方向位置に配置したことを特徴とする請求項1に記載の電縫管溶接部の熱処理装置。   The induction heating stand and the magnetic flux generation units are arranged in the same number, and the induction heating stand and the magnetic flux generation units that are arranged in the same order in the material passing direction are arranged at substantially the same material passing position. Item 2. An apparatus for heat-treating an electric-welded pipe weld according to Item 1.
JP2008113783A 2008-04-24 2008-04-24 Heat treatment equipment for welded parts of ERW pipe Expired - Fee Related JP5233388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113783A JP5233388B2 (en) 2008-04-24 2008-04-24 Heat treatment equipment for welded parts of ERW pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113783A JP5233388B2 (en) 2008-04-24 2008-04-24 Heat treatment equipment for welded parts of ERW pipe

Publications (2)

Publication Number Publication Date
JP2009263711A true JP2009263711A (en) 2009-11-12
JP5233388B2 JP5233388B2 (en) 2013-07-10

Family

ID=41389932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113783A Expired - Fee Related JP5233388B2 (en) 2008-04-24 2008-04-24 Heat treatment equipment for welded parts of ERW pipe

Country Status (1)

Country Link
JP (1) JP5233388B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305678A (en) * 2013-06-20 2013-09-18 鞍山泰源实业有限公司 Steel pipe inner wall hardening and quenching device and steel pipe inner wall hardening and quenching method
CN104846187A (en) * 2015-06-11 2015-08-19 温州大学 Device and method for ultrasonic impact strengthening of shaft type part welding seams
WO2017159935A1 (en) * 2016-03-18 2017-09-21 대원강업 주식회사 Hollow coil spring manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184713A (en) * 1975-01-22 1976-07-24 Nippon Steel Corp
JPH0556948U (en) * 1992-01-16 1993-07-30 住友金属工業株式会社 Heat treatment equipment for ERW pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184713A (en) * 1975-01-22 1976-07-24 Nippon Steel Corp
JPH0556948U (en) * 1992-01-16 1993-07-30 住友金属工業株式会社 Heat treatment equipment for ERW pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305678A (en) * 2013-06-20 2013-09-18 鞍山泰源实业有限公司 Steel pipe inner wall hardening and quenching device and steel pipe inner wall hardening and quenching method
CN104846187A (en) * 2015-06-11 2015-08-19 温州大学 Device and method for ultrasonic impact strengthening of shaft type part welding seams
WO2017159935A1 (en) * 2016-03-18 2017-09-21 대원강업 주식회사 Hollow coil spring manufacturing method

Also Published As

Publication number Publication date
JP5233388B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP4486639B2 (en) Laser welding method for continuous production process, apparatus therefor, and rolled plate for laser welding
Khalaj et al. Microalloyed steel welds by HF-ERW technique: Novel PWHT cycles, microstructure evolution and mechanical properties enhancement
JP2006263814A (en) High strength welded steel tube having excellent hydrogen embrittlement cracking chracteristic resistance of weld metal
JP4676421B2 (en) Laser welding method for continuous manufacturing process
JP5233388B2 (en) Heat treatment equipment for welded parts of ERW pipe
JP5167830B2 (en) High-efficiency heat treatment method for ERW steel pipe welds
Ichiyama et al. Flash-butt welding of high strength steels
JP5233389B2 (en) Heat treatment equipment for welded parts of ERW pipe
Kavousi Sisi et al. Effect of post-weld heat treatment on microstructure and mechanical properties of X52 linepipe HFIW joints
JP5303887B2 (en) Heat treatment method for ERW steel pipe
JP2007015008A (en) Method for producing low yr electric resistance welded tube for line pipe
JP2007098462A (en) Flash butt welding method
Hordych et al. Phase transformations in a boron-alloyed steel at high heating rates
JP6390677B2 (en) Low carbon martensitic stainless steel welded pipe and method for producing the same
JP5320750B2 (en) Heat treatment method for ERW steel pipe
Poznyakov et al. Weldability of sparcely-alloyed steels 06GBD and 06G2B
Ichiyama et al. Factors affecting flash weldability in high strength steel–a study on toughness improvement of flash welded joints in high strength steel
JP3797105B2 (en) Method for producing martensitic stainless welded steel pipe
Suman et al. Microstructure evolution and mechanical behaviour of SAW weldments of CSEF steel on preheating and PWHT
JP5303895B2 (en) Efficient heat treatment method for ERW steel pipe
Das et al. Metallurgical investigation of welding wire rod grade during processing
Baumer et al. Transient high-frequency welding simulations of dual-phase steels
RU2484149C1 (en) Method of thermal treatment of welded tubes
JPH11290956A (en) Method and device of bending steel pipe
JP5233902B2 (en) Fracture suppression method for steel strip weld seam in the manufacture of ERW welded steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees