JP2009262403A - Method for manufacturing magnet roller - Google Patents

Method for manufacturing magnet roller Download PDF

Info

Publication number
JP2009262403A
JP2009262403A JP2008114362A JP2008114362A JP2009262403A JP 2009262403 A JP2009262403 A JP 2009262403A JP 2008114362 A JP2008114362 A JP 2008114362A JP 2008114362 A JP2008114362 A JP 2008114362A JP 2009262403 A JP2009262403 A JP 2009262403A
Authority
JP
Japan
Prior art keywords
pressure
magnet roller
primary pressure
molten resin
filling amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008114362A
Other languages
Japanese (ja)
Inventor
Naoshi Marutani
尚士 丸谷
Masaharu Iwai
雅治 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Tochigi Kaneka Corp
Original Assignee
Kaneka Corp
Tochigi Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, Tochigi Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008114362A priority Critical patent/JP2009262403A/en
Publication of JP2009262403A publication Critical patent/JP2009262403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that filling with a molten resin magnetic material having a cavity fill amount exceeding 98 wt.% under a primary pressure (injection pressure) in a conventional molding method may cause a lot of voids to occur in the inside of the molded article, consequently to increase a variation or ripple in axial magnetic flux density, and deteriorate the strength of a body part with creases occasionally occurring during transport or during use. <P>SOLUTION: The ratio of a fill amount due to the primary pressure (injection pressure) and pressure keeping when an outside diameter of a magnet roller body part is less than ϕ12 mm is set to be (a primary pressure):(a hold pressure)=85-98 wt.%:15-2 wt.%, and the ratio of the fill amount due to the primary pressure and the pressure keeping when the outside diameter of the magnet roller body part is ϕ12 mm to ϕ18 mm is set to be (the primary pressure):(the hold pressure)=92-98 wt.%:8-2 wt.%. The axial magnetic flux density becomes uniform and the strength of the body part are improved by molding a shaft part integrated magnet roller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば、複写機、プリンタ、ファクシミリ等の画像形成装置に組み込まれるマグネットローラの製造方法に関する。   The present invention relates to a method of manufacturing a magnet roller incorporated in an image forming apparatus such as a copying machine, a printer, or a facsimile.

複写機、プリンタ、ファクシミリ等における粉末トナーを用いた画像形成装置に組み込まれるマグネットローラは、従来から、強磁性体粉末と樹脂バインダーとを含む溶融状態の混合物をキャビティに注入しマグネットローラを磁場印加成形する射出成形法により製造されている。   Conventionally, a magnet roller incorporated in an image forming apparatus using powder toner in a copying machine, a printer, a facsimile machine, etc., injects a molten mixture containing a ferromagnetic powder and a resin binder into a cavity and applies a magnetic field to the magnet roller. Manufactured by injection molding.

しかしながら、従来の射出成形法では、溶融樹脂磁石材料注入時にキャビティ内の空気等を巻き込み、成形品内部にボイドが多発し、軸方向の磁束密度のバラツキやリップルが発生したり、本体強度が低下する場合があった。   However, in the conventional injection molding method, air in the cavity is entrained when molten resin magnet material is injected, and voids occur frequently inside the molded product, causing variations in magnetic flux density and ripples in the axial direction, and lowering the body strength. There was a case.

近年、これら課題を改善する試みが提案されている。すなわち、(1)溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大し、マグネットローラを成形することにより、該マグネットローラの長さ方向における磁気的特性が均一となる方法(特許文献1)、(2)溶融樹脂磁石材料の射出を2箇所以上からマグネットローラの中心軸に向かって求心的に行うことにより、マグネットローラ部表面での磁束密度の変動が少なくなる方法(特許文献2)等である。
特開平10−67030 特開昭63−30875
In recent years, attempts to improve these problems have been proposed. That is, (1) in accordance with the injection speed of the molten resin magnet material, the slide mold is retracted while injecting the molten resin magnet material, the molding space is enlarged to a predetermined size, and the magnet roller is formed, thereby forming the magnet A method in which magnetic characteristics in the length direction of the roller are uniform (Patent Document 1), (2) A magnet is formed by centripetally injecting molten resin magnet material from two or more locations toward the central axis of the magnet roller. For example, there is a method (Patent Document 2) in which fluctuations in magnetic flux density on the surface of the roller portion are reduced.
JP-A-10-67030 JP-A 63-30875

しかしながら、特許文献1、2では、長手方向の磁束密度はある程度均一となるが、マグネット本体部の強度のバラツキが大きく、強度が低いものについては、輸送時、スリーブへの組込時や使用中に折れが発生し、現像ができなくなる場合がある。   However, in Patent Documents 1 and 2, although the magnetic flux density in the longitudinal direction is uniform to a certain extent, the magnet main body has a large variation in strength and the strength is low. May be broken, and development may not be possible.

本発明は、強磁性粉末と樹脂バインダーを主体とする混合物を用いた軸部一体型マグネットローラの成形において、マグネットローラ本体部外径がφ12mm未満の場合の一次圧と保圧による充填量の割合を、一次圧:保圧=85〜98wt%:15〜2wt%とし、マグネットローラ本体部外径がφ12mm以上φ18mm以下の場合の一次圧と保圧による充填量の割合を、一次圧:保圧=92〜98wt%:8〜2wt%、としたマグネットローラの製造方法である。   The present invention relates to the ratio of the filling amount due to the primary pressure and the holding pressure when the outer diameter of the magnet roller main body is less than φ12 mm in the molding of a shaft-integrated magnet roller using a mixture mainly composed of ferromagnetic powder and resin binder. Is the primary pressure: holding pressure = 85 to 98 wt%: 15 to 2 wt%, and the ratio between the primary pressure and the filling amount by holding pressure when the outer diameter of the magnet roller main body is 12 mm or more and 18 mm or less. Primary pressure: holding pressure = 92 to 98 wt%: 8 to 2 wt% of the magnet roller manufacturing method.

また、本発明は、上記成形において、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大して成形したマグネットローラの製造方法である。   Further, the present invention provides a magnet roller formed by expanding the molding space to a predetermined size by retreating the slide mold while injecting the molten resin magnet material in accordance with the injection speed of the molten resin magnet material. It is a manufacturing method.

本発明により、長手方向の磁束密度が均一となり、特にリップル性能(局所的な磁束密度の変化)が良好となり、また、本体強度が向上し、輸送時、スリーブへの組込時や使用中の折れが防止できる。   According to the present invention, the magnetic flux density in the longitudinal direction becomes uniform, particularly ripple performance (local change in magnetic flux density) is improved, and the strength of the main body is improved, during transportation, assembling into the sleeve and during use. Breaking can be prevented.

次に、本発明のマグネットローラ製造方法について例をあげて詳細に説明する。   Next, the magnet roller manufacturing method of the present invention will be described in detail with examples.

強磁性体粉末と樹脂バインダーとを含む溶融状態の混合物をキャビティに注入しマグネットローラを磁場印加成形する従来の射出成形法では、一次圧(射出圧)にてキャビティ空間に相当する充填量(キャビティ容積の98wt%超)を注入し、保圧は一次圧充填後、キャビティ内に充填された溶融樹脂磁石材料の逆流を防止するための圧力という位置付けであった。   In a conventional injection molding method in which a molten mixture containing a ferromagnetic powder and a resin binder is injected into a cavity and a magnetic roller is molded by applying a magnetic field, a filling amount (cavity) corresponding to the cavity space is formed by primary pressure (injection pressure). The holding pressure was positioned as a pressure for preventing the backflow of the molten resin magnet material filled in the cavity after filling with the primary pressure.

しかしながら、本発明者らは、従来、本体強度を向上させるため、添加剤の追加量や樹脂バインダーの分子量を調整して対応していたが、樹脂磁石材料組成物の調整だけでは本体強度と磁気特性を両立させることが難しく、そこで、従来から問題であった溶融樹脂磁石材料注入時にキャビティ内の空気等の巻き込みを少なくするため、成形条件である一次圧と保圧の関係に着目し検討した結果、今まで一次圧での充填量を少なくした場合、フローマークによる磁気特性の乱れが発生する問題があったが、一次圧と保圧による充填量の割合を特定の範囲内に制御することにより、空気の巻き込みが少なくなって、軸方向の磁束密度のバラツキやリップルの発生、あるいは本体強度の低下といった従来の課題が解決できることを見出した。   However, in order to improve the strength of the main body, the present inventors have conventionally responded by adjusting the additive amount of the additive and the molecular weight of the resin binder, but only by adjusting the resin magnet material composition, In order to reduce the entrainment of air, etc. in the cavity when injecting the molten resin magnet material, which has been a problem in the past, we focused on the relationship between the primary pressure and the holding pressure, which is the molding condition. As a result, when the filling amount at the primary pressure was reduced until now, there was a problem that the magnetic characteristics were disturbed by the flow mark, but the ratio of the filling amount by the primary pressure and the holding pressure should be controlled within a specific range. Thus, it has been found that air entrainment is reduced, and conventional problems such as variations in magnetic flux density in the axial direction, generation of ripples, or reduction in strength of the main body can be solved.

すなわち、本発明は、強磁性粉末と樹脂バインダーを主体とする混合物を用いた軸部一体型マグネットローラの成形において、マグネットローラ本体部外径がφ12mm未満の場合の一次圧と保圧による充填量の割合を、一次圧:保圧=85〜98wt%:15〜2wt%とし、マグネットローラ本体部外径がφ12mm以上φ18mm以下の場合の一次圧と保圧による充填量の割合を、一次圧:保圧=92〜98wt%:8〜2wt%、としたマグネットローラの製造方法である。   That is, the present invention provides a filling amount by primary pressure and holding pressure when the outer diameter of the magnet roller main body is less than φ12 mm in molding of a shaft-integrated magnet roller using a mixture mainly composed of ferromagnetic powder and resin binder. The ratio of the primary pressure: the holding pressure = 85 to 98 wt%: 15 to 2 wt%, and the ratio between the primary pressure and the filling amount by the holding pressure when the outer diameter of the magnet roller main body is φ12 mm to φ18 mm is the primary pressure: This is a magnet roller manufacturing method in which holding pressure = 92 to 98 wt%: 8 to 2 wt%.

例えば、前記樹脂バインダーとしてポリアミド系樹脂を5〜50重量%(滑剤、安定剤等を含む)、前記強磁性粉末として異方性フェライト系磁性粉末を95〜50重量%とし、必要に応じて、前記強磁性粉末の表面処理剤としてシラン系やチタネート系等のカップリング剤、流動性を良好にするポリスチレン系・フッ素系滑剤等、安定剤、可塑剤、もしくは難燃剤などを添加し、混合分散し、溶融混練し、ペレット状に成形する。   For example, the resin binder is 5 to 50% by weight of a polyamide resin (including a lubricant, a stabilizer, etc.), and the ferromagnetic powder is an anisotropic ferrite magnetic powder of 95 to 50% by weight. As a surface treatment agent for the ferromagnetic powder, a coupling agent such as silane or titanate, a polystyrene or fluorine lubricant for improving fluidity, a stabilizer, a plasticizer, or a flame retardant is added, and mixed and dispersed. And then melt-kneaded and formed into pellets.

上記ペレットを溶融状態にして、図1のような成形装置(金型)を用いて、150K・A/m〜2400K・A/mの磁場を印加しながら射出成形し、図2のような本体部外径がφ12mm未満(例えばφ9.6mm)あるいはφ12mm以上φ18mm以下(例えばφ13.6mm)の軸部一体型マグネットローラを得る。成形時に印加する各磁極への配向着磁磁場は、各磁極に要求される磁束密度仕様により適宜選択すればよい。また、要求磁気特性によっては成形時に配向着磁磁場を印加せず、成形後に着磁してもよい。   The pellet is melted and injection molded using a molding apparatus (mold) as shown in FIG. 1 while applying a magnetic field of 150 K · A / m to 2400 K · A / m, and the main body as shown in FIG. A shaft-integrated magnet roller having an outer diameter of less than φ12 mm (eg, φ9.6 mm) or φ12 mm to φ18 mm (eg, φ13.6 mm) is obtained. The orientation magnetization magnetic field applied to each magnetic pole applied at the time of molding may be appropriately selected according to the magnetic flux density specification required for each magnetic pole. Further, depending on the required magnetic properties, the orientation magnetization magnetic field may not be applied at the time of molding, and may be magnetized after molding.

マグネット本体外径がφ12mm未満の場合、上記射出成形において、一次圧にて充填する溶融樹脂磁石材料の量を全体の85〜98wt%とし、残りの溶融樹脂磁石材料(15〜2wt%)を保圧にて充填する。   When the outer diameter of the magnet body is less than φ12 mm, the amount of molten resin magnet material filled at the primary pressure in the above-mentioned injection molding is 85 to 98 wt% of the whole, and the remaining molten resin magnet material (15 to 2 wt%) is maintained. Fill with pressure.

一次圧での充填量が85wt%未満となると、バリ、寸法過大、離型不良が発生し、また金型の摩耗が大きくなる場合がある。また、一次圧での充填量が98wt%を超えると、ショートショットやヒケや収縮歪みが発生し、本体強度が低下したり、リップル(軸方向磁束密度の局所的な変化)が大きくなったりする場合がある。   If the filling amount at the primary pressure is less than 85 wt%, burrs, excessive dimensions, mold release defects may occur, and wear of the mold may increase. Moreover, when the filling amount at the primary pressure exceeds 98 wt%, short shots, sink marks, and shrinkage distortion occur, and the strength of the main body decreases, and ripples (local changes in axial magnetic flux density) increase. There is a case.

同様に、マグネット本体外径がφ12mm以上φ18mm以下の場合、上記射出成形において、一次圧にて充填する溶融樹脂磁石材料の量を全体の92〜98wt%とし、残りの溶融樹脂磁石材料(8〜2wt%)を保圧にて充填する。   Similarly, when the outer diameter of the magnet main body is φ12 mm or more and φ18 mm or less, the amount of the molten resin magnet material filled at the primary pressure in the injection molding is 92 to 98 wt% of the whole, and the remaining molten resin magnet material (8 to 2 wt%) is filled with holding pressure.

一次圧での充填量が92wt%未満となると、バリ、寸法過大、離型不良が発生し、また金型の摩耗が大きくなる場合がある。また、一次圧での充填量が98wt%を超えると、ショートショットやヒケや収縮歪みが発生し、本体強度が低下したり、リップル(軸方向磁束密度の局所的な変化)が大きくなったりする場合がある。   If the filling amount at the primary pressure is less than 92 wt%, burrs, excessive dimensions, mold release defects may occur, and mold wear may increase. Moreover, when the filling amount at the primary pressure exceeds 98 wt%, short shots, sink marks, and shrinkage distortion occur, and the strength of the main body decreases, and ripples (local changes in axial magnetic flux density) increase. There is a case.

従来の射出成形法では、溶融樹脂磁石材料注入時にキャビティ内の空気等を巻き込み、成形品内部にボイドが多発し、軸方向の磁束密度のバラツキやリップルが発生したり、本体強度が低下する場合があったが、本発明では、一次圧にてキャビティ内に充填する量を制御することにより、成形品内部のボイドが減少し、軸方向の磁束密度のバラツキやリップルが良好となり、また、本体強度も向上する。   In the conventional injection molding method, when molten resin magnet material is injected, air or the like in the cavity is involved, and voids occur frequently inside the molded product, causing variations in the magnetic flux density in the axial direction, ripples, or a decrease in body strength However, in the present invention, by controlling the amount filled in the cavity with the primary pressure, the voids in the molded product are reduced, and the variation and ripple of the magnetic flux density in the axial direction are improved. Strength is also improved.

なお、本発明では、理由は明らかでないが、マグネット本体径がφ12mm未満の場合は、比較的に本体部のヒケ(外径がやや小さくなる)が小さく、また、キヤビティ容積が小さいので、空気の巻き込みが少なくなるが、一次圧での充填量を85〜98wt%とすることにより、また、マグネット本体径がφ12mm以上φ18mm以下の場合は、比較的に本体部のヒケが大きく、また、キヤビティ容積が大きいので、空気の巻き込みが多くなるが、一次圧での充填量を92〜98wt%とすることにより、上記のごとく課題が解決できる。   In the present invention, the reason is not clear, but when the magnet main body diameter is less than φ12 mm, the sink of the main body (the outer diameter is slightly smaller) is relatively small, and the cavity volume is small. Although the amount of entrainment is reduced, by setting the filling amount at the primary pressure to 85 to 98 wt%, and when the magnet body diameter is φ12 mm or more and φ18 mm or less, the sink of the main body is relatively large, and the cavity volume is relatively large. However, when the filling amount at the primary pressure is set to 92 to 98 wt%, the problem can be solved as described above.

また、好ましくは、本発明は、上記成形において、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大して成形したマグネットローラの製造方法である。   Preferably, according to the present invention, in the molding described above, in accordance with the injection speed of the molten resin magnet material, the slide mold is moved backward while injecting the molten resin magnet material, and the molding space is enlarged to a predetermined size. It is a manufacturing method of a magnet roller.

図3に示すような成形装置(金型)にてマグネットローラを成形することにより、
溶融樹脂磁石材料がゲート側から除々にキャビティ内に注入されるため、空気等の巻き込みが激減し、結果的に成形品内部のボイドが激減して、軸方向の磁束密度のバラツキやリップルが小さくなり、また、本体強度が向上する。
By molding the magnet roller with a molding device (mold) as shown in FIG.
Since molten resin magnet material is gradually injected into the cavity from the gate side, entrainment of air, etc. is drastically reduced, resulting in drastic reduction of voids inside the molded product, resulting in small variations in magnetic flux density and ripples in the axial direction. In addition, the strength of the main body is improved.

ここで、上記フェライト磁性粉は等方性、異方性あるいはそれらの混合粉のいずれでもよいが、磁気特性への寄与を考えると異方性フェライト磁性粉の方が好ましい。   Here, the ferrite magnetic powder may be isotropic, anisotropic, or a mixed powder thereof, but anisotropic ferrite magnetic powder is more preferable in view of contribution to magnetic properties.

上記のフェライト磁性粉としては、MO・nFe23(nは自然数)で代表される化学式を持つフェライト磁性粉などがあげられる。式中のMとして、Sr、Baまたは鉛などの1種または2種以上が適宜選択して用いられる。 Examples of the ferrite magnetic powder include ferrite magnetic powder having a chemical formula represented by MO.nFe 2 O 3 (n is a natural number). As M in the formula, one or more of Sr, Ba, lead and the like are appropriately selected and used.

また、強磁性体粉末として、異方性フェライト磁性粉、等方性フェライト磁性粉、異方性希土類磁性粉(例えばSmFeN系)、等方性希土類磁性粉(例えばNdFeB系)を単独または2種類以上を混合して用いてもよい。要求される磁束密度により適宜選択すればよい。   Further, as the ferromagnetic powder, anisotropic ferrite magnetic powder, isotropic ferrite magnetic powder, anisotropic rare earth magnetic powder (for example, SmFeN-based), and isotropic rare earth magnetic powder (for example, NdFeB-based) are used alone or in two types. You may mix and use the above. What is necessary is just to select suitably by the required magnetic flux density.

樹脂バインダーとしては、ポリアミド樹脂、エチレンエチルアクリレート樹脂、ポリスチレン樹脂、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンスフィド)、EVA(エチレンー酢酸ビニル共重合体)、EVOH(エチレンービニルアルコール共重合体)及びPVC(ポリ塩化ビニル)などの1種類または2種類以上、もしくはエポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル樹脂及びポリイミド樹脂などの熱硬化性樹脂の1種類または2種類以上を混合して用いることができる。   Resin binders include polyamide resin, ethylene ethyl acrylate resin, polystyrene resin, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), EVA (ethylene-vinyl acetate copolymer), EVOH (ethylene-ethylene). 1 type or 2 or more types such as vinyl alcohol copolymer) and PVC (polyvinyl chloride), or thermosetting properties such as epoxy resin, phenol resin, urea resin, melamine resin, furan resin, unsaturated polyester resin and polyimide resin. One kind or two or more kinds of resins can be mixed and used.

上記に示した強磁性粉末の含有率は50〜95重量%の範囲が好ましい。強磁性粉末の含有率が50重量%未満では、磁性粉不足により、マグネットピースの磁気特性が低下して所望の磁力が得られにくくなり、また該強磁性粉末の含有率が95重量%を超えると、バインダー不足となり成形性が損なわれるおそれがある。   The content of the ferromagnetic powder shown above is preferably in the range of 50 to 95% by weight. If the content of the ferromagnetic powder is less than 50% by weight, the magnetic properties of the magnet piece are deteriorated due to insufficient magnetic powder, making it difficult to obtain a desired magnetic force, and the content of the ferromagnetic powder exceeds 95% by weight. If the binder is insufficient, the moldability may be impaired.

添加剤としては、磁性粉の表面処理剤としてシラン系やチタネート系等のカップリング剤、流動性を良好にするポリスチレン系・フッ素系滑剤等、安定剤、可塑剤、もしくは難燃剤などを添加する。   Additives include silane and titanate coupling agents as surface treatment agents for magnetic powders, polystyrene and fluorine lubricants that improve fluidity, stabilizers, plasticizers, or flame retardants. .

また、本明細書においては、5極構成のマグネットロールを図示しているが、本発明は5極マグネットロールのみに限定されない。すなわち、所望の磁束密度と磁界分布により、磁極数や磁極位置も適宜設定すればよい。   Further, in this specification, a magnet roll having a five-pole configuration is illustrated, but the present invention is not limited to a five-pole magnet roll. That is, the number of magnetic poles and the magnetic pole position may be set as appropriate according to the desired magnetic flux density and magnetic field distribution.

以下に本発明を実施例および比較例に基づき具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1)
図2のマグネットローラ用材料として、樹脂バインダーにナイロン6樹脂(ユニチカ製A1015P)を10重量%(滑剤、安定剤を含む)、強磁性体粉末に異方性ストロンチウムフェライト(SrO・6Fe23)粉末(日本弁柄工業製NF−350)を90重量%とし、これらを混合して溶融混練し、ペレット状に成形する。図1に示す成形装置を用いて、ゲート口から上記ペレットを溶融状態にした樹脂磁石材料を射出注入し、励磁源(5箇所)から発生させた磁場(240K・A/m〜2400K・A/m)により該溶融樹脂磁石材料を配向着磁し、冷却固化させて、図2に示すような軸一体型マグネットローラを形成した。この場合、一次圧(射出圧)にてキャビティ充填量の90wt%に相当する溶融樹脂磁石材料を注入し、保圧にてキャビティ充填量の10wt%に相当する溶融樹脂磁石材料を注入した。なお、一次圧の溶融樹脂磁石材料の注入速度は100mm/sec、圧力は200MPa、とし、また保圧による注入速度は3mm/sec、圧力は200MPaとした。
Example 1
As a material for the magnet roller in FIG. 2, 10% by weight of nylon 6 resin (A1015P manufactured by Unitika) is used as a resin binder, and anisotropic strontium ferrite (SrO.6Fe 2 O 3 ) is used as a ferromagnetic powder. ) 90% by weight of powder (NF-350 manufactured by Nippon Valve Industry Co., Ltd.), these are mixed, melt-kneaded and formed into a pellet. Using the molding apparatus shown in FIG. 1, a magnetic material (240 K · A / m to 2400 K · A / 2) generated from an excitation source (5 locations) by injecting and injecting a resin magnet material in which the pellets are melted from the gate port is used. According to m), the molten resin magnet material was oriented and magnetized and cooled and solidified to form a shaft-integrated magnet roller as shown in FIG. In this case, a molten resin magnet material corresponding to 90 wt% of the cavity filling amount was injected at the primary pressure (injection pressure), and a molten resin magnet material corresponding to 10 wt% of the cavity filling amount was injected at the holding pressure. The injection speed of the molten resin magnet material having the primary pressure was 100 mm / sec, the pressure was 200 MPa, the injection speed by holding pressure was 3 mm / sec, and the pressure was 200 MPa.

マグネットローラ本体部外径をφ9.6mm、両端軸部の外径をφ5とし、マグネットローラ本体部の軸方向長さを220mm、両端軸部を含むマグネットローラの軸方向長さを260mmとした。   The outer diameter of the magnet roller main body was φ9.6 mm, the outer diameter of both end shaft portions was φ5, the axial length of the magnet roller main body portion was 220 mm, and the axial length of the magnet roller including both end shaft portions was 260 mm.

得られたマグネットローラを、マグネットローラの両端軸部を支持し、マグネットローラの中心からラジアル方向に6mm離し、かつマグネットローラ軸方向の中心にガウスメータ用プローブ(Bell社製磁束密度センサー)先端を設置し、マグネットローラを回転させ、該マグネットローラの周方向の磁束密度を測定し、主極の磁束密度ピーク位置を検知し、その位置にて主極の軸方向磁束密度を測定し、マグネットローラ本体部の軸方向両端10mmを除く領域において、最大磁束密度と最小磁束密度の差を軸方向磁束密度バラツキとし、局所的な磁束密度変化率(mT/mm:リップル)を測定した。測定結果を表1に示す。

Figure 2009262403
The obtained magnet roller is supported by the shafts at both ends of the magnet roller, separated from the center of the magnet roller by 6 mm in the radial direction, and the tip of the gauss meter probe (Bell magnetic flux density sensor) is installed at the center of the magnet roller. The magnet roller is rotated, the magnetic flux density in the circumferential direction of the magnet roller is measured, the magnetic flux density peak position of the main pole is detected, the axial magnetic flux density of the main pole is measured at that position, and the magnet roller body In the region excluding 10 mm in both axial directions, the difference between the maximum magnetic flux density and the minimum magnetic flux density was taken as the axial magnetic flux density variation, and the local magnetic flux density change rate (mT / mm: ripple) was measured. The measurement results are shown in Table 1.
Figure 2009262403

ここで、主極磁束密度は75mT以上が好ましい。また、軸方向磁束密度バラツキは6mT以下が好ましく、軸方向の局所的な磁束密度低下率(リップル)は0.5mT/mm以下が好ましい。   Here, the main pole magnetic flux density is preferably 75 mT or more. Moreover, the axial magnetic flux density variation is preferably 6 mT or less, and the local magnetic flux density reduction rate (ripple) in the axial direction is preferably 0.5 mT / mm or less.

また、図4に示す装置にて、マグネットローラの本体部両端10mmを固定支持し、該マグネットローラ軸方向中心部を加圧治具にて加圧し、本体部が折れるまでの最高強度を本体強度とした。加圧装置は島津製作所製AGS−H(5kN)を用い、加圧速度は50mm/min、加圧治具の先端形状はR3mmとした。測定結果を表1に示す。   In addition, with the apparatus shown in FIG. 4, 10 mm of both ends of the main body of the magnet roller are fixed and supported, the central portion in the axial direction of the magnet roller is pressed with a pressurizing jig, and the maximum strength until the main body is broken is It was. The pressure device was AGS-H (5 kN) manufactured by Shimadzu Corporation, the pressure rate was 50 mm / min, and the tip shape of the pressure jig was R3 mm. The measurement results are shown in Table 1.

ここで、本体強度は120N以上が好ましい。   Here, the main body strength is preferably 120 N or more.

(実施例2)
一次圧による充填量を85wt%とし、保圧による充填量を15wt%とする以外はすべて実施例1と同様に行った。
(Example 2)
The same procedure as in Example 1 was performed except that the filling amount by primary pressure was 85 wt% and the filling amount by holding pressure was 15 wt%.

(実施例3)
一次圧による充填量を98wt%とし、保圧による充填量を2wt%とする以外はすべて実施例1と同様に行った。
(Example 3)
The same procedure as in Example 1 was performed except that the filling amount by primary pressure was 98 wt% and the filling amount by holding pressure was 2 wt%.

(実施例4)
マグネットローラ本体部外径をφ13.6mmとし、かつ、一次圧による充填量を92wt%とし、保圧による充填量を8wt%とする以外はすべて実施例1と同様に行った。
主極磁束密度は85mT以上が好ましく、本体強度は400N以上が好ましい。
Example 4
The same procedure as in Example 1 was performed except that the outer diameter of the magnet roller main body was 13.6 mm, the filling amount by the primary pressure was 92 wt%, and the filling amount by the holding pressure was 8 wt%.
The main pole magnetic flux density is preferably 85 mT or more, and the main body strength is preferably 400 N or more.

(実施例5)
マグネットローラ本体部外径をφ13.6mmとし、かつ、一次圧による充填量を98wt%とし、保圧による充填量を2wt%とする以外はすべて実施例1と同様に行った。
主極磁束密度は85mT以上が好ましく、本体強度は400N以上が好ましい。
(Example 5)
The same procedure as in Example 1 was performed except that the outer diameter of the magnet roller main body was 13.6 mm, the filling amount by primary pressure was 98 wt%, and the filling amount by holding pressure was 2 wt%.
The main pole magnetic flux density is preferably 85 mT or more, and the main body strength is preferably 400 N or more.

(実施例6)
マグネットローラ本体部外径をφ18.0mmとし、かつ、一次圧による充填量を92wt%とし、保圧による充填量を8wt%とする以外はすべて実施例1と同様に行った。
主極磁束密度は100mT以上が好ましく、本体強度は600N以上が好ましい。
(Example 6)
The same procedure as in Example 1 was performed except that the outer diameter of the magnet roller main body was 18.0 mm, the filling amount by the primary pressure was 92 wt%, and the filling amount by the holding pressure was 8 wt%.
The main pole magnetic flux density is preferably 100 mT or more, and the main body strength is preferably 600 N or more.

(実施例7)
マグネットローラ本体部外径をφ18.0mmとし、かつ、一次圧による充填量を98wt%とし、保圧による充填量を2wt%とする以外はすべて実施例1と同様に行った。
主極磁束密度は100mT以上が好ましく、本体強度は600N以上が好ましい。
(Example 7)
The same procedure as in Example 1 was performed except that the outer diameter of the magnet roller main body was 18.0 mm, the filling amount by primary pressure was 98 wt%, and the filling amount by holding pressure was 2 wt%.
The main pole magnetic flux density is preferably 100 mT or more, and the main body strength is preferably 600 N or more.

(実施例8)
図3に示す成形装置(金型)を用いて、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大してマグネットローラを成形する以外はすべて実施例1と同様に行った。
(Example 8)
Using the molding apparatus (mold) shown in FIG. 3, the slide mold is retracted while injecting the molten resin magnet material, and the molding space is enlarged to a predetermined size in accordance with the injection speed of the molten resin magnet material. Except that the roller was molded, the same procedure as in Example 1 was performed.

(実施例9)
図3に示す成形装置(金型)を用いて、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大してマグネットローラを成形する以外はすべて実施例2と同様に行った。
Example 9
Using the molding apparatus (mold) shown in FIG. 3, the slide mold is retracted while injecting the molten resin magnet material, and the molding space is enlarged to a predetermined size in accordance with the injection speed of the molten resin magnet material. Except that the roller was molded, everything was performed in the same manner as in Example 2.

(実施例10)
図3に示す成形装置(金型)を用いて、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大してマグネットローラを成形する以外はすべて実施例3と同様に行った。
(Example 10)
Using the molding apparatus (mold) shown in FIG. 3, the slide mold is retracted while injecting the molten resin magnet material, and the molding space is enlarged to a predetermined size in accordance with the injection speed of the molten resin magnet material. Except that the roller was molded, the same procedure as in Example 3 was performed.

(実施例11)
図3に示す成形装置(金型)を用いて、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大してマグネットローラを成形する以外はすべて実施例4と同様に行った。
Example 11
Using the molding apparatus (mold) shown in FIG. 3, the slide mold is retracted while injecting the molten resin magnet material, and the molding space is enlarged to a predetermined size in accordance with the injection speed of the molten resin magnet material. Except that the roller was molded, the same procedure as in Example 4 was performed.

(実施例12)
図3に示す成形装置(金型)を用いて、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大してマグネットローラを成形する以外はすべて実施例5と同様に行った。
Example 12
Using the molding apparatus (mold) shown in FIG. 3, the slide mold is retracted while injecting the molten resin magnet material, and the molding space is enlarged to a predetermined size in accordance with the injection speed of the molten resin magnet material. Except that the roller was molded, the same procedure as in Example 5 was performed.

(比較例1)
一次圧による充填量を100wt%とし、保圧による充填量を0wt%、つまり保圧は溶融樹脂磁石材料の逆流を防止する役割とする以外はすべて実施例1と同様に行った。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the filling amount by the primary pressure was 100 wt% and the filling amount by the holding pressure was 0 wt%, that is, the holding pressure served to prevent the backflow of the molten resin magnet material.

(比較例2)
一次圧による充填量を80wt%とし、保圧による充填量を20wt%とする以外はすべて実施例1と同様に行った。
(Comparative Example 2)
The same procedure as in Example 1 was performed except that the filling amount by primary pressure was 80 wt% and the filling amount by holding pressure was 20 wt%.

(比較例3)
マグネットローラ本体部外径をφ13.6mmとし、かつ、一次圧による充填量を100wt%とし、保圧による充填量を0wt%、つまり保圧は溶融樹脂磁石材料の逆流を防止する役割とする以外はすべて実施例1と同様に行った。
(Comparative Example 3)
The outer diameter of the magnet roller main body is 13.6 mm, the filling amount by the primary pressure is 100 wt%, the filling amount by the holding pressure is 0 wt%, that is, the holding pressure serves to prevent the backflow of the molten resin magnet material. Were all carried out in the same manner as in Example 1.

(比較例4)
マグネットローラ本体部外径をφ13.6mmとし、かつ、一次圧による充填量を90wt%とし、保圧による充填量を10wt%とする以外はすべて実施例1と同様に行った。
(Comparative Example 4)
The same procedure as in Example 1 was performed except that the outer diameter of the magnet roller main body was 13.6 mm, the filling amount by primary pressure was 90 wt%, and the filling amount by holding pressure was 10 wt%.

(比較例5)
図3に示す成形装置(金型)を用いて、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大してマグネットローラを成形し、かつ一次圧による充填量を100wt%とし、保圧による充填量を0wt%、つまり保圧は溶融樹脂磁石材料の逆流を防止する役割とする以外はすべて実施例1と同様に行った。
(Comparative Example 5)
Using the molding apparatus (mold) shown in FIG. 3, the slide mold is retracted while injecting the molten resin magnet material, and the molding space is enlarged to a predetermined size in accordance with the injection speed of the molten resin magnet material. The same as in Example 1 except that the roller is molded and the filling amount by the primary pressure is 100 wt% and the filling amount by the holding pressure is 0 wt%, that is, the holding pressure serves to prevent the backflow of the molten resin magnet material. went.

(比較例6)
図3に示す成形装置(金型)を用いて、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大してマグネットローラを成形し、かつ一次圧による充填量を80wt%とし、保圧による充填量を20wt%、とする以外はすべて実施例1と同様に行った。
(Comparative Example 6)
Using the molding apparatus (mold) shown in FIG. 3, the slide mold is retracted while injecting the molten resin magnet material, and the molding space is enlarged to a predetermined size in accordance with the injection speed of the molten resin magnet material. The same procedure as in Example 1 was performed except that the roller was molded, the filling amount by primary pressure was 80 wt%, and the filling amount by holding pressure was 20 wt%.

実施例1〜12と比較例1〜6を比べると、該実施例は、軸方向磁束密度バラツキやリップルが小さくなり、また、本体強度が向上していることがわかる。   Comparing Examples 1 to 12 with Comparative Examples 1 to 6, it can be seen that in this example, variation in axial magnetic flux density and ripple are reduced, and the strength of the main body is improved.

実施例1〜3と比較例1〜2を比べると、マグネットローラ本体部外径がφ12mm未満の場合の一次圧(射出圧)と保圧による充填量の割合を、一次圧:保圧=85〜98wt%:15〜2wt%とすることにより、軸方向磁束密度バラツキやリップルが小さくなり、また、本体強度が向上していることがわかる。   When Examples 1-3 are compared with Comparative Examples 1-2, the ratio of the primary pressure (injection pressure) and the filling amount by holding pressure when the outer diameter of the magnet roller main body is less than φ12 mm is expressed as primary pressure: holding pressure = 85. It can be seen that by setting it to ˜98 wt%: 15 to 2 wt%, the axial magnetic flux density variation and ripple are reduced, and the main body strength is improved.

実施例4〜7と比較例3〜4を比べると、マグネットローラ本体部外径がφ12mm以上φ18mm以下の場合の一次圧と保圧による充填量の割合を、一次圧:保圧=92〜98wt%:8〜2wt%とすることにより、軸方向磁束密度バラツキやリップルが小さくなり、また、本体強度が向上していることがわかる。   Comparing Examples 4 to 7 and Comparative Examples 3 to 4, the ratio of the primary pressure and the filling amount by holding pressure when the outer diameter of the magnet roller main body is φ12 mm or more and φ18 mm or less, the primary pressure: holding pressure = 92 to 98 wt. %: It can be seen that by setting the content to 8 to 2 wt%, variation in axial magnetic flux density and ripple are reduced, and the strength of the main body is improved.

実施例8〜10と比較例5〜6を比べると、上記実施例1〜3と比較例1〜2との比較と同様に、マグネットローラ本体部外径がφ12mm未満の場合の一次圧(射出圧)と保圧による充填量の割合を、一次圧:保圧=85〜98wt%:15〜2wt%とすることにより、軸方向磁束密度バラツキやリップルが小さくなり、また、本体強度が向上していることがわかる。   When Examples 8-10 are compared with Comparative Examples 5-6, the primary pressure (injection) when the outer diameter of the magnet roller body is less than φ12 mm, as in the comparison between Examples 1-3 and Comparative Examples 1-2. Pressure) and the filling amount ratio by holding pressure are set to primary pressure: holding pressure = 85 to 98 wt%: 15 to 2 wt%, the axial magnetic flux density variation and ripple are reduced, and the body strength is improved. You can see that

また、実施例1〜7と実施例8〜12を比べると、図3に示す成形装置(金型)を用いて、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大したマグネットローラの成形方法である実施例8〜12の方が、更に軸方向磁束密度バラツキやリップルが小さくなり、また、本体強度が向上していることがわかる。   Further, when Examples 1 to 7 are compared with Examples 8 to 12, while using the molding apparatus (mold) shown in FIG. 3, while injecting the molten resin magnet material according to the injection speed of the molten resin magnet material, In Examples 8 to 12, which are molding methods of a magnet roller in which the molding die is retreated and the molding space is expanded to a predetermined size, the axial magnetic flux density variation and ripple are further reduced, and the body strength is improved. You can see that

マグネットローラの成形装置(金型)Magnet roller molding device (mold) マグネットローラの斜視図Perspective view of magnet roller 別のマグネットローラの成形装置(金型)Another magnet roller molding device (mold) マグネットローラ本体強度測定装置Magnet roller body strength measuring device

符号の説明Explanation of symbols

1 成形空間
2 励磁源
3 注入口
4 固定金型
5 可動金型
6 マグネットローラ本体部
7 マグネットローラ軸部
8 スライド金型
9 加圧治具
10 マグネットローラ本体部固定治具
11 本体部強度測定装置ベース台
DESCRIPTION OF SYMBOLS 1 Molding space 2 Excitation source 3 Inlet 4 Fixed metal mold 5 Movable metal mold 6 Magnet roller main-body part 7 Magnet roller axial part 8 Slide metal mold | die 9 Pressurizing jig 10 Magnet roller main-body part fixing jig 11 Main-body part intensity | strength measuring apparatus Base stand

Claims (2)

強磁性粉末と樹脂バインダーを主体とする混合物を用いた軸部一体型マグネットローラを成形する方法において、マグネットローラ本体部外径がφ12mm未満の場合の一次圧(射出圧)と保圧による充填量の割合を、一次圧:保圧=85〜98wt%:15〜2wt%とし、マグネットローラ本体部外径がφ12mm以上φ18mm以下の場合の一次圧と保圧による充填量の割合を、一次圧:保圧=92〜98wt%:8〜2wt%としたことを特徴とするマグネットローラの製造方法。   In a method for forming a shaft-integrated magnet roller using a mixture mainly composed of ferromagnetic powder and resin binder, the filling amount by primary pressure (injection pressure) and holding pressure when the outer diameter of the magnet roller body is less than φ12 mm The ratio of the primary pressure: the holding pressure = 85 to 98 wt%: 15 to 2 wt%, and the ratio between the primary pressure and the filling amount by the holding pressure when the outer diameter of the magnet roller main body is φ12 mm to φ18 mm is the primary pressure: Holding pressure = 92 to 98 wt%: 8 to 2 wt% 上記成形において、溶融樹脂磁石材料の注入速度に合わせ、該溶融樹脂磁石材料を注入しながらスライド金型を後退させ成形空間を所定のサイズに拡大し、マグネットローラを成形することを特徴とした請求項1記載のマグネットローラの製造方法。   In the above molding, the magnet roller is molded by reversing the slide mold while injecting the molten resin magnet material and expanding the molding space to a predetermined size in accordance with the injection speed of the molten resin magnet material. Item 2. A method for manufacturing a magnet roller according to Item 1.
JP2008114362A 2008-04-24 2008-04-24 Method for manufacturing magnet roller Pending JP2009262403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114362A JP2009262403A (en) 2008-04-24 2008-04-24 Method for manufacturing magnet roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114362A JP2009262403A (en) 2008-04-24 2008-04-24 Method for manufacturing magnet roller

Publications (1)

Publication Number Publication Date
JP2009262403A true JP2009262403A (en) 2009-11-12

Family

ID=41388876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114362A Pending JP2009262403A (en) 2008-04-24 2008-04-24 Method for manufacturing magnet roller

Country Status (1)

Country Link
JP (1) JP2009262403A (en)

Similar Documents

Publication Publication Date Title
WO2002033002A1 (en) Composition for synthetic resin composition and formed resin magnet
JP2009262403A (en) Method for manufacturing magnet roller
JP5518286B2 (en) Magnet roller
JP2007304237A (en) Developing roller
JP2009122485A (en) Method for manufacturing magnet roller
JP2006308663A (en) Magnet roller and its manufacture method
JP4556649B2 (en) Magnet roller manufacturing method
JP2010050289A (en) Molding die for magnet roller and magnet roller formed using the same
JP2008116868A (en) Magnet roller
JP2007042816A (en) Magnet compound for compression molding, long magnet compact, magnet roller, developer carrier, developing apparatus, and image forming apparatus
JP2007168334A (en) Magnet roller, and its manufacturing method
JP2010164807A (en) Magnetic roller
JP2006100783A (en) Resin magnet material
JP2007150005A (en) Magnet roller
JP2007129168A (en) Resin magnet composition and method of manufacturing same
JP2007142083A (en) Magnet roller
JP4960642B2 (en) Magnet roller
JP2007266452A (en) Magnet roller
JP2010039447A (en) Magnetic roller and method for manufacturing the same
JP2010109025A (en) Mold for molding magnet roller, and magnet roller molded using the same
JP4650042B2 (en) Resin magnet composition
JP2005303115A (en) Metal mold for molding magnet roller and magnet piece
JP2005352414A (en) Magnet roller
JP2008047591A (en) Magnet roller
JP2007296666A (en) Magnet roller