JP2009262795A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2009262795A
JP2009262795A JP2008115613A JP2008115613A JP2009262795A JP 2009262795 A JP2009262795 A JP 2009262795A JP 2008115613 A JP2008115613 A JP 2008115613A JP 2008115613 A JP2008115613 A JP 2008115613A JP 2009262795 A JP2009262795 A JP 2009262795A
Authority
JP
Japan
Prior art keywords
tire
tread
rubber
width direction
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008115613A
Other languages
Japanese (ja)
Inventor
Yasuo Osawa
靖雄 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008115613A priority Critical patent/JP2009262795A/en
Publication of JP2009262795A publication Critical patent/JP2009262795A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire having superior wear resistance performance and very low resistance to rolling. <P>SOLUTION: This pneumatic tire includes a belt constituted by arranging inclined belt layers composed of at least two layers each and constituted by covering many cords extended in the direction of inclination for an equatorial plane of the tire with rubber on an outer side in the radial direction of a crown part of a carcass extending over a pair of bead parts in a troidal shape by using the carcass as a skeleton in order and arranging a tread on an outer side in the radial direction of the belt. A ratio of difference BD between diameters of a central part in the direction of width of the outermost side layer and an end part in the direction of width to half width HBW of the outermost side layer of the inclined belt layer, namely, BD/HBW, in cross section in the direction of width of the tire being mounted on an application rim is 0.10 or more and 0.13 or less. The tread has higher modulus of elasticity of rubber in a central zone in the direction of width than modulus of elasticity of rubber in both of side zones of the central zone. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐摩耗性能に優れかつ転がり抵抗の低い空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire having excellent wear resistance and low rolling resistance.

近年、より環境負荷の小さい製品の開発が活発に行われている。この原因は、地球温暖化をはじめとする環境問題にあり、タイヤについても例外ではない。このタイヤに関し、前記環境問題に対応するためには、自動車の低燃費化に寄与する性能の確保が大切になる。これを達成する一つの手段として、タイヤの転がり抵抗を減らすことが挙げられ、従来、様々な技術開発が行われている。
以下に、従来の改良方法をいくつか紹介する。
In recent years, development of products with a smaller environmental load has been actively conducted. This is due to environmental problems such as global warming, and tires are no exception. With respect to this tire, in order to cope with the environmental problem, it is important to secure performance that contributes to reducing fuel consumption of the automobile. One means for achieving this is to reduce the rolling resistance of the tire, and various technical developments have been made in the past.
The following introduces some conventional improvements.

まず、タイヤの転がり抵抗は、トレッド部のゴム内にて多く発生することが知られている。直接的な改良方法として、このトレッド部に使用されるゴムを損失正接(tanδ)が小さいものに変更することが有効である。しかし、この方法では、タイヤの、例えば耐摩耗性能をはじめとする他の性能が犠牲になることも知られている。一方、転がり抵抗を増す発生源であるゴムを減らすために、トレッド厚さを薄くする方法も容易に考えられるが、この場合はタイヤの摩耗までの寿命を十分に確保できないことが問題になる。   First, it is known that a large amount of tire rolling resistance occurs in the rubber of the tread portion. As a direct improvement method, it is effective to change the rubber used for the tread portion to one having a small loss tangent (tan δ). However, this method is also known to sacrifice other performance of the tire, such as wear resistance. On the other hand, a method of reducing the thickness of the tread can be easily considered in order to reduce the rubber that is a source of increasing rolling resistance. However, in this case, it is problematic that a sufficient life until the tire wears cannot be secured.

さらに、特許文献1では、タイヤの断面形状を工夫して転がり抵抗を低減することが提案されている。この提案によって、耐摩耗性を確保しつつ転がり抵抗の低減を図ることができる。
特開2006−1360号公報
Further, Patent Document 1 proposes reducing the rolling resistance by devising the cross-sectional shape of the tire. With this proposal, it is possible to reduce rolling resistance while ensuring wear resistance.
JP 2006-1360 A

しかし、近年の環境への配慮を考えた場合、更なる転がり抵抗の低減が希求されている。
そこで、本発明の目的は、優れた耐摩耗性能を確保しつつ更に転がり抵抗を低減した空気入りタイヤを提供ことにある。
However, when considering environmental considerations in recent years, further reduction of rolling resistance is desired.
SUMMARY OF THE INVENTION An object of the present invention is to provide a pneumatic tire that further reduces rolling resistance while ensuring excellent wear resistance.

さて、タイヤの転がり抵抗の多くは、トレッドゴムで発生する歪エネルギーロスによるものである。このトレッド部での現象を詳細に解析すると、せん断変形(周方向および幅方向)による歪エネルギーロスが支配的であり、特にショルダー部において歪エネルギーロスが大きいことが分かった。
そこで、発明者らは、トレッドのクラウン部に丸みを持たせると、タイヤの接地幅は狭くなり、接地幅を狭めることができれば、トレッド部で変形するゴムの体積が減少し、歪エネルギーロスが低減され、転がり抵抗を低減できることを見出した。
Now, much of the rolling resistance of the tire is due to strain energy loss generated in the tread rubber. When the phenomenon in the tread portion was analyzed in detail, it was found that the strain energy loss due to shear deformation (circumferential direction and width direction) was dominant, and the strain energy loss was particularly large in the shoulder portion.
Therefore, the inventors have rounded the crown portion of the tread, so that the ground contact width of the tire becomes narrow, and if the ground contact width can be narrowed, the volume of rubber deformed in the tread portion is reduced, and the strain energy loss is reduced. It has been found that the rolling resistance can be reduced.

また、発明者らは、更なる転がり抵抗の低減を目指して鋭意検討したところ、トレッドを、幅方向中央域と該中央域の両側域とに区画した際、中央域と両側域のゴムの弾性率を規制することが極めて有効であることを見出し、本発明を完成するに到った。   In addition, the inventors have intensively studied to further reduce rolling resistance, and as a result, when the tread is divided into a central region in the width direction and both side regions of the central region, the elasticity of the rubber in the central region and both side regions is determined. The inventors have found that regulating the rate is extremely effective, and have completed the present invention.

本発明の要旨は、以下のとおりである。
(1)一対のビード部間にトロイダル状に跨るカーカスを骨格として、該カーカスのクラウン部の径方向外側に、タイヤの赤道面に対して傾斜した向きに延びるコードの多数本をゴムで被覆した、少なくとも2層の傾斜ベルト層とを順に配置して成るベルトを有し、該ベルトの径方向外側にトレッドを配置した空気入りタイヤであって、
該タイヤを適用リムに装着した状態のタイヤ幅方向断面において、前記傾斜ベルト層の最外側層の半幅HBWに対する、当該最外側層の幅方向中心部と幅方向端部との径差BDの比BD/HBWが0.10以上0.13以下であり、
前記トレッドは、幅方向中央域のゴムの弾性率が、該中央域の両側域のゴムの弾性率より高い、
ことを特徴とする空気入りタイヤ。
The gist of the present invention is as follows.
(1) Using a carcass straddling a toroidal shape between a pair of bead portions, a large number of cords extending in a direction inclined with respect to the equatorial plane of the tire are coated with rubber on the radially outer side of the crown portion of the carcass A pneumatic tire having a belt in which at least two inclined belt layers are arranged in order, and a tread is arranged radially outward of the belt,
The ratio of the diameter difference BD between the center portion in the width direction of the outermost layer and the end portion in the width direction with respect to the half width HBW of the outermost layer of the inclined belt layer in the tire width direction cross section in a state where the tire is mounted on the applicable rim. BD / HBW is 0.10 or more and 0.13 or less,
In the tread, the elastic modulus of the rubber in the central region in the width direction is higher than the elastic modulus of the rubber in both side regions of the central region.
A pneumatic tire characterized by that.

ここで、前記タイヤを適用リムに装着した状態とは、日本自動車タイヤ協会規格(JATMA)に規定の標準リムまたはその他の適用リムに組み込んだ状態にて、内圧を付加せずに若しくは、30kPa程度までの極低内圧を付加した状態を意味する。   Here, the state in which the tire is mounted on the applicable rim is a state in which the tire is incorporated in a standard rim or other applicable rim stipulated in the Japan Automobile Tire Association Standard (JATMA), without applying internal pressure, or about 30 kPa. This means a state with an extremely low internal pressure of up to.

(2)前記タイヤの断面高さSHに対する、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWhの比SWh/SHが0.55以下であることを特徴とする上記(1)に記載の空気入りタイヤ。 (2) The ratio of the shortest distance SWh between the line segment drawn parallel to the tire rotation axis at the maximum width position of the tire and the line segment drawn parallel to the tire rotation axis at bead toe with respect to the tire cross-section height SH SWh / SH is 0.55 or less, The pneumatic tire as described in said (1) characterized by the above-mentioned.

(3)前記傾斜ベルト層の最外側層の幅方向中心におけるトレッドゴム厚みGAと、前記傾斜ベルト層の最外側層の幅方向端部におけるトレッドゴム厚みGBとの比GB/GAが、0.75以上であることを特徴とする上記(1)または(2)に記載の空気入りタイヤ。 (3) The ratio GB / GA of the tread rubber thickness GA at the center in the width direction of the outermost layer of the inclined belt layer and the tread rubber thickness GB at the end in the width direction of the outermost layer of the inclined belt layer is 0. The pneumatic tire according to (1) or (2) above, wherein the pneumatic tire is 75 or more.

(4)前記傾斜ベルト層の最外側層の幅方向端部からビードコアの内側に至るカーカスライン
において最小曲率を示す部分が、タイヤの断面高さSHの1/2点より径方向内側に位置することを特徴とする上記(1)〜(3)のいずれかに記載の空気入りタイヤ。
(4) The portion showing the minimum curvature in the carcass line extending from the widthwise end of the outermost layer of the inclined belt layer to the inside of the bead core is located radially inward from the 1/2 point of the tire cross-section height SH. The pneumatic tire according to any one of the above (1) to (3), wherein

本発明によれば、耐摩耗性能に優れかつ転がり抵抗の極めて低い空気入りタイヤを提供することができる。   According to the present invention, it is possible to provide a pneumatic tire having excellent wear resistance and extremely low rolling resistance.

以下、図面を参照して、本発明を具体的に説明する。
図1は本発明に従うタイヤ半部の幅方向断面である。一対のビードコア1間にトロイダル状に跨る、コードのラジアル配列プライからなるカーカス2を骨格として、該カーカス2のクラウン部の径方向外側に、タイヤの赤道面CLに対して傾斜した向きに延びるコードの多数本をゴムで被覆した、少なくとも2層、図示例で2層の傾斜ベルト層3aおよび3bを配置し、さらに傾斜ベルト層3aの径方向外側に、タイヤの赤道面CLに沿って延びるコードの多数本をゴムで被覆した、少なくとも1層、図示例で1層の周方向ベルト層4を配置し、これらベルトの径方向外側にトレッド5を配置してなる。
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a cross section in the width direction of a tire half according to the present invention. A cord that extends in a toroidal manner between a pair of bead cores 1 and has a carcass 2 made of a radial arrangement ply of cords and that extends radially outward of the crown portion of the carcass 2 in a direction inclined with respect to the equatorial plane CL of the tire Cords of which at least two layers, in the illustrated example, two inclined belt layers 3a and 3b, which are coated with rubber, are arranged, and further extend along the equatorial plane CL of the tire on the radially outer side of the inclined belt layer 3a. A circumferential belt layer 4 of at least one layer, in the example shown in the figure, is disposed by covering a large number of these with rubber, and a tread 5 is disposed on the outer side in the radial direction of these belts.

かようなタイヤ6は、適用リム7に装着されて使用に供される。ここで、該タイヤ6を適用リム7に装着した状態のタイヤ幅方向断面において、図1に示すように、傾斜ベルト層の最外側層3aの半幅HBWに対する、当該最外側層3aの幅方向中心部(赤道面CL)と幅方向端部との径差BDの比BD/HBWが
0.10≦BD/HBW≦0.13
であることが肝要である。
Such a tire 6 is mounted on the application rim 7 and used. Here, in the tire width direction cross section in a state where the tire 6 is mounted on the applied rim 7, as shown in FIG. 1, the center in the width direction of the outermost layer 3a with respect to the half width HBW of the outermost layer 3a of the inclined belt layer. Ratio BD / HBW of diameter difference BD between the portion (equatorial plane CL) and the width direction end portion is 0.10 ≦ BD / HBW ≦ 0.13
It is important to be.

この規定は、傾斜ベルト層3について、その幅方向における径差が大きいことを意味する。これは、トレッドのクラウン部に丸みを持たせることであり、その結果、タイヤの接地幅は狭くなる。接地幅を狭めることができれば、トレッド部で変形するゴムの体積が減少し、歪エネルギーロスを低減することが可能となる。但し、接地幅を狭くしすぎると耐摩耗性が悪化する。
すなわち、比BD/HBWが0.10未満では、接地幅が広くなって歪エネルギーロスを低減することが難しくなる。一方、比BD/HBWが0.13を超えると、接地幅が狭くなりすぎて耐摩耗性能が悪化することになる。
This definition means that the inclined belt layer 3 has a large diameter difference in the width direction. This is to round the crown portion of the tread, and as a result, the ground contact width of the tire is narrowed. If the ground contact width can be reduced, the volume of rubber deformed at the tread portion is reduced, and strain energy loss can be reduced. However, if the ground contact width is too narrow, the wear resistance deteriorates.
That is, when the ratio BD / HBW is less than 0.10, the ground contact width becomes wide and it becomes difficult to reduce the strain energy loss. On the other hand, if the ratio BD / HBW exceeds 0.13, the ground contact width becomes too narrow and the wear resistance performance is deteriorated.

上記した形状に従うタイヤは、図1に示すように、トレッド5を、幅方向中央域に対応するトレッドセンター部5Cと、この幅方向中央域の両側域に対応するトレッドショルダー部5S、5S(トレッドショルダー部5Sは図示せず)に区画したとき、トレッドセンター部5Cの偏心変形を大きくしてトレッドの周方向せん断歪を小さくして、転がり抵抗を低減させている。また、クラウン部に丸みを持たせる形状から、トレッドショルダー部5S、5Sの幅が狭くなって、トレッド断面内のせん断歪の大きい領域が減少する結果、転がり抵抗が低減する。 As shown in FIG. 1, in the tire according to the above-described shape, the tread 5 includes a tread center portion 5C corresponding to the central region in the width direction, and tread shoulder portions 5S 1 , 5S 2 corresponding to both side regions of the central region in the width direction. (tread shoulder portion 5S 1 is not shown) when partitioned, by reducing the circumferential shear strain of the tread to increase the eccentric deformation of the tread center portion 5C, thereby reducing the rolling resistance. In addition, since the crown portion is rounded, the widths of the tread shoulder portions 5S 1 and 5S 2 are narrowed, and as a result, the area having a large shear strain in the tread cross section is reduced. As a result, rolling resistance is reduced.

ここで、図1に示す形状のタイヤのトレッド部に発生する歪エネルギーについて、有限要素法を用いて詳細に解析したところ、トレッド部における歪エネルギーの比率は図2に示す通りであった。
図2より、トレッド部に発生する歪エネルギーは、トレッドセンター部が40%、トレッドショルダー部が60%であり、トレッドショルダー部における歪エネルギーを更に低減させることが、転がり抵抗の低減に有効であることが分かった。
Here, when the strain energy generated in the tread portion of the tire having the shape shown in FIG. 1 was analyzed in detail using the finite element method, the ratio of the strain energy in the tread portion was as shown in FIG.
According to FIG. 2, the strain energy generated in the tread portion is 40% in the tread center portion and 60% in the tread shoulder portion, and further reducing the strain energy in the tread shoulder portion is effective in reducing rolling resistance. I understood that.

そこで、本発明では、トレッドセンター部5Cのゴムの弾性率をトレッドショルダー部5S、5Sのゴムの弾性率より高く設定することにした。以下、この理由を説明する。
なお、トレッドセンター部5Cとトレッドショルダー部5S、5Sそれぞれとの境界は、タイヤ赤道CLから接地幅端部までの接地面内の距離HCWの、タイヤ赤道CL側から2/3の位置を基点として、トレッド幅方向に±10%の領域内に存在し、この境界よりタイヤ赤道CL側の領域をトレッドセンター部5Cとし、この境界よりトレッド幅方向外側の領域をそれぞれトレッドショルダー部5S、5Sと定義する。
なお、接地幅とは、JATMAに規定されているように、タイヤを適用リムに装着し、規定の空気圧とし、静止した状態で平板に対し垂直に置き、最大負荷能力の80%の負荷を加えたときの平板との接触面におけるタイヤ軸方向最大直線距離のことである。
Therefore, in the present invention, the elastic modulus of the rubber of the tread center portion 5C is set to be higher than the elastic modulus of the rubber of the tread shoulder portions 5S 1 and 5S 2 . Hereinafter, the reason will be described.
The boundary between the tread center portion 5C and the tread shoulder portions 5S 1 and 5S 2 is a position 2/3 from the tire equator CL side of the distance HCW in the contact surface from the tire equator CL to the end of the contact width. As a base point, it exists in a region of ± 10% in the tread width direction, a region on the tire equator CL side from this boundary is a tread center portion 5C, and a region outside the tread width direction from this boundary is a tread shoulder portion 5S 1 , respectively. It is defined as 5S 2.
As specified in JATMA, the ground contact width means that the tire is mounted on the applicable rim, set to the specified air pressure, placed in a stationary state perpendicular to the flat plate, and a load of 80% of the maximum load capacity is applied. This is the maximum linear distance in the tire axial direction on the contact surface with the flat plate.

さて、タイヤの転がり抵抗(RR)は、歪エネルギー(SE)にトレッドゴムの損失正接(tanδ)とトレッドゴムの体積(Vol)をかけたものと考えられる。すなわち、
RR=SE×tanδ×Vol
で与えられる。また、トレッド部を弾性体と見たとき、その弾性体の歪エネルギー(SE)は、応力(σ)と歪(ε)を用いて次式で与えられる。
SE=(1/2)×σ×ε
従って、トレッドゴムの損失正接(tanδ)および体積(Vol)を変えずに転がり抵抗を低減するには、応力(σ)および歪(ε)を低減すればよいことが分かる。
また、弾性体を線形弾性体とすると、弾性率(E)は次式で与えられる。
E=σ/ε
それゆえ、弾性体の歪エネルギー(SE)は、下記の式(1)または(2)のように変形できる。

SE=(1/2)×σ×(1/E) (1)
SE=(1/2)×E×ε (2)
The rolling resistance (RR) of the tire is considered to be obtained by multiplying the strain energy (SE) by the loss tangent (tan δ) of the tread rubber and the volume (Vol) of the tread rubber. That is,
RR = SE × tan δ × Vol
Given in. When the tread portion is regarded as an elastic body, the strain energy (SE) of the elastic body is given by the following equation using stress (σ) and strain (ε).
SE = (1/2) × σ × ε
Therefore, it can be seen that stress (σ) and strain (ε) may be reduced in order to reduce rolling resistance without changing the loss tangent (tan δ) and volume (Vol) of the tread rubber.
If the elastic body is a linear elastic body, the elastic modulus (E) is given by the following equation.
E = σ / ε
Therefore, the strain energy (SE) of the elastic body can be deformed as in the following formula (1) or (2).
SE = (1/2) × σ 2 × (1 / E) (1)
SE = (1/2) × E × ε 2 (2)

タイヤの負荷転動時、トレッドショルダー部5S、5Sが接地した際に、主に幅方向断面内のせん断歪が発生する。このせん断歪は、トレッドショルダー部が接地する際の変形により生じ、その変位はクラウン形状によって決まり、同種のタイヤではクラウン形状は一定と考えられる。クラウン形状が一定、すなわち歪(ε)が一定の場合、上記(2)式より、弾性率(E)を減少させると、歪エネルギー(SE)が低減できることが分かる。それゆえ、本発明において、トレッドショルダー部5S、5Sのゴムの弾性率を低く設定することにより、歪エネルギーを低減し、転がり抵抗の減少に更に寄与させている。 When the tread shoulder portions 5S 1 and 5S 2 are grounded during load rolling of the tire, shear strain mainly occurs in the cross section in the width direction. This shear strain is caused by deformation when the tread shoulder portion comes into contact with the ground, and the displacement is determined by the crown shape, and the crown shape is considered to be constant in the same type of tire. When the crown shape is constant, that is, the strain (ε) is constant, it can be seen from the above formula (2) that the strain energy (SE) can be reduced by reducing the elastic modulus (E). Therefore, in the present invention, by setting the elastic modulus of the rubber of the tread shoulder portions 5S 1 and 5S 2 to be low, strain energy is reduced, which further contributes to reduction of rolling resistance.

一方、トレッドセンター部5Cは、接地圧により押しつぶされ、これをベルト張力で支えるという一定応力的な周方向せん断による歪エネルギーが発生し、これが転がり抵抗発生につながっている。すなわち、応力(σ)は一定であるから、弾性率(E)を増加すると、上記(1)式より歪エネルギー(SE)が低減できることが分かる。それゆえ、本発明においては、トレッドセンター部5Cのゴムの弾性率を高く設定することにより、歪エネルギーを低減し、転がり抵抗の減少に更に寄与させている。   On the other hand, the tread center portion 5C is crushed by the contact pressure, and strain energy is generated due to a constant-stress circumferential shear that is supported by belt tension, which leads to generation of rolling resistance. That is, since the stress (σ) is constant, it can be seen that when the elastic modulus (E) is increased, the strain energy (SE) can be reduced from the above equation (1). Therefore, in the present invention, by setting the elastic modulus of the rubber of the tread center portion 5C to be high, the strain energy is reduced, which further contributes to the reduction of rolling resistance.

以上より、トレッドセンター部5Cのゴムの弾性率を高く設定し、かつトレッドショルダー部5S、5Sのゴムの弾性率を低く設定することにより、歪エネルギーを低減し、転がり抵抗の減少に更に寄与させていることを説明した。ここで、トレッドセンター部5Cのゴムの弾性率をトレッドショルダー部5S、5Sのゴムの弾性率より高くすることが肝要であり、わずかでも弾性率に差があれば有効である。
ただし、トレッドセンター部5Cとトレッドショルダー部5S、5Sとのゴムの弾性率の差が10%以上であると、優位な転がり抵抗低減が可能なことが分かった。
一方、弾性率の差が30%より大きいと、コーナリング時のような大きな入力で異なる弾性率のトレッドゴム間で剥離が生じやすいおそれがある。
なお、例えば、トレッドセンター部のゴムの弾性率が2.7MPa、トレッドショルダー部のゴムの弾性率が2.4MPaのとき効果があることが確認されている。
As described above, by setting the elastic modulus of the rubber of the tread center portion 5C to be high and setting the elastic modulus of the rubber of the tread shoulder portions 5S 1 and 5S 2 to be low, the strain energy is reduced and the rolling resistance is further reduced. I explained that it contributed. Here, it is important to make the elastic modulus of the rubber of the tread center portion 5C higher than the elastic modulus of the rubber of the tread shoulder portions 5S 1 and 5S 2 , and it is effective if there is even a slight difference in elastic modulus.
However, it was found that when the difference in the elastic modulus of the rubber between the tread center portion 5C and the tread shoulder portions 5S 1 and 5S 2 is 10% or more, the rolling resistance can be significantly reduced.
On the other hand, if the difference in elastic modulus is larger than 30%, there is a possibility that peeling is likely to occur between tread rubbers having different elastic moduli with a large input as in cornering.
For example, it has been confirmed that an effect is obtained when the elastic modulus of the rubber in the tread center portion is 2.7 MPa and the elastic modulus of the rubber in the tread shoulder portion is 2.4 MPa.

また、図1に示す例では、トレッドセンター部5Cとトレッドショルダー部5Sとの境界線は、タイヤ赤道CLに略平行であるが、トレッドセンター部5Cの径方向外側にトレッドショルダー部5S、5Sが配置されるか、反対に、トレッドショルダー部5S、5Sの径方向外側にトレッドセンター部5Cが配置されてもよい。
ただし、トレッドセンター部5Cの径方向外側にトレッドショルダー部5S、5Sが配置される場合(境界線がハの字を形成する場合)が最も好適である。なぜなら、コーナリング時にトレッド表面から横方向の力が加わる場合、特にコーナリング外側でこの力は大きく、ゴムの弾性率が変わる境界部の接地する部分において、亀裂の発生を少なくすることができるためである。
Further, in the example shown in FIG. 1, the tread center portion 5C and the boundary line between the tread shoulder portion 5S 2 is tires equator CL are substantially parallel, tread shoulder portion 5S 1 radially outward of the tread center portion 5C, 5S 2 may be disposed, or conversely, the tread center portion 5C may be disposed on the radially outer side of the tread shoulder portions 5S 1 and 5S 2 .
However, it is most preferable that the tread shoulder portions 5S 1 and 5S 2 are arranged on the outer side in the radial direction of the tread center portion 5C (when the boundary line forms a letter C). This is because when a lateral force is applied from the tread surface during cornering, this force is particularly large outside the cornering, and the occurrence of cracks can be reduced at the contact portion of the boundary where the elastic modulus of the rubber changes. .

また、図1に示すように、タイヤの断面高さSHに対する、タイヤの最大幅位置Dにタイヤの回転軸と平行に引いた線分とビードトゥ10にタイヤの回転軸と平行に引いた線分との最短距離SWhの比SWh/SHが0.55以下であることが好ましい。すなわち、SWh/SHを0.55以下にすると、カーカスプライがベルト幅方向端部からビード部側へ小さな曲率で垂れるようなラインとなるため、ベルト端部付近のベルト張力が低下する一方、トレッドの幅方向中央部のベルト張力が増大する。すると、接地面内の踏み込み部と蹴り出し部との間で発生する、周方向せん断変形が抑制される結果、歪エネルギーロスを低減することができる。   Further, as shown in FIG. 1, a line segment drawn parallel to the tire rotation axis at the tire maximum width position D and a line segment drawn to the bead toe 10 parallel to the tire rotation axis with respect to the tire cross-section height SH. The ratio SWh / SH of the shortest distance SWh is preferably 0.55 or less. That is, when SWh / SH is 0.55 or less, the carcass ply has a line that hangs with a small curvature from the belt width direction end portion to the bead portion side. The belt tension at the center in the width direction increases. Then, as a result of suppressing the circumferential shear deformation that occurs between the stepped-in portion and the kicked-out portion in the ground plane, strain energy loss can be reduced.

更に、0.10≦BD/BW≦0.13かつSWh/SH≦0.55を共に満たすと、接地幅を狭め且つその領域のベルト張力が増大する為、周方向せん断変形を大きく低減し、歪エネルギーロスを抑制できる。また、SWh/SHは0.4以上であることが好ましい。なぜなら、SWh/SHが0.4未満では、ショルダー部のベルト張力が低下してショルダー部の摩耗の抑制が難しくなるためである。   Furthermore, when both 0.10 ≦ BD / BW ≦ 0.13 and SWh / SH ≦ 0.55 are satisfied, the ground contact width is narrowed and the belt tension in the region is increased, so that the circumferential shear deformation is greatly reduced, Strain energy loss can be suppressed. SWh / SH is preferably 0.4 or more. This is because if SWh / SH is less than 0.4, the belt tension of the shoulder portion is lowered and it is difficult to suppress the wear of the shoulder portion.

次に、前記傾斜ベルト層の最外側層3aの幅方向中心におけるトレッドゴム厚みGAと幅方向端部におけるトレッドゴム厚みGBとの比GB/GAが、0.75以上であることが好ましい。すなわち、トレッドゴムは薄くなるほど、転がり抵抗は低減する。但し、薄くしすぎると、耐摩耗性が悪化してしまう。また、前述のように、トレッドショルダー部で発生する歪エネルギーロスが大きい為、トレッドショルダー部のトレッドゴム厚みを削減することが転がり抵抗の低減には効率的である。そのためには、GB/GAが0.75以下の範囲内においてトレッドゴム厚みに分布を持たせることが有効であり、その結果、転がり抵抗の低下並びに耐摩耗性能の向上を両立することが可能となる。
なお、比GB/GAは0.95以下であることが好ましい。なぜなら、0.95を超えると、発熱耐久性の向上や転がり抵抗の低減が十分に達成されない可能性がある。
Next, the ratio GB / GA between the tread rubber thickness GA at the center in the width direction of the outermost layer 3a of the inclined belt layer and the tread rubber thickness GB at the end in the width direction is preferably 0.75 or more. That is, the rolling resistance decreases as the tread rubber becomes thinner. However, if it is too thin, the wear resistance will deteriorate. Further, as described above, since the strain energy loss generated in the tread shoulder portion is large, reducing the tread rubber thickness of the tread shoulder portion is efficient in reducing rolling resistance. For that purpose, it is effective to have a distribution in the tread rubber thickness within a range of GB / GA of 0.75 or less. As a result, it is possible to achieve both reduction in rolling resistance and improvement in wear resistance. Become.
The ratio GB / GA is preferably 0.95 or less. Because if it exceeds 0.95, there is a possibility that improvement in heat generation durability and reduction in rolling resistance are not sufficiently achieved.

さらに、図3に示すように、前記傾斜ベルト層の最外側層3aの幅方向端部(点線参照)からビードコア1の内側(点線参照)に至るカーカスラインにおいて、最小曲率を示す部分、図示例でRが、タイヤの断面高さSHの1/2点より径方向内側に位置していることが好ましい。
すなわち、カーカスラインの最小曲率部分をビード部側に設定することによって、ビード部側でカーカスを変形させやすくする。このことによって、トレッド部の変形を抑制し、歪エネルギーロスを低減することができる。
Furthermore, as shown in FIG. 3, a portion showing the minimum curvature in the carcass line extending from the widthwise end (see dotted line) of the outermost layer 3a of the inclined belt layer to the inside (see dotted line) of the bead core 1, an example shown in the figure It is preferable that R is located radially inward from the half point of the tire cross-section height SH.
That is, by setting the minimum curvature portion of the carcass line on the bead portion side, the carcass can be easily deformed on the bead portion side. As a result, deformation of the tread portion can be suppressed, and strain energy loss can be reduced.

サイズ225/45R17の発明例タイヤ、従来例タイヤ、および比較例タイヤを、表1に示す仕様の下に試作し、各供試タイヤについて、耐摩耗性能および転がり抵抗の測定を行ったので以下に説明する。各供試タイヤの基本構造は図1に示す通りであり、傾斜ベルト層3a、3bは赤道面CLに対して24°の傾斜角度で配置したスチールコードを層間で相互に交差させた2層からなり、さらにナイロンコードによる周方向ベルト層4を具える。   Inventive tires of size 225 / 45R17, conventional tires, and comparative tires were prototyped under the specifications shown in Table 1, and the wear resistance and rolling resistance of each test tire were measured. explain. The basic structure of each test tire is as shown in FIG. 1, and the inclined belt layers 3a and 3b are made of two layers in which steel cords arranged at an inclination angle of 24 ° with respect to the equator plane CL are crossed with each other. And further comprises a circumferential belt layer 4 of nylon cord.

転がり抵抗試験は、供試タイヤを標準リムに装着し内圧を230kPaに調整したのち、直径1.7mの鉄板表面を持つドラム試験機(速度:80km/h)を用いて、車軸の転がり抵抗力を求める。なお、この転がり抵抗測定は、ISO18164に準拠し、スムースドラム、フォース式にて実施したものである。この測定結果は、従来タイヤでの転がり抵抗力を100として指数化した。この指数が小さいほど、転がり抵抗が小さいことを示している。評価としては、誤差を除きなおかつ市場優位性の観点から5%以上の差異を有意差とみなす。特に、10%以上の転がり抵抗の低減が見られる場合は大きな効果であるといえる。   In the rolling resistance test, the test tire is mounted on a standard rim, the internal pressure is adjusted to 230 kPa, and then the rolling resistance of the axle is measured using a drum testing machine (speed: 80 km / h) with a steel plate surface with a diameter of 1.7 m. Ask for. This rolling resistance measurement was performed in accordance with ISO18164 using a smooth drum and a force type. The measurement results were indexed with the rolling resistance of a conventional tire as 100. It shows that rolling resistance is so small that this index | exponent is small. As an evaluation, a difference of 5% or more is regarded as a significant difference from the viewpoint of market superiority excluding errors. In particular, it can be said that it is a great effect when the rolling resistance is reduced by 10% or more.

耐摩耗性試験は、転がり抵抗試験と同様のリム組み供試タイヤを、直径1.7mの室内ドラム試験機(表面にセーフティウォーク有)にて、ストリップ角およびチャンバー角を共に0°、速度80km/hで試験を実施した。入力は制駆動なしで10分、そして制動方向に0.1G10分、を交互に繰り返す。この条件にて、1200km走行後の摩耗重量(摩耗したゴムの量)を従来例対比で指数化して評価した。この磨耗重量は少ないほど良く、5%未満の違いなら同等とみなし、さらに、10%以上の違いがある場合は顕著な差あるといえる。なお、この試験法では摩耗した重量を比較するため、耐摩耗試験の意味合いが強い。しかし偏摩耗性能が悪いタイヤでは早期に摩耗が進むため、本試験でも検出が可能である。つまり、この見方は耐偏摩耗並びに耐摩耗の両面からの見方を行うことができるものであるが、ここでは耐摩耗性能として総称する。

In the wear resistance test, a rim-assembled test tire similar to the rolling resistance test was tested with an indoor drum tester (with a safety walk on the surface) with a diameter of 1.7 m, with a strip angle and a chamber angle of 0 °, and a speed of 80 km. The test was carried out at / h. The input is alternately repeated for 10 minutes without braking / driving and 0.1G for 10 minutes in the braking direction. Under these conditions, the wear weight (amount of worn rubber) after traveling 1200 km was indexed and evaluated in comparison with the conventional example. The smaller the wear weight, the better. If the difference is less than 5%, it is considered equivalent, and if there is a difference of 10% or more, it can be said that there is a remarkable difference. In this test method, since the worn weight is compared, the meaning of the wear resistance test is strong. However, tires with poor partial wear performance wear early, and can be detected in this test. That is, this view can be viewed from both sides of uneven wear resistance and wear resistance, but here is collectively referred to as wear resistance performance.

Figure 2009262795
Figure 2009262795

表1の結果より、本発明に従うタイヤ形状および構造を有し、さらに、トレッドの幅方向中央域のゴムの弾性率を該中央域の両側域のゴムの弾性率より高くすることにより、従来例タイヤ、比較例タイヤと比較して、優れた耐摩耗性能を維持しながら転がり抵抗が低減できたことが分かる。   From the results of Table 1, the conventional example has the tire shape and structure according to the present invention, and further, the elastic modulus of the rubber in the central region in the width direction of the tread is higher than the elastic modulus of the rubber in both side regions of the central region. It can be seen that the rolling resistance can be reduced while maintaining excellent wear resistance performance as compared with the tire and the comparative example tire.

以上により、傾斜ベルト層の最外側層の半幅HBWに対する、最外側層の幅方向中心部と幅方向端部との径差BDの比BD/HBWを0.10以上0.13以下とするとともに、トレッドの幅方向中央域のゴムの弾性率を該中央域の両側域のゴムの弾性率より高くすることにより、耐摩耗性能に優れかつ転がり抵抗の低い空気入りタイヤを提供することができる。   As described above, the ratio BD / HBW of the diameter difference BD between the center portion in the width direction of the outermost layer and the end portion in the width direction with respect to the half width HBW of the outermost layer of the inclined belt layer is set to 0.10 or more and 0.13 or less. By making the elastic modulus of the rubber in the central region in the width direction of the tread higher than the elastic modulus of the rubber in both side regions of the central region, it is possible to provide a pneumatic tire having excellent wear resistance and low rolling resistance.

本発明に従うタイヤ半部の幅方向断面図である。It is sectional drawing of the width direction of the tire half part according to this invention. 本発明に従うタイヤのトレッド部に発生する歪エネルギーについて、有限要素法を用いて解析した結果を示す図である。It is a figure which shows the result analyzed using the finite element method about the distortion energy which generate | occur | produces in the tread part of the tire according to this invention. 本発明に従うタイヤ半部の幅方向断面図である。It is sectional drawing of the width direction of the tire half part according to this invention.

符号の説明Explanation of symbols

1 ビードコア
2 カーカス
3a 傾斜ベルト層(最外側層)
3b 傾斜ベルト層
4 周方向ベルト層
5 トレッド
5C トレッドセンター部
5S、5S トレッドショルダー部
6 タイヤ
7 適用リム
10 ビードトゥ
CL タイヤ赤道
1 Bead core 2 Carcass 3a Inclined belt layer (outermost layer)
3b slant belt layer 4 circumferential belt layer 5 a tread 5C tread center portion 5S 1, 5S 2 tread shoulder portion 6 tire 7 approved rim 10 bead toe CL tire equator

Claims (4)

一対のビード部間にトロイダル状に跨るカーカスを骨格として、該カーカスのクラウン部の径方向外側に、タイヤの赤道面に対して傾斜した向きに延びるコードの多数本をゴムで被覆した、少なくとも2層の傾斜ベルト層とを順に配置して成るベルトを有し、該ベルトの径方向外側にトレッドを配置した空気入りタイヤであって、
該タイヤを適用リムに装着した状態のタイヤ幅方向断面において、前記傾斜ベルト層の最外側層の半幅HBWに対する、当該最外側層の幅方向中心部と幅方向端部との径差BDの比BD/HBWが0.10以上0.13以下であり、
前記トレッドは、幅方向中央域のゴムの弾性率が、該中央域の両側域のゴムの弾性率より高い、
ことを特徴とする空気入りタイヤ。
A carcass straddling a toroidal shape between a pair of bead portions, and a large number of cords extending in a direction inclined with respect to the equatorial plane of the tire are coated with rubber on the radially outer side of the crown portion of the carcass. A pneumatic tire having a belt formed by sequentially arranging an inclined belt layer of a layer, and a tread disposed on a radially outer side of the belt,
The ratio of the diameter difference BD between the center portion in the width direction of the outermost layer and the end portion in the width direction with respect to the half width HBW of the outermost layer of the inclined belt layer in the tire width direction cross section in a state where the tire is mounted on the applicable rim. BD / HBW is 0.10 or more and 0.13 or less,
In the tread, the elastic modulus of the rubber in the central region in the width direction is higher than the elastic modulus of the rubber in both side regions of the central region.
A pneumatic tire characterized by that.
前記タイヤの断面高さSHに対する、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWhの比SWh/SHが0.55以下であることを特徴とする請求項1に記載の空気入りタイヤ。   Ratio SWh / SH of the shortest distance SWh between the line segment drawn parallel to the tire rotation axis at the maximum width position of the tire and the line segment drawn parallel to the tire rotation axis at the bead toe with respect to the tire cross-section height SH The pneumatic tire according to claim 1, wherein is 0.55 or less. 前記傾斜ベルト層の最外側層の幅方向中心におけるトレッドゴム厚みGAと、前記傾斜ベルト層の最外側層の幅方向端部におけるトレッドゴム厚みGBとの比GB/GAが、0.75以上であることを特徴とする請求項1または2に記載の空気入りタイヤ。   The ratio GB / GA of the tread rubber thickness GA at the center in the width direction of the outermost layer of the inclined belt layer and the tread rubber thickness GB at the end in the width direction of the outermost layer of the inclined belt layer is 0.75 or more. The pneumatic tire according to claim 1, wherein the pneumatic tire is provided. 前記傾斜ベルト層の最外側層の幅方向端部からビードコアの内側に至るカーカスライン
において最小曲率を示す部分が、タイヤの断面高さSHの1/2点より径方向内側に位置することを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。
The portion showing the minimum curvature in the carcass line extending from the widthwise end of the outermost layer of the inclined belt layer to the inside of the bead core is located radially inward from the half point of the cross-sectional height SH of the tire. The pneumatic tire according to any one of claims 1 to 3.
JP2008115613A 2008-04-25 2008-04-25 Pneumatic tire Withdrawn JP2009262795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115613A JP2009262795A (en) 2008-04-25 2008-04-25 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115613A JP2009262795A (en) 2008-04-25 2008-04-25 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2009262795A true JP2009262795A (en) 2009-11-12

Family

ID=41389201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115613A Withdrawn JP2009262795A (en) 2008-04-25 2008-04-25 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2009262795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076640A (en) * 2010-10-04 2012-04-19 Bridgestone Corp Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076640A (en) * 2010-10-04 2012-04-19 Bridgestone Corp Pneumatic tire

Similar Documents

Publication Publication Date Title
JP6549199B2 (en) Pneumatic radial tire for passenger car, method of using the tire, and tire / rim assembly provided with the tire
JP5410038B2 (en) Pneumatic tire
US9108472B2 (en) Pneumatic heavy-duty tire having circumferential reinforcing layer and sipes
JP4163244B1 (en) Pneumatic tire
US11235618B2 (en) Heavy-duty pneumatic tire
JP2014151755A (en) Tire for heavy load
JP2009262808A (en) Pneumatic tire
WO2014132551A1 (en) Pneumatic radial tire for passenger vehicle
JP2009279948A (en) Pneumatic tire
US10195900B2 (en) Pneumatic tire with specified tread thickness distribution and specified section width in relation to bead diameter
US20110277899A1 (en) Pneumatic tire
JP2013063738A (en) Pneumatic tire
EP3636454B1 (en) Tire
JP5364294B2 (en) Pneumatic tire
JP2007076594A (en) Pneumatic tire
US11760130B2 (en) Run-flat tire
JP2011057183A (en) Pneumatic tire
JP2010221820A (en) Pneumatic tire
JP2010167849A (en) Run flat tire
JP4631496B2 (en) Pneumatic tire
JP2010120479A (en) Pneumatic tire
JP2006327255A (en) Pneumatic tire
CN110116587B (en) Pneumatic tire
JP2009262795A (en) Pneumatic tire
WO2016024390A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705