JP2009260059A - Method of manufacturing ultraviolet sensor - Google Patents

Method of manufacturing ultraviolet sensor Download PDF

Info

Publication number
JP2009260059A
JP2009260059A JP2008107762A JP2008107762A JP2009260059A JP 2009260059 A JP2009260059 A JP 2009260059A JP 2008107762 A JP2008107762 A JP 2008107762A JP 2008107762 A JP2008107762 A JP 2008107762A JP 2009260059 A JP2009260059 A JP 2009260059A
Authority
JP
Japan
Prior art keywords
electrode
single crystal
crystal substrate
ultraviolet sensor
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008107762A
Other languages
Japanese (ja)
Inventor
Shigeo Ohira
重男 大平
Naoki Arai
直樹 新井
Yoshihiro Kokubu
義弘 國分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008107762A priority Critical patent/JP2009260059A/en
Publication of JP2009260059A publication Critical patent/JP2009260059A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an ultraviolet sensor which is excellent in durability, require no thin film growth and reduces a manufacturing cost. <P>SOLUTION: The method of manufacturing the ultraviolet sensor comprises the steps of: producing an gallium oxide single crystal substrate (S1); forming an ohmic electrode on a rear face of the gallium oxide single crystal substrate (S2); performing heat treatment (S3); furthermore forming a Schottky electrode on a front surface of the gallium oxide single crystal substrate (S4); and performing heat treatment (S6). A heat treatment at a temperature of 450 to 550°C for 5 to 15 minutes is performed in a nitrogen atmosphere by adopting an Al/Ti structure or an Au/Ti structure as the ohmic electrode, heat treatment at a temperature of 350 to 450°C for 5 to 15 minutes is performed in the nitrogen atmosphere by using Au as the Schottky electrode, or heat treatment at a temperature of 450 to 550°C for 5 to 15 minutes is performed in the nitrogen atmosphere by using Pt as the Schottky electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、紫外線センサの製造方法に係り、特に太陽光が存在する真昼や戸外においても太陽光線に影響されることなく、炎や有害物質などが発する波長280nm以下の紫外線のみを高感度に検知できる小型で簡便、低コストの太陽光ブラインド紫外線センサの製造方法に関する。   The present invention relates to a method for manufacturing an ultraviolet sensor, and particularly detects only ultraviolet rays having a wavelength of 280 nm or less emitted by flames and harmful substances without being affected by sunlight, even in the daytime or outdoors where sunlight exists. The present invention relates to a method for manufacturing a small, simple, and low cost solar blind ultraviolet sensor.

太陽光ブラインド紫外線センサは、固体素子型の小型で簡便な火炎センサとして応用が期待され、火災探知機や煙草探知機のセンサ部分、家庭用燃焼機器および工業炉の燃焼炎の自動制御用センシングに使用することが期待されている。
さらに、次世代超LSI(大規模集積回路)の作製に使われる紫外線露光装置における紫外線モニタ用のセンサとしての応用も考えられる。
Solar blind ultraviolet sensor is expected to be applied as a solid element type small and simple flame sensor. It is used as a sensor for fire detectors and cigarette detectors, and for automatic control of combustion flames in household combustion equipment and industrial furnaces. Expected to be used.
In addition, it can be applied as an ultraviolet monitor sensor in an ultraviolet exposure apparatus used for the production of next generation VLSI (large scale integrated circuit).

従来、波長280nm以下の深紫外線のみを検出するセンサとして光電管が存在し、火炎の点滅を検知するセンサとして既に実用化され、主に工業炉など大型燃焼装置の自動制御用の火炎センサに用いられている。しかしながら、光電管を用いた深紫外線を検出するセンサは、寿命が短く高コストであるという問題があった。   Conventionally, a phototube exists as a sensor that detects only deep ultraviolet rays with a wavelength of 280 nm or less, and has already been put into practical use as a sensor that detects flickering of flames. ing. However, a sensor for detecting deep ultraviolet rays using a phototube has a problem that its lifetime is short and its cost is high.

これに対し、小型・簡便な火炎センサを実現する固体素子型のセンサとして、ワイドバンドギャップ半導体であるGaN系III族窒化物半導体が注目され、AlGaN膜の応用が研究されている(例えば、下記非特許文献1参照)。また、ダイヤモンド半導体を用いた紫外線センサも検討されている(例えば、下記非特許文献2参照)。
平野光:「GaN系受光素子の火炎センサへの応用」 応用物理 第68巻 第7号(1999)pp.0805-0809 小出康夫:「ダイヤモンド紫外線センサ」 まてりあ 第46巻 第4号(2007)pp. 272-277
In contrast, GaN-based III-nitride semiconductors, which are wide bandgap semiconductors, have attracted attention as solid-state sensors that realize small and simple flame sensors, and applications of AlGaN films have been studied (for example, Non-patent document 1). Further, an ultraviolet sensor using a diamond semiconductor has been studied (for example, see Non-Patent Document 2 below).
Hirano: “Applying GaN-based light-receiving elements to flame sensors” Applied Physics Vol. 68, No. 7 (1999) pp.0805-0809 Yasuo Koide: “Diamond UV Sensor” Materia Vol. 46, No. 4 (2007) pp. 272-277

しかしながら、上述の非特許文献1におけるセンサは、基板上にエピタキシャル成長させた薄膜であり、GaNとAlNの混晶であるAlGaNは高品質の膜成長が困難な状況にあり実用的な製造方法に課題が多く残されている。
一方、非特許文献2におけるダイヤモンド膜については、ダイヤモンド基板を使ってホモエピ成長させた場合は、高品質なダイヤモンド膜が成長するが、この場合、基板が高価なためコスト高になるという問題点がある。
非特許文献1及び2におけるセンサのように薄膜を用いてデバイス化を行うと、成長させる薄膜の品質が基板に影響されるため、薄膜を使わないでデバイス化を行うことができれば、製造プロセスが簡便になる上、製造コストを低減できるというメリットがある。
However, the sensor in Non-Patent Document 1 described above is a thin film epitaxially grown on a substrate, and AlGaN, which is a mixed crystal of GaN and AlN, is in a situation where it is difficult to grow a high-quality film. Many are left behind.
On the other hand, with respect to the diamond film in Non-Patent Document 2, when homoepitaxial growth is performed using a diamond substrate, a high-quality diamond film grows. In this case, however, the problem is that the cost is high because the substrate is expensive. is there.
If a device is formed using a thin film like the sensor in Non-Patent Documents 1 and 2, the quality of the thin film to be grown is affected by the substrate. Therefore, if the device can be formed without using the thin film, the manufacturing process will be In addition to being simple, there is an advantage that the manufacturing cost can be reduced.

本発明は、耐久性に優れ、薄膜成長が不要であり、製造コストの低減を図ることができる紫外線センサの製造方法を提供することを目的としている。   An object of the present invention is to provide a method for manufacturing an ultraviolet sensor that is excellent in durability, does not require thin film growth, and can reduce the manufacturing cost.

上述した課題を解決するため、本発明に係る紫外線センサの製造方法は、酸化ガリウム単結晶基板の表面に酸化ガリウム単結晶基板とショットキー接触をなす第1の電極を形成し、酸化ガリウム単結晶基板の裏面に酸化ガリウム単結晶基板とオーミック接触をなし且つ第1の電極との間で酸化ガリウム単結晶基板を介して電流が流れる第2の電極を形成し、第1の電極及び第2の電極を熱処理する方法である。   In order to solve the above-described problems, a method of manufacturing an ultraviolet sensor according to the present invention includes forming a first electrode in Schottky contact with a gallium oxide single crystal substrate on the surface of the gallium oxide single crystal substrate, A second electrode is formed on the back surface of the substrate in ohmic contact with the gallium oxide single crystal substrate and through which current flows between the first electrode and the first electrode. The first electrode and the second electrode This is a method of heat-treating an electrode.

本発明によれば、酸化ガリウム単結晶基板を用いると共に酸化ガリウム単結晶基板の表面及び裏面にそれぞれ形成された第1の電極及び第2の電極を熱処理するので、薄膜成長が不要となり、耐久性に優れた紫外線センサを低コストで製造することが可能となる。   According to the present invention, since the gallium oxide single crystal substrate is used and the first electrode and the second electrode formed on the front surface and the back surface of the gallium oxide single crystal substrate, respectively, are heat-treated, thin film growth is not required and durability is improved. It is possible to manufacture an ultraviolet sensor excellent in the manufacturing cost at a low cost.

以下、本発明の実施の形態を添付図面に基づいて説明する。
図1に実施の形態に係る製造方法により製造される紫外線センサの断面構造を示す。Ga2O3単結晶基板10の表面と裏面にそれぞれショットキー電極11とオーミック電極12を形成することにより縦型のショットキーダイオードが構成されている。このとき、Ga2O3単結晶基板10には、表面のショットキー電極11の直下に空乏層10aが形成され、その下に導電層10bが形成される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a cross-sectional structure of an ultraviolet sensor manufactured by the manufacturing method according to the embodiment. A vertical Schottky diode is formed by forming a Schottky electrode 11 and an ohmic electrode 12 on the front and back surfaces of the Ga 2 O 3 single crystal substrate 10 respectively. At this time, in the Ga 2 O 3 single crystal substrate 10, a depletion layer 10a is formed immediately below the surface Schottky electrode 11, and a conductive layer 10b is formed thereunder.

このような紫外線センサを得るための製造方法を図2のフローチャートに示す。
まず、ステップS1で、Ga2O3単結晶基板10を作製する。本発明者らは、すでに高品質のバルク酸化ガリウム(Ga2O3)単結晶の育成に成功している。Ga2O3単結晶は、バンドギャップがおよそ4.8eVとワイドな酸化物半導体であり、波長260nmまで光が透過するため、波長280nm以下の紫外線を検知することができる特性がある。さらに、Ga2O3単結晶は導電性を有するため、Ga2O3単結晶基板にそのまま電極を形成することができる。さらに、Ga2O3単結晶は酸化物であるため、上記のAlGaNのように酸化による劣化の心配もなく、耐久性、安定性にも優れると考えられる。このような特性を利用した紫外線センサの製造方法について鋭意検討した結果、薄膜形成なしで、バルクのGa2O3単結晶基板の表面及び裏面上に形成させた電極に熱処理を施すことにより、紫外線検知感度を向上させる本発明に至った。
A manufacturing method for obtaining such an ultraviolet sensor is shown in the flowchart of FIG.
First, in step S1, a Ga 2 O 3 single crystal substrate 10 is manufactured. The present inventors have already succeeded in growing a high-quality bulk gallium oxide (Ga 2 O 3 ) single crystal. A Ga 2 O 3 single crystal is an oxide semiconductor having a wide band gap of about 4.8 eV, and transmits light up to a wavelength of 260 nm. Therefore, it has a characteristic that it can detect ultraviolet rays having a wavelength of 280 nm or less. Furthermore, since the Ga 2 O 3 single crystal has conductivity, an electrode can be formed as it is on the Ga 2 O 3 single crystal substrate. Furthermore, since the Ga 2 O 3 single crystal is an oxide, it is considered that there is no fear of deterioration due to oxidation unlike the above AlGaN, and it is excellent in durability and stability. As a result of diligent research on a method for manufacturing an ultraviolet sensor using such characteristics, an ultraviolet ray is formed by applying heat treatment to electrodes formed on the front and back surfaces of a bulk Ga 2 O 3 single crystal substrate without forming a thin film. It came to the present invention which improves detection sensitivity.

材料となるGa2O3単結晶は、本発明者らがすでに発明した方法により結晶品質に優れた単結晶を製造することが可能である。この方法は、純度4NのGa2O3粉末を原料としてラバーチューブに封入し、ラバープレスで成形、電気炉で1500℃、10時間で焼結した焼結体を原料棒として、FZ(Floating Zone)法で単結晶を育成するというものである。単結晶成長条件としては、例えば、成長速度は5〜10mm/h、雰囲気はドライエア、圧力は1気圧の条件で行なう。 A Ga 2 O 3 single crystal as a material can be produced by a method already invented by the present inventors, and a single crystal excellent in crystal quality can be produced. This method uses 4N purity Ga 2 O 3 powder as a raw material, sealed in a rubber tube, molded with a rubber press, sintered in an electric furnace at 1500 ° C for 10 hours, and used as a raw material rod, FZ (Floating Zone) ) Method to grow a single crystal. As the single crystal growth conditions, for example, the growth rate is 5 to 10 mm / h, the atmosphere is dry air, and the pressure is 1 atm.

このようにして作製した単結晶を、へき開性が最も強い(100)面に平行な面をワイヤソーでスライスし、この(100)面を化学機械研磨法(CMP:Chemical Mechanical Polishing)で鏡面研磨して厚さ0.4〜0.5mmのウエハ状に加工する。   The single crystal produced in this way was sliced with a wire saw on the plane parallel to the (100) plane with the strongest cleavage, and this (100) plane was mirror-polished by chemical mechanical polishing (CMP). And processed into a wafer with a thickness of 0.4 to 0.5 mm.

このとき、Ga2O3単結晶は、キャリア密度が2×1016〜2×1017cm-3となるように調整する。キャリア密度が2×1017cm-3を越えると、空乏層幅が狭くなるため、光が電界が存在する空乏層領域で十分吸収されなくなり感度が低下してしまう。逆に、キャリア密度が2×1016cm-3より小さいと、良好なオーミック電極を形成することが難しくなり、Ga2O3単結晶基板の両面上にショットキー電極とオーミック電極を形成する、いわゆる縦型構造のセンサとして機能することができなくなる。このため、Ga2O3単結晶のキャリア密度は、2×1016〜2×1017cm-3であることが好ましい。このようなキャリア密度の制御は、FZ法による単結晶育成の際、石英管内の酸素濃度と成長速度等を制御することで実現することができる。 At this time, the Ga 2 O 3 single crystal is adjusted so that the carrier density is 2 × 10 16 to 2 × 10 17 cm −3 . When the carrier density exceeds 2 × 10 17 cm −3 , the width of the depletion layer becomes narrow, so that light is not sufficiently absorbed in the depletion layer region where an electric field exists, and sensitivity is lowered. Conversely, if the carrier density is less than 2 × 10 16 cm −3 , it becomes difficult to form a good ohmic electrode, and a Schottky electrode and an ohmic electrode are formed on both sides of the Ga 2 O 3 single crystal substrate. It becomes impossible to function as a sensor having a so-called vertical structure. For this reason, the carrier density of the Ga 2 O 3 single crystal is preferably 2 × 10 16 to 2 × 10 17 cm −3 . Such control of the carrier density can be realized by controlling the oxygen concentration in the quartz tube, the growth rate, and the like during single crystal growth by the FZ method.

このようにして作製したGa2O3単結晶をウエハ状に加工してGa2O3単結晶基板10を作製する。
光励起によって生成された電子と正孔による電流を検出するためには、電極に挟み込まれた高抵抗層を形成する必要がある。低抵抗層では、暗中でも既に極めて多数のキャリアが存在するため、光励起によって生成されたキャリアによる電流の増加分を検出することは難しくなるためである。
この高抵抗層の作製には、高抵抗の薄膜、あるいはショットキー接触や、pn接合による空乏層を利用する方法があるが、空乏層を利用する方法は、増幅作用があり高感度であるため、より好ましい。さらに、空乏層の作製には、Ga2O3の場合、n型のみが得られるので、pn接合でなくショットキー接触による空乏層を用いるのが好ましい。その結果、センサチップの構造はMetal-Semiconductor-Metal(MSM)型になる。
Thus the Ga 2 O 3 single crystal was produced by processing the wafer-shaped to produce a Ga 2 O 3 single crystal substrate 10.
In order to detect a current due to electrons and holes generated by photoexcitation, it is necessary to form a high resistance layer sandwiched between electrodes. This is because, in the low resistance layer, a very large number of carriers already exist even in the dark, so that it is difficult to detect an increase in current due to the carriers generated by photoexcitation.
This high resistance layer can be made by using a high resistance thin film, a Schottky contact, or a depletion layer by a pn junction, but the method using a depletion layer has an amplifying effect and is highly sensitive. More preferable. Furthermore, since only n-type is obtained in the case of Ga 2 O 3 for producing a depletion layer, it is preferable to use a depletion layer by Schottky contact instead of a pn junction. As a result, the structure of the sensor chip is a Metal-Semiconductor-Metal (MSM) type.

MSM型の中には、横型構造と縦型構造がある。横型構造の場合、フォトリソグラフィを利用するなどして櫛形電極を形成する必要がある。この櫛形電極は大面積化が困難であり、空乏層が電極の直下にしか形成されないため、Ga2O3の利用効率は下がる。 Among the MSM types, there are a horizontal structure and a vertical structure. In the case of a horizontal structure, it is necessary to form a comb-shaped electrode by using photolithography. The comb electrode is difficult to increase in area, and the depletion layer is formed only directly under the electrode, so that the utilization efficiency of Ga 2 O 3 is lowered.

これに対し、図1に示すような縦型構造では、センサ部は表面に受光面11rが形成され且つ検出対象の紫外線に対して透光性を有する薄いショットキー電極(第1の電極)11、裏面にオーミック電極(第2の電極)12を形成するのみで構成される単純な構造となる。横型構造とは異なり、ショットキー電極11の下部に広がる空乏層10a全面に受光できるため、Ga2O3単結晶の利用効率が高く、また横型構造のような櫛形電極の作製が不要なため、構造が単純でプロセスも簡便になるという特長がある。 On the other hand, in the vertical structure as shown in FIG. 1, the sensor portion has a light receiving surface 11r formed on the surface and a thin Schottky electrode (first electrode) 11 having translucency with respect to ultraviolet rays to be detected. In this case, a simple structure is formed simply by forming the ohmic electrode (second electrode) 12 on the back surface. Unlike the lateral structure, since light can be received by the entire surface of the depletion layer 10a extending under the Schottky electrode 11, the utilization efficiency of the Ga 2 O 3 single crystal is high, and it is not necessary to fabricate a comb electrode like the lateral structure. The feature is that the structure is simple and the process is simple.

そこで、ステップS2で、Ga2O3単結晶基板10の裏面上にオーミック電極12を形成する。オーミック電極12としては、Ga2O3単結晶基板10の裏面にTiを蒸着後、続けてAlを蒸着した、Al/Ti構造を採用する。電極サイズは裏面全面とする。裏面全面に電極を形成することにより、マスキングをする工程が省略され、プロセスが簡便となる。Tiの膜厚は15〜25nm、好ましくは20nm、Alの膜厚は90〜110nm、好ましくは100nmとする。 Therefore, the ohmic electrode 12 is formed on the back surface of the Ga 2 O 3 single crystal substrate 10 in step S2. The ohmic electrode 12 employs an Al / Ti structure in which Ti is vapor-deposited on the back surface of the Ga 2 O 3 single crystal substrate 10 and then Al is vapor-deposited. The electrode size is the entire back surface. By forming the electrode on the entire back surface, the masking step is omitted, and the process becomes simple. The thickness of Ti is 15 to 25 nm, preferably 20 nm, and the thickness of Al is 90 to 110 nm, preferably 100 nm.

この後、ステップS3で、窒素雰囲気中で温度450〜550℃で5〜15分、好ましくは温度500℃で10分の熱処理を施す。温度が450℃より低いと、良好なオーミック特性が得られないため、感度特性が十分に向上せず、逆に550℃を超えると、感度特性が低下してしまう。処理時間は、5分より短いと感度特性の向上が不十分であり、15分を超えて行ってもそれ以上感度特性が上がることはない。
このような熱処理を施すことにより、プラズマ照射を行うことなく、オーミック接触を得ることができる。このため、製造工程が簡素化され、製造時間の短縮もなされる。
Thereafter, in step S3, heat treatment is performed in a nitrogen atmosphere at a temperature of 450 to 550 ° C. for 5 to 15 minutes, preferably at a temperature of 500 ° C. for 10 minutes. If the temperature is lower than 450 ° C., good ohmic characteristics cannot be obtained, so that the sensitivity characteristics are not sufficiently improved. Conversely, if the temperature exceeds 550 ° C., the sensitivity characteristics deteriorate. If the processing time is shorter than 5 minutes, the sensitivity characteristics are not sufficiently improved, and even if the processing time exceeds 15 minutes, the sensitivity characteristics do not increase any further.
By performing such heat treatment, ohmic contact can be obtained without performing plasma irradiation. For this reason, the manufacturing process is simplified and the manufacturing time is shortened.

次に、ステップS4で、Ga2O3単結晶基板10の表面上にショットキー電極11を形成する。ショットキー電極11として、AuまたはPtをGa2O3単結晶基板10の表面上に形成する。Auの膜厚は8〜12nm、好ましくは10nmとする。一方、Ptの膜厚は3〜8nm、好ましくは5nmとする。 Next, the Schottky electrode 11 is formed on the surface of the Ga 2 O 3 single crystal substrate 10 in step S4. Au or Pt is formed on the surface of the Ga 2 O 3 single crystal substrate 10 as the Schottky electrode 11. The film thickness of Au is 8 to 12 nm, preferably 10 nm. On the other hand, the film thickness of Pt is 3 to 8 nm, preferably 5 nm.

AuまたはPtを蒸着した後、ステップS5で、熱処理を行う。熱処理条件として、Auの場合、窒素雰囲気中で温度350〜450℃で5〜15分、好ましくは温度400℃で10分の熱処理を施す。温度が350℃より低いと、感度特性が十分に向上せず、逆に450℃を超えると、感度特性が低下してしまう。処理時間は、5分より短いと感度特性の向上が不十分であり、15分を超えて行ってもそれ以上感度特性が上がることはない。
一方、ショットキー電極11としてPtを用いる場合は、雰囲気と熱処理時間の条件はAuの場合と同じであるが、熱処理温度を450〜550℃とすることが好ましい。この熱処理温度は、上述したオーミック電極12の熱処理温度と同程度であるため、Ptからなるショットキー電極11を用いる場合には、オーミック電極12とショットキー電極11の双方をGa2O3単結晶基板10の両面に形成した後、オーミック電極12及びショットキー電極11に対して同時に熱処理を施すこともできる。これにより、製造工程の簡素化及び製造時間の短縮をはかることができる。
After depositing Au or Pt, heat treatment is performed in step S5. As a heat treatment condition, in the case of Au, heat treatment is performed in a nitrogen atmosphere at a temperature of 350 to 450 ° C. for 5 to 15 minutes, preferably at a temperature of 400 ° C. for 10 minutes. If the temperature is lower than 350 ° C., the sensitivity characteristics are not sufficiently improved. Conversely, if the temperature exceeds 450 ° C., the sensitivity characteristics are degraded. If the processing time is shorter than 5 minutes, the sensitivity characteristics are not sufficiently improved, and even if the processing time exceeds 15 minutes, the sensitivity characteristics do not increase any further.
On the other hand, when Pt is used as the Schottky electrode 11, the conditions for the atmosphere and the heat treatment time are the same as those for Au, but the heat treatment temperature is preferably 450 to 550 ° C. Since this heat treatment temperature is about the same as the heat treatment temperature of the ohmic electrode 12 described above, when the Schottky electrode 11 made of Pt is used, both the ohmic electrode 12 and the Schottky electrode 11 are made of Ga 2 O 3 single crystal. After forming on both surfaces of the substrate 10, the ohmic electrode 12 and the Schottky electrode 11 can be subjected to heat treatment at the same time. Thereby, simplification of a manufacturing process and shortening of manufacturing time can be achieved.

本発明によれば、バルクGa2O3単結晶を使った縦型構造の紫外線センサで、Ga2O3単結晶基板の表面にショットキー電極、裏面にオーミック電極をそれぞれ形成した後、熱処理条件を最適化することで分光感度を増大させることができる。また、バルクGa2O3単結晶のキャリア密度を制御することで、感度の調整も可能となる。本発明によるこれらの効果は、殺菌や滅菌などに威力を発揮する波長254nmの紫外線をモニタする、簡便で低コストの太陽光ブラインド型センサとして有効であると考えられる。 According to the present invention, a vertical structure ultraviolet sensor using a bulk Ga 2 O 3 single crystal, after forming a Schottky electrode on the surface of the Ga 2 O 3 single crystal substrate and an ohmic electrode on the back surface, respectively, heat treatment conditions By optimizing the spectral sensitivity, the spectral sensitivity can be increased. In addition, sensitivity can be adjusted by controlling the carrier density of the bulk Ga 2 O 3 single crystal. These effects according to the present invention are considered to be effective as a simple and low-cost solar blind sensor that monitors ultraviolet light having a wavelength of 254 nm, which is effective for sterilization and sterilization.

(実施例1)
酸化ガリウム粉末(純度4N)をラバーチューブに封入しこれを静水圧プレス成形し、大気中1500℃、10時間で焼結した。この焼結体を原料棒として光FZ装置を用いて単結晶育成を行った。成長速度は7.5mm/hrとし、雰囲気ガスとして酸素80%-窒素20%(流量比)を用いた。育成した単結晶を原料としてさらに単結晶を作製した。
このようにして得られた単結晶の(100)面を切り出し、CMPで厚さ0.4mmまで研磨加工し、表面は平均粗さ〜0.2nmの鏡面とし、ウエハ状の基板とした。基板サイズはおよそ7mm×7mmである。
(Example 1)
Gallium oxide powder (purity 4N) was sealed in a rubber tube and subjected to isostatic pressing, and sintered in the atmosphere at 1500 ° C. for 10 hours. Single crystals were grown using this sintered body as a raw material rod using an optical FZ apparatus. The growth rate was 7.5 mm / hr, and oxygen 80% -nitrogen 20% (flow rate ratio) was used as the atmosphere gas. Single crystals were further produced using the grown single crystals as raw materials.
The (100) plane of the single crystal thus obtained was cut out and polished with CMP to a thickness of 0.4 mm, and the surface was a mirror surface with an average roughness of ~ 0.2 nm to obtain a wafer-like substrate. The substrate size is approximately 7 mm × 7 mm.

このGa2O3単結晶について、Hall測定した結果、抵抗率は6.45×10-1Ωcm、キャリア密度は1.19×1017 cm-3、移動度は81.3cm2/Vsの値を示した。前処理として、この基板をアセトン、エタノール、フッ酸、純水で洗浄した。 As a result of Hall measurement of the Ga 2 O 3 single crystal, the resistivity was 6.45 × 10 −1 Ωcm, the carrier density was 1.19 × 10 17 cm −3 , and the mobility was 81.3 cm 2 / Vs. As a pretreatment, this substrate was washed with acetone, ethanol, hydrofluoric acid, and pure water.

次に、このGa2O3単結晶基板の両面上に電極を作製した。まず、オーミック電極として、Ga2O3単結晶基板の裏面全面上にTiを厚さ20nm蒸着した後、続いてAlを100nm蒸着させた。これを、窒素雰囲気中において温度500℃で10分間熱処理した。さらに、ショットキー電極として、Ga2O3単結晶基板の表面上にAuを10nm形成させた。ショットキー電極のサイズは1mmφである。これを窒素雰囲気中において温度400℃で10分間の熱処理を行った。このようにして紫外線センサを製造した。 Next, electrodes were prepared on both sides of the Ga 2 O 3 single crystal substrate. First, as an ohmic electrode, Ti was deposited to a thickness of 20 nm on the entire back surface of the Ga 2 O 3 single crystal substrate, and then Al was deposited to a thickness of 100 nm. This was heat-treated in a nitrogen atmosphere at a temperature of 500 ° C. for 10 minutes. Furthermore, 10 nm of Au was formed on the surface of the Ga 2 O 3 single crystal substrate as a Schottky electrode. The size of the Schottky electrode is 1 mmφ. This was heat-treated at a temperature of 400 ° C. for 10 minutes in a nitrogen atmosphere. In this way, an ultraviolet sensor was manufactured.

この紫外線センサに対して、分光感度特性を測定したところ、図3に示すような結果が得られた。図3には、比較例として、ショットキー電極に対して熱処理を実行しない、未処理のセンサに対する測定結果も併せて示されている。Auからなるショットキー電極を温度400℃で熱処理することで、感度が向上しているのがわかる。特に、波長250nm付近における感度差は3桁以上に達し、電極形成後の熱処理が紫外線センサ感度の向上に有効であることが確認された。   When the spectral sensitivity characteristic was measured for this ultraviolet sensor, the result shown in FIG. 3 was obtained. FIG. 3 also shows, as a comparative example, measurement results for an untreated sensor that does not perform heat treatment on the Schottky electrode. It can be seen that the sensitivity is improved by heat-treating the Au Schottky electrode at a temperature of 400 ° C. In particular, the difference in sensitivity in the vicinity of a wavelength of 250 nm reached three digits or more, and it was confirmed that the heat treatment after electrode formation is effective in improving the sensitivity of the ultraviolet sensor.

(実施例2)
実施例1と同様にGa2O3単結晶を作製した。この場合は、原料に焼結体を用い、雰囲気ガスとして酸素80%-窒素20%(流量比)を用いた。得られた単結晶の(100)面をウエハ状に鏡面加工してHall測定した結果、抵抗率は7.6×10-2Ωcm、キャリア密度は8.3×1017 cm-3、移動度は98.7cm2/Vsの値を得た。このキャリア密度の値は、実施例1に比べると7倍ほど大きい。
(Example 2)
A Ga 2 O 3 single crystal was produced in the same manner as in Example 1. In this case, a sintered body was used as a raw material, and oxygen 80% -nitrogen 20% (flow rate ratio) was used as an atmosphere gas. The (100) plane of the obtained single crystal was mirror-finished into a wafer and Hall measurement was performed. As a result, the resistivity was 7.6 × 10 −2 Ωcm, the carrier density was 8.3 × 10 17 cm −3 , and the mobility was 98.7 cm 2 The value of / Vs was obtained. The value of the carrier density is about 7 times larger than that in the first embodiment.

続いて、この単結晶基板の両面に電極の作製を行なった。実施例1と同様に、まず、オーミック電極としてGa2O3単結晶基板の裏面全面にTiを厚さ20nm蒸着後、続いてAlを100nm蒸着させた。これを、窒素雰囲気中において温度500℃で10分間熱処理した。次に、ショットキー電極としてGa2O3単結晶基板の表面にAuを10nm形成させた。電極ザイズは1mmφである。これを窒素雰囲気中で100℃、200℃、300℃、400℃、500℃と100℃ごとに温度を上げて、各10分間の熱処理を行い、電流−電圧特性、及び分光感度特性を測定したところ、それぞれ図4及び図5に示すような結果が得られた。図4及び図5には、比較例として、ショットキー電極に対して熱処理を実行しない、未処理のセンサに対する測定結果も併せて示されている。 Subsequently, electrodes were prepared on both surfaces of the single crystal substrate. As in Example 1, first, Ti was deposited to a thickness of 20 nm on the entire back surface of the Ga 2 O 3 single crystal substrate as an ohmic electrode, and then Al was deposited to a thickness of 100 nm. This was heat-treated in a nitrogen atmosphere at a temperature of 500 ° C. for 10 minutes. Next, 10 nm of Au was formed on the surface of the Ga 2 O 3 single crystal substrate as a Schottky electrode. The electrode size is 1 mmφ. This was heated at 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C and 100 ° C in a nitrogen atmosphere, heat-treated for 10 minutes each, and current-voltage characteristics and spectral sensitivity characteristics were measured. However, the results shown in FIGS. 4 and 5 were obtained. 4 and 5 also show a measurement result for an untreated sensor that does not perform heat treatment on the Schottky electrode as a comparative example.

図4に示されるように、いずれの熱処理温度に対しても、整流比は106〜107を示し、熱処理後においても良好な整流性を示しているのが確認された。
さらに、図5に示されるように、分光感度特性は波長200〜250nm付近に高い感度を有し、太陽光ブラインド紫外線センサとして機能していることがわかる。また、温度400℃で熱処理すると、感度が大幅に増大する結果が得られている。ただし、実施例1の熱処理温度400℃の結果に比べると、波長が250nm付近での感度が劣っているのがわかる、これは、Ga2O3単結晶基板のキャリア密度の違いによると考えられ、キャリア密度が少ないほど感度がよいことを示唆している。すなわち、キャリア密度の減少により空乏層幅が増大し、光が電界が存在する空乏層領域で十分に吸収されたため、感度が向上したと考えられる。
ショットキー電極に対して温度400℃の熱処理を施した実施例2の紫外線センサにおける光感度のバイアス電圧依存性を図6に示す。バイアス電圧を大きくすることで、感度が増す結果が得られている。
As shown in FIG. 4, the rectification ratio was 10 6 to 10 7 for any heat treatment temperature, and it was confirmed that good rectification property was exhibited even after the heat treatment.
Furthermore, as shown in FIG. 5, it can be seen that the spectral sensitivity characteristic has a high sensitivity in the vicinity of a wavelength of 200 to 250 nm and functions as a sunlight blind ultraviolet sensor. In addition, when heat treatment is performed at a temperature of 400 ° C., the result that sensitivity is greatly increased is obtained. However, it can be seen that the sensitivity near the wavelength of 250 nm is inferior to the result of the heat treatment temperature of 400 ° C. in Example 1, which is considered to be due to the difference in carrier density of the Ga 2 O 3 single crystal substrate. This suggests that the lower the carrier density, the better the sensitivity. That is, it is considered that the sensitivity was improved because the depletion layer width increased due to the decrease in carrier density, and light was sufficiently absorbed in the depletion layer region where an electric field was present.
FIG. 6 shows the bias voltage dependence of the photosensitivity in the ultraviolet sensor of Example 2 in which the heat treatment at a temperature of 400 ° C. was performed on the Schottky electrode. The result that sensitivity is increased by increasing the bias voltage is obtained.

(実施例3)
実施例1及び2では、Auからなるショットキー電極を用いたが、この実施例3では、ショットキー電極の材料としてPtを用いた。
基板として、実施例2で用いたキャリア密度が8.3×1017 cm-3のGa2O3単結晶基板を採用し、オーミック電極としてGa2O3単結晶基板の裏面全面にTiを厚さ20nm蒸着後、続いてAlを100nm蒸着させた。これを、窒素雰囲気中において温度500℃で10分間熱処理した。次に、ショットキー電極としてGa2O3単結晶基板の表面にPtを5nm形成させた。電極ザイズは1mmφである。これを実施例2と同様に、窒素雰囲気中で100℃、200℃、300℃、400℃、500℃と100℃ごとに温度を上げて、各10分間の熱処理を行い、それぞれ分光感度特性を測定したところ、図7に示すような結果が得られた。図7には、比較例として、ショットキー電極に対して熱処理を実行しない、未処理のセンサに対する測定結果も併せて示されている。
(Example 3)
In Examples 1 and 2, a Schottky electrode made of Au was used, but in Example 3, Pt was used as the material of the Schottky electrode.
As a substrate, the Ga 2 O 3 single crystal substrate having a carrier density of 8.3 × 10 17 cm −3 used in Example 2 is adopted, and Ti is formed on the entire back surface of the Ga 2 O 3 single crystal substrate as an ohmic electrode with a thickness of 20 nm. After deposition, Al was subsequently deposited to 100 nm. This was heat-treated in a nitrogen atmosphere at a temperature of 500 ° C. for 10 minutes. Next, 5 nm of Pt was formed on the surface of the Ga 2 O 3 single crystal substrate as a Schottky electrode. The electrode size is 1 mmφ. In the same manner as in Example 2, the temperature was raised every 100 ° C., 100 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ° C. in a nitrogen atmosphere, and heat treatment was performed for 10 minutes. As a result of the measurement, a result as shown in FIG. 7 was obtained. FIG. 7 also shows, as a comparative example, measurement results for an untreated sensor that does not perform heat treatment on the Schottky electrode.

図7に示されるように、熱処理温度が500℃のとき、感度が最も増大しているがわかる。図5に示したように、Auからなるショットキー電極に対しては温度400℃の熱処理を施したときに感度が最大であったので、電極材料によって熱処理温度の最適条件が存在することを示唆している。   As can be seen from FIG. 7, when the heat treatment temperature is 500 ° C., the sensitivity increases most. As shown in FIG. 5, the sensitivity of the Schottky electrode made of Au was the highest when heat treatment was performed at a temperature of 400 ° C., suggesting that there is an optimum condition for the heat treatment temperature depending on the electrode material. is doing.

実施の形態に係る製造方法により製造される紫外線センサの断面構造を示す図である。It is a figure which shows the cross-section of the ultraviolet sensor manufactured by the manufacturing method which concerns on embodiment. 実施の形態に係る紫外線センサの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the ultraviolet sensor which concerns on embodiment. 実施例1の紫外線センサに対する分光感度特性の測定結果を示すグラフである。6 is a graph showing measurement results of spectral sensitivity characteristics for the ultraviolet sensor of Example 1. 実施例2の紫外線センサに対する電流−電圧特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the current-voltage characteristic with respect to the ultraviolet sensor of Example 2. 実施例2の紫外線センサに対する分光感度特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the spectral sensitivity characteristic with respect to the ultraviolet sensor of Example 2. 実施例2の紫外線センサにおける光感度のバイアス電圧依存性を示すグラフである。It is a graph which shows the bias voltage dependence of the photosensitivity in the ultraviolet sensor of Example 2. 実施例3の紫外線センサに対する分光感度特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the spectral sensitivity characteristic with respect to the ultraviolet sensor of Example 3.

符号の説明Explanation of symbols

10 Ga2O3単結晶基板、10a 空乏層、10b 導電層、11 ショットキー電極、11r 受光面、12 オーミック電極。 10 Ga 2 O 3 single crystal substrate, 10a depletion layer, 10b conductive layer, 11 Schottky electrode, 11r light-receiving surface, 12 ohmic electrode.

Claims (8)

酸化ガリウム単結晶基板の表面に前記酸化ガリウム単結晶基板とショットキー接触をなす第1の電極を形成し、前記酸化ガリウム単結晶基板の裏面に前記酸化ガリウム単結晶基板とオーミック接触をなし且つ前記第1の電極との間で前記酸化ガリウム単結晶基板を介して電流が流れる第2の電極を形成し、前記第1の電極及び前記第2の電極を熱処理することを特徴とする紫外線センサの製造方法。   Forming a first electrode in Schottky contact with the gallium oxide single crystal substrate on a surface of the gallium oxide single crystal substrate; forming an ohmic contact with the gallium oxide single crystal substrate on a back surface of the gallium oxide single crystal substrate; An ultraviolet sensor comprising: forming a second electrode through which a current flows between the first electrode and the first electrode through the gallium oxide single crystal substrate; and heat-treating the first electrode and the second electrode. Production method. 前記第2の電極は、AlまたはAuと前記酸化ガリウム単結晶基板との間にTi層を下地層として形成してなるAl/TiまたはAu/Ti構造を有し、前記第2の電極に対し窒素雰囲気中において温度450〜550℃で5〜15分の熱処理を施す請求項1に記載の紫外線センサの製造方法。   The second electrode has an Al / Ti or Au / Ti structure in which a Ti layer is formed as an underlayer between Al or Au and the gallium oxide single crystal substrate. The method for producing an ultraviolet sensor according to claim 1, wherein heat treatment is performed at a temperature of 450 to 550 ° C for 5 to 15 minutes in a nitrogen atmosphere. 前記第1の電極はAuからなり、前記第1の電極に対し窒素雰囲気中において温度350〜450℃で5〜15分の熱処理を施す請求項2に記載の紫外線センサの製造方法。   3. The method of manufacturing an ultraviolet sensor according to claim 2, wherein the first electrode is made of Au, and the first electrode is heat-treated at a temperature of 350 to 450 ° C. for 5 to 15 minutes in a nitrogen atmosphere. 前記第1の電極はPtからなり、前記第1の電極に対し窒素雰囲気中において温度450〜550℃で5〜15分の熱処理を施す請求項2に記載の紫外線センサの製造方法。   3. The method of manufacturing an ultraviolet sensor according to claim 2, wherein the first electrode is made of Pt, and the first electrode is heat-treated at a temperature of 450 to 550 ° C. for 5 to 15 minutes in a nitrogen atmosphere. 前記第2の電極を形成して前記第2の電極を熱処理した後、前記第1の電極を形成して前記第1の電極を熱処理する請求項3または請求校4に記載の紫外線センサの製造方法。   5. The ultraviolet sensor according to claim 3, wherein after forming the second electrode and heat-treating the second electrode, forming the first electrode and heat-treating the first electrode. 6. Method. 前記第1の電極と前記第2の電極を形成した後、前記第1の電極及び前記第2の電極を同時に熱処理する請求項4に記載の紫外線センサの製造方法。   The method for manufacturing an ultraviolet sensor according to claim 4, wherein after forming the first electrode and the second electrode, the first electrode and the second electrode are heat-treated simultaneously. 前記酸化ガリウム単結晶基板は、キャリア密度が2×1016〜2×1017cm-3の電気的導電性を有し、その(100)面を用いる請求項1乃至請求項6のいずれかに記載の紫外線センサの製造方法。 7. The gallium oxide single crystal substrate has electrical conductivity with a carrier density of 2 × 10 16 to 2 × 10 17 cm −3 , and uses the (100) plane. The manufacturing method of the described ultraviolet sensor. 前記第2の電極は、前記酸化ガリウム単結晶基板の裏面全面上に形成される請求項1乃至請求項7のいずれかに記載の紫外線センサの製造方法。   The method of manufacturing an ultraviolet sensor according to claim 1, wherein the second electrode is formed on the entire back surface of the gallium oxide single crystal substrate.
JP2008107762A 2008-04-17 2008-04-17 Method of manufacturing ultraviolet sensor Withdrawn JP2009260059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107762A JP2009260059A (en) 2008-04-17 2008-04-17 Method of manufacturing ultraviolet sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107762A JP2009260059A (en) 2008-04-17 2008-04-17 Method of manufacturing ultraviolet sensor

Publications (1)

Publication Number Publication Date
JP2009260059A true JP2009260059A (en) 2009-11-05

Family

ID=41387109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107762A Withdrawn JP2009260059A (en) 2008-04-17 2008-04-17 Method of manufacturing ultraviolet sensor

Country Status (1)

Country Link
JP (1) JP2009260059A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023445A1 (en) * 2010-08-20 2012-02-23 株式会社 村田製作所 Ultraviolet sensor and method of manufacturing ultraviolet sensor
WO2013069729A1 (en) * 2011-11-09 2013-05-16 株式会社タムラ製作所 Semiconductor element and method for manufacturing same
US8963257B2 (en) 2011-11-10 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field effect transistors and methods for fabricating the same
CN107068800A (en) * 2017-02-16 2017-08-18 大连理工大学 A kind of radiation detector based on gallium oxide single crystal and preparation method thereof
JP2018056493A (en) * 2016-09-30 2018-04-05 株式会社タムラ製作所 Schottky barrier diode and method for manufacturing the same
CN114975682A (en) * 2022-05-10 2022-08-30 浙江理工大学 Based on Ga 2 O 3 Manufacturing method of corona monitoring system of solar blind chip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023445A1 (en) * 2010-08-20 2012-02-23 株式会社 村田製作所 Ultraviolet sensor and method of manufacturing ultraviolet sensor
JP5459566B2 (en) * 2010-08-20 2014-04-02 株式会社村田製作所 Manufacturing method of ultraviolet sensor
WO2013069729A1 (en) * 2011-11-09 2013-05-16 株式会社タムラ製作所 Semiconductor element and method for manufacturing same
JPWO2013069729A1 (en) * 2011-11-09 2015-04-02 株式会社タムラ製作所 Semiconductor device and manufacturing method thereof
US8963257B2 (en) 2011-11-10 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field effect transistors and methods for fabricating the same
JP2018056493A (en) * 2016-09-30 2018-04-05 株式会社タムラ製作所 Schottky barrier diode and method for manufacturing the same
CN107068800A (en) * 2017-02-16 2017-08-18 大连理工大学 A kind of radiation detector based on gallium oxide single crystal and preparation method thereof
CN114975682A (en) * 2022-05-10 2022-08-30 浙江理工大学 Based on Ga 2 O 3 Manufacturing method of corona monitoring system of solar blind chip

Similar Documents

Publication Publication Date Title
Liao et al. Comprehensive investigation of single crystal diamond deep-ultraviolet detectors
Yuan et al. Improved responsivity drop from 250 to 200 nm in sputtered gallium oxide photodetectors by incorporating trace aluminum
Zhang et al. High photo-responsivity ZnO UV detectors fabricated by RF reactive sputtering
KR20100087017A (en) Photodetector for ultraviolet and method for manufacturing the photodetector
JP2009260059A (en) Method of manufacturing ultraviolet sensor
Shao et al. Ionization-enhanced AlGaN heterostructure avalanche photodiodes
JP5025326B2 (en) Oxide semiconductor photo detector
JP2009200222A (en) Ultraviolet sensor and its manufacturing method
KR100788834B1 (en) Sensor for both ultraviolet rays and visible rays
Chi et al. Ga2O3/GaN-based solar-blind phototransistors fabricated using a thermal oxidation process performed on the GaN pn junction layers
Zhu et al. Self-Powered p-GaN/i-ZnGa 2 O 4/n-ITO Heterojunction Broadband Ultraviolet Photodetector With High Working Temperature
JP5103683B2 (en) Method of manufacturing electrode for gallium oxide substrate and electrode for gallium oxide substrate manufactured thereby
Chang et al. GaN-based pin sensors with ITO contacts
Chen et al. Amorphous MgInO ultraviolet solar-blind photodetectors
Zheng et al. High detectivity of metal–semiconductor–metal Ga 2 O 3 solar-blind photodetector through thickness-regulated gain
JP5779005B2 (en) Ultraviolet light receiving element and manufacturing method thereof
Lin et al. ZnSe homoepitaxial MSM photodetectors with transparent ITO contact electrodes
JP2009130012A (en) Photodetector for ultraviolet and method for manufacturing the same
JP2009274883A (en) Method for producing semi-insulating gallium oxide single crystal
McClintock et al. AlxGa1-xN materials and device technology for solar blind ultraviolet photodetector applications
Su et al. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates
Mosca et al. Effects of the buffer layers on the performance of (Al, Ga) N ultraviolet photodetectors
Hwang et al. Mg x Zn 1–x O/ZnO Quantum Well Photodetectors Fabricated by Radio-Frequency Magnetron Sputtering
Lee et al. Comparison studies of InGaN epitaxy with trimethylgallium and triethylgallium for photosensors application
Lee et al. InGaN metal-semiconductor-metal photodetectors with aluminum nitride cap layers

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705