JP2009263181A - Cement dispersant and cement composition - Google Patents

Cement dispersant and cement composition Download PDF

Info

Publication number
JP2009263181A
JP2009263181A JP2008116712A JP2008116712A JP2009263181A JP 2009263181 A JP2009263181 A JP 2009263181A JP 2008116712 A JP2008116712 A JP 2008116712A JP 2008116712 A JP2008116712 A JP 2008116712A JP 2009263181 A JP2009263181 A JP 2009263181A
Authority
JP
Japan
Prior art keywords
structural unit
cement
group
maleic acid
oxyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008116712A
Other languages
Japanese (ja)
Other versions
JP4979135B2 (en
Inventor
Kazuhisa Okada
和寿 岡田
Masahiro Iida
昌宏 飯田
Mitsuo Kinoshita
光男 木之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2008116712A priority Critical patent/JP4979135B2/en
Publication of JP2009263181A publication Critical patent/JP2009263181A/en
Application granted granted Critical
Publication of JP4979135B2 publication Critical patent/JP4979135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • C04B24/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement dispersant that gives high fluidity to a cement composition and suppresses reduction in the fluidity with lapse of time, even in the case of preparing a cement composition having a significantly reduced ratio of water/binding material so as to obtain an ultrahigh-strength cured product in the cement composition, as well as that can give a cured product having excellent strength and less self-shrinkage, and to provide a cement composition. <P>SOLUTION: As the cement dispersant, the one containing a specified maleic acid copolymer composed of the following structural unit (A) and structural unit (B), is used. The structural unit (A) comprises a monomer expressed by chemical formula 1: R<SP>1</SP>-A-O-R<SP>2</SP>; and the structural unit (B) comprises a structural unit formed of maleic acid and/or a structural unit formed of a maleic acid salt. In chemical formula 1, R<SP>1</SP>represents a 3C-5C alkenyl group; R<SP>2</SP>represents a hydrogen atom, a 1C-22C alkyl group or a 1C-22C aliphatic acyl group; and A represents a (poly)oxyethylene group composed of 1 to 100 oxyethylene units, or a polyalkylene group composed of total 2 to 100 of oxyethylene units and oxypropylene units. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はセメント分散剤及びセメント組成物に関する。セメントペースト、モルタル、コンクリート等のセメント組成物にセメント分散剤が使用されている。本発明は、かかるセメント分散剤であって、水/結合材比を著しく抑えたセメント組成物を調製する場合においても該セメント組成物に高い流動性を与えると共に該流動性の経時的な低下を抑え、同時に優れた強度を有し且つ自己収縮の小さい硬化体を得ることができるセメント分散剤及びセメント組成物に関する。   The present invention relates to a cement dispersant and a cement composition. Cement dispersants are used in cement compositions such as cement paste, mortar and concrete. The present invention provides such a cement dispersant, which gives a high fluidity to the cement composition even when preparing a cement composition with a significantly reduced water / binder ratio, and reduces the fluidity over time. The present invention relates to a cement dispersant and a cement composition that can suppress, and at the same time, obtain a cured product having excellent strength and low self-shrinkage.

従来、セメント分散剤として、なかでも高強度の硬化体を得るために水/結合材比を抑えたセメント組成物を調製する場合のセメント分散剤として、各種の水溶性ビニル共重合体が提案されている(例えば、特許文献1〜6参照)。   Conventionally, various water-soluble vinyl copolymers have been proposed as cement dispersants for preparing cement compositions with a reduced water / binder ratio in order to obtain a high-strength cured product. (For example, see Patent Documents 1 to 6).

しかし、セメント分散剤として従来提案されている水溶性ビニル共重合体には、これを用いて超高強度の硬化体を得るために水/結合材比を著しく抑えたセメント組成物を調製する場合、かかるセメント組成物に高い流動性を与えると共に該流動性の経時的な低下を抑え、同時に優れた強度を有し且つ自己収縮の小さい硬化体を得るということができないという問題がある。
特開昭57−118058号公報 特開平5−170501号公報 特開平6−206750号公報 特開平8−290948号公報 特開2001−48620号公報 特開2006−36623号公報
However, in the case of preparing a cement composition with a significantly reduced water / binder ratio in order to obtain an ultra-high-strength cured product using the water-soluble vinyl copolymer conventionally proposed as a cement dispersant. However, there is a problem that it is impossible to obtain a hardened body which gives such a cement composition high fluidity and suppresses a decrease in the fluidity with time, and at the same time has excellent strength and small self-shrinkage.
JP-A-57-118058 JP-A-5-170501 JP-A-6-206750 JP-A-8-290948 JP 2001-48620 A JP 2006-36623 A

本発明が解決しようとする課題は、超高強度の硬化体を得るために水/結合材比を著しく抑えたセメント組成物を調製する場合においても、かかるセメント組成物に高い流動性を与えると共に該流動性の経時的な低下を抑え、同時に優れた強度を有し且つ自己収縮の小さい硬化体を得ることができるセメント分散剤及びセメント組成物を提供する処にある。   The problem to be solved by the present invention is that, even when preparing a cement composition with a significantly reduced water / binder ratio in order to obtain an ultra-high strength cured product, the cement composition is given high fluidity. An object of the present invention is to provide a cement dispersant and a cement composition capable of suppressing a decrease in fluidity with time and at the same time obtaining a cured product having excellent strength and low self-shrinkage.

しかして本発明者らは、前記の課題を解決すべく研究した結果、セメント分散剤として特定のマレイン酸共重合体を含有するものを用いるのが正しく好適であることを見出した。   As a result of researches to solve the above-mentioned problems, the present inventors have found that it is correct and preferable to use a cement dispersant containing a specific maleic acid copolymer.

すなわち本発明は、下記のマレイン酸共重合体を含有して成ることを特徴とするセメント分散剤に係る。また本発明は、かかるセメント分散剤を用いて調製したセメント組成物に係る。   That is, the present invention relates to a cement dispersant comprising the following maleic acid copolymer. The present invention also relates to a cement composition prepared using such a cement dispersant.

マレイン酸共重合体:下記の構成単位A及び構成単位Bで構成されており、構成単位Aを30〜70モル%及び構成単位Bを30〜70モル%(合計100モル%)の割合で有していて、且つゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量が下記の化1で示される単量体の分子量の10倍以内にあるもの
構成単位A:下記の化1で示される単量体から形成された構成単位
構成単位B:マレイン酸から形成された構成単位及び/又はマレイン酸塩から形成された構成単位
Maleic acid copolymer: Consists of the following structural unit A and structural unit B, and the structural unit A is 30 to 70 mol% and the structural unit B is 30 to 70 mol% (total 100 mol%). And having a weight average molecular weight in terms of polyethylene glycol measured by gel permeation chromatography within 10 times the molecular weight of the monomer represented by the following chemical formula 1 Structural unit A: represented by the following chemical formula 1 A structural unit formed from a monomer to be formed; a structural unit B: a structural unit formed from maleic acid and / or a structural unit formed from maleate

Figure 2009263181
Figure 2009263181

化1において、
:炭素数3〜5のアルケニル基
:水素原子、炭素数1〜22のアルキル基又は炭素数1〜22の脂肪族アシル基
A:1〜100個のオキシエチレン単位で構成された(ポリ)オキシエチレン基又は合計2〜100個のオキシエチレン単位とオキシプロピレン単位とで構成されたポリオキシアルキレン基
In chemical formula 1,
R 1 : an alkenyl group having 3 to 5 carbon atoms R 2 : a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or an aliphatic acyl group having 1 to 22 carbon atoms A: composed of 1 to 100 oxyethylene units (Poly) oxyethylene group or polyoxyalkylene group composed of a total of 2 to 100 oxyethylene units and oxypropylene units

先ず、本発明のセメント分散剤について説明する。本発明のセメント分散剤として用いるマレイン酸共重合体は、構成単位A及び構成単位Bで構成されている。これらのうちで構成単位Aは、化1で示される単量体から形成された構成単位である。化1において、Rとしては、イソプロペニル基、アリル基、メタリル基、3−ブテニル基、2−メチル−1−ブテニル基、3−メチル−1−ブテニル基、2−メチル−3−ブテニル基、3−メチル−3−ブテニル基等の炭素数3〜5のアルケニル基が挙げられる。なかでもRとしては、アリル基が好ましい。 First, the cement dispersant of the present invention will be described. The maleic acid copolymer used as the cement dispersant of the present invention is composed of a structural unit A and a structural unit B. Among these, the structural unit A is a structural unit formed from the monomer represented by Chemical Formula 1. In Chemical Formula 1, as R 1 , isopropenyl group, allyl group, methallyl group, 3-butenyl group, 2-methyl-1-butenyl group, 3-methyl-1-butenyl group, 2-methyl-3-butenyl group , An alkenyl group having 3 to 5 carbon atoms such as 3-methyl-3-butenyl group. Among these, as R 1 , an allyl group is preferable.

また化1において、Rとしては、1)水素原子、2)炭素数1〜22のアルキル基、3)炭素数1〜22の脂肪族アシル基が挙げられる。炭素数1〜22のアルキル基としては、メチル基、エチル基、ブチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、2−メチル−ペンチル基、2−エチル−ヘキシル基、2−プロピル−ヘプチル基、2−ブチル−オクチル基、2−ペンチル−ノニル基、2−ヘキシル−デシル基、2−ヘプチル−ウンデシル基、2−オクチル−ドデシル基、2−ノニル−トリデシル基、2−デシル−テトラデシル基、2−ウンデシル−ペンタデシル基、2−ドデシル−ヘキサデシル基等が挙げられる。また炭素数1〜22の脂肪族アシル基としては、ホルミル基、アセチル基、プロパノイル基、ブタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ヘキサデカノイル基、オクタデカノイル基、ヘキサデセノイル基、エイコセノイル基、オクタデセノイル基等が挙げられる。なかでもRとしては、水素原子、炭素数1〜4のアルキル基、炭素数1〜4の脂肪族アシル基が好ましく、水素原子、メチル基、アセチル基がより好ましい。 In Chemical Formula 1, R 2 includes 1) a hydrogen atom, 2) an alkyl group having 1 to 22 carbon atoms, and 3) an aliphatic acyl group having 1 to 22 carbon atoms. Examples of the alkyl group having 1 to 22 carbon atoms include methyl group, ethyl group, butyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, pentadecyl group, hexadecyl group, Heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, henecosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, 2-methyl-pentyl group, 2-ethyl-hexyl group, 2-propyl-heptyl group, 2-butyl-octyl group, 2-pentyl-nonyl group, 2-hexyl-decyl group, 2-heptyl-undecyl group, 2-octyl-dodecyl group, 2-nonyl-tridecyl group, 2 -Decyl-tetradecyl group, 2-undecyl-pentadecyl group, - dodecyl - hexadecyl group and the like. Examples of the aliphatic acyl group having 1 to 22 carbon atoms include formyl group, acetyl group, propanoyl group, butanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, hexadecanoyl group, and octadecanoyl group. , Hexadecenoyl group, eicosenoyl group, octadecenoyl group and the like. Of these examples of R 2, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, preferably an aliphatic acyl group having 1 to 4 carbon atoms, a hydrogen atom, a methyl group, an acetyl group is more preferable.

更に化1において、Aとしては、1)オキシエチレン基、2)2〜100個のオキシエチレン単位で構成されたポリオキシエチレン基、3)合計2〜100個のオキシエチレン単位とオキシプロピレン単位とで構成されたポリオキシアルキレン基が挙げられる。なかでもAとしては、10〜70個のオキシエチレン単位で構成されたポリオキシエチレン基が好ましい。   Further, in Chemical Formula 1, A includes 1) an oxyethylene group, 2) a polyoxyethylene group composed of 2 to 100 oxyethylene units, and 3) a total of 2 to 100 oxyethylene units and oxypropylene units. The polyoxyalkylene group comprised by these is mentioned. Among them, A is preferably a polyoxyethylene group composed of 10 to 70 oxyethylene units.

以上説明した化1で示される単量体の具体例としては、α−アリル−ω−メトキシ−(ポリ)オキシエチレン、α−アリル−ω−メトキシ−(ポリ)オキシエチレン(ポリ)オキシプロピレン、α−アリル−ω−アセチル−(ポリ)オキシエチレン、α−アリル−ω−アセチル−(ポリ)オキシエチレン(ポリ)オキシプロピレン、α−アリル−ω−ヒドロキシ−(ポリ)オキシエチレン、α−アリル−ω−ヒドロキシ−(ポリ)オキシエチレン(ポリ)オキシプロピレン等が挙げられる。構成単位Aは、これらの単量体の一つ又は二つ以上から形成された構成単位である。   Specific examples of the monomer represented by Chemical Formula 1 described above include α-allyl-ω-methoxy- (poly) oxyethylene, α-allyl-ω-methoxy- (poly) oxyethylene (poly) oxypropylene, α-allyl-ω-acetyl- (poly) oxyethylene, α-allyl-ω-acetyl- (poly) oxyethylene (poly) oxypropylene, α-allyl-ω-hydroxy- (poly) oxyethylene, α-allyl -Ω-hydroxy- (poly) oxyethylene (poly) oxypropylene and the like. The structural unit A is a structural unit formed from one or more of these monomers.

マレイン酸共重合体を構成する他方の構成単位Bとしては、1)マレイン酸から形成された構成単位、2)マレイン酸塩から形成された構成単位、3)前記1)と2)の双方が挙げられる。ここでマレイン酸塩の塩としては、その種類が特に制限されるものではないが、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アンモニウム塩、ジエタノールアミン塩、トリエタノールアミン塩等のアミン塩等が挙げられる。なかでもマレイン酸塩の塩としては、ナトリウム塩、カルシウム塩が好ましい。   The other structural unit B constituting the maleic acid copolymer includes 1) a structural unit formed from maleic acid, 2) a structural unit formed from maleate, and 3) both 1) and 2) Can be mentioned. Here, the type of maleate salt is not particularly limited, but alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, ammonium salt and diethanolamine. Examples thereof include salts and amine salts such as triethanolamine salt. Of these, the salt of maleate is preferably a sodium salt or a calcium salt.

本発明のセメント分散剤として用いるマレイン酸共重合体は、以上説明した構成単位A及び構成単位Bで構成されており、構成単位Aを30〜70モル%及び構成単位Bを30〜70モル%(合計100モル%)の割合で有していて、且つゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量が構成単位Aの形成に用いた化1で示される単量体の分子量又は平均分子量の10倍以内にあるものとするが、構成単位Aを30〜50モル%及び構成単位Bを50〜70モル%(合計100モル%)の割合で有していて、且つゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量が構成単位Aの形成に用いた化1で示される単量体の分子量又は平均分子量の1.5〜7倍の範囲内にあるものとするのが好ましい。より具体的に、本発明のセメント分散剤として用いるマレイン酸共重合体は、ゲルパーミエーションクロマイドグラフで測定したポリエチレングリコール換算の質量平均分子量が、1000〜15000の範囲内にあるものとするのが好ましく、1500〜10000の範囲内にあるものとするのがより好ましい。   The maleic acid copolymer used as the cement dispersant of the present invention is composed of the structural unit A and the structural unit B described above, the structural unit A being 30 to 70 mol% and the structural unit B being 30 to 70 mol%. The molecular weight of the monomer represented by the chemical formula 1 used in the formation of the structural unit A or the weight average molecular weight in terms of polyethylene glycol measured by gel permeation chromatograph It is assumed that it is within 10 times the average molecular weight, but has a constitutional unit A in a proportion of 30 to 50 mol% and a constitutional unit B in a proportion of 50 to 70 mol% (100 mol% in total), and gel permeation The weight average molecular weight in terms of polyethylene glycol measured by chromatography is 1.5 of the molecular weight or average molecular weight of the monomer represented by Chemical Formula 1 used for forming the structural unit A. Preferably intended to be within the range of 7 times. More specifically, the maleic acid copolymer used as the cement dispersant of the present invention has a mass average molecular weight in terms of polyethylene glycol measured by gel permeation chromatograph in the range of 1000 to 15000. Is preferable, and it is more preferable that it be in the range of 1500 to 10,000.

本発明のセメント分散剤として用いるマレイン酸共重合体は、公知の方法で合成することができる。これには例えば、特開昭58−32051公報、特開平4−149056公報に記載の方法が挙げられる。より具体的には、先ず反応容器に所定量の化1で示される単量体と水とを仕込み、攪拌下に反応容器内を窒素置換し、窒素雰囲気中で80〜95℃に加熱する。次いで所定量の無水マレイン酸とラジカル重合開始剤とを水に溶解した水溶液を2時間程度かけて添加する。更にラジカル重合開始剤の水溶液を添加し、80〜95℃で2時間程度重合反応を行ない、マレイン酸共重合体の水溶液を得る。ここで用いるラジカル重合開始剤としては、重合反応温度下において分解し、ラジカルを発生するものであればその種類は特に制限されないが、水溶性のラジカル開始剤を用いるのが好ましい。かかる水溶性のラジカル開始剤としては、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素、2,2−アゾビス(2−アミジノプロパン)二塩酸塩等が挙げられる。これらは、亜硫酸塩やL−アスコルビン酸の如き還元性物質更にはアミン等と組み合わせ、レドックス開始剤として用いることもできる。また得られるマレイン酸共重合体の質量平均分子量を所望の範囲のものとするため、2−メルカプトエタノール、2−メルカプトプロピオン酸、3−メルカプトプロピオン酸、チオグリコール酸、チオグリセリン等の連鎖移動剤を使用することもできる。マレイン酸共重合体は、一般的に以上のような方法で合成することができるが、先ず反応容器に化1で示される単量体とマレイン酸と水とを前二者の合計濃度が10〜60質量%の水溶液となるように仕込み、攪拌下に反応容器内を窒素置換し、窒素雰囲気中で50〜70℃に加熱した後、次にラジカル重合開始剤の水溶液を反応容器に添加し、重合反応を行なう方法が好ましい。   The maleic acid copolymer used as the cement dispersant of the present invention can be synthesized by a known method. Examples thereof include the methods described in JP-A-58-32051 and JP-A-4-149056. More specifically, first, a predetermined amount of the monomer represented by chemical formula 1 and water are charged into a reaction vessel, the inside of the reaction vessel is purged with nitrogen under stirring, and heated to 80 to 95 ° C. in a nitrogen atmosphere. Next, an aqueous solution in which a predetermined amount of maleic anhydride and a radical polymerization initiator are dissolved in water is added over about 2 hours. Furthermore, an aqueous solution of a radical polymerization initiator is added, and a polymerization reaction is performed at 80 to 95 ° C. for about 2 hours to obtain an aqueous solution of a maleic acid copolymer. The radical polymerization initiator used here is not particularly limited as long as it decomposes at a polymerization reaction temperature and generates radicals, but a water-soluble radical initiator is preferably used. Examples of such a water-soluble radical initiator include persulfates such as potassium persulfate and ammonium persulfate, hydrogen peroxide, 2,2-azobis (2-amidinopropane) dihydrochloride, and the like. These can also be used as a redox initiator in combination with a reducing substance such as sulfite or L-ascorbic acid, or an amine. Moreover, in order to make the mass average molecular weight of the maleic acid copolymer obtained into a desired range, chain transfer agents, such as 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thioglycolic acid, thioglycerin, etc. Can also be used. The maleic acid copolymer can be generally synthesized by the method as described above. First, a monomer represented by the chemical formula 1, maleic acid and water are first added to the reaction vessel in a total concentration of 10%. The reaction vessel was charged with an aqueous solution of ˜60% by mass, and the inside of the reaction vessel was purged with nitrogen under stirring, heated to 50 to 70 ° C. in a nitrogen atmosphere, and then an aqueous solution of radical polymerization initiator was added to the reaction vessel. A method of conducting a polymerization reaction is preferred.

本発明のセメント分散剤は、以上説明したようなマレイン酸共重合体を含有するものであり、好ましくはマレイン酸共重合体を30質量%以上、より好ましくはマレイン酸共重合体を50質量%以上含有するものであるが、なかでもマレイン酸共重合体及び化1で示される単量体から成り、且つマレイン酸共重合体を30〜90質量%及び化1で示される単量体を10〜70質量%(合計100質量%)の割合で含有して成るものが好ましく、マレイン酸共重合体を50〜90質量%及び化1で示される単量体を10〜50質量%(合計100質量%)の割合で含有して成るものがより好ましい。   The cement dispersant of the present invention contains a maleic acid copolymer as described above, preferably 30% by mass or more of maleic acid copolymer, more preferably 50% by mass of maleic acid copolymer. Among them, the maleic acid copolymer and the monomer represented by the chemical formula 1 are included, and the maleic acid copolymer is 30 to 90% by mass and the monomer represented by the chemical formula 1 is 10%. It is preferable that it is contained at a ratio of ˜70% by mass (total 100% by mass), 50 to 90% by mass of maleic acid copolymer and 10 to 50% by mass of monomers represented by Chemical formula 1 (total 100). More preferably, it is contained at a ratio of (mass%).

本発明のセメント分散剤がマレイン酸共重合体及び化1で示される単量体から成るものの場合、その調製方法としては、1)マレイン酸共重合体を合成するときにその合成系に化1で示される単量体を残存させる方法、2)マレイン酸共重合体と化1で示される単量体とを別個に用意して双方を配合する方法、3)前記1)で調製したものに化1で示される単量体を更に配合する方法等が挙げられるが、前記1)の調製方法が好ましい。かかる前記1)の調製方法としては、原料として無水マレイン酸、マレイン酸及びマレイン酸塩から選ばれる一つ又は二つ以上と、化1で示される単量体の一つ又は二つ以上を用い、これらの各所定量を水に溶解して水溶液とした後、これに窒素雰囲気下でラジカル重合開始剤を加え、50〜70℃に加温した水系にてラジカル共重合反応を決められた時間行ない、所定割合のマレイン酸共重合体と化1で示される単量体とから成る反応混合物を得る。ラジカル共重合反応の時間を決定する方法としては、1)反応系から反応混合物の一部を一定時間ごとに採取し、ゲルパーミエーションクロマトグラフGPCや高速液体クロマトグラフ等の迅速分析法で生成したマレイン酸共重合体と残存する化1て示される単量体との割合、マレイン酸共重合体の質量平均分子量等を求め、求めた数値からラジカル共重合反応を停止する時間を決定する方法、2)予めラジカル共重合反応の時間に対する生成したマレイン酸共重合体と残存する化1で示される単量体との割合、マレイン酸共重合体の質量平均分子量等の関係を求めておき、所望する時間でラジカル共重合反応を停止する方法等が挙げられるが、装置の自由度や簡便さ等から前記2)の方法が好ましい。   When the cement dispersant of the present invention is composed of a maleic acid copolymer and a monomer represented by Chemical Formula 1, the preparation method is as follows. 1) When synthesizing a maleic acid copolymer, 2) A method in which a maleic acid copolymer and a monomer represented by Chemical Formula 1 are separately prepared and blended with each other, and 3) those prepared in 1) above. Although the method of further mix | blending the monomer shown by Chemical formula 1 etc. is mentioned, the preparation method of said 1) is preferable. In the preparation method of 1), one or more selected from maleic anhydride, maleic acid and maleate and one or more monomers represented by Chemical Formula 1 are used as raw materials. After each of these predetermined amounts is dissolved in water to form an aqueous solution, a radical polymerization initiator is added thereto under a nitrogen atmosphere, and the radical copolymerization reaction is carried out for a predetermined time in an aqueous system heated to 50 to 70 ° C. Then, a reaction mixture comprising a predetermined proportion of maleic acid copolymer and the monomer represented by Chemical Formula 1 is obtained. As a method for determining the time of the radical copolymerization reaction, 1) A part of the reaction mixture was sampled from the reaction system at regular intervals and generated by a rapid analysis method such as gel permeation chromatograph GPC or high performance liquid chromatograph. A method of determining the ratio of the maleic acid copolymer and the remaining monomer represented by chemical formula 1, the weight average molecular weight of the maleic acid copolymer, etc., and determining the time for stopping the radical copolymerization reaction from the obtained numerical values; 2) The relationship between the ratio of the produced maleic acid copolymer and the remaining monomer represented by the chemical formula 1 with respect to the time of the radical copolymerization reaction, the mass average molecular weight of the maleic acid copolymer, etc. is obtained in advance. The method of stopping the radical copolymerization reaction within a period of time, etc. can be mentioned, but the method 2) is preferred from the viewpoint of the degree of freedom and simplicity of the apparatus.

次に、本発明のセメント組成物について説明する。本発明のセメント組成物は、以上説明したような本発明のセメントセメント分散剤を用いて調製したセメントペースト、モルタル、コンクリート等のセメント組成物である。本発明のセメント組成物は結合材として少なくともセメントを用いたものであるが、これには結合材の一部として微粉末混和材料を用いたものも含まれる。かかるセメントとしては、1)普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメント、2)高炉セメント、フライアッシュセメント、シリカフュームセメント等の各種混合セメント、3)アルミナセメント等が挙げられる。また微粉末混和材料としては、高炉スラグ微粉末、シリカフューム微粉末、フライアッシュ微粉末等が挙げられるが、なかでもシリカフューム微粉末が好ましい。結合材としては、低熱ポルトランドセメントにシリカフューム微粉末を5〜20質量%程度の割合で混合したシリカフュームセメントを用いるのが特に好ましい。使用する場合の細骨材、粗骨材及び本発明のセメント分散剤以外の他の各種のセメント混和剤等は公知のものを適用できる。   Next, the cement composition of the present invention will be described. The cement composition of the present invention is a cement composition such as cement paste, mortar or concrete prepared using the cement cement dispersant of the present invention as described above. The cement composition of the present invention uses at least cement as a binder, but also includes those using a fine powder admixture as part of the binder. As such cements, 1) various portland cements such as ordinary portland cement, early-strength portland cement, medium heat portland cement and low heat portland cement, 2) various mixed cements such as blast furnace cement, fly ash cement and silica fume cement, 3) alumina Cement etc. are mentioned. Examples of the fine powder admixture include blast furnace slag fine powder, silica fume fine powder, fly ash fine powder, and the like, among which silica fume fine powder is preferable. As the binder, it is particularly preferable to use silica fume cement in which silica fume fine powder is mixed with low heat Portland cement at a ratio of about 5 to 20% by mass. Known fine aggregates, coarse aggregates, and other various cement admixtures other than the cement dispersant of the present invention can be used.

本発明のセメント組成物において、水/結合材比は、特に制限されないが、7〜30%とするのが好ましく、7〜22%とするのがより好ましく、7〜16%とするのが特に好ましい。このように水/結合材比を著しく抑えたセメント組成物を調製する場合において、本発明のセメント分散剤による効果の発現が高い。   In the cement composition of the present invention, the water / binder ratio is not particularly limited, but is preferably 7 to 30%, more preferably 7 to 22%, and particularly preferably 7 to 16%. preferable. Thus, when preparing a cement composition with a significantly reduced water / binder ratio, the effect of the cement dispersant of the present invention is high.

本発明のセメント組成物における本発明のセメント分散剤の使用量は、セメント又はセメントと微粉末混和材料とからなる結合材100質量部当たり、通常0.01〜4.0質量部の割合となるようにするが、0.05〜2.0質量部の割合となるようにするのが好ましい。本発明のセメント分散剤は通常、本発明のセメント組成物を調製する際に練り混ぜ水と一緒に加える。   The amount of the cement dispersant of the present invention used in the cement composition of the present invention is usually 0.01 to 4.0 parts by mass per 100 parts by mass of the cement or cement and fine powder admixture. However, it is preferable that the ratio is 0.05 to 2.0 parts by mass. The cement dispersant of the present invention is usually added together with mixing water when preparing the cement composition of the present invention.

本発明によると、超高強度の硬化体を得るために水/結合材比を著しく抑えたセメント組成物を調製する場合においても、かかるセメント組成物に高い流動性を与えると共に該流動性の経時的な低下を抑え、同時に優れた強度を有し且つ自己収縮の小さい硬化体を得ることができる。   According to the present invention, even when a cement composition with a significantly reduced water / binder ratio is prepared in order to obtain an ultra-high strength cured product, the cement composition is provided with high fluidity and the fluidity over time. It is possible to obtain a cured body that suppresses a general decrease and at the same time has excellent strength and small self-shrinkage.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。尚、以下の実施例等において、別に記載しない限り、部は質量部を、また%は質量%を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated, “part” means “part by mass” and “%” means “% by mass”.

試験区分1(セメント分散剤の調製)
・実施例1{セメント分散剤(A−1)の調製}
蒸留水1687g、マレイン酸174g(1.5モル)及びα−アリル−ω−ヒドロキシ−ポリ(オキシエチレン単位の数が33、以下n=33とする)オキシエチレン1513g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、過硫酸ナトリウム25gを蒸留水100gに溶解した水溶液を投入して、ラジカル共重合反応を開始した。1時間後、更に過硫酸ナトリウム25gを蒸留水100gに溶解した水溶液を投入し、70℃に保持して3時間、ラジカル共重合反応を行なった。反応系を蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、ゲルパーミエーションクロマトグラフ(以下、GPCという)等で分析したところ、表1に記載のマレイン酸共重合体(M−1)を69%及びα−アリル−ω−ヒドロキシ−ポリ(n=33)オキシエチレンを31%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−1)とした。
Test Category 1 (Preparation of cement dispersant)
Example 1 {Preparation of cement dispersant (A-1)}
1687 g of distilled water, 174 g (1.5 mol) of maleic acid, and 1513 g (1.0 mol) of oxyethylene (α-allyl-ω-hydroxy-poly (the number of oxyethylene units is 33, hereinafter n = 33)) are reacted. After charging into a container and uniformly dissolving with stirring, the atmosphere was replaced with nitrogen. The temperature of the reaction system was kept at 70 ° C. in a warm water bath, and an aqueous solution in which 25 g of sodium persulfate was dissolved in 100 g of distilled water was added to initiate radical copolymerization reaction. After 1 hour, an aqueous solution in which 25 g of sodium persulfate was dissolved in 100 g of distilled water was added, and the copolymerization reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. After the reaction system was adjusted to a solid content concentration of 25% with distilled water, the reaction mixture contained therein was purified and analyzed by gel permeation chromatography (hereinafter referred to as GPC). It was a reaction mixture containing 69% of the acid copolymer (M-1) and 31% of α-allyl-ω-hydroxy-poly (n = 33) oxyethylene. This reaction mixture was used as a cement dispersant (A-1).

・実施例2{セメント分散剤(A−2)の調製}
蒸留水2654g、マレイン酸197g(1.7モル)及びα−アリル−ω−メトキシ−ポリ(n=20)オキシエチレン940g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、過硫酸ナトリウム17gを蒸留水68gに溶解した水溶液を投入して、ラジカル共重合反応を開始した。1時間後、更に過硫酸ナトリウム17gを蒸留水68gに溶解した水溶液を投入し、70℃に保持して3時間、ラジカル共重合反応を行なった。反応系を水酸化ナトリウム水溶液にてpH4に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−2)を65%及びα−アリル−ω−メチル−ポリ(n=20)オキシエチレンを35%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−2)とした。
Example 2 {Preparation of cement dispersant (A-2)}
Distilled water 2654 g, maleic acid 197 g (1.7 mol) and α-allyl-ω-methoxy-poly (n = 20) oxyethylene 940 g (1.0 mol) were charged into a reaction vessel and dissolved uniformly with stirring. Thereafter, the atmosphere was replaced with nitrogen. The temperature of the reaction system was kept at 70 ° C. in a warm water bath, and an aqueous solution in which 17 g of sodium persulfate was dissolved in 68 g of distilled water was added to initiate radical copolymerization reaction. After 1 hour, an aqueous solution in which 17 g of sodium persulfate was dissolved in 68 g of distilled water was added, and a radical copolymerization reaction was carried out for 3 hours while maintaining at 70 ° C. The reaction system was adjusted to pH 4 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 65% maleic acid copolymer (M-2) and 35% α-allyl-ω-methyl-poly (n = 20) oxyethylene. This reaction mixture was used as a cement dispersant (A-2).

・実施例3{セメント分散剤(A−3)の調製}
蒸留水3654g、マレイン酸174g(1.5モル)及びα−アリル−ω−ヒドロキシ−ポリ(n=50)オキシエチレン2262g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、5%過酸化水素水溶液146gを投入し、更に5%L−アスコルビン酸水溶液67gを4時間かけて加え、ラジカル共重合反応を行なった後、更にまた70℃に保持して2時間、ラジカル共重合反応を行なった。反応系を水酸化カルシウムにてpH5に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−3)を51%及びα−アリル−ω−ヒドロキシ−ポリ(n=50)オキシエチレンを49%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−3)とした。
Example 3 {Preparation of cement dispersant (A-3)}
Distilled water 3654 g, maleic acid 174 g (1.5 mol) and α-allyl-ω-hydroxy-poly (n = 50) oxyethylene 2262 g (1.0 mol) were charged into a reaction vessel and dissolved uniformly with stirring. Thereafter, the atmosphere was replaced with nitrogen. After maintaining the temperature of the reaction system at 70 ° C. in a warm water bath, 146 g of 5% aqueous hydrogen peroxide solution was added, and 67 g of 5% L-ascorbic acid aqueous solution was further added over 4 hours to carry out radical copolymerization reaction. Furthermore, the radical copolymerization reaction was carried out for 2 hours while maintaining at 70 ° C. After adjusting the reaction system to pH 5 with calcium hydroxide and further adjusting the solid content concentration to 25% with distilled water, the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 51% of maleic acid copolymer (M-3) and 49% of α-allyl-ω-hydroxy-poly (n = 50) oxyethylene. This reaction mixture was used as a cement dispersant (A-3).

・実施例4{セメント分散剤(A−4)の調製}
蒸留水3654g、マレイン酸174g(1.4モル)及びα−アリル−ω−メトキシ−ポリ(n=45)オキシエチレンポリ(オキシプロピレン単位の数が5、以下m=5とする)オキシプロピレン2262g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、5%過酸化水素水溶液146gを投入し、更に5%L−アスコルビン酸水溶液67gを4時間かけて加え、ラジカル共重合反応を行なった後、更に70℃に保持して2時間、ラジカル共重合反応を行なった。反応系を蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−4)を69%及びα−アリル−ω−メトキシ−ポリ(n=45)オキシエチレンポリ(m=5)オキシプロピレンを31%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−4)とした。
Example 4 {Preparation of cement dispersant (A-4)}
3654 g of distilled water, 174 g (1.4 mol) of maleic acid, and α-allyl-ω-methoxy-poly (n = 45) oxyethylene poly (the number of oxypropylene units is 5, hereinafter referred to as m = 5) 2262 g of oxypropylene (1.0 mol) was charged into a reaction vessel and dissolved uniformly with stirring, and then the atmosphere was replaced with nitrogen. After maintaining the temperature of the reaction system at 70 ° C. in a warm water bath, 146 g of 5% aqueous hydrogen peroxide solution was added, and 67 g of 5% L-ascorbic acid aqueous solution was further added over 4 hours to carry out radical copolymerization reaction. Furthermore, the radical copolymerization reaction was performed for 2 hours, keeping at 70 ° C. After the reaction system was adjusted to a solid content concentration of 25% with distilled water, the reaction mixture contained therein was purified and analyzed by GPC or the like. As a result, the maleic acid copolymer (M-4) shown in Table 1 was obtained. It was a reaction mixture containing 69% and 31% of α-allyl-ω-methoxy-poly (n = 45) oxyethylene poly (m = 5) oxypropylene. This reaction mixture was used as a cement dispersant (A-4).

・実施例5{セメント分散剤(A−5)の調製}
蒸留水3704g、マレイン酸107g(0.92モル)及びα−アリル−ω−メトキシ−ポリ(n=80)オキシエチレン3597g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、過硫酸ナトリウム56gを蒸留水222gに溶解した水溶液を投入して、ラジカル共重合反応を開始した。1時間後、更に過硫酸ナトリウム56gを蒸留水222gに溶解した水溶液を投入し、70℃に保持して3時間、ラジカル共重合反応を行なった。反応系を水酸化ナトリウム水溶液にてpH5に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−5)を69%及びα−アリル−ω−メトキシ−ポリ(n=80)オキシエチレンを31%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−5)とした。
Example 5 {Preparation of cement dispersant (A-5)}
Distilled water 3704 g, maleic acid 107 g (0.92 mol) and α-allyl-ω-methoxy-poly (n = 80) oxyethylene 3597 g (1.0 mol) were charged into a reaction vessel and dissolved uniformly with stirring. Thereafter, the atmosphere was replaced with nitrogen. The temperature of the reaction system was kept at 70 ° C. in a warm water bath, and an aqueous solution in which 56 g of sodium persulfate was dissolved in 222 g of distilled water was added to initiate radical copolymerization reaction. One hour later, an aqueous solution in which 56 g of sodium persulfate was dissolved in 222 g of distilled water was added, and the copolymerization reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. The reaction system was adjusted to pH 5 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 69% maleic acid copolymer (M-5) and 31% α-allyl-ω-methoxy-poly (n = 80) oxyethylene. This reaction mixture was used as a cement dispersant (A-5).

・実施例6{セメント分散剤(A−6)の調製}
蒸留水1119g、マレイン酸107g(1.3モル)及びα−アリル−ω−メトキシ−ポリ(n=33)オキシエチレン1527g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、過硫酸ナトリウム25gを蒸留水101gに溶解した水溶液を投入して、ラジカル共重合反応を開始した。1時間後、更に過硫酸ナトリウム25gを蒸留水101gに溶解した水溶液を投入し、70℃に保持して3時間、ラジカル共重合反応を行なった。反応系を蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−6)を73%及びα−アリル−ω−メトキシ−ポリ(n=33)オキシエチレンを27%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−6)とした。
Example 6 {Preparation of cement dispersant (A-6)}
1119 g of distilled water, 107 g (1.3 mol) of maleic acid, and 1527 g (1.0 mol) of α-allyl-ω-methoxy-poly (n = 33) oxyethylene were charged into a reaction vessel and dissolved uniformly with stirring. Thereafter, the atmosphere was replaced with nitrogen. The temperature of the reaction system was kept at 70 ° C. in a warm water bath, and an aqueous solution in which 25 g of sodium persulfate was dissolved in 101 g of distilled water was added to initiate radical copolymerization reaction. After 1 hour, an aqueous solution in which 25 g of sodium persulfate was dissolved in 101 g of distilled water was added, and a radical copolymerization reaction was carried out for 3 hours while maintaining at 70 ° C. After the reaction system was adjusted to a solid content concentration of 25% with distilled water, the reaction mixture contained therein was purified and analyzed by GPC or the like. As a result, the maleic acid copolymer (M-6) shown in Table 1 was obtained. The reaction mixture contained 73% and 27% α-allyl-ω-methoxy-poly (n = 33) oxyethylene. This reaction mixture was used as a cement dispersant (A-6).

・実施例7{セメント分散剤(A−7)の調製}
蒸留水938g、マレイン酸139g(1.2モル)及びα−イソプレニル−ω−ヒドロキシ−ポリ(n=80)オキシエチレン3611g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、過硫酸ナトリウム56gを蒸留水225gに溶解した水溶液を投入して、ラジカル共重合反応を開始した。1時間後、更に過硫酸ナトリウム56gを蒸留水225gに溶解した水溶液を投入し、70℃に保持して3時間、ラジカル共重合反応を行なった。反応系を水酸化ナトリウム水溶液にてpH6に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−7)を54%及びα−イソプレニル−ω−ヒドロキシ−ポリ(n=80)オキシエチレンを46%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−7)とした。
Example 7 {Preparation of cement dispersant (A-7)}
938 g of distilled water, 139 g (1.2 mol) of maleic acid and 3611 g (1.0 mol) of α-isoprenyl-ω-hydroxy-poly (n = 80) oxyethylene were charged into a reaction vessel and dissolved uniformly with stirring. Thereafter, the atmosphere was replaced with nitrogen. The temperature of the reaction system was kept at 70 ° C. in a warm water bath, and an aqueous solution in which 56 g of sodium persulfate was dissolved in 225 g of distilled water was added to initiate radical copolymerization reaction. After 1 hour, an aqueous solution in which 56 g of sodium persulfate was dissolved in 225 g of distilled water was added, and the copolymerization reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. The reaction system was adjusted to pH 6 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 54% maleic acid copolymer (M-7) and 46% α-isoprenyl-ω-hydroxy-poly (n = 80) oxyethylene. This reaction mixture was used as a cement dispersant (A-7).

・実施例8{セメント分散剤(A−8)の調製}
無水マレイン酸88g(0.9モル)及びα−アリル−ω−メトキシ−ポリ(n=50)オキシエチレン2276g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて80℃に保ち、アゾビスイソブチロニトリル20.0gを投入して、ラジカル共重合反応を開始した。2時間ラジカル共重合反応を行なった後、反応系に水300gを加えてラジカル共重合反応を停止した。反応系を水酸化カルシウムにてpH5に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−8)を70%及びα−アリル−ω−メトキシ−ポリ(n=50)オキシエチレンを30%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−8)とした。
Example 8 {Preparation of cement dispersant (A-8)}
A reaction vessel was charged with 88 g (0.9 mol) of maleic anhydride and 2276 g (1.0 mol) of α-allyl-ω-methoxy-poly (n = 50) oxyethylene, and the mixture was uniformly dissolved with stirring. Was replaced with nitrogen. The temperature of the reaction system was kept at 80 ° C. in a warm water bath, and 20.0 g of azobisisobutyronitrile was added to initiate radical copolymerization reaction. After performing the radical copolymerization reaction for 2 hours, 300 g of water was added to the reaction system to stop the radical copolymerization reaction. After adjusting the reaction system to pH 5 with calcium hydroxide and further adjusting the solid content concentration to 25% with distilled water, the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 70% maleic acid copolymer (M-8) and 30% α-allyl-ω-methoxy-poly (n = 50) oxyethylene. This reaction mixture was used as a cement dispersant (A-8).

・実施例9{セメント分散剤(A−9)の調製}
無水マレイン酸118g(1.2モル)及びα−アリル−ω−メトキシ−ポリ(n=60)オキシエチレンポリ(m=10)オキシプロピレン3297g(1.0モル)を反応容器に仕込み、以下、実施例8と同様にラジカル共重合反応を行なった。反応系を水酸化ナトリウム水溶液にてpH6に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−9)を72%及びα−アリル−ω−メトキシ−ポリ(n=60)オキシエチレンポリ(m=10)オキシプロピレンを28%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−9)とした。
Example 9 {Preparation of cement dispersant (A-9)}
A reaction vessel was charged with 118 g (1.2 mol) of maleic anhydride and 3297 g (1.0 mol) of α-allyl-ω-methoxy-poly (n = 60) oxyethylene poly (m = 10) oxypropylene. A radical copolymerization reaction was carried out in the same manner as in Example 8. The reaction system was adjusted to pH 6 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. A reaction mixture containing 72% maleic acid copolymer (M-9) and 28% α-allyl-ω-methoxy-poly (n = 60) oxyethylene poly (m = 10) oxypropylene there were. This reaction mixture was used as a cement dispersant (A-9).

・実施例10{セメント分散剤(A−10)の調製}
蒸留水1841g、マレイン酸83g(0.80モル)及びα−アリル−ω−ヒドロキシ−ポリ(n=7)オキシエチレン367g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、過硫酸ナトリウム7gを蒸留水28gに溶解した水溶液を投入して、ラジカル共重合反応を開始した。1時間後、更に過硫酸ナトリウム7gを蒸留水28gに溶解した水溶液を投入し、70℃に保持して3時間、ラジカル共重合反応を行なった。反応系を水酸化ナトリウム水溶液にてpH5に調整し、更に蒸発処理にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−10)を35%及びα−アリル−ω−ヒドロキシ−ポリ(n=7)オキシエチレンを65%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−10)とした。
Example 10 {Preparation of cement dispersant (A-10)}
1841 g of distilled water, 83 g (0.80 mol) of maleic acid and 367 g (1.0 mol) of α-allyl-ω-hydroxy-poly (n = 7) oxyethylene were charged into a reaction vessel and dissolved uniformly with stirring. Thereafter, the atmosphere was replaced with nitrogen. The temperature of the reaction system was maintained at 70 ° C. in a warm water bath, and an aqueous solution in which 7 g of sodium persulfate was dissolved in 28 g of distilled water was added to initiate radical copolymerization reaction. After 1 hour, an aqueous solution in which 7 g of sodium persulfate was dissolved in 28 g of distilled water was added, and a radical copolymerization reaction was carried out for 3 hours while maintaining at 70 ° C. The reaction system was adjusted to pH 5 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% by evaporation treatment, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 35% of maleic acid copolymer (M-10) and 65% of α-allyl-ω-hydroxy-poly (n = 7) oxyethylene. This reaction mixture was used as a cement dispersant (A-10).

・実施例11{セメント分散剤(A−11)の調製}
無水マレイン酸78g(0.80モル)及びα−アリル−ω−メトキシ−ポリ(n=50)オキシエチレン2276g(1.0モル)を反応容器に仕込み、以下、実施例8と同様にラジカル共重合反応を行なった。反応系を水酸化ナトリウム水溶液にてpH6に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(M−11)を78%及びα−アリル−ω−メトキシ−ポリ(n=50)オキシエチレンを22%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(A−11)とした。
Example 11 {Preparation of cement dispersant (A-11)}
A reaction vessel was charged with 78 g (0.80 mol) of maleic anhydride and 2276 g (1.0 mol) of α-allyl-ω-methoxy-poly (n = 50) oxyethylene. A polymerization reaction was performed. The reaction system was adjusted to pH 6 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 78% maleic acid copolymer (M-11) and 22% α-allyl-ω-methoxy-poly (n = 50) oxyethylene. This reaction mixture was used as a cement dispersant (A-11).

・実施例12{セメント分散剤(A−12)の調製}
実施例2のセメント分散剤(A−2)の場合と同様にして、表1に記載のセメント分散剤(A−12)を調製した。
Example 12 {Preparation of cement dispersant (A-12)}
The cement dispersant (A-12) shown in Table 1 was prepared in the same manner as in the case of the cement dispersant (A-2) of Example 2.

・比較例1{セメント分散剤(R−1)の調製}
無水マレイン酸147g(1.5モル)及びα−アリル−ω−メトキシ−ポリ(n=33)オキシエチレン1527g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて80℃に保ち、アゾビスイソブチロニトリル10.0gを投入して、ラジカル共重合反応を開始した。1時間後、更にアゾビスイソブチロニトリル5.0gを加え、その1時間後、更にまたアゾビスイソブチロニトリル5.0gを加えて、5時間ラジカル共重合反応を行なった後、反応系に水300gを加えてラジカル共重合反応を停止した。反応系を水酸化ナトリウム水溶液にてpH5に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(r−1)を85%及びα−アリル−ω−メトキシ−ポリ(n=33)オキシエチレンを15%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(R−1)とした。
Comparative Example 1 {Preparation of cement dispersant (R-1)}
147 g (1.5 mol) of maleic anhydride and 1527 g (1.0 mol) of α-allyl-ω-methoxy-poly (n = 33) oxyethylene were charged into a reaction vessel and dissolved uniformly with stirring. Was replaced with nitrogen. The temperature of the reaction system was kept at 80 ° C. in a warm water bath, and 10.0 g of azobisisobutyronitrile was added to start radical copolymerization reaction. After 1 hour, 5.0 g of azobisisobutyronitrile was further added. After 1 hour, 5.0 g of azobisisobutyronitrile was further added, and a radical copolymerization reaction was carried out for 5 hours. 300 g of water was added to stop the radical copolymerization reaction. The reaction system was adjusted to pH 5 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 85% maleic acid copolymer (r-1) and 15% α-allyl-ω-methoxy-poly (n = 33) oxyethylene. This reaction mixture was used as a cement dispersant (R-1).

・比較例2及び3{セメント分散剤(R−2)及び(R−3)の調製}
比較例1のセメント分散剤(R−1)の場合と同様にして、表1に記載の比較例2及び3のセメント分散剤(R−2)及び(R−3)を調製した。
Comparative Examples 2 and 3 {Preparation of cement dispersants (R-2) and (R-3)}
Cement dispersants (R-2) and (R-3) of Comparative Examples 2 and 3 listed in Table 1 were prepared in the same manner as in the case of the cement dispersant (R-1) of Comparative Example 1.

・比較例4{セメント分散剤(R−4)の調製}
蒸留水66g、マレイン酸116g(1.0モル)及びα−アリル−ω−ヒドロキシ−ポリ(n=2)オキシエチレン147g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、過硫酸ナトリウム4gを蒸留水16gに溶解した水溶液を投入して、ラジカル共重合反応を開始した。1時間後、更に過硫酸ナトリウム4gを蒸留水16gに溶解した水溶液を投入し、70℃に保持して3時間、ラジカル共重合反応を行なった。反応系を水酸化ナトリウム水溶液にてpH5に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(r−4)を76%及びα−アリル−ω−ヒドロキシ−ポリ(n=2)オキシエチレンを24%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(R−4)とした。
Comparative Example 4 {Preparation of cement dispersant (R-4)}
66 g of distilled water, 116 g (1.0 mol) of maleic acid and 147 g (1.0 mol) of α-allyl-ω-hydroxy-poly (n = 2) oxyethylene were charged into a reaction vessel and dissolved uniformly with stirring. Thereafter, the atmosphere was replaced with nitrogen. The temperature of the reaction system was kept at 70 ° C. in a warm water bath, and an aqueous solution in which 4 g of sodium persulfate was dissolved in 16 g of distilled water was added to initiate radical copolymerization reaction. After 1 hour, an aqueous solution in which 4 g of sodium persulfate was dissolved in 16 g of distilled water was added, and the copolymerization reaction was carried out for 3 hours while maintaining the temperature at 70 ° C. The reaction system was adjusted to pH 5 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 76% maleic acid copolymer (r-4) and 24% α-allyl-ω-hydroxy-poly (n = 2) oxyethylene. This reaction mixture was used as a cement dispersant (R-4).

・比較例5{セメント分散剤(R−5)の調製}
蒸留水601g、マレイン酸116g(1.0モル)及びα−イソプレニル−ω−ヒドロキシ−ポリ(n=50)オキシエチレン2290g(1.0モル)を反応容器に仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。反応系の温度を温水浴にて70℃に保ち、5%過酸化水素水溶液146gを投入し、更に5%L−アスコルビン酸水溶液67gを4時間かけて加え、ラジカル共重合反応を行なった後、更に70℃に保持して2時間、ラジカル共重合反応を行なった。反応系を水酸化ナトリウム水溶液にてpH6に調整し、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、表1に記載のマレイン酸共重合体(r−5)を75%及びα−イソプレニル−ω−ヒドロキシ−ポリ(n=50)オキシエチレンを25%の割合で含有する反応混合物であった。この反応混合物をセメント分散剤(R−5)とした。
Comparative Example 5 {Preparation of cement dispersant (R-5)}
601 g of distilled water, 116 g (1.0 mol) of maleic acid and 2290 g (1.0 mol) of α-isoprenyl-ω-hydroxy-poly (n = 50) oxyethylene were charged into a reaction vessel and dissolved uniformly with stirring. Thereafter, the atmosphere was replaced with nitrogen. After maintaining the temperature of the reaction system at 70 ° C. in a warm water bath, 146 g of 5% aqueous hydrogen peroxide solution was added, and 67 g of 5% L-ascorbic acid aqueous solution was further added over 4 hours to carry out radical copolymerization reaction. Furthermore, the radical copolymerization reaction was performed for 2 hours, keeping at 70 ° C. The reaction system was adjusted to pH 6 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC and the like. The reaction mixture contained 75% maleic acid copolymer (r-5) and 25% α-isoprenyl-ω-hydroxy-poly (n = 50) oxyethylene. This reaction mixture was used as a cement dispersant (R-5).

・比較例6{セメント分散剤(R−6)の調製}
蒸留水164gを反応容器に仕込み、雰囲気を窒素置換し、窒素雰囲気下にて反応系の温度を60℃とした。別に蒸留水292g、メタクリル酸39g、α−メトキシ−ω−メタクリロイル−ポリ(n=9)オキシエチレン339g及び3−メルカプトプロピオン酸3.8gを均一混合し、単量体混合物水溶液とした。この単量体混合物水溶液と10%過硫酸ナトリウム水溶液60gとを4時間かけて前記の反応容器に同時に滴下してラジカル共重合反応を行ない、更に10%過硫酸ナトリウム水溶液15gを1時間かけて滴下してラジカル共重合反応を行なった後、更にまた60℃に保持して1時間、ラジカル共重合反応を行なった。反応系を室温まで冷却し、水酸化ナトリウム水溶液にてpH6に調整して、更に蒸留水にて固形分濃度25%に調整した後、ここに含まれる反応混合物を精製し、GPC等で分析したところ、メタクリル酸から形成された構成単位を80%及びα−メトキシ−ω−メタクリロイル−ポリ(n=9)オキシエチレンから形成された構成単位を20%の割合で含有する表2に記載の反応混合物であった。この反応混合物をセメント分散剤(R−6)とした。
Comparative Example 6 {Preparation of cement dispersant (R-6)}
164 g of distilled water was charged into the reaction vessel, the atmosphere was replaced with nitrogen, and the temperature of the reaction system was set to 60 ° C. under a nitrogen atmosphere. Separately, 292 g of distilled water, 39 g of methacrylic acid, 339 g of α-methoxy-ω-methacryloyl-poly (n = 9) oxyethylene and 3.8 g of 3-mercaptopropionic acid were uniformly mixed to obtain a monomer mixture aqueous solution. This monomer mixture aqueous solution and 10% sodium persulfate aqueous solution 60 g are simultaneously dropped into the reaction vessel over 4 hours to carry out radical copolymerization reaction, and further 10% sodium persulfate aqueous solution 15 g is dropped over 1 hour. Then, after carrying out the radical copolymerization reaction, the radical copolymerization reaction was further carried out for 1 hour while maintaining the temperature at 60 ° C. The reaction system was cooled to room temperature, adjusted to pH 6 with an aqueous sodium hydroxide solution and further adjusted to a solid content concentration of 25% with distilled water, and then the reaction mixture contained therein was purified and analyzed by GPC or the like. However, the reaction described in Table 2 containing 80% of structural units formed from methacrylic acid and 20% of structural units formed from α-methoxy-ω-methacryloyl-poly (n = 9) oxyethylene. It was a mixture. This reaction mixture was used as a cement dispersant (R-6).

・比較例7〜10{セメント分散剤(R−7)〜(R−10)の調製}
比較例6のセメント分散剤(R−6)の場合と同様にして、表2に記載の比較例7〜10のセメント分散剤(R−7)〜(R−10)を調製した。
以上で調製した各例のセメント分散剤(A−1)〜(A−11)及び(R−1)〜(R−5)並びに(R−6)〜(R−10)の内容を表1及び表2にまとめて示した。
Comparative Examples 7 to 10 {Preparation of cement dispersants (R-7) to (R-10)}
Cement dispersants (R-7) to (R-10) of Comparative Examples 7 to 10 shown in Table 2 were prepared in the same manner as in the case of the cement dispersant (R-6) of Comparative Example 6.
Table 1 shows the contents of the cement dispersants (A-1) to (A-11) and (R-1) to (R-5) and (R-6) to (R-10) of each example prepared above. And Table 2 summarizes the results.

Figure 2009263181
Figure 2009263181

表1において、
*1:構成単位Aを形成することと成る単量体の種類
*2:(マレイン酸共重合体のゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量)/(構成単位Aの形成に用いた単量体の分子量)で求められる値
質量平均分子量:マレイン酸共重合体のゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量
d−1:α−アリル−ω−ヒドロキシ−ポリ(n=33)オキシエチレン
d−2:α−アリル−ω−メトキシ−ポリ(n=20)オキシエチレン
d−3:α−アリル−ω−ヒドロキシ−ポリ(n=50)オキシエチレン
d−4:α−アリル−ω−メトキシ−ポリ(n=45)オキシエチレンポリ(m=5)プロピレン
d−5:α−アリル−ω−メトキシ−ポリ(n=80)オキシエチレン
d−6:α−アリル−ω−メトキシ−ポリ(n=33)オキシエチレン
d−7:α−イソプレニル−ω−ヒドロキシ−ポリ(n=80)オキシエチレン
d−8:α−アリル−ω−メトキシ−ポリ(n=50)オキシエチレン
d−9:α−アリル−ω−メトキシ−ポリ(n=60)オキシエチレンポリ(m=10)オキシプロピレン
d−10:α−アリル−ω−ヒドロキシ−ポリ(n=7)オキシエチレン
dr−1:α−アリル−ω−メトキシ−ポリ(n=20)オキシエチレンポリ(m=10)プロピレン
dr−2:α−アリル−ω−メトキシ−ポリ(n=2)オキシエチレン
dr−3:α−イソプレニル−ω−ヒドロキシ−ポリ(n=50)オキシエチレン
これらは以下同じ
In Table 1,
* 1: Types of monomers that will form the structural unit A * 2: (weight average molecular weight in terms of polyethylene glycol measured by gel permeation chromatograph of maleic acid copolymer) / (formation of the structural unit A) (Molecular weight of the monomer used for the measurement) Mass average molecular weight: Mass average molecular weight in terms of polyethylene glycol measured by gel permeation chromatograph of maleic acid copolymer d-1: α-allyl-ω-hydroxy- Poly (n = 33) oxyethylene d-2: α-allyl-ω-methoxy-poly (n = 20) oxyethylene d-3: α-allyl-ω-hydroxy-poly (n = 50) oxyethylene d- 4: α-allyl-ω-methoxy-poly (n = 45) oxyethylene poly (m = 5) propylene d-5: α-allyl-ω-methoxy-poly ( = 80) Oxyethylene d-6: α-allyl-ω-methoxy-poly (n = 33) oxyethylene d-7: α-isoprenyl-ω-hydroxy-poly (n = 80) oxyethylene d-8: α Allyl-ω-methoxy-poly (n = 50) oxyethylene d-9: α-allyl-ω-methoxy-poly (n = 60) oxyethylene poly (m = 10) oxypropylene d-10: α-allyl -Ω-hydroxy-poly (n = 7) oxyethylene dr-1: α-allyl-ω-methoxy-poly (n = 20) oxyethylene poly (m = 10) propylene dr-2: α-allyl-ω- Methoxy-poly (n = 2) oxyethylene dr-3: α-isoprenyl-ω-hydroxy-poly (n = 50) oxyethylene These are the same hereinafter

Figure 2009263181
Figure 2009263181

表2において、
dr−4:α−メトキシ−ω−メタクリロイル−ポリ(n=9)オキシエチレン
dr−5:α−メトキシ−ω−メタクリロイル−ポリ(n=23)オキシエチレン
dr−6:α−メトキシ−ω−メタクリロイル−ポリ(n=45)オキシエチレン
dr−7:α−メトキシ−ω−メタクリロイル−ポリ(n=68)オキシエチレン
dr−8:α−メトキシ−ω−メタクリロイル−ポリ(n=125)オキシエチレン
In Table 2,
dr-4: α-methoxy-ω-methacryloyl-poly (n = 9) oxyethylene dr-5: α-methoxy-ω-methacryloyl-poly (n = 23) oxyethylene dr-6: α-methoxy-ω- Methacryloyl-poly (n = 45) oxyethylene dr-7: α-methoxy-ω-methacryloyl-poly (n = 68) oxyethylene dr-8: α-methoxy-ω-methacryloyl-poly (n = 125) oxyethylene

試験区分2(超高強度コンクリート組成物の調製及び評価)
・実施例13〜48及び比較例11〜43(超高強度コンクリート組成物の調製)
表3に記載の配合条件で、表4〜表6に記載した各例の超高強度コンクリート組成物を次のように調製した。55Lのパン型強制練りミキサーにシリカフュームセメント(宇部三菱社製、比重=3.08、ブレーン値5600)、細骨材(大井川水系砂、比重=2.58)及び粗骨材(岡崎産砕石、比重=2.68)を順次投入して15秒間空練りした後、目標スランプフローが65±5cm及び空気量が3%以下の範囲となるよう前記の試験区分1で製造した表1又は表2記載のセメント分散剤等を、また結合材100重量部当たり0.01質量部の割合となるよう脂肪族ポリエーテル系消泡剤(竹本油脂社製の商品名AFK−2)を、練り混ぜ水と共に投入し、配合条件1では8分間、配合条件2では12分間練り混ぜた。また配合条件3においては、結合材として前記のシリカフュームセメントにシリカフューム微粉末(エルケム社製の商品名マイクロシリカ940U、比重=2.20、ブレーン値140000)を混合したものを用いた以外は同様にして14分間練り混ぜた。


Test Category 2 (Preparation and evaluation of ultra high strength concrete composition)
Examples 13 to 48 and Comparative Examples 11 to 43 (Preparation of ultra-high strength concrete composition)
Under the blending conditions described in Table 3, the ultra-high strength concrete compositions of the respective examples described in Tables 4 to 6 were prepared as follows. Silica fume cement (Mitsubishi Ube, specific gravity = 3.08, brain value 5600), fine aggregate (Oikawa water sand, specific gravity = 2.58) and coarse aggregate (Okazaki crushed stone, Table 1 or Table 2 manufactured in the above test category 1 so that the target slump flow is 65 ± 5 cm and the air amount is in the range of 3% or less. Mixing the described cement dispersant and the like with an aliphatic polyether antifoaming agent (trade name AFK-2 manufactured by Takemoto Yushi Co., Ltd.) at a ratio of 0.01 parts by mass per 100 parts by weight of the binder The mixture was kneaded for 8 minutes under mixing condition 1 and 12 minutes under mixing condition 2. In addition, compounding condition 3 was the same except that the silica fume cement was mixed with silica fume fine powder (trade name Microsilica 940U, specific gravity = 2.20, brain value 140000, manufactured by Elchem Co.) as a binder. And kneaded for 14 minutes.


Figure 2009263181
Figure 2009263181

・超高強度コンクリート組成物の評価
調製した各例の超高強度コンクリート組成物について、練り混ぜ直後のスランプフロー、空気量及びLフロー初速度、また練り混ぜ直後から90分間静置後のスランプフロー及び空気量、更に硬化体の自己収縮ひずみ及び圧縮強度を下記のようにもとめた。結果を表4〜表9にまとめて示した。
・ Evaluation of ultra-high-strength concrete composition About the prepared ultra-high-strength concrete composition, the slump flow immediately after kneading, the amount of air and the L flow initial velocity, and the slump flow after standing for 90 minutes immediately after kneading In addition, the amount of air and the self-shrinkage strain and compressive strength of the cured product were also determined as follows. The results are summarized in Tables 4 to 9.

・スランプフロー:練り混ぜ直後及びそれから90分間静置した超高強度コンクリート組成物について、JIS−A1150に準拠して測定した。
・空気量:練り混ぜ直後及びそれから90分間静置した超高強度コンクリート組成物について、JIS−A1128に準拠して測定した。
・Lフロー初速度:練り混ぜ直後の超高強度コンクリート組成物について、Lフロー試験器(日本建築学会の「高流動コンクリートの材料・調合・製造・施工指針(案)・同解説」に記載のもの)を用いて測定した。尚、Lフロー初速度は、Lフロー試験器の流れ始動面より3cmから8cmの間の流動速度とした。スランプフローが同一である場合、Lフロー初速度の大きいものが低粘性であることを示す。
・自己収縮ひずみ:各例の超高強度コンクリート組成物を硬化させた材齢1日と28日の硬化体について、日本コンクリート工学協会の自己収縮研究委員会報告書の「コンクリートの自己収縮応力試験方法(案)」に準拠して測定した。材齢は凝結時間の始発を出発時間とした。尚、自己収縮ひずみの数値が小さいほど、自己収縮が小さいことを示す。一般に、水/結合材比の小さい超高強度コンクリート組成物ほど自己収縮ひずみが大きくなる傾向があるため、自己収縮ひずみは水/結合材比が同じ超高強度コンクリート組成物間で比較する必要がある。
・圧縮強度:各例の超高強度コンクリート組成物を硬化させた材齢7日と28日の硬化体について、JIS−A1108に準拠して測定した。














-Slump flow: It measured based on JIS-A1150 about the ultra-high-strength concrete composition left still after mixing for 90 minutes.
-Air amount: It measured based on JIS-A1128 about the ultra-high-strength concrete composition which left still after mixing for 90 minutes after that.
・ L-flow initial speed: For ultra-high-strength concrete composition immediately after mixing, L-flow tester (as described in “High Fluid Concrete Material / Composition / Manufacturing / Construction Guidelines (Draft) / Description” of Architectural Institute of Japan) ). The initial velocity of the L flow was a flow velocity between 3 cm and 8 cm from the flow starting surface of the L flow tester. When the slump flow is the same, the one with the large L flow initial velocity indicates low viscosity.
・ Self-shrinkage strain: Self-shrinkage stress test of concrete in the Japan Concrete Engineering Association's Self-Shrinking Research Committee report on hardened bodies of 1 and 28 days of age in which the ultra-high-strength concrete composition of each example was cured Measured according to “Method (draft)”. The age of the starting time was the first setting time. In addition, it shows that self shrinkage is so small that the numerical value of self shrinkage | contraction strain is small. In general, self-shrinkage strain tends to increase as ultra-high-strength concrete compositions with a small water / binder ratio, so it is necessary to compare self-shrinkage strains between ultra-high-strength concrete compositions with the same water / binder ratio. is there.
-Compressive strength: It measured based on JIS-A1108 about the hardened | cured material of the age 7 days and 28 days which hardened the ultra-high-strength concrete composition of each case.














Figure 2009263181
Figure 2009263181




















Figure 2009263181
Figure 2009263181




















Figure 2009263181
Figure 2009263181

表4〜表6において、
セメント分散剤の添加量:結合材100質量部当たりのセメント分散剤の添加質量部
R−11:ナフタレンスルホン酸系セメント分散剤(竹本油脂社製の商品名ポールファイン510−AN)
*3:セメント分散剤の添加量を増やしても、流動性が不足して目標のフロー値が得られなかった。













In Tables 4-6,
Amount of cement dispersant added: part by weight of cement dispersant added per 100 parts by weight of binder R-11: naphthalenesulfonic acid cement dispersant (trade name Pole Fine 510-AN manufactured by Takemoto Yushi Co.)
* 3: Even if the amount of cement dispersant added was increased, the flowability was insufficient and the target flow value could not be obtained.













Figure 2009263181
Figure 2009263181





















Figure 2009263181
Figure 2009263181





















Figure 2009263181
Figure 2009263181

Claims (10)

下記のマレイン酸共重合体を含有して成ることを特徴とするセメント分散剤。
マレイン酸共重合体:下記の構成単位A及び構成単位Bで構成されており、構成単位Aを30〜70モル%及び構成単位Bを30〜70モル%(合計100モル%)の割合で有していて、且つゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量が構成単位Aの形成に用いた下記の化1で示される単量体の分子量又は平均分子量の10倍以内にあるもの
構成単位A:下記の化1で示される単量体から形成された構成単位
構成単位B:マレイン酸から形成された構成単位及び/又はマレイン酸塩から形成された構成単位
Figure 2009263181
(化1において、
:炭素数3〜5のアルケニル基
:水素原子、炭素数1〜22のアルキル基又は炭素数1〜22の脂肪族アシル基
A:1〜100個のオキシエチレン単位で構成された(ポリ)オキシエチレン基又は合計2〜100個のオキシエチレン単位とオキシプロピレン単位とで構成されたポリオキシアルキレン基
A cement dispersant comprising the following maleic acid copolymer.
Maleic acid copolymer: Consists of the following structural unit A and structural unit B, and the structural unit A is 30 to 70 mol% and the structural unit B is 30 to 70 mol% (total 100 mol%). And the weight average molecular weight in terms of polyethylene glycol measured by gel permeation chromatography is within 10 times the molecular weight or average molecular weight of the monomer represented by the following chemical formula 1 used for forming the structural unit A. Structural unit A: Structural unit formed from the monomer represented by the following chemical formula 1 Structural unit B: Structural unit formed from maleic acid and / or structural unit formed from maleate
Figure 2009263181
(In chemical formula 1,
R 1 : an alkenyl group having 3 to 5 carbon atoms R 2 : a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or an aliphatic acyl group having 1 to 22 carbon atoms A: composed of 1 to 100 oxyethylene units (Poly) oxyethylene group or polyoxyalkylene group composed of a total of 2 to 100 oxyethylene units and oxypropylene units
マレイン酸共重合体及び化1で示される単量体から成り、且つマレイン酸共重合体を30〜90質量%及び化1で示される単量体を10〜70質量%(合計100質量%)の割合で含有して成る請求項1記載のセメント分散剤。   It is composed of a maleic acid copolymer and a monomer represented by Chemical Formula 1, and 30 to 90% by mass of the maleic acid copolymer and 10 to 70% by mass of a monomer represented by Chemical Formula 1 (total 100% by mass) The cement dispersant according to claim 1, comprising: マレイン酸共重合体が、ゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量が構成単位Aの形成に用いた化1で示される単量体の分子量又は平均分子量の1.5〜7倍の範囲内にある場合のものである請求項1又は2記載のセメント分散剤。   The maleic acid copolymer has a weight average molecular weight in terms of polyethylene glycol measured by gel permeation chromatograph of 1.5 to 7 of the molecular weight or average molecular weight of the monomer represented by Chemical Formula 1 used for forming the structural unit A. The cement dispersing agent according to claim 1 or 2, wherein the cement dispersing agent is in a range of twice the range. マレイン酸共重合体が、ゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量が1000〜15000の範囲内にある場合のものである請求項1又は2記載のセメント分散剤。   The cement dispersant according to claim 1 or 2, wherein the maleic acid copolymer has a weight average molecular weight in terms of polyethylene glycol measured by gel permeation chromatography in the range of 1000 to 15000. マレイン酸共重合体が、ゲルパーミエーションクロマトグラフで測定したポリエチレングリコール換算の質量平均分子量が1500〜10000の範囲内にある場合のものである請求項1又は2記載のセメント分散剤。   The cement dispersant according to claim 1 or 2, wherein the maleic acid copolymer has a weight average molecular weight in terms of polyethylene glycol measured by gel permeation chromatography in the range of 1500 to 10,000. 構成単位Aが、化1中のRがアリル基であり、Rが水素原子、メチル基又はアセチル基であって、Aが10〜70個のオキシエチレン単位から構成されたポリオキシエチレン基である場合のものである請求項1〜5のいずれか一つの項記載のセメント分散剤。 The structural unit A is a polyoxyethylene group in which R 1 in Chemical Formula 1 is an allyl group, R 2 is a hydrogen atom, a methyl group or an acetyl group, and A is composed of 10 to 70 oxyethylene units. The cement dispersant according to any one of claims 1 to 5, wherein the cement dispersant is any one of the above. 請求項1〜6のいずれか一つの項記載のセメント分散剤を用いて調製したセメント組成物。   The cement composition prepared using the cement dispersing agent of any one of Claims 1-6. 水/結合材比が7〜30%のものである請求項7記載のセメント組成物。   Cement composition according to claim 7, wherein the water / binder ratio is 7-30%. 水/結合材比が7〜22%のものである請求項7記載のセメント組成物。   Cement composition according to claim 7, wherein the water / binder ratio is 7-22%. 結合材としてシリカフュームを含有するものを用いたものである請求項7〜9のいずれか一つの項記載のセメント組成物。   The cement composition according to any one of claims 7 to 9, wherein a binder containing silica fume is used.
JP2008116712A 2008-04-28 2008-04-28 Cement dispersant and cement composition Active JP4979135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116712A JP4979135B2 (en) 2008-04-28 2008-04-28 Cement dispersant and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116712A JP4979135B2 (en) 2008-04-28 2008-04-28 Cement dispersant and cement composition

Publications (2)

Publication Number Publication Date
JP2009263181A true JP2009263181A (en) 2009-11-12
JP4979135B2 JP4979135B2 (en) 2012-07-18

Family

ID=41389523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116712A Active JP4979135B2 (en) 2008-04-28 2008-04-28 Cement dispersant and cement composition

Country Status (1)

Country Link
JP (1) JP4979135B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051737A (en) * 2010-08-04 2012-03-15 Takemoto Oil & Fat Co Ltd Fluidizing agent for preparing high strength soil cement slurry
WO2016067826A1 (en) * 2014-10-31 2016-05-06 竹本油脂株式会社 Post-mixing admixture for concrete
JP2017036167A (en) * 2015-08-07 2017-02-16 株式会社フローリック Hydraulic material composition
JP2019151504A (en) * 2018-03-01 2019-09-12 株式会社竹中工務店 Admixture for cement
JP2021024751A (en) * 2019-08-01 2021-02-22 竹本油脂株式会社 Dispersion agent for hydraulic composition and hydraulic composition

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048620A (en) * 1999-08-03 2001-02-20 Nof Corp Additive composition for cement
JP2003081670A (en) * 2001-07-02 2003-03-19 Taiheiyo Cement Corp Multifunctional cement dispersant, and hydraulic cement composition
JP2003105040A (en) * 2001-09-28 2003-04-09 Nof Corp Method for manufacturing copolymer and its use
JP2003119279A (en) * 2001-10-16 2003-04-23 Takemoto Oil & Fat Co Ltd Method for producing allyl ether ester monomer and cement dispersant
JP2003212625A (en) * 2002-01-25 2003-07-30 Takemoto Oil & Fat Co Ltd Powdery cement dispersant composition
JP2004292283A (en) * 2003-03-28 2004-10-21 Taiheiyo Cement Corp High-strength concrete
JP2005029469A (en) * 2004-08-25 2005-02-03 Takemoto Oil & Fat Co Ltd Cement dispersing agent
JP2005132955A (en) * 2003-10-30 2005-05-26 Takemoto Oil & Fat Co Ltd Multifunctional admixture for hydraulic cement composition
JP2005162559A (en) * 2003-12-04 2005-06-23 Takenaka Komuten Co Ltd Multifunctional admixture for concrete and concrete
JP2006199953A (en) * 2004-12-24 2006-08-03 Takenaka Komuten Co Ltd Admixture for fly ash containing high concentration of unburned carbon and concrete
JP2008007382A (en) * 2006-06-30 2008-01-17 Chugoku Electric Power Co Inc:The Method for preparing concrete

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048620A (en) * 1999-08-03 2001-02-20 Nof Corp Additive composition for cement
JP2003081670A (en) * 2001-07-02 2003-03-19 Taiheiyo Cement Corp Multifunctional cement dispersant, and hydraulic cement composition
JP2003105040A (en) * 2001-09-28 2003-04-09 Nof Corp Method for manufacturing copolymer and its use
JP2003119279A (en) * 2001-10-16 2003-04-23 Takemoto Oil & Fat Co Ltd Method for producing allyl ether ester monomer and cement dispersant
JP2003212625A (en) * 2002-01-25 2003-07-30 Takemoto Oil & Fat Co Ltd Powdery cement dispersant composition
JP2004292283A (en) * 2003-03-28 2004-10-21 Taiheiyo Cement Corp High-strength concrete
JP2005132955A (en) * 2003-10-30 2005-05-26 Takemoto Oil & Fat Co Ltd Multifunctional admixture for hydraulic cement composition
JP2005162559A (en) * 2003-12-04 2005-06-23 Takenaka Komuten Co Ltd Multifunctional admixture for concrete and concrete
JP2005029469A (en) * 2004-08-25 2005-02-03 Takemoto Oil & Fat Co Ltd Cement dispersing agent
JP2006199953A (en) * 2004-12-24 2006-08-03 Takenaka Komuten Co Ltd Admixture for fly ash containing high concentration of unburned carbon and concrete
JP2008007382A (en) * 2006-06-30 2008-01-17 Chugoku Electric Power Co Inc:The Method for preparing concrete

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051737A (en) * 2010-08-04 2012-03-15 Takemoto Oil & Fat Co Ltd Fluidizing agent for preparing high strength soil cement slurry
WO2016067826A1 (en) * 2014-10-31 2016-05-06 竹本油脂株式会社 Post-mixing admixture for concrete
JPWO2016067826A1 (en) * 2014-10-31 2017-04-27 竹本油脂株式会社 Post-additive admixture for concrete
TWI653207B (en) 2014-10-31 2019-03-11 日商竹本油脂股份有限公司 Post-admixture for concrete
JP2017036167A (en) * 2015-08-07 2017-02-16 株式会社フローリック Hydraulic material composition
JP2019151504A (en) * 2018-03-01 2019-09-12 株式会社竹中工務店 Admixture for cement
JP2021024751A (en) * 2019-08-01 2021-02-22 竹本油脂株式会社 Dispersion agent for hydraulic composition and hydraulic composition
JP7214218B2 (en) 2019-08-01 2023-01-30 竹本油脂株式会社 Dispersant for hydraulic composition and hydraulic composition

Also Published As

Publication number Publication date
JP4979135B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP2006282414A (en) Strength improving agent for cement, aqueous solution of polycarboxylic acid-based copolymer, and cement composition
JP4979135B2 (en) Cement dispersant and cement composition
WO2012124716A1 (en) Dispersing agent for hydraulic compositions
CN110218283B (en) Special superplasticizer for high and ultrahigh strength concrete and preparation method thereof
JP2011079721A (en) Early-strength cement admixture
JP6739784B2 (en) Post-additive admixture for concrete and method for maintaining concrete fluidity
JP5936504B2 (en) Polycarboxylic acid copolymer and use thereof
JP7103691B2 (en) Additives for hydraulic compositions and hydraulic compositions
JP2019143151A (en) Use of comb polymers for controlling the rheology of mineral binder compositions
JP2005132670A (en) Ultra-high-strength concrete composition
JP7097104B2 (en) Method for Producing Additives for Hydraulic Composition
JP4111513B2 (en) High-strength concrete composition
JP2004137130A (en) Additive composition for cement
JP7055338B2 (en) Additives for hydraulic compositions, and hydraulic compositions
JP2017122040A (en) Cement additive and cement composition
JP2014125509A (en) Copolymer and application of the same
JP6042203B2 (en) Copolymer and its use
JP6985701B2 (en) Cement admixture
JP7012354B2 (en) Cement admixture and cement composition
JP7214218B2 (en) Dispersant for hydraulic composition and hydraulic composition
JP6602612B2 (en) Cement additive and cement composition
JP7020668B2 (en) Additives for hydraulic composition and method for preparing hydraulic composition
RU2772920C2 (en) Additives for hydraulic compositions
JP7090504B2 (en) Additives for cement compositions containing recycled aggregate
JP6055304B2 (en) Copolymer and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250