JP2009263327A - PHARMACEUTICAL COMPOSITION FOR 5'LTR/gag GENE DEFICIENCY OF HIV-1, CONTAINING PANAX GINSENG AS EFFECTIVE INGREDIENT - Google Patents
PHARMACEUTICAL COMPOSITION FOR 5'LTR/gag GENE DEFICIENCY OF HIV-1, CONTAINING PANAX GINSENG AS EFFECTIVE INGREDIENT Download PDFInfo
- Publication number
- JP2009263327A JP2009263327A JP2008196644A JP2008196644A JP2009263327A JP 2009263327 A JP2009263327 A JP 2009263327A JP 2008196644 A JP2008196644 A JP 2008196644A JP 2008196644 A JP2008196644 A JP 2008196644A JP 2009263327 A JP2009263327 A JP 2009263327A
- Authority
- JP
- Japan
- Prior art keywords
- hiv
- krg
- ltr
- lts
- ginseng
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/25—Araliaceae (Ginseng family), e.g. ivy, aralia, schefflera or tetrapanax
- A61K36/258—Panax (ginseng)
Landscapes
- Health & Medical Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Alternative & Traditional Medicine (AREA)
- Biotechnology (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
Description
本発明は高麗人参を有効成分として含むHIV−1の5’LTR及び/又はgag遺伝子欠損用の薬学的組成物に関する。 The present invention relates to a pharmaceutical composition for HIV-1 5'LTR and / or gag gene deficiency comprising ginseng as an active ingredient.
ヒト免疫不全ウイルス1型 (HIV−1)は後天性免疫不全症候群(エイズ)の病因である。HIV−1はHIV−2と共にレトロウイルスのレンチウイルス科に属し,感染性ビリオンは二つの同じ一本鎖からなるRNA(+)ゲノムを有する。HIV−1が細胞に感染すれば,上記RNA(+)ゲノムがコーディングする逆転写酵素によりRNAが二本鎖DNAに転換され,このDNAが宿主細胞の染色体に挿入されてプロウイルスを形成する。そして,プロウイルス状態で,ウイルス遺伝子を転写することで複製と構築に必要なタンパク質のmRNAらが生産されて,ウイルスを増殖することになる。 Human immunodeficiency virus type 1 (HIV-1) is the etiology of acquired immunodeficiency syndrome (AIDS). HIV-1 belongs to the retroviral lentiviridae together with HIV-2, and infectious virions have an RNA (+) genome consisting of two identical single strands. When HIV-1 infects cells, RNA is converted to double-stranded DNA by the reverse transcriptase encoded by the RNA (+) genome, and this DNA is inserted into the host cell chromosome to form a provirus. And, in the provirus state, transcription of the viral gene produces mRNAs of proteins necessary for replication and construction, and the virus is propagated.
HIV−1ゲノム(9.2kb)はgag,pol,envの構造遺伝子とtat,rev,nef,vif,vpu,vprなどのアクセサリー遺伝子と,両端に存在する末端反復配列(LTR;long terminal repeat sequence)とで構成されている。 The HIV-1 genome (9.2 kb) is composed of gag, pol, env structural genes, accessory genes such as tat, rev, nef, vif, vpu, vpr, and long terminal repeat sequences (LTR). ) And.
gagタンパク質及びpolタンパク質は前駆体タンパク質を分解して生成され,envタンパク質はgp160前駆体タンパク質となり,構築過程においてgp120とgp41で分解される。HIVに最初に感染した際は,症状が無かったり,風邪のような症状が現れて,ウイルスがCD4T細胞,マクロファージ,ミクログリア細胞などで潜伏感染して,長期の潜伏状態に入る。gp120に対する抗体は感染後3〜20週目に現れ,この時以後に感染の有無を診断することができる。2〜10年ほどの潜伏期を経る間に免疫体系に変化等が誘導されて,免疫欠乏症状が現れる前に前駆期症状(エイズ関連症候群(ARC:AIDS-related complex):疲労,発熱,体重減少,下痢)が現れる。HIV感染によってCD4T細胞数が200/μl以下に低減すれば免疫欠乏の症状が現れるので,臨床的にエイズと定義される。 The gag protein and the pol protein are produced by degrading the precursor protein, and the env protein becomes the gp160 precursor protein, which is degraded by gp120 and gp41 during the construction process. When HIV is first infected, there are no symptoms or symptoms such as colds, and the virus is latently infected with CD4 T cells, macrophages, microglia cells, etc., and enters a long-term latent state. An antibody against gp120 appears 3 to 20 weeks after infection, and the presence or absence of infection can be diagnosed after this time. Changes in the immune system are induced during the incubation period of about 2 to 10 years, and prodromal symptoms (AIDS-related complex (ARC): fatigue, fever, weight loss) before immune deficiency symptoms appear Diarrhea) appears. If the number of CD4 T cells is reduced to 200 / μl or less due to HIV infection, symptoms of immune deficiency appear and are clinically defined as AIDS.
高麗人参(Panax ginseng C. A. Meyer(Panax schinseng Nees))は五加皮科(Araliaceae)のパナックス属に属する多年生宿根草で,数千年の間,東洋圏の国で様々な病気の治療に補助的に使用されてきた。高麗人参はこれまでに多くの薬理実験を通じて,コレステロール低下,脂質過酸化抑制,血圧降下,血流増加,脳血管拡張,心臓機能こう進,抗不整脈,抗血栓,慢性腎不全治療効果,免疫調節作用,記憶力増加,脳代謝こう進,抗ストレス,坑酸化作用,抗老化作用,抗潰瘍及び胃液分泌抑制,抗糖尿,解毒,肝細胞酵素増加,喘息治療,抗炎症,鎮痛作用,貧血治療,生殖能力増進,アルコール血中濃度低下,抗アレルギー,抗ガン剤などの効能を有することが知られている。 Ginseng (Panax ginseng CA Meyer (Panax schinseng Nees)) is a perennial perennial plant belonging to the genus Panax of the Araliaceae family, and has been supporting the treatment of various diseases in the Oriental region for thousands of years. Have been used. Ginseng has undergone many pharmacological experiments to lower cholesterol, inhibit lipid peroxidation, lower blood pressure, increase blood flow, cerebral vasodilation, cardiac dysfunction, antiarrhythmia, antithrombosis, chronic renal failure treatment effect, immune regulation Action, increased memory, increased brain metabolism, anti-stress, anti-oxidation, anti-aging, anti-ulcer and gastric secretion inhibition, anti-diabetes, detoxification, hepatocyte enzyme increase, asthma treatment, anti-inflammatory, analgesic, anemia treatment, It is known to have the effects of promoting fertility, lowering alcohol blood levels, antiallergy, and anticancer agents.
また,高麗人参及び紅参は加工法に応じて区分され,高麗人参は未加工のものを指し,乾燥したものを乾参,乾燥されていないものを水参と呼ぶ。紅参(Red Ginseng)は高麗人参を蒸して乾燥させて水分含有量が14%以下になるよう加工したものを指し,製造過程中に茶色化反応が促進され,濃厚な茶褐色の色を呈する丈夫な形態として円形が維持された高麗人参である。 In addition, ginseng and red ginseng are classified according to the processing method. Ginseng refers to unprocessed one, dried one is called dry ginseng, and undried one is called ginseng. Red Ginseng refers to a ginseng steamed and dried to a moisture content of 14% or less. The browning reaction is promoted during the manufacturing process, and it has a strong brown color. Is a ginseng with a round shape.
したがって,約75%の水分を含有する水参の状態では長期間保存が困難であり,流通状態中に微生物汚染による腐敗又は高麗人参自体が含有する様々な酵素によって高麗人参成分が分解されるが,紅参は加工乾燥により水分が減少しているため,細菌,黴,及び微生物による汚染を防ぎ,体積及び重量が減少するために保存,運搬が容易という長所がある。高麗人参の代表的な有効成分であるサポニンの定量方法と品質管理の発達によって,加工過程中にサポニンが分解されるのを最大限に抑制することが可能となり,サポニンの他にマルトール,ジンセノサイドRh2などの有効成分がさらに生成された。すなわち,高麗人参の主成分はサポニンであり,紅参はこの効能が変質しないように加工したものである。 Therefore, it is difficult to preserve for a long time in the state of ginseng containing about 75% water, and ginseng components are decomposed by various enzymes contained in the ginseng itself due to spoilage due to microbial contamination during distribution. Red ginseng has the advantage that it is easy to store and transport because it reduces moisture by processing and drying, prevents contamination by bacteria, sputum and microorganisms, and reduces volume and weight. Quantification of saponin, a representative active ingredient of ginseng, and the development of quality control make it possible to minimize the degradation of saponin during the processing process. In addition to saponin, maltol and ginsenoside Rh2 Further active ingredients such as were generated. That is, the main ingredient of ginseng is saponin, and red ginseng is processed so that this effect is not altered.
特に紅参は中枢神経に対して鎮静作用と興奮作用があり,循環系に作用して高血圧や動脈硬化を予防する効果があり,その一方で造血作用及び血糖値を低下させ,肝を保護し,内分泌系に作用して性行動又は生殖効果に間接的に有効に作用し,抗炎及び抗腫瘍作用があり,放射線に対する防御効果,皮膚を保護しながら軟化する作用を有する。また,紅参の効果の中で重要なのは,アダプトゲン効果として周囲環境に起因する各種有害作用の流涙症(epiphora),各種ストレスなどに対して防御能力を増加させて,生体をより簡単に適応させる効果を有する。これまでに,紅参に対する成分及び薬理的効能に対して,韓国内外で数多くの研究が進められており,特に紅参は坑酸化活性を有することが報告されている(クォン・ヨンフン他,高麗人参学会誌,24(1),29−34,2000)。 Red ginseng in particular has sedative and excitatory effects on the central nervous system and acts on the circulatory system to prevent hypertension and arteriosclerosis, while lowering hematopoiesis and blood glucose levels to protect the liver. It acts on the endocrine system and acts indirectly on sexual behavior or reproductive effects, has anti-inflammatory and anti-tumor effects, has a protective effect against radiation, and has an action of softening while protecting the skin. In addition, the important effect of red ginseng is that it adapts more easily by increasing the protective ability against various adverse effects such as epiphora and various stress caused by the surrounding environment as an adaptogen effect. Has the effect of So far, many studies have been conducted on the ingredients and pharmacological effects of red ginseng, both in Korea and abroad, and it has been reported that red ginseng has anti-oxidative activity (Kwon Yong Hoon et al., Korea). Ginseng Journal, 24 (1), 29-34, 2000).
また,本発明者は以前の研究で,HIV−1感染患者らを,高麗人参(以下,KRGと記載する)単独(参照文献1〜4),或いは1991年以降にはジドブジン(ZDV;zidovudine)と共に(参照文献5),1997年以降には非常に強力な高活性抗レトロウイルス療法(HAART;highly active antiretroviral drug therapy)により(参照文献6)治療した。臨床学的適用の間(参照文献1〜7),KRGによる治療とエイズの進行速度との間に意味のある逆相関関係を示した(参照文献8)。HIV−1遺伝子の変移率はKRGによる治療と反対関係にある。さらにKRGによる治療はジドブジンに対する抵抗性の発達を遅らせる。本発明者の結果によればKRGによる治療は治療法或いは患者の他の特性に関係なくCD4T細胞が減少する速度を低減させた。KRGとHAARTとの混合治療を分析した最近の結果では,薬品抵抗変移の発生なしで一貫されたウイルス調節がこれらの組合せにより可能であることを示した(参照文献7) 。
In addition, the present inventor found that in previous studies, HIV-1 infected patients were treated with ginseng (hereinafter referred to as KRG) alone (
本発明者のコホートで長期未発症感染者(LTNP;long-term nonprogressor)或いは長期生存者(LTS:long-term surviviors)におけるエイズの進行が遅くなった原因をここで説明する。最近,本発明者は持続的なKRGによる治療を受けた10人のLTSにおけるnef遺伝子の大規模な欠損の比率とKRGの摂取期間との関連性を報告した(参照文献9) 。これら10人のLTSからのnef遺伝子で増幅された生成物を比較すると,gag領域と5’LTR領域で増幅された生成物に,プロウイルス全体の長さの塩基配列が,二つのバンド(野生型及び短バンド)が高い割合で現れた。 The reason why the progression of AIDS in the long-term nonprogressor (LTNP) or the long-term surviviors (LTS) in the inventor's cohort is delayed will be described here. Recently, the present inventor has reported an association between the ratio of large-scale deletion of the nef gene in 10 LTS treated with continuous KRG and the duration of KRG intake (Ref. 9). . Comparing the products amplified with the nef gene from these 10 LTSs, the product amplified in the gag region and the 5 ′ LTR region has two bands (wild Molds and short bands) appeared at a high rate.
LTNPでnef遺伝子の大規模な欠損に対する多くの研究が行われたが,幾つかの場合のみのgag領域と5’LTR領域における大規模な欠損の関連性を現在まで報告した(参照文献10〜18)。より具体的に,HIVサブタイプCに感染した一人のLTSで,gag遺伝子において3個のアミノ酸コドン中に1つの欠損があることが報告された(参照文献19)。他の研究では24人の治療経験がない人々の内の2人が5’LTRで16bpの欠損及び9bpの小さい欠損を示した(参照文献20)。しかし,長期間進行がない状態維持又はHIV感染の進行の速度が遅くなることと,5’LTR領域とgag領域の遺伝的欠陥(defects)との関連は報告されたことがない。 Many studies have been conducted on large-scale deletions of the nef gene in LTNP, but only a few cases have reported the association of large-scale deletions in the gag region and the 5 ′ LTR region to date (references 10-10). 18). More specifically, one LTS infected with HIV subtype C was reported to have one deletion in 3 amino acid codons in the gag gene (Ref. 19). In other studies, 2 of 24 people without treatment experience showed a 16 bp deficiency and a small 9 bp deficiency in the 5 'LTR (Ref. 20). However, there has been no report of an association between 5 'LTR region and gag region genetic defects, which is caused by maintaining the state where there is no long-term progression or slowing the progression of HIV infection.
本発明者はエイズの治療方法を研究中に,HIV−1に感染した患者に紅参を長期間投与すると,HIV−1の5’LTRとgag遺伝子の欠損を確認したことによって本発明を完成した。 The present inventor completed the present invention by confirming the deficiency of 5 'LTR and gag gene of HIV-1 when red ginseng was administered to a patient infected with HIV-1 for a long time while studying the treatment method of AIDS. did.
本発明の目的は高麗人参を有効成分として含む,HIV−1の5’LTR及び/又はgag遺伝子欠損用の薬学的組成物を提供することである。 An object of the present invention is to provide a pharmaceutical composition for HIV-1 5 'LTR and / or gag gene deficiency comprising ginseng as an active ingredient.
上記のような本発明の目的を達成するために,本発明は高麗人参を有効成分として含有するHIV−1の5’LTR/gag遺伝子欠損用の薬学的組成物を提供する。以下,本発明を詳細に説明する。 In order to achieve the above object of the present invention, the present invention provides a pharmaceutical composition for HIV-1 5 'LTR / gag gene deficiency containing ginseng as an active ingredient. The present invention will be described in detail below.
本発明は,高麗人参の摂取によりウイルス成長及びエイズ病因と密接な関連があるHIV−1の5’LTR/gag遺伝子が欠損する可能性を示したことに特徴がある。 The present invention is characterized by the possibility of deficiency of HIV-1 5'LTR / gag gene, which is closely related to viral growth and AIDS etiology, by ingestion of ginseng.
好ましくは,前記高麗人参が紅参であることを特徴とする。 Preferably, the ginseng is red ginseng.
本発明の一実施例では,5’LTR領域とgag領域での大規模な欠損(gΔ)の発生と,KRGの摂取との関連性があるかを調べるために,KRG(総量13,364±5,364g)で12年以上治療した10人のLTSと,KRGを摂取しなかった又は少量(総量1,436±1,027g)を摂取した8人のLTS(対照群)から,部分的5’LTR 部分とgag遺伝子を代表する1,125bpのPCR産物の塩基配列を調査した。前記10人のLTSで,189個のPCR生成物が80個の末梢血単核球(PBMC)サンプルで得られ,全体80個のPBMC中44個(55%)と189個のPCR産物中の71個(37.6%)とが大規模な欠損(gΔ)を示した。55%のPBMC及び37.6%のPCR産物が10人のLTSで見られた一方,8人の対照群LTSの値は各々30.3%と14.8%であった。このような差は統計的に意味がある(P<0.05及びP=0)。さらに,紅参を服用しなかった一般対照群患者28人の欠損遺伝子比率はPBMCとPCR産物を基準として各々13.3%と8.3%を示した(実施例3,図1〜図3参照)。 In one embodiment of the present invention, in order to investigate whether there is a relationship between the occurrence of large-scale deletions (gΔ) in the 5 ′ LTR region and the gag region and the intake of KRG (total amount 13,364 ± 5 out of 10 LTSs treated for 12 years or more and 8 LTSs (control group) who did not take KRG or took a small amount (total 1,436 ± 1,027 g) (partial 5) The nucleotide sequence of the 1,125 bp PCR product representing the 'LTR part and the gag gene was examined. In the 10 LTSs, 189 PCR products were obtained in 80 peripheral blood mononuclear cell (PBMC) samples, 44 (55%) in a total of 80 PBMC and 189 in PCR products. 71 (37.6%) showed large-scale defects (gΔ). 55% PBMC and 37.6% PCR products were found in 10 LTS, while the 8 control group LTS values were 30.3% and 14.8%, respectively. Such differences are statistically significant (P <0.05 and P = 0). Furthermore, the ratio of the defective genes in 28 patients in the general control group who did not take red ginseng was 13.3% and 8.3%, respectively, based on PBMC and PCR products (Example 3, FIGS. 1 to 3). reference).
したがって,個体に紅参を投与することによってHIV−1の5’LTR/gag遺伝子を欠損を誘導でき,これはエイズの予防及び治療に使用できる。 Therefore, administration of red ginseng to an individual can induce HIV-1 5 'LTR / gag gene deficiency, which can be used for the prevention and treatment of AIDS.
本発明の薬学的組成物の有効成分として使用される紅参は公知の方法で製造することができる。 Red ginseng used as an active ingredient of the pharmaceutical composition of the present invention can be produced by a known method.
一般的に紅参は水参(水分含有率:約75%)を一定の温度条件下で水蒸気で蒸す蒸煮段階,及び,蒸煮された水参を乾燥させる乾燥段階を経て製造される。このように製造された紅参を加熱抽出することによって紅参抽出液を製造し,これを濃縮して紅参濃縮液を製造することができる。 In general, red ginseng is produced through a steaming step in which steamed ginseng (water content: about 75%) is steamed under a certain temperature condition and a drying step in which steamed water ginseng is dried. The red ginseng extract can be produced by heating and extracting the red ginseng produced in this way and then concentrated to produce a red ginseng concentrate.
一方,本発明では上記紅参抽出液又は濃縮液を単独で使用,又は,一つ以上の薬学的に許容される担体,賦形剤又は希釈剤を追加で含ませて,通常の方法で剤形化した後に使用できる。前記「薬学的に許容される」ということは生理学的に許容され,ヒトに投与される際に,通常,胃腸障害,めまいのようなアレルギー反応,又はこれと類似の反応を起こさない組成物をいう。また,上記のように剤形化された本発明の紅参は適切な投与方法を通じて投与できる。適合した投与方法としては経口投与でありうる。 On the other hand, in the present invention, the above red ginseng extract or concentrate is used alone, or one or more pharmaceutically acceptable carriers, excipients or diluents are additionally contained, and the agent is prepared in a usual manner. Can be used after shaping. The term “pharmaceutically acceptable” means a composition that is physiologically acceptable and does not normally cause allergic reactions such as gastrointestinal disorders, dizziness, or similar reactions when administered to humans. Say. In addition, the red ginseng of the present invention formulated as described above can be administered through an appropriate administration method. A suitable method of administration may be oral administration.
望ましくは粉末,顆粒,錠剤,丸剤,糖衣錠剤,カプセル剤,液剤,ゲル剤,スラリー剤,懸濁液などのような経口投与用製剤の形態で当業界に公知の方法を利用して剤形化することができる。例えば,経口用製剤は活性成分を固体賦形剤と配合した後,これを粉砕して適切な補助剤を添加した後,顆粒混合物に加工することによって錠剤又は糖衣錠剤を得ることができる。 Preferably, it is prepared using methods known in the art in the form of preparations for oral administration such as powders, granules, tablets, pills, sugar-coated tablets, capsules, liquids, gels, slurries, suspensions, etc. Can be shaped. For example, an oral preparation can be obtained by blending an active ingredient with a solid excipient, pulverizing it, adding an appropriate adjuvant, and then processing into a granule mixture to obtain a tablet or a sugar-coated tablet.
適合した賦形剤の例えばラクトース,デキストロース,スクロース,ソルビトール,マンニトール,キシリトール,エリスリトール,及びマルチトールなどを含む糖類と,とうもろこしでんぷん,小麦でんぷん,米でんぷん及びじゃがいもでん粉などを含むでん粉類,セルロース,メチルセルロース,カルボキシメチルセルロースナトリウム及びヒドロキシプロピルメチルセルロースなどを含むセルロース類,ゼラチン,ポリビニルピロリドンなどのような充填剤が含まれてもよい。また,場合により架橋結合ポリビニルピロリドン,寒天,アルギン酸又はアルギン酸ナトリウムなどを崩解剤として添加することができる。また,本発明の薬学的組成物は抗凝集剤,潤滑剤,湿潤剤,香料,乳化剤及び防腐剤などをさらに含有してもよい。 Suitable excipients such as lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol and other sugars, corn starch, wheat starch, rice starch and potato starch, cellulose, methylcellulose Fillers such as celluloses including sodium carboxymethylcellulose and hydroxypropylmethylcellulose, gelatin, polyvinylpyrrolidone and the like may be included. In some cases, cross-linked polyvinyl pyrrolidone, agar, alginic acid or sodium alginate can be added as a disintegrant. The pharmaceutical composition of the present invention may further contain an anti-aggregating agent, a lubricant, a wetting agent, a fragrance, an emulsifier, an antiseptic and the like.
また,本発明の薬学的組成物の有効成分である紅参は,市販のものを購入して使用できる。本発明の一実施例ではコリア ジンセン コーポレイションから販売されている紅参粉末カプセルを使用した。 Moreover, the red ginseng which is an active ingredient of the pharmaceutical composition of this invention can purchase and use a commercially available thing. In one embodiment of the present invention, red ginseng powder capsules sold by Korea Ginseng Corporation were used.
本発明の薬学的組成物はほ乳動物,特にヒトを含む動物に投与できる。望ましくは上記HIV−1に感染した患者に有効な量で投与できる。前記「有効な量」というのは試験管内又生体内でHIV−1のnef遺伝子を欠損させるのに効果的な量を指す。 The pharmaceutical composition of the present invention can be administered to mammals, particularly animals including humans. Desirably, it can be administered in an effective amount to patients infected with HIV-1. The “effective amount” refers to an amount effective to delete the nef gene of HIV-1 in vitro or in vivo.
本発明による薬学的組成物の有効量は投与経路,治療回数,治療が必要な個体の年齢,体重,健康状態,性別,疾患の重症度,食餌及び排せつ率など様々な要因を考慮して,当業者が特定用途に伴う適切な有効投与量を決めることができる。望ましくは,本発明の紅参を含む薬学的組成物の有効量は男性の場合50〜100mg/kg/日,女性の場合20〜70mg/kg/日である。 The effective amount of the pharmaceutical composition according to the present invention takes into consideration various factors such as the route of administration, the number of treatments, the age, weight, health status, sex, severity of the disease, diet and excretion rate of the individual in need of treatment, One skilled in the art can determine the appropriate effective dosage for a particular application. Desirably, an effective amount of a pharmaceutical composition comprising red ginseng of the present invention is 50-100 mg / kg / day for men and 20-70 mg / kg / day for women.
本発明の薬学的組成物は個体の診断後にエイズ疾患の進行を遅延させるために持続的に投与することができる。 The pharmaceutical composition of the invention can be administered continuously to delay the progression of AIDS disease after diagnosis of the individual.
一方,本発明で上記5’LTR及び/又はgag遺伝子の欠損は早期成熟停止コドン(premature stop codon)を有すること,開始コドンが欠如することで定義できる。 On the other hand, in the present invention, the 5 'LTR and / or gag gene deficiency can be defined by having an early maturation stop codon and lacking a start codon.
本発明の一実施例では10人のLTSから生成された増幅産物から非メチオニン開始コドン,G‐A超変異(G-to A hypermutation)による早期成熟停止コドン及び小さい欠損等の遺伝的欠陥等を観察した(実施例4)。各患者及び10人のLTS内において欠損,重複又は挿入の大きさは全て異なって現れた。 In one embodiment of the present invention, genetic defects such as a non-methionine start codon, an early maturation stop codon due to GA hypermutation, and a small deletion are generated from amplification products generated from 10 LTSs. Observed (Example 4). The size of the defect, duplication, or insertion all appeared differently in each patient and 10 LTS.
8人の対照群LTSでも,早期成熟停止コドン,非メチオニン開始コドンによる遺伝的欠陥が観察された(図4参照)。 A genetic defect due to the early maturation stop codon and non-methionine start codon was also observed in the 8 control group LTS (see FIG. 4).
望ましくは,本発明の方法によって欠損した5’LTR及び/又はgag遺伝子は,以下の配列で示される。ジェンバンク登録番号EF370172,EF370173,EF370175,EU047612,EF370184,EF370186,EF370187,EF370188,EF370191,EF370192,EF370193,EF370196,EF370197,EF370199,EF370201,EF370200,EF370202,EF370205,EF370207,EF370211,EF370213,EF3702115,EF3702116,EF3702118, EF 370219, EF 370221, EF370223,EF370224,EF370225,EF370226,EF370227,EF370228,EF370231,EF370235,EF370237,EF370239,EU047647,EF370245,EF370250,EF370251,EF370252,EF370253,EF370256,EF370259,EF370262,EF370261,EF370265,DQ295196,EF370275,EF370276,EF370277,EF3702778,EF370279,EF370282,EU047673,EF370283,EF370285,EF370286,EF370287,EF370288,EF370292 Desirably, the 5 'LTR and / or gag gene deleted by the method of the present invention is represented by the following sequence. Genbank registration number EF370172, EF370173, EF370175, EU047612, EF370184, EF370186, EF370187, EF370188, EF370191, EF370192, EF370193, EF3700197, EF37020, E3700201, EF37002, EF37021118, EF370219, EF370221, EF370223, EF370224, EF370225, EF370226, EF370227, EF370228, EF370235, EF370235, EF370237, EF 370239, EU047647, EF370245, EF370250, EF370251, EF370252, EF370253, EF370256, EF370259, EF370262, EF370261, EF370265, DQ295196, EF370275, EF370276, EF370277, EF3702778, EF370279, EF370282, EU047673, EF370283, EF370285, EF370286, EF370287, EF370288, EF370292
前述のように,本発明の薬学的組成物はHIV感染個体に投与することによってHIV−1の5’LTR及び/又はgag遺伝子の欠損をもたらすことができる。したがって,本発明はエイズの予防及び治療に使用できる。 As described above, the pharmaceutical composition of the present invention can cause a deficiency in the 5 'LTR and / or gag gene of HIV-1 when administered to an HIV-infected individual. Therefore, the present invention can be used for the prevention and treatment of AIDS.
以下,本発明を実施例によって詳細に説明する。しかし,下記実施例は本発明を例示するためのものとして,本発明は下記実施例によって限定されることなく様々に修正及び変更できる。 Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are intended to illustrate the present invention, and the present invention can be variously modified and changed without being limited by the following examples.
図1は抗レトロウイルス治療なしに最小限の高麗人参を投与,或いは,高麗人参を投与しなかった8人の対照群LTS(図1k〜図1r)と,最大限の高麗人参を投与した10人のLTS(図1a〜図1j)に対するCD4T細胞数の変化を示す。紅参の投与期間は直線で示す。3つのPCR反応が1つのサンプルを増幅させることに伴い,5’LTR及びgag遺伝子の配列に使用されたサンプル,及び,5’LTR及びgag遺伝子の大規模な欠損を示すサンプルは各々の下方に下側の矢印及び上側の矢印で示された。両グループで,CD4T細胞数は10年に亘って減少した。高麗人参の投与量を除いて二つのグループ間に有意な差はなかった。 FIG. 1 shows administration of a minimum of ginseng without antiretroviral treatment, or 8 control groups LTS (FIGS. 1k to 1r) that did not receive ginseng and a maximum of ginseng. Figure 3 shows the change in CD4 T cell counts relative to human LTS (Figures 1a-1j). The administration period of red ginseng is shown by a straight line. As the three PCR reactions amplify one sample, samples used for 5 'LTR and gag gene sequences and samples showing large-scale deletions of 5' LTR and gag genes are below each Indicated by the lower and upper arrows. In both groups, the number of CD4 T cells decreased over a decade. There was no significant difference between the two groups except for the dose of ginseng.
図2は最も初期に診断された3人のLTSから得られた末梢血単核球での5’LTRとgag配列の分析を示す。1%のアガロースゲルに対する電気泳動によって増幅された生成物が分離された。患者87−05,89−17,90−05由来のPCR生成物はレーン1−10,11−18,19−31各々で発現した。患者87−05は4種の野生型(レーン1,3,6,9)と共に3個の重複バンド(レーン2,7,10)と二つの単一の短バンド(レーン4,8)のように五個の短バンドを有していた。患者89−17は7個の短バンドを示し(レーン11,12,13,14,16−18),この中でレーン14は一つの短バンドであった(14%)。患者90−05は7個の短バンドを示した(レーン19,22,23,24,26,29,30)。その中でレーン22,24,26,29,30は一つの短バンドを示した(71%)(M:マーカー,WT:野生型バンド)。
FIG. 2 shows analysis of 5 'LTR and gag sequences in peripheral blood mononuclear cells obtained from the three LTS diagnosed earliest. The amplified products were separated by electrophoresis on a 1% agarose gel. PCR products from patients 87-05, 89-17, 90-05 were expressed in lanes 1-10, 11-18, 19-31, respectively. Patient 87-05 appears to have 4 wild-types (
図3は3つのグループの大規模な欠損の頻度を比較した棒グラフである。大規模な欠損を表わす末梢血単核球サンプルの比率は他の28人の患者(13.3%)だけでなく9人の対照群LTSの26.7%よりKRGを投与されたLTSでさらに高かった(55%)。その上,大規模な欠損に対する陽性のPCR産物の比率は,高麗人参を投与した10人のLTSにおいて37.6%であり,8人の対照群LTSにおける比率である13.9%,並びに,他の患者28人における比率である8.3%よりも有意に高かった。28人の患者中には患者87−05及び90−50の夫人も含まれた。その上,彼らの一部はHIV−1診断後に10年が経過していないが,LTSになる可能性を有していた。 FIG. 3 is a bar graph comparing the frequency of large-scale defects in the three groups. Peripheral blood mononuclear cell samples representing large defects were further increased in LTS administered KRG from 26.7% of 9 control LTS as well as 28 other patients (13.3%) High (55%). Moreover, the ratio of positive PCR products for large defects is 37.6% in 10 LTSs administered ginseng, 13.9% in 8 control group LTSs, and It was significantly higher than the rate of 8.3% in the other 28 patients. Among the 28 patients were the wife of patients 87-05 and 90-50. Moreover, some of them had the potential to become LTS, although 10 years have not passed since the diagnosis of HIV-1.
図4はHIV−1に感染した10人のLTSの代表的な部分gagタンパク質の予想アミノ酸配列を示す。米国で非進行性患者由来のgagタンパク質の共通アミノ酸配列は一番上の列に示されており(参考文献23),10人のLTSに対する予想配列は下の列に示す。点は配列が同一であることを示し,直線は変異部分以外の部分欠損或いは大規模な欠損を意味する。クエスチョンマークは早期成熟停止コドンを意味する。アミノ酸配列は一つの文字コードで示した。各配列の出処は各患者コード(初めの2桁の数字はHIV診断年度を意味し,ハイフンの後の2桁の数字は韓国で各患者に割り当てられた固有の番号を示す)によって確認された。それぞれのジェンバンク登録番号に対するサンプルの採取日(date of sampling)は図7に示した。図7では,gag遺伝子の欠損を含まない7種の塩基配列は示されなかった。 FIG. 4 shows the predicted amino acid sequence of a representative partial gag protein of 10 LTSs infected with HIV-1. The consensus amino acid sequence of gag proteins from non-progressive patients in the United States is shown in the top row (Ref. 23), and the predicted sequence for 10 LTSs is shown in the bottom row. The dots indicate that the sequences are identical, and the straight line indicates a partial or large deletion other than the mutated portion. The question mark means an early maturation stop codon. The amino acid sequence is indicated by one letter code. The origin of each sequence was confirmed by each patient code (the first two digits indicate the year of HIV diagnosis and the two digits after the hyphen indicate the unique number assigned to each patient in Korea) . The date of sampling for each Genbank registration number is shown in FIG. In FIG. 7, seven types of base sequences not containing the gag gene deletion were not shown.
図5は,HIV−1に感染した18人のLTSの臨床学的特徴を示す表である。去る一年を除いて,LTS中の患者91−20のコンプライアンス(compliance)は患者90−05と共に最も良く,彼らの実際の高麗人参の服用量は個人的な購買によって22,422g以上だった。患者91−22及び患者91−23は患者91−20から提供された血液からHIV−1に感染した。LTS87−05を除いて,全ての患者はHIV−1サブタイプBの韓国サブクレイド(subclade)に感染した。 FIG. 5 is a table showing the clinical characteristics of 18 LTSs infected with HIV-1. Except for the last year, the compliance of patients 91-20 in LTS was the best with patients 90-05, and their actual ginseng dose was over 22,422 g by personal purchase. Patients 91-22 and 91-23 were infected with HIV-1 from blood provided by patient 91-20. With the exception of LTS87-05, all patients were infected with HIV-1 subtype B Korean subclade.
図6は,18人のLTS及び28人の高麗人参の非投与患者に対する5’LTR/gag遺伝子の大規模な欠損の特徴を示す。 FIG. 6 shows the characteristics of a large deletion of the 5 'LTR / gag gene for 18 LTS and 28 ginseng untreated patients.
図7は,nef遺伝子で大規模な欠損と比較して,5’LTR/gag遺伝子の大規模な欠損の頻度を示す。 FIG. 7 shows the frequency of large-scale deletions of the 5'LTR / gag gene compared to large-scale deletions in the nef gene.
実験対象者及びKRGによる治療
研究群は最大値のKRGを摂取した10人のLTS,8人の対照群LTS,及び,KRGを摂取したことがない28人のHIV感染患者で構成された。
Study subjects and treatment with KRG The study group consisted of 10 LTSs that received the maximum KRG, 8 control LTSs, and 28 HIV-infected patients who did not receive KRG.
本研究で10人のLTSは,本発明者の以前の研究で詳しく説明された(参照文献9)。前記10人全員は,1987年から1996年3月までの間に診断され,本研究期間の間,1人の患者(93−04)を除いて,いかなる抗レトロウイルス治療もしなかった。その患者は間歇的にZDV(1日の容量200mg又は300mg)を1993年4月から1997年8月まで投与した。
The 10 LTSs in this study were described in detail in our previous study (Ref. 9). All 10 were diagnosed between 1987 and March 1996 and did not receive any antiretroviral treatment during the study period, with the exception of one patient (93-04). The patient was intermittently administered ZDV (
8人の対照群LTSは本発明者のコホートから選択された。上記対照群LTSに分類された患者らは1996年以前にHIV−1感染が診断され,彼らは非常に強力な抗レトロウイルス薬品による治療をしない状況で最小限の容量(1,526±1,183g)のKRGを投与する,或いは,全くKRGを投与しなかった(患者89−05)。患者91−23のみが1993年4月から1999年8月までZDVを投与された。患者89−05は1997年に他国に行ったため,本発明の研究サンプルから除去した。8人の対照群LTSの中に,LTS91−20から輸血を受けた二人の受血者(患者91−22及び91−23)が追加された。患者89−26と92−23はKRGの摂取を嫌った。患者90−01は血漿を83回売血した血漿提供者であった。その患者は提供者Oと説明された(参照文献21)。したがって,10人の高いKRG摂取LTSと8人の対照群LTSとを比較すると,最も基本的な特徴は似ていた。 The eight control group LTS was selected from our cohort. Patients classified into the above control group LTS were diagnosed with HIV-1 infection before 1996 and they had a minimal dose (1,526 ± 1, 1) in the absence of treatment with very potent antiretroviral drugs. 183g) or no KRG was administered (patients 89-05). Only patients 91-23 were administered ZDV from April 1993 to August 1999. Patient 89-05 went to another country in 1997 and was removed from the study sample of the present invention. Two recipients (patients 91-22 and 91-23) who received blood transfusions from LTS91-20 were added to the 8 control group LTS. Patients 89-26 and 92-23 hated taking KRG. Patient 90-01 was a plasma donor who sold blood plasma 83 times. The patient was described as provider O (Ref. 21). Therefore, comparing the 10 high KRG ingested LTSs with the 8 control LTSs, the most basic features were similar.
言い換えれば,10人のLTSと8人の対照群LTSとの間には基本的な病気の進行率又はCD4T細胞数において大きな差が無く,単にKRGの摂取量にのみ差があった。 In other words, there was no significant difference in basic disease progression rate or CD4 T cell count between 10 LTS and 8 control group LTS, only a difference in KRG intake.
さらに,他の28人の対照群患者を調査した。これら28人中には患者87−05と90−50の夫人も含まれた。これら28人の患者の一部はLTSだった。しかし,彼らは1997年以後に診断されたので,LTSグループに含まれなかった。各参加者から提供された同意書を受理した。 In addition, another 28 control group patients were investigated. Among these 28 were the wife of patients 87-05 and 90-50. Some of these 28 patients were LTS. However, they were diagnosed after 1997 and were not included in the LTS group. The consent form provided by each participant was accepted.
HIV−1感染患者に対するKRGによる治療は,1991年後半に韓国の国立保健院(National Institutes of Health)で始まった(参照文献1,2)。実験に用いたKRGはコリア ジンセン コーポレイションから販売されている紅参粉末カプセルを使用した。各患者へのKRGの一日の投与量は,男性の場合には5.4g(300mgのカプセル6個を一日に3回投与)であり,女性の場合には2.7g(300mgのカプセル3個を一日に3回投与)であった。各患者のKRGの投与期間を図1に示す。
Treatment with HIV-1 infected patients with KRG began in the late 1991 at the National Institutes of Health in Korea (Refs. 1, 2). The KRG used in the experiment was a red ginseng powder capsule sold by Korea Ginseng Corporation. The daily dose of KRG to each patient is 5.4 g (6 300
10人のLTSに投与された紅参の平均量は155±28ヶ月の間に13,364±5,364gであり,8人の対照群LTSでは132±29ヶ月の間に1,436±1,027gであった(図5参照)。10人のLTSと8人の対照群LTSにおいてKRGの年間投与量は各々1,035g及び131gであった。KRGの投与レベルにおける7.9倍の差は統計的に有意である(P<0.001)。 The average amount of red ginseng administered to 10 LTSs was 13,364 ± 5,364 g for 155 ± 28 months, and 1,436 ± 1 for 132 ± 29 months for the 8 control group LTS. , 027 g (see FIG. 5). The annual doses of KRG were 1035 g and 131 g in 10 LTS and 8 control group LTS, respectively. A 7.9-fold difference in the dose level of KRG is statistically significant (P <0.001).
CD4T細胞数と血漿HIV−1RNAコピーレベル
3ヶ月〜6ヶ月間隔で実施例1の各患者から採血を,各サンプルで末梢血単核球細胞(PBMC;peripheralblood mononuclear cells)をフィコエリトリン(PE;phycoerythrin)-及び蛍光イソチオシアネート(FITC;Fluorescein Isothiocyanate)−コンジュゲートされたCD4抗原に対する抗体と共に各々インキュベートした(サイマルテスト試薬(Simultest reagent);ベクトン・ディッキンソン)Becton Dickinson, 米国,カリフォルニア州,サンノゼ)。CD4T細胞のレベルはファクスキャン(FACScan)(ベクトン・ディッキンソン)のフローサイトメーター を利用して測定した。血漿のHIV−1のRNA濃度はアンプリカーHIV−1モニタキット(Amplicor HIV-1 Monitor kit)(ロシェ・ダイアグノスティックス(Roche Diagnostics),米国,ニュージャージー州,ブランチバーグ(Branchburg))で測定された(参照文献7)。
CD4 T cell count and plasma HIV-1 RNA copy level Blood was collected from each patient of Example 1 at intervals of 3 to 6 months, and peripheral blood mononuclear cells (PBMC) were phycoerythrin (PE) in each sample. -And Fluorescein Isothiocyanate (FITC)-each incubated with antibodies to conjugated CD4 antigen (Simultest reagent; Becton Dickinson, Becton Dickinson, San Jose, CA, USA). CD4 T cell levels were measured using a FACScan (Becton Dickinson) flow cytometer. Plasma HIV-1 RNA levels are measured with the Amplicor HIV-1 Monitor kit (Roche Diagnostics, Branchburg, NJ, USA). (Reference 7).
CD4T細胞数は紅参を摂取した10人のLTSと8人の対照群LTSで毎月6ヶ月目で測定され,その結果は図1に示すものと同様である。 The number of CD4 T cells was measured at the 6th month every month with 10 LTSs taking red ginseng and 8 control group LTSs, and the results are the same as those shown in FIG.
最大限の紅参の投与による治療を受けた10人のLTSのCD4T細胞数は,168±29月後の最初の測定において,555±208/μlから245±160/μlへと大幅に減少した(年間22/μlの減少,図1a〜図1j参照)。また,8人の対照群LTSのCD4T細胞数は,132±29月後の最初の測定において,574±222/μlから353±297/μlへと減少した(年間20/μlの減少,図1k〜図1r参照)。 The number of CD4 T cells in 10 LTS treated with maximal red ginseng administration decreased significantly from 555 ± 208 / μl to 245 ± 160 / μl in the first measurement after 168 ± 29 months (Decrease of 22 / μl per year, see FIGS. 1a-1j). Also, the number of CD4 T cells in the 8 control group LTS decreased from 574 ± 222 / μl to 353 ± 297 / μl in the first measurement after 132 ± 29 months (20 / μl decrease per year, FIG. 1k). To FIG. 1r).
両グループ全てで,CD4T細胞は10年に亘って,同様の形態で減少したことを確認できた。 In both groups, CD4 T cells were confirmed to have decreased in a similar manner over a 10 year period.
部分的5’LTR部位とgag遺伝子の増幅
実施例2で収得したインキュベートされなかったPBMCsからプロウイルスDNAを抽出した。ファーストラウンド(first round)プライマーCE23(5’−tgtggatcta ccacacacaa ggctactt−3’;46〜73;配列番号1)及び514(5’−tccagaatgc tggtagggta tac−3’;1,617〜1,640;配列番号2),セカンドラウンド(second round)プライマーCE1(5’−cgagagctgc atccggagta cta−3’;297〜319;配列番号3)及び512(5’−ctgcagcttc ctcattgatg gtc−3’;1,398〜1,420;配列番号4)及びサードラウンド(third round)プライマー501(5’−gtgtggcctg ggcgggactg−3’;380〜399;配列番号5)及び510(5’−gatgtaccat ttgcccctgg a−3’;1,202〜1,222;配列番号6)を利用したダブル−(稀にはトリプル−)ネステッドPCRによって,297番〜1,421番(ここでのナンバリングは,HIV NL4−3の配列に由来する)の1,125bpのPCR産物が各サンプルから増幅された(上記297番〜1,421番の位置は部分的5’LTR領域とgag遺伝子を代表する部分である)。
Amplification of partial 5 ′ LTR sites and the gag gene Proviral DNA was extracted from unincubated PBMCs obtained in Example 2. First round primers CE23 (5′-tgtggatta cccacacaa gggctactt-3 ′; 46-73; SEQ ID NO: 1) and 514 (5′-tccagaatgc tggtaggggta tac-3 ′; 1,617-1,640; SEQ ID NO: 2), second round primer CE1 (5′-cgagagctgc atccggagta cta-3 ′; 297 to 319; SEQ ID NO: 3) and 512 (5′-ctgcaggtc ctcattgatg gtc-3 ′; 1,398 to 1,420 SEQ ID NO: 4) and third round primer 501 (5′-gtgtggccctg ggcgggactg-3 ′; 380-399; SEQ ID NO: 5) and 510 (5′-gagtgtcatt ttgcccc No. 297 to 1,421 (numbering here is HIV NL4) by double- (rarely triple-) nested PCR using gg a-3 ′; 1202-1, 222; SEQ ID NO: 6). 1,125 bp PCR product (derived from the sequence of -3) was amplified from each sample (
陰性対照群を含む最高で4つのPCR反応は,あらゆるサンプルで一度に実施され,一方,(陰性対照群を含む)合計5つのPCR反応がnef遺伝子を増幅するために使用される。PCR産物を精製して直ちにシークエンシングした。PCR汚染の有無はBLAST検索,マニュアル整列によるアミノ酸コドン比較及び系統分析の各手続きによりPCR産物の物理的分離によってモニターした。 A maximum of 4 PCR reactions including the negative control group are performed at once on every sample, while a total of 5 PCR reactions (including the negative control group) are used to amplify the nef gene. The PCR product was purified and immediately sequenced. The presence or absence of PCR contamination was monitored by physical separation of PCR products by BLAST search, amino acid codon comparison by manual alignment, and phylogenetic analysis.
実験結果は平均±標準偏差で示した。統計の有意性はSPSSパッケージ(バージョン12.0)(SPSS package version 12.0)を使用してスチューデントの両側t検定(Student’s two-tailed t-test)及びカイ二乗検定によって評価された。 The experimental results are shown as mean ± standard deviation. Statistical significance was evaluated by Student's two-tailed t-test and chi-square test using SPSS package version 12.0.
実験結果
それぞれ異なった時点で10人のLTSから回収したPMBCサンプル80個から,189個のPCR産物を増幅した(図1a〜図1j参照)。多くの時点で10人のLTS全員が5’LTR/gag遺伝子領域でgΔを示した(図1参照)。80個のサンプル中44個(55%)で欠損が観察された(図2参照)。189個のPCR産物中で,71個(37.6%)がgΔを示した。これらの中で,23個(32.4%)の増幅は野生型遺伝子無しで単に一つの短バンドを示した。71個のgΔの特徴を図7に要約して示す。
Experimental Results 189 PCR products were amplified from 80 PMBC samples collected from 10 LTS at different time points (see FIGS. 1a to 1j). At many time points all 10 LTSs showed gΔ in the 5 ′ LTR / gag gene region (see FIG. 1). Defects were observed in 44 out of 80 samples (55%) (see FIG. 2). Of 189 PCR products, 71 (37.6%) showed gΔ. Of these, 23 (32.4%) amplifications showed only one short band without the wild type gene. The characteristics of 71 gΔ are summarized in FIG.
5個のPCR産物(2007年1月に患者87−05,2001年7月に患者89−17,1993年10月に患者90−05,及び2006年2月及び2004年5月に患者92−13から得る)と2個のPCR産物(1993年10月に患者90−05からΔ86bp及び2006年に患者90−50からΔ420bp)は単に5’LTR部位内又はgag遺伝子内でgΔを各々含んでいた(表3)。残存したPCR産物における欠損は,5'LTRの両側末端領域(少なくとも位置753を含む;Δ37bp)とgag遺伝子の開始部分(HIV−1 NL43における位置818のΔ29bp)に位置する。換言すれば,欠損はgag遺伝子開始コドンの近傍で66bp以上だった。
Five PCR products (patient 87-05 in January 2007, patient 89-17 in July 2001, patient 90-05 in October 1993, and patient 92- in February 2006 and May 2004) 13) and two PCR products (patient 90-05 to Δ86 bp in October 1993 and patient 90-50 to Δ420 bp in October 1993) simply contain gΔ in the 5 ′ LTR site or in the gag gene, respectively. (Table 3). The defect in the remaining PCR product is located in the bilateral terminal region of the 5 ′ LTR (including at least
したがって,5’LTR領域でgΔの比率は36.5%(69/189)であり,gag遺伝子に基づいたgΔ比率は34.9%(66/189)であった。これは,KRGの投与がgag遺伝子よりも5’LTRに影響を与えたことを示す。 Therefore, the ratio of gΔ in the 5 ′ LTR region was 36.5% (69/189), and the gΔ ratio based on the gag gene was 34.9% (66/189). This indicates that the administration of KRG affected the 5 'LTR rather than the gag gene.
サンプルが入手できなかった患者91−20,及び,93−60は別にして,KRG摂取開始後の5’LT領域及びgag領域におけるgΔの最初の検出は,nef遺伝子の欠損の最初の検出よりも早かった(参照文献9)。gΔの最初の検出に対するKRG摂取開始からの中位時間は,26ヵ月(19〜101ヵ月の範囲)であった。これは,nef遺伝子において欠損の検出に要する時間よりもかなり短かった(参照文献9)。 Aside from patients 91-20 and 93-60 for which samples were not available, the first detection of gΔ in the 5 ′ LT region and the gag region after the start of KRG ingestion is more likely than the first detection of a nef gene deficiency. Was also early (Reference 9). The median time from the start of KRG ingestion for the first detection of gΔ was 26 months (range 19-101 months). This was much shorter than the time required to detect the defect in the nef gene (Reference 9).
患者87−05は移入されて混入した凝固因子9から由来したC型肝炎ウイルス(HCV)及びHIV−1サブタイプBに同時感染した。この患者には1994年6月にKRGの投与が開始された。全ての増幅物で9bpの小さい欠損があったが,10人のLTS中で,唯一gΔnefを示さなかった(参照文献9)。驚くべきことに,本発明者は1997年4月に得られた最も初期に使用したサンプルでgΔを観察し,12個のサンプル中4個から得られた36個のPCR産物から全7個のgΔを観察した(図1a〜図1j,図5参照)。この患者は2007年4月からはエイズに関連した症状を示さなかった。この症例は,抗レトロウイルス治療法を実施せずに20年以上生存した,韓国における最初の症例に該当する。
Patient 87-05 was co-infected with hepatitis C virus (HCV) and HIV-1 subtype B derived from introduced and contaminated
患者89−17へは1991年12月にKRGの投与が開始された。そして投与に対するコンプライアンスは一貫していなかった。1993年7月に報告された一つのgΔは非常に例外的だった。なぜなら,Δ917bpの欠損がpol遺伝子の474bp(逆方向に,NL4−3の4296bpから4037bp)及びgag遺伝子の末端部分(2029bpから1838bp)に置換されたためである。この患者には2002年2月にHAARTが開始され,CD4T細胞数は,2007年4月には513/μlであった。 Administration of KRG was started in December 1991 for patients 89-17. And compliance with dosing was not consistent. One gΔ reported in July 1993 was very exceptional. This is because the deletion of Δ917 bp was replaced with 474 bp of the pol gene (in the reverse direction, 4296 bp to 4037 bp of NL4-3) and the terminal part of the gag gene (2029 bp to 1838 bp). The patient started HAART in February 2002 and had a CD4 T cell count of 513 / μl in April 2007.
患者90−05は1990年2月にHIV−1感染と診断され,1991年12月にKRGの摂取を開始した。上記患者は本研究でKRGによる治療に対し最も優秀なコンプライアンスを示した。21,522gのKRGの供給と共に,上記患者自ら個人的に所持したKRGを摂取した。KRGの一日の服用量は95%のコンプライアンスで6.0g(300mgのカプセル10個を1日2回)であった。gΔの最初の検出は,KRG治療の開始から111ヵ月後(合計12,012gが摂取された)の2001年1月におけるgΔnefの最初の検出よりも87ヵ月早かった。gΔの例と残り7人のLTSに対する詳しい情報は図1及び図6に示す。 Patient 90-05 was diagnosed with HIV-1 infection in February 1990 and started taking KRG in December 1991. The patients showed the best compliance for treatment with KRG in this study. Along with the supply of 21,522 g of KRG, the patient himself took the KRG he had personally. The daily dose of KRG was 6.0 g (10 300 mg capsules twice a day) with 95% compliance. The first detection of gΔ was 87 months earlier than the first detection of gΔnef in January 2001, 111 months after the start of KRG treatment (a total of 12,012 g was ingested). Detailed information on the gΔ example and the remaining seven LTSs is shown in FIGS.
また,追加的に8人の対照群LTSから回収した33個のPBMCサンプルから88個のPCR産物を増幅した。13個のgΔ(増幅されたものの内の14.8%)は10個のPBMCサンプルに存在した(全体の30.3%)。10人のLTSは8人の対照群LTSよりPBMCサンプルとPCT産物全てでgΔの著しく高い比率を含んだ(前者の場合はP<0.05,後者の場合はP<0.0001)(図3参照)。 In addition, 88 PCR products were amplified from 33 PBMC samples collected from 8 control group LTS. Thirteen gΔ (14.8% of the amplified) were present in 10 PBMC samples (30.3% of the total). Ten LTSs contained significantly higher ratios of gΔ in the PBMC samples and all PCT products than the eight control LTSs (P <0.05 for the former, P <0.0001 for the latter) (FIG. 3).
また,KRGを投与しなかった28人の患者から臨床学的段階に関係なく得られた30個のPBMCサンプルから60個のPCR産物を増幅した。5個のgΔ(増幅されたものの内の8.3%)は4個のPBMCで存在した(全体の13.3%)。 In addition, 60 PCR products were amplified from 30 PBMC samples obtained from 28 patients who did not receive KRG regardless of clinical stage. Five gΔ (8.3% of the amplified) were present in 4 PBMCs (13.3% of total).
遺伝的欠陥と小さい欠損
大規模な欠損の他にも,本発明者らは非メチオニン開始コドン,G‐A超変異(hypermutation)による早期成熟停止コドン及び小さい欠損のような遺伝的欠陥を観察した。10人のLTSの中で,患者87−05は4個の配列(EU047601,EU047605,EU047607,EU047609)で早期成熟停止コドンを有しており,患者89−17も早期成熟停止コドン及び,開始コドン(ジェンバンク登録番号EF370193)としてイソロイシンを有した。患者90−18はgag遺伝子で6bpの挿入を有しており,患者92−13は102bp(ジェンバンク EF370252)の二つの重複(duplications)と,5’LTR領域に159bpの欠損,及び,G‐A超変異(ジェンバンク EF370256)を有しており,327と328との部分(ジェンバンク EF370258)間にも6bpの挿入を有していた(図4参照)。
Genetic defects and small defects In addition to large defects, we observed genetic defects such as non-methionine start codon, early mature stop codon due to GA hypermutation, and small defects. . Among the 10 LTSs, patient 87-05 has an early maturation stop codon with 4 sequences (EU047601, EU047605, EU047607, EU047609), and patient 89-17 also has an early maturation stop codon and an initiation codon. It had isoleucine as (Genbank registration number EF370193). Patient 90-18 has a 6 bp insertion in the gag gene, patient 92-13 has two duplications of 102 bp (Genbank EF370252), a 159 bp deletion in the 5 'LTR region, and G- It had an A hypermutation (Genbank EF370256), and also had a 6 bp insertion between 327 and 328 (Genbank EF370258) (see FIG. 4).
8人の対照群LTSの内,患者91−22は早期成熟停止コドン又は3個の配列(ジェンバンク EF370314,EU047654,そしてEU047655)で開始コドンとしてイソロイシンを有していた。患者89−26は1個の配列(EU047635)で2つの早期成熟停止コドンを有していた。 Of the 8 control LTS patients 91-22 had an early mature stop codon or 3 sequences (Genbank EF370314, EU047654, and EU047655) with isoleucine as the start codon. Patient 89-26 had two early mature stop codons in one sequence (EU047635).
CD4T細胞数に従う大規模な欠損の頻度
本発明者はCD4T細胞数に従う大規模な欠損の頻度を分析した。10人のLTSのPCR増幅産物をCD4T細胞数200/μl以下,200〜400/μl,400/μl以上でグループを作った。KRGを投与した10人のLTSで大規模な欠損の頻度は47.4%(9/19),51.8%(14/27)及び61.8%(21/34)で現れ,これはCD4T細胞数に対する若干の依存性を示すことができる。しかし,8人の対照群LTSでは大規模な欠損比率は44.4%(4/9),20%(4/20),50%(2/4)であり,また,KRGを投与しなかった28人のHIV−1陽性患者は18.2%(2/11),14.3%(1/7),8.3%(1/12)であった。
Frequency of large-scale defects according to the number of CD4 T cells The present inventor analyzed the frequency of large-scale defects according to the number of CD4 T cells. PCR amplification products of 10 LTSs were grouped at a CD4 T cell count of 200 / μl or less, 200 to 400 / μl, or 400 / μl or more. The frequency of large deficits in 10 LTSs administered KRG appeared in 47.4% (9/19), 51.8% (14/27) and 61.8% (21/34), Some dependence on the number of CD4 T cells can be shown. However, in the 8 control group LTS, the large deficiency ratio was 44.4% (4/9), 20% (4/20), 50% (2/4), and KRG was not administered. The 28 HIV-1 positive patients were 18.2% (2/11), 14.3% (1/7), and 8.3% (1/12).
考察
本発明者は韓国でLTS又はLTNPの健康に持続的な関心を持っており,その結果,韓国国民において,有益な宿主因子,例えばCCR5又はHLA−B57におけるΔ32bpが存在しないにもかかわらず,本発明者は1993年12月31から診断された323人のHIV−1感染患者の中で多くのLTSを観察することができた。
DISCUSSION The present inventor has a persistent interest in the health of LTS or LTNP in Korea, and as a result, despite the absence of beneficial host factors such as CCR5 or Δ32bp in HLA-B57 in Korean people, The inventor was able to observe many LTSs in 323 HIV-1 infected patients diagnosed from December 31, 1993.
より具体的には,1987年に韓国で9人がHIV−1感染患者と診断され,その内の3人の患者はまだ生存しており,この3人全員がKRGの投与を一つの治療法又はHAARTと並行して行ってきた。LTS87−05はこれら患者の内の1人として,1996年6月以後にKRGを摂取してきた(図1a参照)。これら患者の内の他の2人はHAARTをKRGの投与と共に1998年から1999年まで受け,彼らのCD4T細胞数は1998年には231/μl,1999年には6/μl,2004年12月には1,052/μlに,2006年には1,127/μlに各々増加した。 More specifically, nine people were diagnosed with HIV-1 infection in Korea in 1987, and three of them were still alive, and all three of them received KRG as a treatment. Or it went in parallel with HAART. LTS87-05 has been taking KRG as one of these patients since June 1996 (see FIG. 1a). The other two of these patients received HAART with administration of KRG from 1998 to 1999, and their CD4 T cell count was 231 / μl in 1998, 6 / μl in 1999, December 2004 Increased to 1,052 / μl and in 2006 to 1,127 / μl.
また,1988年には22人がHIV−1患者として診断され,KRGの投与により治療してきた2人の患者(9%)のみが生存している。患者のHIV−1サブタイプがCRF02_AGであるため,この患者は本発明の研究に含まれなかったが,上記患者はCD4T細胞数が500/μl以上のLTNPに分類された。1997年以降診断された多くの患者は,KRGの投与と共にHAARTを受け,薬剤耐性突然変異が欠如していることを示す。これらの患者は,併用療法に驚くほど良好な反応を示した。 In 1988, 22 people were diagnosed as HIV-1 patients, and only 2 patients (9%) who had been treated with KRG were alive. Since the patient's HIV-1 subtype was CRF02_AG, this patient was not included in the study of the present invention, but the patient was classified as LTNP with a CD4 T cell count of 500 / μl or more. Many patients diagnosed since 1997 receive HAART with KRG administration, indicating a lack of drug resistance mutations. These patients responded surprisingly well to the combination therapy.
本発明者は以前行った研究を通じて,HIV−1感染患者のKRGによる治療がnef遺伝子の大規模な欠損(参照文献9)の高い頻度と関連があり,病の進行が遅くなると報告した(参照文献1,8)。
Through previous studies, the present inventor has reported that treatment with HIV-1 infected patients with KRG is associated with a high frequency of large-scale deletions of the nef gene (Ref. 9) and slows disease progression (see
本発明では,各サンプルから3個のPCR産物を増幅したところ,これはnef遺伝子から増幅された4個のPCR産物より少ない(参照文献9)にもかかわらず,本発明者は同じ10人のLTSで,nef欠損(サンプルの34.3%とPCR産物の18.8%)(参照文献9)と比較して,大規模な欠損(サンプルの55%,PCR産物の37.6%)のさらに高い頻度を観察することができた(P<0.0001)。5'LTR/gagの欠損の頻度はnef遺伝子の欠損で確認された頻度よりも1.6倍及び2.0倍高かった。全体で80個のサンプルの内,61個は以前にnef遺伝子増幅にも適用されたことがあり,上記61個のサンプルの内,13個(21.3%)は2つの遺伝子全てで大規模な欠損を示した。特に,患者87−05,89−17,90−05,90−50,96−51はnef遺伝子より,5’LTR/gag遺伝子で有意にさらに高い大規模な欠損頻度を示した(P<0.05)(図5参照)。また,大規模な欠損を示したサンプルの比率はKRGによる治療を受けた10人のLTSで37.6%確認され,これは,8人の対照群LTS(14.8%)及び28人のHIV−1感染患者(8.3%)の場合より有意にさらに高かった。さらに,本発明で8人の対照群LTS又は他の28人の患者のどのグループの場合にも大規模な欠損の頻度とCD4T細胞数との間にいかなる関連がないことを確認した(実施例5)。このような発見によって,大規模な欠損とKRGの摂取との間の関係が証明される。 In the present invention, three PCR products were amplified from each sample. Although this was less than four PCR products amplified from the nef gene (Reference 9), the present inventor In LTS, compared to nef deficiency (34.3% of the sample and 18.8% of the PCR product) (Ref. 9), there was a large deficiency (55% of the sample, 37.6% of the PCR product). A higher frequency could be observed (P <0.0001). The frequency of 5 ′ LTR / gag deletion was 1.6 and 2.0 times higher than the frequency confirmed for the nef gene deletion. Of the 80 samples in total, 61 have previously been applied to nef gene amplification, and 13 of the 61 samples (21.3%) are large in all 2 genes. Showed a deficiency. In particular, patients 87-05, 89-17, 90-05, 90-50, and 96-51 showed a large deletion frequency significantly higher in the 5 ′ LTR / gag gene than in the nef gene (P <0). .05) (see FIG. 5). Also, the proportion of samples that showed large deficits was confirmed in 37.6% in 10 LTS treated with KRG, which included 8 control LTS (14.8%) and 28 Significantly higher than in HIV-1 infected patients (8.3%). Furthermore, the present invention has confirmed that there is no association between the frequency of large defects and the number of CD4 T cells in any group of 8 control LTS or other 28 patients (Examples). 5). Such findings prove a relationship between large-scale deficits and KRG intake.
さらに,gΔとKRGの摂取との関連性は,8人のLTS対照群又は別の28人の患者においてgΔsの頻度とCD4T細胞数との間に関連性が無いことを発見したことによっても支持される。この知見は,10人のLTSのCD4T細胞に対する中程度の依存性との良好な対比を示す。KRGによる治療を行った10人のLTSの中でも,安定した良好な付着性を有する患者87−05,90−05,92−13,96−51はCD4T体細胞数を維持し,一方,過去1〜2年の間に良好な付着性を示さなかった患者90−50,91−20,93−60は,CD4T細胞数の急激な減少を示した。この結果に基づき,CD4T細胞の減少は,すでに患者89−18及び,90−18において示された。あらゆるエイズ関連の症状が無く10年以上が経過すると,多くの患者は,KRGの投与を怠る,或いは健康状態に注意を払わなくなる傾向がある。 Furthermore, the association between gΔ and KRG intake was supported by the discovery that there was no association between gΔs frequency and CD4 T cell count in 8 LTS control groups or another 28 patients. Is done. This finding shows a good contrast with the moderate dependence of 10 LTSs on CD4 T cells. Among 10 LTSs treated with KRG, patients 87-05, 90-05, 92-13, 96-51 with stable and good adhesion maintained the CD4T somatic cell count, while the past 1 Patients 90-50, 91-20, 93-60 who did not show good adherence during ~ 2 years showed a sharp decrease in the number of CD4 T cells. Based on this result, a decrease in CD4 T cells has already been shown in patients 89-18 and 90-18. After more than 10 years without any AIDS-related symptoms, many patients tend to fail to take KRG or pay attention to their health.
幾つかの論文において,LTNPにおけるウイルス配列の全長の遺伝子の特徴が発表されている。アレクサンダー(Alexander)他(参照文献22)は,nef遺伝子以外に他の遺伝子で欠陥を発見できず,早期成熟停止コドン,アウト−オブ−フレーム欠損(out-of-frame deletions)及び全体欠損を発見した。通常でない多形性(polymorphism)とnef遺伝子の大規模な欠損は8人のLTNPから発現した。また,フアン(Huang)他(参照文献23,24)は,8人のLTSから5’LTR及びgag遺伝子において遺伝的欠陥を報告した。この研究でウイルス配列の全体が得られ,一人の患者のみに,5’LTRとgag遺伝子においてG‐A超変異が発現した。最近,カルギ(Calugi)他はenv遺伝子(nef遺伝子のそばに位置する遺伝子)で大規模な欠損を確認した(参照文献25)。ブラックソン(Blankson)他(参照文献26)は,50コピー/mL未満の血漿RNAのウイルス量を有する,抑制因子におけるHIV−1全長の塩基配列においてもいかなる大規模な欠損は観察できなかった。 Several papers have published features of the full-length viral sequence in LTNP. Alexander et al. (Reference 22) failed to find defects in other genes besides the nef gene, but found early maturation stop codons, out-of-frame deletions, and global defects. did. Unusual polymorphism and a large deficiency in the nef gene were expressed in 8 LTNPs. Huang et al. (References 23, 24) also reported genetic defects in the 5 'LTR and gag genes from 8 LTSs. This study yielded the entire viral sequence, and only one patient expressed GA hypermutation in the 5'LTR and gag genes. Recently, Calugi et al. Confirmed a large-scale deficiency in the env gene (a gene located beside the nef gene) (Reference 25). Blankson et al. (Ref. 26) did not observe any large-scale deletions in the full-length HIV-1 nucleotide sequence of the suppressor with viral load of plasma RNA of less than 50 copies / mL.
HIV−1遺伝子の発現は,TATAボックスと,転写因子NF−κB及びSp1(参照文献27)の結合部位とを含むLTRにおいて幾つかの非常に高く保存されたシス作用調節要素(cis-acting regulatory elements)によって調整される。ある成分がNF−κBとAp−1転写因子活性をヒト細胞株で抑制することが知られている(参照文献28)。LTR領域はHIV−1の他の部分よりKRGの摂取によって,影響を受けることが可能である。 The expression of the HIV-1 gene is expressed in several very highly conserved cis-acting regulatory elements in the LTR that contain the TATA box and the binding sites of transcription factors NF-κB and Sp1 (ref. 27). elements). Certain components are known to suppress NF-κB and Ap-1 transcription factor activity in human cell lines (Ref. 28). The LTR region can be affected by KRG intake from other parts of HIV-1.
本発明において,5’LTRの大規模な欠損は患者87−05(nef遺伝子の大規模な欠損を示さなかった)を含む10人のLTSで観察された。さらに,観察された大規模な欠損の各々のサイズは大きいが,遺伝子内で単一部位にのみ位置していた。本発明者らは6人のLTS(患者90−05,90−18,90−50,91−20,92−13及び96−51)からenv遺伝子大規模な欠損(>1,000bp)をHIV−1全体の長さ塩基配列が得られた時に確認した(データ図示せず)。 In the present invention, a large 5 'LTR deficiency was observed in 10 LTSs, including patient 87-05 (which did not show a large deficiency in the nef gene). In addition, the size of each of the large defects observed was large, but located only at a single site within the gene. We have obtained a large env gene deletion (> 1,000 bp) from 6 LTS (patients 90-05, 90-18, 90-50, 91-20, 92-13 and 96-51) HIV. -1 Confirmation was made when the entire length base sequence was obtained (data not shown).
したがって,KRGの摂取と遺伝的欠陥との間の関係なしで,本発明の観察は単に本発明の研究で観察された様々な有益な要素の中の一つの発見に過ぎなくても,本発明の結果は5’LTR領域とgag領域における大規模な欠損が,HIV疾病の進行率と有意に関係があるという一次的証拠を提供している(参照文献1〜9)。ウィルス遺伝子欠損は,どのようにLTS又はLTNPに貢献するかについての可能なメカニズムに関して,我々は,遺伝子欠損がKRGの摂取による免疫調整の間接的な結果ではないかと考える。KRGがTh1サイトカインを通じた細胞媒介性免疫反応を媒介して(参照文献29〜32),HIV−1感染で全般的な免疫活性状態(generalized immune activation state)を抑制することがよく知られている。それにもかかわらず,KRGを投与しないLTSが相変らずHIVに感染した他の28人の患者よりさらに高い5’LTR/gag欠損を有するということは,KRGの摂取が唯一の要素ではないと考えられる。このような知見は,LTS又はLNTPの延命にとって,KRGによって誘導された遺伝的欠損が重要であることを裏付ける。 Thus, without a relationship between KRG intake and genetic defects, the observations of the present invention are not merely a discovery among the various beneficial elements observed in the present study, but the present invention. The results provide primary evidence that large-scale deletions in the 5 ′ LTR region and the gag region are significantly associated with the rate of progression of HIV disease (references 1-9). Regarding possible mechanisms for how viral gene deficiency contributes to LTS or LTNP, we consider that gene deficiency may be an indirect result of immune modulation by ingestion of KRG. It is well known that KRG mediates cell-mediated immune responses through Th1 cytokines (refs. 29-32) and suppresses the generalized immune activation state in HIV-1 infection. . Nonetheless, LTS without KRG still has a higher 5 'LTR / gag deficiency than the other 28 patients infected with HIV, which suggests that KRG intake is not the only factor It is done. Such findings support the importance of genetic defects induced by KRG for the survival of LTS or LNTP.
塩基配列データ
全336塩基配列の内,178個がジェンバンクに提出され,ジェンバンク登録番号EF370172〜EF370349,EU047600〜EU047667,EU047670〜EU047676及びEU047681〜EU047693が付与された。
Base Sequence Data Of the total 336 base sequences, 178 were submitted to Genbank, and Genbank registration numbers EF370172 to EF370349, EU047600 to EU047667, EU047670 to EU047676 and EU047681 to EU047693 were assigned.
詳述したように,本発明の薬学的組成物はHIV感染個体に投与することによってHIV−1の5’LTR及び/又はgag遺伝子での欠損を誘導することができる。したがって,本発明はエイズの予防及び治療に役立つよう使用できる。 As described in detail, the pharmaceutical composition of the present invention can induce a deficiency in HIV-1 5 'LTR and / or gag gene by administration to an HIV-infected individual. Thus, the present invention can be used to help prevent and treat AIDS.
参考文献
1. Cho YK, Kim YK, Lee I, Choi MH, and Shin YO: The effect of Korean red ginseng (KRG), zidovudine (ZDV), and the combination of KRG and ZDV on HIV-infected patients. J Korean Soc Microbiol 1996; 31:353-360.
2. Cho YK, Lee HJ, Kim YB, Oh WI, and Kim YK: Sequence analysis of C2/V3 region of human immunodeficiency virus type 1 gp120 and its correlation with clinical significance; the effect of long-term intake of KRG on env gene variation. J Korean Soc Microbiol 1997; 32:611-623.
3. Cho YK, Lee HJ, and Desrosiers RC: Complete sequences of HIV-1 in a Korean longterm nonprogressor with HIV-1 infection. J Korean Soc Microbiol 1999; 29:107-118.
4. Cho YK, Sung H, Kim TK, Lim J, Jung YS, and Kang SM: KRG significantly slows CD4 T cell depletion over 10 years in HIV-1 infected patients: association with HLA. J Ginseng Res 2004; 28:173-182.
5. Cho YK, Sung H, Ahn SH, Bae IG, Woo JH, Won YH, et al.: High frequency of mutations conferring resistance to nucleoside reverse transcriptase inhibitors in human immunodeficiency virus type-1 infected patients in Korea. J Clin Microbiol 2002;40:1319-1325.
6. Cho YK, Sung H, Lee HJ, Joo CH, and Cho GJ: Long-term intake of KRG in HIV-1-infected patients: development of resistance mutation to zidovudine is delayed. Int Immunopharmacol 2001; 1:1295-1305.
7. Sung H, Jung YS, Kang MW, Bae IG, Chang HH, Chang MS, et al.: High frequency of drug resistance mutations in human immunodeficiency virus type 1-infected Korean patients treated with HAART. (In press), AIDS Res Hum Retroviruses.
8. Sung H, Kang SM, Lee MS, Kim TG, and Cho YK: KRG slows depletion of CD4 T cells in human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol 2005; 12:497-501.
9. Cho YK, Lim JY, Jung YS, Oh SK, Lee HJ, and Sung H: High frequency of grossly deleted nef genes in HIV-1 infected longterm survivor streated with Korean red ginseng. Curr HIV Res 2006; 4:457-467.
10. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, and Desrosiers RC: Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 1995; 332:228-232.
11. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, et al.: Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 1995; 270:988-991.
12. Mariani R, Kirchhoff F, Greenough TC, Sullivan JL, Desrosiers RC, and Skowronski J: High frequency of defective nef alleles in a long-term survivor with nonprogressive human immunodeficiency virus type 1 infection. J Virol 1996; 70:7752-7764.
13. Salvi R, Garbuglia AR, Di Caro A, Pulciani S, Montella F, and Benedetto A: Grossly defective nef gene sequences in a human immunodeficiency virus type 1-seropositive long-term nonprogressor. J Virol 1998; 72:3646-3657.
14. Brambilla A, Turchetto L, Gatti A, Bovolenta C, Veglia F, Santagostino E, et al.: Defective nef alleles in a cohort of hemophiliacs with progressing and nonprogressing HIV-1 infection. Virology 1999; 259:349-368.
15. Rhodes DI, Ashton L, Solomon A, Carr A, Cooper D, Kaldor J, et al.: Characterization of three nef-defective human immunodeficiency virus type 1 strains associated with long-term nonprogression. Australian Long-Term Nonprogressor Study Group. J Virol 2000: 74:10581-10588.
16. Foster JL, Molina RP, Luo T, Arora VK, Huang Y, Ho DD, et al.: Genetic and functional diversity of human immunodeficiency virus type 1 subtype B Nef primary isolates. J Virol 2001; 75:1672-1680.
17. Casartelli N, Di Matteo G, Argentini C, Cancrini C, Bernardi S, Castelli G, et al.: Structural defects and variations in the HIV-1 nef gene from rapid, slow and nonprogressor children. AIDS 2003; 17:1291-301.
18. Rodes B, Toro C, Paxinos E, Poveda E, Martinez-Padial M, Benito JM, et al.: Differences in disease progression in a cohort of long-term non-progressors after more than 16 years of HIV-1 infection. AIDS 2004; 18:1109-1115.
19. McCormack GP, Glynn JR, Clewley JP, Crampin AC, Travers SA, Redmond N, et al.: Emergence of a three codon deletion in gag p17 in HIV type 1 subtype C long-term survivors, and general population spread. AIDS Res Hum Retroviruses 2006; 22:195-201.
20. Copeland KF, Chen Z, Fiebig M, Ni L, Savoy S, Smaill FM, et al.: Identification of mutations in proviral long terminal repeats of HIV type 1-infected subjects naive to drug therapy. AIDS Res Hum Retroviruses 2004; 20:1019-1021.
21. Cho YK, Foley BT, Sung H, Kim YB, and Kim JH: Molecular epidemiologic study of an HIV-1 outbreak in hemophiliacs B infected through clotting factor 9 after 1990. Vox Sanguinis. 2007; 42:113-120,
22. Alexander L, Weiskopf E, Greenough TC, Gaddis NC, Auerbach MR, Malim M H, et al.: Unusual polymorphisms in human immunodeficiency virus type 1 associated with nonprogressive infection. J Virol 2000; 74:4361-4376.
23. Zhang L, Huang Y, Yuan H, Chen BK, Ip J, and Ho DD: Genotypic and phenotypic characterization of long terminal repeat sequences from long-term survivors of human immunodeficiency virus type 1 infection. J Virol 1997;71:5608-5613.
24. Huang Y, Zhang L, and Ho DD: Characterization of gag and pol sequences from longterm survivors of human immunodeficiency virus type 1 infection. Virology 1998;240:36-49.
25. Calugi G, Montella F, Favalli C, and Benedetto A: Entire genome of a strain of human immunodeficiency virus type 1 with a deletion of nef that was recovered 20 years after primary infection:large pool of proviruses with deletions of env. J Virol. 2006;80:11892-11896.
26. Blankson JN, Bailey JR, Thayil S, Yang HC, Lassen K, Lai J, et al.: Isolation and characterization of replication-competent human immunodeficiency virus type 1 from a subset of elite suppressors. J Virol. 2007; 81:2508-18.
27. Jones KA, Kadonaga JT, Luciw PA, and Tjian R: Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science. 1986; 232:755-59.
28. Keum YS, Han SS, Chun KS, Park KK, Park JH, Lee SK, et al.: Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutation Res. 2003;523-524:75-85.
29. Kim K H, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, and Yun YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med. 1998;64:110-115.
30. Han SK, Song JY, Yun YS, Yi SY. Ginsan improved Th1 immune response inhibited by gamma radiation. Arch Pharm Res. 2005;28:343-50.
31. Larsen MW, Moser C, Hoiby N, Song Z, Kharazmi A. Ginseng modulates the immune response by induction of interleukin-12 production. APMIS. 2004;112:369-73.
32. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, et al. Ginsenoside Rg1 enhances CD4(+) T cell activities and modulates Th1/Th2 differentiation. Int Immunopharmacol. 2004;4:235-44.
References
1. Cho YK, Kim YK, Lee I, Choi MH, and Shin YO: The effect of Korean red ginseng (KRG), zidovudine (ZDV), and the combination of KRG and ZDV on HIV-infected patients.J
2. Cho YK, Lee HJ, Kim YB, Oh WI, and Kim YK: Sequence analysis of C2 / V3 region of human
3. Cho YK, Lee HJ, and Desrosiers RC: Complete sequences of HIV-1 in a Korean longterm nonprogressor with HIV-1 infection. J
4. Cho YK, Sung H, Kim TK, Lim J, Jung YS, and Kang SM: KRG significantly slows CD4 T cell depletion over 10 years in HIV-1 infected patients: association with HLA. J Ginseng Res 2004; 28: 173 -182.
5. Cho YK, Sung H, Ahn SH, Bae IG, Woo JH, Won YH, et al .: High frequency of mutations conferring resistance to nucleoside reverse transcriptase inhibitors in human immunodeficiency virus type-1 infected patients in Korea.J Clin Microbiol 2002; 40: 1319-1325.
6. Cho YK, Sung H, Lee HJ, Joo CH, and Cho GJ: Long-term intake of KRG in HIV-1-infected patients: development of resistance mutation to zidovudine is
7. Sung H, Jung YS, Kang MW, Bae IG, Chang HH, Chang MS, et al .: High frequency of drug resistance mutations in human immunodeficiency virus type 1-infected Korean patients treated with HAART. (In press), AIDS Res Hum Retroviruses.
8. Sung H, Kang SM, Lee MS, Kim TG, and Cho YK: KRG slows depletion of CD4 T cells in human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol 2005; 12: 497-501.
9. Cho YK, Lim JY, Jung YS, Oh SK, Lee HJ, and Sung H: High frequency of grossly deleted nef genes in HIV-1 infected longterm survivor streated with Korean red ginseng. Curr HIV Res 2006; 4: 457- 467.
10. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, and Desrosiers RC: Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection.N Engl J Med 1995; 332: 228-232 .
11. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, et al .: Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients.Science 1995; 270: 988-991.
12. Mariani R, Kirchhoff F, Greenough TC, Sullivan JL, Desrosiers RC, and Skowronski J: High frequency of defective nef alleles in a long-term survivor with nonprogressive human
13. Salvi R, Garbuglia AR, Di Caro A, Pulciani S, Montella F, and Benedetto A: Grossly defective nef gene sequences in a human immunodeficiency virus type 1-seropositive long-term nonprogressor.
14. Brambilla A, Turchetto L, Gatti A, Bovolenta C, Veglia F, Santagostino E, et al .: Defective nef alleles in a cohort of hemophiliacs with progressing and nonprogressing HIV-1 infection.
15. Rhodes DI, Ashton L, Solomon A, Carr A, Cooper D, Kaldor J, et al .: Characterization of three nef-defective human
16. Foster JL, Molina RP, Luo T, Arora VK, Huang Y, Ho DD, et al .: Genetic and functional diversity of human
17. Casartelli N, Di Matteo G, Argentini C, Cancrini C, Bernardi S, Castelli G, et al .: Structural defects and variations in the HIV-1 nef gene from rapid, slow and nonprogressor children.AIDS 2003; 17: 1291 -301.
18. Rodes B, Toro C, Paxinos E, Poveda E, Martinez-Padial M, Benito JM, et al .: Differences in disease progression in a cohort of long-term non-progressors after more than 16 years of HIV-1 infection AIDS 2004; 18: 1109-1115.
19. McCormack GP, Glynn JR, Clewley JP, Crampin AC, Travers SA, Redmond N, et al .: Emergence of a three codon deletion in gag p17 in
20. Copeland KF, Chen Z, Fiebig M, Ni L, Savoy S, Smaill FM, et al .: Identification of mutations in proviral long terminal repeats of HIV type 1-infected subjects naive to drug therapy.AIDS Res Hum Retroviruses 2004; 20: 1019-1021.
21. Cho YK, Foley BT, Sung H, Kim YB, and Kim JH: Molecular epidemiologic study of an HIV-1 outbreak in hemophiliacs B infected through
22. Alexander L, Weiskopf E, Greenough TC, Gaddis NC, Auerbach MR, Malim MH, et al .: Unusual polymorphisms in human
23. Zhang L, Huang Y, Yuan H, Chen BK, Ip J, and Ho DD: Genotypic and phenotypic characterization of long terminal repeat sequences from long-term survivors of human
24. Huang Y, Zhang L, and Ho DD: Characterization of gag and pol sequences from longterm survivors of human
25. Calugi G, Montella F, Favalli C, and Benedetto A: Entire genome of a strain of human
26. Blankson JN, Bailey JR, Thayil S, Yang HC, Lassen K, Lai J, et al .: Isolation and characterization of replication-competent human
27. Jones KA, Kadonaga JT, Luciw PA, and Tjian R: Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science. 1986; 232: 755-59.
28. Keum YS, Han SS, Chun KS, Park KK, Park JH, Lee SK, et al .: Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutation Res 2003; 523-524: 75-85.
29. Kim KH, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, and Yun YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Med. 1998; 64: 110-115.
30. Han SK, Song JY, Yun YS, Yi SY.Ginsan improved Th1 immune response inhibited by gamma radiation. Arch Pharm Res. 2005; 28: 343-50.
31. Larsen MW, Moser C, Hoiby N, Song Z, Kharazmi A. Ginseng modulates the immune response by induction of interleukin-12 production. APMIS. 2004; 112: 369-73.
32. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, et al. Ginsenoside Rg1 enhances CD4 (+) T cell activities and modulates Th1 / Th2 differentiation. Int Immunopharmacol. 2004; 4: 235-44 .
Claims (6)
ジェンバンク(GenBank)登録番号EF370172,EF370173,EF370175,EU047612,EF370184,EF370186,EF370187,EF370188,EF370191,EF370192,EF370193,EF370196,EF370197,EF370199,EF370201,EF370200,EF370202,EF370205,EF370207,EF370211,EF370213,EF3702115,EF3702116,EF3702118,EF370219,EF370221,EF370223,EF370224,EF370225,EF370226,EF370227,EF370228,EF370231,EF370235,EF370237,EF370239,EU047647,EF370245,EF370250,EF370251,EF370252,EF370253,EF370256,EF370259,EF370262,EF370261,EF370265,DQ295196,EF370275,EF370276,EF370277,EF3702778,EF370279,EF370282,EU047673,EF370283,EF370285,EF370286,EF370287,EF370288,EF370292 The composition according to claim 2, wherein the 5 ′ LTR and / or gag gene deficiency is represented by the following sequence.
GenBank registration numbers EF370172, EF370173, EF370175, EU047612, EF370184, EF370186, EF370187, EF370188, EF370191, EF370190, EF370701F, EF370701F, EF370701F, EF370701F, EF37070 , EF37021116, EF3702118, EF370219, EF370221, EF370223, EF370224, EF370225, EF370226, EF370227, EF370228, EF370235, EF370235, EF370237, E F370239, EU047647, EF370245, EF370250, EF370251, EF370252, EF370253, EF370256, EF370259, EF370262, EF370261, EF370265, DQ295196, EF370275, EF370276, EF370277, EF3702778, EF370279, EF370282, EU047673, EF370283, EF370285, EF370286, EF370287, EF370288, EF370292
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080037555A KR101081809B1 (en) | 2008-04-23 | 2008-04-23 | Method of deleting HIV-1 5'LTR/gag gene using ginseng |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009263327A true JP2009263327A (en) | 2009-11-12 |
Family
ID=41280885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008196644A Pending JP2009263327A (en) | 2008-04-23 | 2008-07-30 | PHARMACEUTICAL COMPOSITION FOR 5'LTR/gag GENE DEFICIENCY OF HIV-1, CONTAINING PANAX GINSENG AS EFFECTIVE INGREDIENT |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2009263327A (en) |
KR (1) | KR101081809B1 (en) |
CN (1) | CN101564408A (en) |
TW (1) | TW200944223A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013028140A1 (en) | 2011-08-23 | 2013-02-28 | Eraslan Mustafa | Tribulus terrestris, avena sativa and panax ginseng extract combination |
KR20180003617A (en) * | 2015-05-15 | 2018-01-09 | 리 푸 | Use of ginseng extract, ginsenoside and ginsenoside derivatives in the manufacture of a medicament or a health care product for the treatment of a cytomegalovirus infection disorder |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101237690B1 (en) * | 2010-07-28 | 2013-02-26 | 경희대학교 산학협력단 | Composition for prevention or treatment of cancer or HIV |
CN109431042B (en) | 2018-12-27 | 2024-06-25 | 品谱公司 | Offset angle type twisted hair styling device |
-
2008
- 2008-04-23 KR KR1020080037555A patent/KR101081809B1/en active IP Right Grant
- 2008-07-29 CN CNA2008101444042A patent/CN101564408A/en active Pending
- 2008-07-30 JP JP2008196644A patent/JP2009263327A/en active Pending
- 2008-07-31 TW TW097128946A patent/TW200944223A/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013028140A1 (en) | 2011-08-23 | 2013-02-28 | Eraslan Mustafa | Tribulus terrestris, avena sativa and panax ginseng extract combination |
KR20180003617A (en) * | 2015-05-15 | 2018-01-09 | 리 푸 | Use of ginseng extract, ginsenoside and ginsenoside derivatives in the manufacture of a medicament or a health care product for the treatment of a cytomegalovirus infection disorder |
KR101966425B1 (en) | 2015-05-15 | 2019-08-13 | 리 푸 | Use of ginseng extracts, ginsenosides and ginsenoside derivatives in the manufacture of a medicament or health care product for treating a cytomegalovirus infection disorder |
Also Published As
Publication number | Publication date |
---|---|
KR20090111931A (en) | 2009-10-28 |
CN101564408A (en) | 2009-10-28 |
KR101081809B1 (en) | 2011-11-09 |
TW200944223A (en) | 2009-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6093702A (en) | Mixtures of dideoxy-nucleosides and hydroxycarbamide for inhibiting retroviral spread | |
Clements et al. | The central nervous system is a viral reservoir in simian immunodeficiency virus-infected macaques on combined antiretroviral therapy: a model for human immunodeficiency virus patients on highly active antiretroviral therapy | |
JP2016053096A (en) | Compositions and methods for treating hepatitis c virus | |
Theo et al. | Peltophorum africanum, a traditional South African medicinal plant, contains an anti HIV-1 constituent, betulinic acid | |
WO2007143934A1 (en) | Pharmaceutical composition for the prophylaxis and treatment of hiv infection and its use | |
US6114312A (en) | Method of inhibiting human immunodeficiency virus by combined use of hydroxyurea, a nucleoside analog, and a protease inhibitor | |
KR101081809B1 (en) | Method of deleting HIV-1 5'LTR/gag gene using ginseng | |
TURANO et al. | Inhibitory effect of papaverine on HIV replication in vitro | |
US8343478B2 (en) | Parapoxviruses in combination with other antiviral agents for the treatment of viral diseases | |
Cho et al. | High frequency of grossly deleted nef genes in HIV-1 infected long-term slow progressors treated with Korean red ginseng | |
Martin et al. | Effects of U-75875, a peptidomimetic inhibitor of retroviral proteases, on simian immunodeficiency virus infection in rhesus monkeys | |
Purohit et al. | Mother-to-child transmission (MTCT) of HIV and drugs of abuse in post-highly active antiretroviral therapy (HAART) era | |
Cho et al. | Impact of HIV-1 subtypes on gross deletion in the nef gene after Korean Red Ginseng treatment | |
Cho et al. | High frequency of gross deletions in the 5′ LTR and gag regions in HIV type 1-infected long-term survivors treated with Korean red ginseng | |
Smee et al. | Comparative effects of cidofovir and cyclic HPMPC on lethal cowpox and vaccinia virus respiratory infections in mice | |
JP2004083576A (en) | Use of chloroquine, hydroxychloroquine, and 4-amino-quinolinic acid derivative for obtaining anti-retrovirus therapeutic agent having activity against hiv strain | |
US20090011053A1 (en) | METHOD OF DELETING nef GENE IN HIV-1 USING RED GINSENG | |
Cho et al. | The frequency of defective genes in vif and vpr genes in 20 hemophiliacs is associated with Korean Red Ginseng and highly active antiretroviral therapy: the impact of lethal mutations in vif and vpr genes on HIV-1 evolution | |
Cho et al. | Frequent gross deletion in the HIV type 1 nef gene in hemophiliacs treated with Korean red ginseng: inhibition of detection by highly active antiretroviral therapy | |
WO2011039574A1 (en) | The use of a herbal composition for the treatment of a person infected with hiv | |
WO2006034643A1 (en) | A traditional chinese medicine composition with anti-hiv activity, preparation, and use thereof | |
US8431153B2 (en) | Bioactive composition for the treatment of the HIV/AIDS, method for manufacturing and using the same | |
Cho et al. | High frequency of gross deletions in 5′ LTR/gag and nef genes in patients infected with CRF02_AG of HIV type 1 who survived for over 20 years: an association with Korean red ginseng | |
CN113456767B (en) | Anti-coronavirus traditional Chinese medicine composition and application thereof | |
CA2598719A1 (en) | Method for inducing defective nef gene in hiv-1 using red ginseng |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120403 |