JP2009262324A - Injection molding nozzle for rubber product - Google Patents

Injection molding nozzle for rubber product Download PDF

Info

Publication number
JP2009262324A
JP2009262324A JP2008110517A JP2008110517A JP2009262324A JP 2009262324 A JP2009262324 A JP 2009262324A JP 2008110517 A JP2008110517 A JP 2008110517A JP 2008110517 A JP2008110517 A JP 2008110517A JP 2009262324 A JP2009262324 A JP 2009262324A
Authority
JP
Japan
Prior art keywords
nozzle
injection
heat
rubber
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008110517A
Other languages
Japanese (ja)
Other versions
JP5216401B2 (en
Inventor
Sohei Fujiki
荘平 藤木
Takashi Miyake
孝史 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marugo Rubber Industries Ltd
Original Assignee
Marugo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marugo Rubber Industries Ltd filed Critical Marugo Rubber Industries Ltd
Priority to JP2008110517A priority Critical patent/JP5216401B2/en
Publication of JP2009262324A publication Critical patent/JP2009262324A/en
Application granted granted Critical
Publication of JP5216401B2 publication Critical patent/JP5216401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop an injection molding nozzle with simple structure for rubber products, which prevents temperature rise of a nozzle block and reduces product defect caused by occurrence of scorch. <P>SOLUTION: The injection molding nozzle for the rubber products is formed by forming an inner cylinder section 23 by making the inner diameter of the inner face of a nozzle body 21 of a metallic nozzle 2 to be mounted on the tip of an injection cylinder of a rubber injection molding machine larger than an injection port diameter while leaving an injection port 22, and forming the nozzle inner face for passing injection raw material rubber in the formed inner cylinder section 23 with a heat-resistant organic material, for instance, a plastic cylindrical heat insulation material 24. Here, the plastic cylindrical heat insulation material 24 is formed by pressing a rod-like molded body having an outer diameter slightly larger than the inner diameter of the inner cylinder section 23 into the inner face inner cylinder section 23 of the nozzle 2 body up to the vicinity of the nozzle injection port 22 from a nozzle mounting base part 25 to the injection cylinder, and cutting the nozzle inner wall 26. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、主としてゴム製品の加硫成形に用いられる射出成形装置におけるゴム製品の射出成形用ノズルに関するものである。   The present invention relates to a nozzle for injection molding of rubber products in an injection molding apparatus mainly used for vulcanization molding of rubber products.

自動車用ゴム製品をはじめ一般工業用精密ゴム製品を射出成形により、十分な精度及び融合部強度を有する製品を得ようとすると、製品キャビティ内へ流動性の良好な状態で注入射出し、かつ、可及的に原料ゴムの流動中にスコーチ(早期加硫)が発生しないようにする必要がある。しかし、流動性の良好な状態で注入するために材料射出温度を相対的に高温とすると、製品キャビティゲートにゴム材料が到達する前にスコーチが発生しやすい。また、流動性が低いと、キャビティ内の流動速度が遅く、融合する前にスコーチが発生して製品表面に融合ライン(ウェルドマーク)が発生し易くなる。   When trying to obtain products with sufficient precision and fusion strength by injection molding of general industrial precision rubber products including rubber products for automobiles, injection and injection with good fluidity into the product cavity, and It is necessary to prevent scorch (early vulcanization) from occurring during the flow of the raw rubber as much as possible. However, if the material injection temperature is relatively high in order to inject with good fluidity, scorch is likely to occur before the rubber material reaches the product cavity gate. Also, if the fluidity is low, the flow rate in the cavity is slow, scorching occurs before fusing, and a fusing line (weld mark) tends to occur on the product surface.

そこで、融合強度を得るために、相対的に高圧(高速)で射出成形をする必要がある。しかし、高圧で射出成形しようとすると、高温にして相対的に粘度を低下させる必要がある。射出温度を高温にした状態で製品キャビティ内に射出すると、成形材料がキャビティ内でスコーチにより材料流動抵抗が増大して、融合部接合・強度不良、更には充填不良(ショートショット)等が発生しやすい。すなわち、不良成形品が多量に発生する。   Therefore, in order to obtain a fusion strength, it is necessary to perform injection molding at a relatively high pressure (high speed). However, when trying to injection mold at a high pressure, it is necessary to relatively reduce the viscosity at a high temperature. When injected into the product cavity with the injection temperature kept high, the material flow resistance is increased by scorch in the cavity of the molding material, resulting in fusion joint / strength failure and filling failure (short shot). Cheap. That is, a lot of defective molded products are generated.

この点を解決する技術として、特許文献1には、射出ポットは、射出ノズルと連続する先端部がプランジャの先端形状に対応する形状を備えたプランジャ嵌合部とし、射出ノズル及び射出ポットのプランジャ嵌合部の各内面に断熱被覆層を形成したものがみられる。この断熱被覆層は、通常、セラミック溶射被覆層で形成する。例えば、アルミナ/チタニアを50/50として80μmの総厚み(アンダーコートとトップコート)で表面研磨したものとする。これにより、射出ポット内の溶融化ゴムの射出ポット壁面からの放熱が遮断されるため、上記溶融化ゴムのポット内における温度又は粘度が安定化を容易に達成することができる、と記載されている。   As a technique for solving this problem, Patent Document 1 discloses that an injection pot is a plunger fitting portion in which a tip portion continuous with an injection nozzle has a shape corresponding to the tip shape of the plunger, and the plunger of the injection nozzle and the injection pot. The thing which formed the heat insulation coating layer in each inner surface of a fitting part is seen. This heat insulation coating layer is usually formed of a ceramic spray coating layer. For example, it is assumed that the surface is polished with a total thickness of 80 μm (undercoat and topcoat) with 50/50 alumina / titania. As a result, heat dissipation from the injection pot wall surface of the molten rubber in the injection pot is blocked, so that the temperature or viscosity in the pot of the molten rubber can be easily achieved. Yes.

また、金型からの温度伝搬を防止する手段として、射出ノズルではないけれども、スプルーブッシュに熱伝導性の悪いセラミックまたはステンレススチールを用いることが、古くから提案されている(例えば、特許文献2)。   Further, as a means for preventing temperature propagation from the mold, it has long been proposed to use ceramic or stainless steel having poor thermal conductivity for the sprue bush, although it is not an injection nozzle (for example, Patent Document 2). .

更に、近時は特許文献3にみられるように、主としてゴム製品等の成形品を加硫成形するための射出成形金型にはコールドランナー装置が設けられており、このコールドランナー装置のノズル構造として、コールドランナー装置を備える射出成形金型が、成形用のキャビティを形成する開閉可能な上下両型よりなる金型と、その上型の上面に断熱材層を介して締結され、射出機ノズルから射出されるゴム材料をキャビティに給送するコールドランナーを形成するコールドランナーブロックとを有し、コールドランナーブロックの下面に、ゴム材料をコールドランナーからキャビティに注入するためのノズルを構成するノズルブロックが付設されている。金型の上下両型には、金型を加熱するための加熱媒体を通す流通路が設けられ、一方、コールドランナーブロックには、ブロックを構成する上下のランナープレートに冷却媒体を通す流通路が設けられるとともに、その下面に付設されたノズルブロックにも冷却媒体を通す流通路が設けられている。加えて、金型からの熱を遮断するために、ノズルブロックは、上型の凹所において周囲に所要の空間を保有して、ノズル先端部のみを上型におけるキャビティへの注入口の部分に対接させるようにしたものが提案されている。   Further, recently, as seen in Patent Document 3, a cold runner device is provided in an injection mold for mainly vulcanizing a molded product such as a rubber product. The nozzle structure of this cold runner device An injection mold having a cold runner device is fastened via a heat insulating material layer to an upper and lower molds that can be opened and closed to form a molding cavity, and an injection nozzle. And a cold runner block that forms a cold runner for feeding the rubber material injected from the cavity to the cavity, and a nozzle block constituting a nozzle for injecting the rubber material from the cold runner into the cavity on the lower surface of the cold runner block Is attached. Both the upper and lower molds are provided with a flow passage for passing a heating medium for heating the mold, while the cold runner block has a flow passage for passing a cooling medium through the upper and lower runner plates constituting the block. In addition to being provided, a flow path through which the cooling medium passes is also provided in the nozzle block attached to the lower surface thereof. In addition, in order to cut off the heat from the mold, the nozzle block has a required space around the recess of the upper mold, and only the nozzle tip is used as a part of the inlet to the cavity in the upper mold. What was made to contact is proposed.

特開2005−279949号公報([0020][0038])JP 2005-279949 A ([0020] [0038]) 特公昭42−1194号公報(第2ページ、左欄)Japanese Patent Publication No.42-1194 (second page, left column) 特開2004−243745号公報([0004][0005])JP 2004-243745 A ([0004] [0005])

これら上記の特許文献でみられるように、ノズルブロックの温度上昇を防ぎ、スコーチの発生による製品不良を低減するために、金型からの熱伝導を遮断する手段として、(a)射出ノズル及び射出ポットのプランジャ嵌合部の各内面に断熱被覆層のセラミック溶射被覆層を形成したり、(b)ノズルブロックに熱伝導性の悪いセラミックまたはステンレススチールを用いたり、あるいは、(c)ノズルブロックのノズル周辺に冷却媒体を通す流通路を設けたりする手段が講じられている。   As seen in these above-mentioned patent documents, in order to prevent the temperature rise of the nozzle block and reduce the product failure due to the occurrence of scorch, as a means to block the heat conduction from the mold, (a) the injection nozzle and the injection Form a thermal spray coating layer on each inner surface of the pot plunger fitting part, (b) Use ceramic or stainless steel with poor thermal conductivity for the nozzle block, or (c) Nozzle block Means are provided to provide a flow passage for passing a cooling medium around the nozzle.

しかしながら、断熱被覆材は無機物のセラミックスであり成形加工性や溶射被覆加工性に欠けるし、熱伝導性が悪いとはいってもステンレススチールでは金属である以上断熱効率は決して良好ではなく、また、冷却媒体の流通路をノズルブロック内に形成することは、製造コストの上昇につながるものであった。   However, the thermal insulation coating material is an inorganic ceramic, lacking in molding processability and thermal spraying processability, and although it has poor thermal conductivity, stainless steel is not a good thermal insulation efficiency as long as it is a metal. Forming the medium flow path in the nozzle block leads to an increase in manufacturing cost.

本発明は、これら従来技術にみられるノズルブロックの温度上昇防止手段の更なる改良を目指して、これまで全く考えられていなかった耐熱有機材料に断熱材料を求め、プラスチック材料をはじめとする耐熱有機材料で解決が可能か否かにつき種々検討した結果、耐熱性プラスチック等であれば、加工が容易で、かつノズルブロックの温度上昇を防ぎ、スコーチの発生による製品不良を低減する目的の達成ができる技術として確立したものである。   The present invention aims to further improve the temperature rise prevention means of the nozzle block found in these prior arts, and seeks a heat insulating material for a heat resistant organic material that has never been considered so far. As a result of various investigations as to whether or not the material can be solved, if it is a heat resistant plastic or the like, it is easy to process, and it is possible to achieve the purpose of preventing the temperature rise of the nozzle block and reducing product defects due to the occurrence of scorch. It has been established as a technology.

すなわち、本発明の構成は、ゴム射出成形機の射出筒先端に取付ける金属製ノズルであって、この金属製ノズルのノズル本体内面を射出口を残して内径を射出口径より大にして懐部を形成し、形成された懐部に射出原料ゴムが通過するノズル内面が耐熱有機材料筒状断熱体で形成されてなるゴム製品の射出成形用ノズルである。   That is, the configuration of the present invention is a metal nozzle that is attached to the tip of an injection cylinder of a rubber injection molding machine, and the inner surface of the nozzle body of the metal nozzle is made larger than the injection port diameter while leaving the injection port. This is a nozzle for injection molding of a rubber product in which the inner surface of the nozzle through which the injection raw rubber passes is formed with a heat-resistant organic material cylindrical heat insulator.

ここで、耐熱有機材料筒状断熱体は、射出筒へのノズル取付け基部からノズル射出口近傍までのノズル本体の内面懐部に、その内径よりやや大きい外径を有する耐熱有機材料の棒状成形体を圧入した後、ノズル内壁を切削加工により耐熱有機材料筒状断熱体を形成する。あるいは、耐熱有機材料筒状断熱体がプラスチック材料の場合は、そのプラスチック筒状断熱体そのものを予め射出成形などでノズル内壁まで仕上げた筒状成形体としてからノズル本体の懐部へ圧入して筒状断熱体とすることもできる。   Here, the heat-resistant organic material cylindrical heat insulator is a rod-shaped molded body of a heat-resistant organic material having an outer diameter slightly larger than the inner diameter of the inner surface of the nozzle body from the nozzle mounting base to the vicinity of the nozzle injection port. After press-fitting, a heat-resistant organic material cylindrical heat insulator is formed by cutting the inner wall of the nozzle. Alternatively, when the heat-resistant organic material cylindrical insulator is a plastic material, the plastic cylindrical insulator itself is made into a cylindrical molded body that has been finished up to the nozzle inner wall by injection molding or the like, and then press-fitted into the pocket of the nozzle body. It can also be made into a heat insulator.

また、このプラスチック筒状断熱体は、前記ノズル本体の内面懐部に、直接プラスチック射出成形により筒状成形体を形成してもよい。この場合は金型内にノズル本体を装着してプラスチック筒状断熱体の形状のキャビティとして、プラスチック筒状断熱体を構成するプラスチック溶融物を射出成形一体化することもできる。   Moreover, this plastic cylindrical heat insulating body may form a cylindrical molded body directly on the inner surface of the nozzle body by plastic injection molding. In this case, the nozzle main body is mounted in the mold, and the plastic melt constituting the plastic cylindrical heat insulating body can be integrated by injection molding as a cavity having the shape of the plastic cylindrical heat insulating body.

筒状成形体に用いるプラスチック筒状断熱体のプラスチック材料は、ノズルを通過する射出原料ゴムがそのスコーチ温度より高温に達しない温度を保持する断熱効果のある耐熱性プラスチックである。通常連続使用温度が100℃以上、好ましくは120℃以上、より好ましいのは150℃以上である。更に好ましくは170℃以上で、これより高温に耐えるプラスチックであればよい。使用し得る具体的なプラスチック材料としては、ポリエチレンテレフタレート(PEТ)100〜150℃、ポリアミド(PA、ナイロン)120〜150℃、ポリエーテルイミド(PEI)170℃、ポリフェニレンサルファイド(PPS)220℃、ポリエーテルエーテルケトン(PEEK)250℃、ポリ四フッ化エチレン(PТFE)260℃、ポリイミド(PI)304℃、ポリベンゾイミダゾール(PBI)310℃等が挙げられる。   The plastic material of the plastic cylindrical heat insulator used for the cylindrical molded body is a heat-resistant plastic having a heat insulating effect that maintains the temperature at which the injection raw rubber passing through the nozzle does not reach a temperature higher than its scorch temperature. Usually, the continuous use temperature is 100 ° C. or higher, preferably 120 ° C. or higher, and more preferably 150 ° C. or higher. More preferably, the plastic may be 170 ° C. or higher and can withstand higher temperatures. Specific plastic materials that can be used include polyethylene terephthalate (PEТ) 100 to 150 ° C., polyamide (PA, nylon) 120 to 150 ° C., polyetherimide (PEI) 170 ° C., polyphenylene sulfide (PPS) 220 ° C., poly Examples include ether ether ketone (PEEK) 250 ° C., polytetrafluoroethylene (PТFE) 260 ° C., polyimide (PI) 304 ° C., polybenzimidazole (PBI) 310 ° C., and the like.

これら熱可塑性樹脂(プラスチック)のほか、フエノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、熱硬化型ポリイミドのような熱硬化性樹脂や木質材料も耐熱有機材料筒状断熱体として使用可能である。木質材料の場合は、硬質の樫の木や栗の木などが好ましく、更に耐熱性樹脂を含浸させたものが有用である。   In addition to these thermoplastic resins (plastics), phenolic resins, melamine resins, epoxy resins, unsaturated polyester resins, diallyl phthalate resins, thermosetting resins such as thermosetting polyimide, and wood materials are also heat-resistant organic material cylindrical insulators Can be used as In the case of a wood material, a hard oak tree or a chestnut tree is preferable, and a material impregnated with a heat resistant resin is useful.

本発明のゴム製品の射出成形用ノズルは、以上のような構成であるので、ノズル内ゴム流路の断熱性が良好となり通過する原料ゴムが金型からの熱影響を受け難くなりノズル先端部でのスコーチがなく加硫ゴムの不良対策に効果がある。また、原料ゴム生地と耐熱有機材料筒状断熱体、特にPEEKやPТFEなどのプラスチックとの離形性が良好であるためゴムが円滑に流れて停滞しなく、従来のノズルではできなかった加硫スピードの速い原料ゴムの射出成形が可能となった。   Since the nozzle for injection molding of the rubber product of the present invention is configured as described above, the heat insulating property of the rubber flow path in the nozzle is good, and the raw rubber passing therethrough is not easily affected by the heat from the mold, so that the tip of the nozzle There is no scorch and effective in preventing defects in vulcanized rubber. In addition, because of the good releasability between the raw rubber fabric and the heat-resistant organic material cylindrical heat insulator, especially plastics such as PEEK and PТFE, the rubber flows smoothly and does not stagnate, which is not possible with conventional nozzles. Fast injection molding of raw rubber has become possible.

また、ノズル構造も気体や液体の冷媒通路を設けないので簡単であり、これら冷媒の供給装置の設置の必要もなくなり、製造設備の低減に役立つ。   Further, the nozzle structure is simple because it does not provide a gas or liquid refrigerant passage, and it is not necessary to install a supply device for these refrigerants, which is useful for reducing manufacturing facilities.

以下、図面によって、本発明のゴム製品の射出成形用ノズルを具体的に説明する。図1は本発明のノズルを装着した縦型ゴム射出成形機の略構造を示す側面図である。図2は本発明のノズルの構造例を示す縦断面図である。   Hereinafter, the nozzle for injection molding of the rubber product of the present invention will be specifically described with reference to the drawings. FIG. 1 is a side view showing a schematic structure of a vertical rubber injection molding machine equipped with a nozzle of the present invention. FIG. 2 is a longitudinal sectional view showing a structure example of the nozzle of the present invention.

図1から明らかなように、通常の縦型ゴム射出成形機は、その射出筒1の下方にノズル2が取り付けられ、固定盤3と稼働盤4との間に上断熱盤5、上熱盤6及び下断熱盤7、下熱盤8を介して金型10が設けられた構造である。   As is apparent from FIG. 1, a normal vertical rubber injection molding machine has a nozzle 2 attached below the injection cylinder 1, and an upper heat insulating board 5 and an upper heating board between the fixed board 3 and the operation board 4. 6, a mold 10 is provided through a lower heat insulating board 7 and a lower heat board 8.

金型10は上金型11と下金型12とからなり、上金型11は上熱盤6で加熱され、下金型12は下熱盤8で加熱される。金型10内上熱盤6の上部はノズル2先端と接するスプルーゲート13が設けられ耐熱性のスプルーブッシング14が嵌められており、ここから金型10内の上金型11のスプルー15、ランナー16、分岐したゲート17から上下金型の境界に設けられた各キャビティ18へ通じている。   The mold 10 includes an upper mold 11 and a lower mold 12. The upper mold 11 is heated by the upper heating plate 6, and the lower mold 12 is heated by the lower heating plate 8. The upper part of the upper heating plate 6 in the mold 10 is provided with a sprue gate 13 in contact with the tip of the nozzle 2, and a heat-resistant sprue bushing 14 is fitted, from which the sprue 15 of the upper mold 11 in the mold 10 and the runner 16. The branched gate 17 leads to each cavity 18 provided at the boundary between the upper and lower molds.

本発明のゴム製品の射出成形用ノズル2はゴム射出成形機の射出筒1先端に取付けるノズルであって、図2の断面図に示すように、金属製のノズル本体21内面を射出口22を残して内径を射出口径より大にして懐部23を形成し、形成された懐部23に射出原料ゴムが通過するノズル内面をプラスチック筒状断熱体24で形成されてなるノズルである。   The rubber product injection molding nozzle 2 of the present invention is a nozzle that is attached to the tip of an injection cylinder 1 of a rubber injection molding machine. As shown in the cross-sectional view of FIG. The nozzle 23 is formed by forming the pocket portion 23 with the inner diameter larger than the injection port diameter and forming the inner surface of the nozzle through which the injection raw rubber passes through the formed pocket portion 23 with a plastic cylindrical heat insulator 24.

ここで、耐熱有機材料筒状断熱体はプラスチック筒状断熱体24であり、この筒状断熱体は、射出筒へのノズル取付け基部25からノズル射出口22近傍までのノズル本体21内面懐部23に、この懐部23内径よりやや大きい外径を有する棒状成形体を圧入した後、ノズル内壁26を切削加工により形成する。あるいは、予め射出成形などでノズル内壁26まで仕上げた筒状成形体を圧入してプラスチック筒状断熱体24とすることもできる。   Here, the heat-resistant organic material cylindrical heat insulating body is a plastic cylindrical heat insulating body 24, and this cylindrical heat insulating body is a nozzle body 21 inner surface pocket 23 from the nozzle mounting base 25 to the vicinity of the nozzle injection port 22 to the injection cylinder. In addition, after press-fitting a rod-shaped molded body having an outer diameter slightly larger than the inner diameter of the pocket 23, the nozzle inner wall 26 is formed by cutting. Alternatively, a cylindrical molded body that has been finished up to the nozzle inner wall 26 by injection molding or the like can be press-fitted into the plastic cylindrical heat insulating body 24.

また、このプラスチック筒状断熱体24は、射出筒1へのノズル取付け基部25からノズル射出口22近傍までのノズル本体21の内面懐部23に、直接プラスチック射出成形により筒状成形体を形成してもよい。この場合は金型内にノズル本体を装着してプラスチック筒状断熱体の形状のキャビティとして、プラスチック筒状断熱体24を構成するプラスチック溶融物を射出成形一体化するのである。   Further, the plastic cylindrical heat insulator 24 forms a cylindrical molded body directly by plastic injection molding on the inner surface 23 of the nozzle body 21 from the nozzle mounting base 25 to the injection cylinder 1 to the vicinity of the nozzle injection port 22. May be. In this case, the nozzle main body is mounted in the mold, and the plastic melt constituting the plastic cylindrical heat insulator 24 is integrally formed by injection molding as a cavity having the shape of the plastic cylindrical heat insulator.

筒状成形体に用いるプラスチック筒状断熱体24のプラスチック材料は、ノズル1を通過する射出原料ゴムがそのスコーチ温度より高温に達しない温度を保持する断熱効果のある耐熱性プラスチックであり、ここでは連続耐熱温度が250℃以上のPEEKやPPSが良好であった。以下、実施例によって更に具体的に本発明のゴム製品の射出成形用ノズルの構成を説明する。   The plastic material of the plastic cylindrical heat insulator 24 used for the cylindrical molded body is a heat-resistant plastic having a heat insulating effect that maintains a temperature at which the injection raw rubber passing through the nozzle 1 does not reach a temperature higher than its scorch temperature. PEEK and PPS having a continuous heat resistant temperature of 250 ° C. or higher were good. Hereinafter, the configuration of the injection molding nozzle for rubber products of the present invention will be described more specifically with reference to examples.

実施例1〜6
耐熱有機材料筒状断熱体として表1に記載の耐熱プラスチックのPE、ナイロン、PVDF、PPS、PEEK及びPIにつき実施した。ノズル構造は図2に示すとおりで大きさは85mm×45φ、ノズル穴径5φである。射出筒へのノズル取付け基部からノズル射出口近傍までのノズル本体の内面懐部として20φに刳り抜き、その内径よりやや大きい外径を有するプラスチックの棒状成形体を圧入した後、ノズル内壁を切削加工により図2に示す耐熱筒状断熱体を形成した。
Examples 1-6
As heat-resistant organic material cylindrical heat insulators, heat-resistant plastics PE, nylon, PVDF, PPS, PEEK and PI shown in Table 1 were used. The nozzle structure is as shown in FIG. 2 and has a size of 85 mm × 45φ and a nozzle hole diameter of 5φ. The inner surface of the nozzle body from the nozzle mounting base to the injection cylinder and the vicinity of the nozzle injection hole is punched to 20φ, and a plastic rod-shaped molded body having an outer diameter slightly larger than the inner diameter is press-fitted, and then the inner wall of the nozzle is cut As a result, the heat-resistant cylindrical heat insulator shown in FIG. 2 was formed.

これらプラスチック筒状断熱体を図1に示す縦型ゴム射出成形機を用いて、従来汎用の天然ゴム加硫組成物を金型温度170℃でマフラハンガー(長径80mm,短径55mm,厚み20mm)を成形した。成形時のゴム焼けの発生状況、ノズルの耐摩耗性、不良率、加工性のそれぞれと、これから得られる全体の付加価値度を4段階で評価した。結果を表1に示す。   Using these plastic cylindrical heat insulators, the vertical rubber injection molding machine shown in Fig. 1 was used to convert a conventional natural rubber vulcanized composition to a muffler hanger (major axis 80mm, minor axis 55mm, thickness 20mm) at a mold temperature of 170 ° C. Was molded. Each of the occurrence of rubber burn during molding, the wear resistance of the nozzle, the defect rate, and the workability, and the overall added value obtained from this were evaluated in four stages. The results are shown in Table 1.

Figure 2009262324
Figure 2009262324

表1の結果から明らかなように、本発明の耐熱有機材料筒状断熱体を挿入したノズルは
これまでの常識、すなわち、射出成形用ノズルにプラスチックのような射出成形材料を用いるなどは考えも及ばないことを打破したものである。すなわち、実際に本発明の方法によってこれらプラスチックス等樹脂を用いてみると、断熱性や耐摩耗性に優れており、特にゴム射出成形では十分な耐久性と良好な加工性が得られ、その結果、製品の不良率が著しく低減されて、高い付加価値度を示した。
As is apparent from the results in Table 1, the nozzles into which the heat-resistant organic material cylindrical heat insulator of the present invention has been inserted are common sense so far, that is, it is considered that an injection molding material such as plastic is used for the injection molding nozzle. This is a breakthrough of what is not possible. That is, when these resins such as plastics are actually used by the method of the present invention, they are excellent in heat insulation and wear resistance, and particularly in rubber injection molding, sufficient durability and good workability are obtained. As a result, the defective rate of the product was remarkably reduced and a high degree of added value was shown.

実施例7〜10
本実施例はプラスチック材料に代えて熱硬化性樹脂あるいは木質材料を用い、実施例1と同様の方法で図2の構造のノズルとした。これらは、耐熱性プラスチックより加工性にやや問題があるが、本発明の目的達成は十分可能であった。
Examples 7-10
In this example, a thermosetting resin or wood material was used instead of the plastic material, and the nozzle having the structure shown in FIG. Although these have some problems in processability than heat-resistant plastics, the object of the present invention can be sufficiently achieved.

実施例7のフェノール樹脂使用ノズルでの射出成形条件は、金型温度170〜190℃、シリンダ温度90〜100℃、射出圧力70Mpaで行った。結果をまとめて表2に示す。   The injection molding conditions for the phenol resin nozzle in Example 7 were performed at a mold temperature of 170 to 190 ° C, a cylinder temperature of 90 to 100 ° C, and an injection pressure of 70 MPa. The results are summarized in Table 2.

Figure 2009262324
Figure 2009262324

比較例1,2
比較例1,2として、従来の金属製ノズル及びこのノズル内部にアルミナ/チタニアのセラミックス粉体を約100μmの厚みに溶射被覆層を形成したものの実施データによる各ノズルの性能評価を表2の後段にまとめた。プラスチック等は金属と比べ熱伝導率が1/70と低く、それだけ外部温度影響が少ない特徴がでている。また、プラスチックは金属に比べ強度は劣るが金型先端部に金属を使用し樹脂の欠点を補っているから機械的性質には問題はない。比較例2は金属ノズルに比べてアルミナ/チタニア被覆層の存在で熱伝導率は0.5付近であってプラスチックより高い値であるうえ薄層であるから、耐摩耗性を除きそれほど大きな改良は期待できないのである。
Comparative Examples 1 and 2
As Comparative Examples 1 and 2, the performance evaluation of each nozzle based on performance data of a conventional metal nozzle and a thermal spray coating layer of alumina / titania ceramic powder formed in a thickness of about 100 μm inside the nozzle is shown in the latter part of Table 2. Summarized in Plastics and other materials have a low thermal conductivity of 1/70 compared to metals, and are less affected by external temperature. In addition, although plastic is inferior in strength to metal, there is no problem in mechanical properties because metal is used at the tip of the mold to compensate for the defects of the resin. Since Comparative Example 2 has an alumina / titania coating layer compared to a metal nozzle and its thermal conductivity is around 0.5, which is higher than that of plastic and is a thin layer, it cannot be expected to make a significant improvement except for wear resistance. It is.

表3は実施例5のPEEK耐熱プラスチック筒状体を挿入した金属ノズルと比較例1の金属ノズルを用いて各100ショットの射出成形実験の結果から不良発生項目に示した製品の加硫ゴム混入率とエアー混入によるピンホール発生率を調べたものである。この結果から明らかなように、不良発生率は従来に比べて86%も低減した。言い換えれば、本発明ノズルを使用することにより、材料及び作業工数は金属ノズルに比べて大幅に改善される結果となった。   Table 3 shows the result of 100-shot injection molding experiments using the metal nozzle inserted with the PEEK heat-resistant plastic cylindrical body of Example 5 and the metal nozzle of Comparative Example 1 to mix the vulcanized rubber of the products indicated as defective items. The rate of pinholes due to air rate and air contamination was investigated. As is apparent from the results, the defect occurrence rate was reduced by 86% compared to the prior art. In other words, by using the nozzle of the present invention, the material and work man-hours were greatly improved compared to the metal nozzle.

Figure 2009262324
Figure 2009262324

表4には、表3と同様の比較を焼け易いゴム材料として、天然ゴム加硫組成物を用い、成形サイクルの時間短縮効果と材料ロスから対比して得られたもので、数値単位は従来ノズルの成形サイクル時間を100とした場合のPEEKノズルの時間は90となることを意味するので、この時間短縮効果は10%低減となる。また、材料ロス低減も同じで、加硫(焼けやすい)しやすい5gを毎ショットごと捨てずにすみ、したがって、材料ロスがゼロとなり、生産性向上率が100%に達した。これにより、前者で10%,後者では100%の生産性向上率が期待できることが予測される。すなわち、ゴム生地での加硫速度の速い材料は、製品取り出し後に毎回ノズル内での焼けゴムを除去しなければ次の製品は不良となるが、本発明ノズルを使用することによりノズルでの焼けゴム除去工数がほとんど無くなり、成形サイクルが短縮され生産性向上となることを表4は示している。更に、上述のように、従来の金属ノズルではショット毎にノズル部の焼けゴムが発生するが、本発明ノズルを使用すれば、焼けゴム対策がほぼ完全にでき、大きな材料費低減にもつながることが判明したのである。   Table 4 shows a comparison between Table 3 and natural rubber vulcanized composition that is easy to burn, and is obtained by comparing the molding cycle time reduction effect and material loss. This means that the PEEK nozzle time is 90 when the molding cycle time of the nozzle is 100, and this time shortening effect is reduced by 10%. In addition, the material loss reduction is the same, and 5g which is easy to vulcanize (easily burn) is not discarded every shot. Therefore, the material loss is zero and the productivity improvement rate reaches 100%. As a result, it is expected that a productivity improvement rate of 10% can be expected for the former and 100% for the latter. In other words, a material with a high vulcanization speed in a rubber fabric will be defective if the burnt rubber in the nozzle is not removed every time after taking out the product. Table 4 shows that the rubber removal man-hours are almost eliminated, the molding cycle is shortened, and the productivity is improved. Furthermore, as described above, the conventional metal nozzle generates burnt rubber at each shot, but if the nozzle of the present invention is used, the countermeasure against burnt rubber can be almost complete, leading to a significant reduction in material costs. It turned out.

Figure 2009262324
Figure 2009262324

本発明のノズルを装着した縦型ゴム射出成形機の略構造を示す側面図である。1 is a side view showing a schematic structure of a vertical rubber injection molding machine equipped with a nozzle of the present invention. 本発明のノズルの構造例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structural example of the nozzle of this invention.

符号の説明Explanation of symbols

1 射出筒
2 ノズル
3 固定盤
4 稼働盤
5 上断熱盤
6 上熱盤
7 下断熱盤
8 下熱盤
10 金型
11 上金型
12 下金型
21 ノズル本体
22 射出口
23 ノズル本体内面懐部
24 プラスチック筒状断熱体
25 ノズル取付け基部
26 ノズル内壁
DESCRIPTION OF SYMBOLS 1 Injection cylinder 2 Nozzle 3 Fixed board 4 Operation panel 5 Upper heat insulation board 6 Upper heat board 7 Lower heat insulation board 8 Lower heat board
10 Mold
11 Upper mold
12 Lower mold
21 Nozzle body
22 Injection port
23 Nozzle inside the nozzle body
24 Plastic tubular insulation
25 Nozzle mounting base
26 Nozzle inner wall

Claims (6)

ゴム射出成形機の射出筒先端に取付ける金属製ノズルであって、該金属製ノズルのノズル本体内面を射出口を残して内径を射出口径より大にして懐部を形成し、該懐部に射出原料ゴムが通過するノズル内面が耐熱有機材料筒状断熱体で形成されてなるゴム製品の射出成形用ノズル。 A metal nozzle that is attached to the tip of an injection cylinder of a rubber injection molding machine. The inner surface of the nozzle body of the metal nozzle is made larger than the diameter of the injection port while leaving the injection port. A nozzle for injection molding of rubber products, in which the inner surface of the nozzle through which raw rubber passes is formed of a heat-resistant organic material cylindrical insulator. 射出筒へのノズル取付け基部からノズル射出口近傍までのノズル本体の内面懐部に、その内径よりやや大きい外径を有する耐熱有機材料の棒状成形体を圧入した後、ノズル内壁を切削加工により耐熱有機材料筒状断熱体を形成してなる請求項1記載のゴム製品の射出成形用ノズル。 A rod-shaped molded body of a heat-resistant organic material having an outer diameter slightly larger than the inner diameter is press-fitted into the inner surface of the nozzle body from the nozzle mounting base to the vicinity of the nozzle injection port, and then the inner wall of the nozzle is heat-resistant by cutting. 2. A nozzle for injection molding of a rubber product according to claim 1, wherein the organic material cylindrical heat insulator is formed. 耐熱有機材料筒状断熱体はプラスチック材料からなり、射出筒へのノズル取付け基部からノズル射出口近傍までのノズル本体内面懐部に、予め成形した筒状成形体を圧入してなる請求項1記載のゴム製品の射出成形用ノズル。 The heat-resistant organic material cylindrical heat insulating body is made of a plastic material, and is formed by press-fitting a pre-formed cylindrical molded body into the inner surface of the nozzle body from the nozzle mounting base to the vicinity of the nozzle injection port. Nozzle for injection molding of rubber products. 耐熱有機材料筒状断熱体はプラスチック材料からなり、射出筒へのノズル取付け基部からノズル射出口近傍までのノズル本体内面に、プラスチック射出成形により筒状成形体を形成してなる請求項1記載のゴム製品の射出成形用ノズル。 The heat-resistant organic material cylindrical heat insulating body is made of a plastic material, and a cylindrical molded body is formed by plastic injection molding on the inner surface of the nozzle body from the nozzle mounting base to the injection cylinder and the vicinity of the nozzle injection port. Nozzle for injection molding of rubber products. 耐熱有機材料筒状断熱体のプラスチック材料は、射出原料ゴムのスコーチ温度より高温に達しない温度を保持する耐熱性プラスチックで、連続使用温度が100℃以上である請求項1記載のゴム製品の射出成形用ノズル。 The plastic material of the heat-resistant organic material cylindrical heat insulator is a heat-resistant plastic that maintains a temperature that does not reach a temperature higher than the scorch temperature of the injection raw rubber, and the continuous use temperature is 100 ° C or higher. Nozzle for molding. 耐熱有機材料筒状断熱体は、プラスチック材料に代えて熱硬化性樹脂あるいは木質材料を用いる請求項1又は5のいずれか記載のゴム製品の射出成形用ノズル。 6. The nozzle for rubber product injection molding according to claim 1, wherein the heat-resistant organic material cylindrical heat insulator uses a thermosetting resin or a wood material instead of the plastic material.
JP2008110517A 2008-04-21 2008-04-21 Nozzle for injection molding of rubber products Expired - Fee Related JP5216401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110517A JP5216401B2 (en) 2008-04-21 2008-04-21 Nozzle for injection molding of rubber products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110517A JP5216401B2 (en) 2008-04-21 2008-04-21 Nozzle for injection molding of rubber products

Publications (2)

Publication Number Publication Date
JP2009262324A true JP2009262324A (en) 2009-11-12
JP5216401B2 JP5216401B2 (en) 2013-06-19

Family

ID=41388809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110517A Expired - Fee Related JP5216401B2 (en) 2008-04-21 2008-04-21 Nozzle for injection molding of rubber products

Country Status (1)

Country Link
JP (1) JP5216401B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385447B1 (en) 2013-09-03 2014-04-15 이원영 The nozzle device for hot runner valve system
US9314677B2 (en) 2009-05-13 2016-04-19 Nike, Inc. Golf club assembly and golf club with aerodynamic features
US9370696B2 (en) 2009-05-13 2016-06-21 Nike, Inc Golf club assembly and golf club with aerodynamic features
US9375617B2 (en) 2009-05-13 2016-06-28 Nike, Inc Golf club assembly and golf club with aerodynamic features
KR101664695B1 (en) * 2015-05-29 2016-10-11 이정애 3D print thermostable rubber nozzle
US9526954B2 (en) 2012-05-31 2016-12-27 Nike, Inc. Golf club assembly and golf club with aerodynamic features
US9956459B2 (en) 2009-05-13 2018-05-01 Nike, Inc. Golf club assembly and golf club with aerodynamic features

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354965U (en) * 1976-10-12 1978-05-11
JPH038514U (en) * 1989-06-14 1991-01-28
JPH0553919U (en) * 1991-12-24 1993-07-20 宇部興産株式会社 Nozzle for injection molding machine
JPH0811161A (en) * 1994-06-30 1996-01-16 Yasuo Kikuchi Nozzle for injection molding
JPH0825415A (en) * 1994-07-11 1996-01-30 Three Bond Co Ltd Structure of injection nozzle for injection molding machine
JP2006110927A (en) * 2004-10-18 2006-04-27 Kata System:Kk Hot runner mold
JP2007203561A (en) * 2006-02-01 2007-08-16 Auto Network Gijutsu Kenkyusho:Kk Nozzle for injection molding machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354965U (en) * 1976-10-12 1978-05-11
JPH038514U (en) * 1989-06-14 1991-01-28
JPH0553919U (en) * 1991-12-24 1993-07-20 宇部興産株式会社 Nozzle for injection molding machine
JPH0811161A (en) * 1994-06-30 1996-01-16 Yasuo Kikuchi Nozzle for injection molding
JPH0825415A (en) * 1994-07-11 1996-01-30 Three Bond Co Ltd Structure of injection nozzle for injection molding machine
JP2006110927A (en) * 2004-10-18 2006-04-27 Kata System:Kk Hot runner mold
JP2007203561A (en) * 2006-02-01 2007-08-16 Auto Network Gijutsu Kenkyusho:Kk Nozzle for injection molding machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9314677B2 (en) 2009-05-13 2016-04-19 Nike, Inc. Golf club assembly and golf club with aerodynamic features
US9370696B2 (en) 2009-05-13 2016-06-21 Nike, Inc Golf club assembly and golf club with aerodynamic features
US9375617B2 (en) 2009-05-13 2016-06-28 Nike, Inc Golf club assembly and golf club with aerodynamic features
US9802085B2 (en) 2009-05-13 2017-10-31 Nike, Inc. Golf club assembly and golf club with aerodynamic features
US9956459B2 (en) 2009-05-13 2018-05-01 Nike, Inc. Golf club assembly and golf club with aerodynamic features
US9526954B2 (en) 2012-05-31 2016-12-27 Nike, Inc. Golf club assembly and golf club with aerodynamic features
KR101385447B1 (en) 2013-09-03 2014-04-15 이원영 The nozzle device for hot runner valve system
KR101664695B1 (en) * 2015-05-29 2016-10-11 이정애 3D print thermostable rubber nozzle

Also Published As

Publication number Publication date
JP5216401B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5216401B2 (en) Nozzle for injection molding of rubber products
WO2007087913A3 (en) Improved neck block cooling
KR101820812B1 (en) Bonding method for cooling line of die-casting mold using explosive welding
JP2010094937A (en) Side valve gate type hot runner system
CN201728801U (en) Plastic mould hot runner device
CN102582021B (en) For producing platen press in the gas of plastic components
JP2007307840A (en) Mold assembly and method for producing plastic molded object using this mold assembly
CN205467086U (en) Hot mouth structure of injection moulding
JP2007203561A (en) Nozzle for injection molding machine
KR102133423B1 (en) Nozzle device for injection molding machine
CN103568228A (en) Precise temperature-controlled bushing type charging barrel of injection molding machine
JP2005279949A (en) Injection molding method of ring-shaped rubber product
CN102802909A (en) Mold-tool assembly including resin-retaining device located relative to stem-tip portion
CN105397988A (en) Temperature-controllable injection mold
CN105697899A (en) Copper insert structure for preventing seepage
KR200421053Y1 (en) Sprue device for die ? mold
JP6359009B2 (en) Mold and mold manufacturing method
CN109501142A (en) A kind of injection molding process of abnormal workpieces
JP2001260185A (en) Hot runner system for molding machine of injection through parting surface for plastic, and its manifold structure
JP3192921B2 (en) Injection molding equipment
US20070267783A1 (en) Mold-cooling device
KR102179106B1 (en) Combination structure of plastic fuel tank and heater protector
JP4303580B2 (en) Injection mold, and method for manufacturing seal ring using the mold
JP2008087047A (en) Plunger tip
JP3815957B2 (en) Gate structure for injection molding resin mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees