JP2009259569A - Current breaking device and its manufacturing method - Google Patents

Current breaking device and its manufacturing method Download PDF

Info

Publication number
JP2009259569A
JP2009259569A JP2008106714A JP2008106714A JP2009259569A JP 2009259569 A JP2009259569 A JP 2009259569A JP 2008106714 A JP2008106714 A JP 2008106714A JP 2008106714 A JP2008106714 A JP 2008106714A JP 2009259569 A JP2009259569 A JP 2009259569A
Authority
JP
Japan
Prior art keywords
electrode
conductor
melting point
low melting
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008106714A
Other languages
Japanese (ja)
Other versions
JP5197121B2 (en
Inventor
Yutaka Yoneda
裕 米田
Kenichi Hayashi
建一 林
Yasushi Nakajima
泰 中島
Naoki Yoshimatsu
直樹 吉松
Nobuyoshi Kimoto
信義 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008106714A priority Critical patent/JP5197121B2/en
Publication of JP2009259569A publication Critical patent/JP2009259569A/en
Application granted granted Critical
Publication of JP5197121B2 publication Critical patent/JP5197121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current breaking device for extinguishing arc discharge surely in a short time, and easily forming a low-melting-point conductor part, as well as its manufacturing method. <P>SOLUTION: The device is made provided with a first electrode 1, a second electrode 2, a third electrode 3 arranged partly superposed with the second electrode, a flexible conductor 5 with flexibility for connecting the first electrode and the second electrode, a low-melting-point conductor 4 fitted at the superposed part of the second electrode and the third electrode to electrically and mechanically connect the second electrode and the third electrode, and a biasing member 6 deforming the flexible conductor by a biasing force in accordance with softening or melting of the low-melting-point conductor to move the second electrode toward a first electrode side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電流遮断装置、特に機器の回路ショートや回路部品の故障などに起因する過電流によって生じる機器の発熱を感知して回路を遮断する他、通電などにより自己発熱して回路を遮断する電流遮断装置、及びその製造方法に関する。   The present invention cuts off a circuit by detecting heat generated by an overcurrent caused by a circuit short circuit of a device or a failure of a circuit component, etc., and shuts down the circuit by self-heating due to energization. The present invention relates to a current interrupting device and a manufacturing method thereof.

従来、機器の回路ショートや回路部品の故障などに起因する過電流によって生じる機器の発熱を感知して回路を遮断する他、通電などにより自己発熱して回路を遮断する電流遮断装置の一例は、次のような構成を有する。即ち、回路内における少なくとも2つの分離した接点要素間に、これらの接点要素間を接続するヒューズエレメントを半田付け等によって結合する。このとき、ヒューズエレメントは、バネ等によりヒューズエレメントが接点要素から離れる方向に付勢されている。   Conventionally, an example of a current interrupting device that shuts down a circuit by detecting heat generated by an overcurrent caused by a circuit short circuit of a device or a failure of a circuit component and shutting down the circuit, and by self-heating by energization, It has the following configuration. That is, a fuse element that connects between these contact elements is coupled between at least two separated contact elements in the circuit by soldering or the like. At this time, the fuse element is biased in a direction in which the fuse element is separated from the contact element by a spring or the like.

このような電流遮断装置において、例えば過電流により上記ヒューズエレメントの温度が所定値を超えたときには、上記半田が溶融する。そして上記付勢力により、ヒューズエレメントは、少なくとも1つの接点要素との間で分離する。これにより、上記接点要素間の電気接続が遮断され、電流遮断時に妨害となるアーク放電が回避される。
特開平11−317144号公報(図1)
In such a current interrupting device, for example, when the temperature of the fuse element exceeds a predetermined value due to overcurrent, the solder melts. The fuse element is separated from at least one contact element by the biasing force. As a result, the electrical connection between the contact elements is interrupted, and arc discharge that becomes an obstacle when the current is interrupted is avoided.
Japanese Patent Laid-Open No. 11-317144 (FIG. 1)

上述したような温度ヒューズによる従来の電流遮断装置では、半田のようなヒューズ導体の溶融により、接点要素とヒューズエレメントとの電気接触を分離するものである。よって、ヒューズ導体にて接続される箇所が2つ以上ある場合には、それぞれのヒューズ導体が軟化又は溶融するまでに時間差があるため、どちらのヒューズ導体のどの部分が溶断するかが定まらない。したがって、同時に全てのヒューズ導体を溶断するのは困難であった。又、上記特許文献1に開示されるように、付勢力にてヒューズエレメントを強制的に接点要素から引き離すように構成した場合でも、ヒューズエレメントと接点要素との間の距離を十分に確保することは困難である。従って溶断したヒューズ導体間に生じるアーク放電を素早く消弧することができず、アーク放電が継続し続けるという問題点があった。又、上記特許文献1に開示される電流遮断装置を製造するためには、バネを圧縮した状態で、接点要素とヒューズエレメントとを接合しなければならず、形成が困難であった。   In the conventional current interrupting device using the thermal fuse as described above, the electrical contact between the contact element and the fuse element is separated by melting the fuse conductor such as solder. Therefore, when there are two or more locations to be connected by the fuse conductor, there is a time difference until each fuse conductor is softened or melted, and which portion of which fuse conductor is blown out cannot be determined. Therefore, it has been difficult to melt all the fuse conductors at the same time. In addition, as disclosed in Patent Document 1, even when the fuse element is forcibly separated from the contact element by the urging force, a sufficient distance between the fuse element and the contact element should be ensured. It is difficult. Accordingly, there has been a problem that arc discharge generated between the blown fuse conductors cannot be extinguished quickly and arc discharge continues. In addition, in order to manufacture the current interrupt device disclosed in Patent Document 1, the contact element and the fuse element must be joined in a state where the spring is compressed, and it is difficult to form.

本発明は、上述のような問題点を解決するためになされたものであり、より短時間で確実にアーク放電を消弧することができ、かつ容易に低融点導体部を形成可能な電流遮断装置、及びその製造方法を提供することを目的とする。
The present invention has been made in order to solve the above-described problems, and is capable of interrupting an arc discharge in a shorter period of time and capable of easily forming a low melting point conductor. An object is to provide an apparatus and a method for manufacturing the same.

上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の第1態様における電流遮断装置は、電流通路の一部をなし固定された第1電極と、電流通路の一部をなし上記第1電極と隙間を介して配置される第2電極と、電流通路の一部をなし上記第2電極と一部を重畳して配置され固定された第3電極と、上記第1電極と上記第2電極との上記隙間部分に設けられ、上記第1電極と上記第2電極とを電気的に接続しかつ可撓性を有する可撓導体と、上記第2電極と上記第3電極との重畳部における一箇所に設けられ、上記第2電極及び上記第3電極の融点よりも低い融点を有し常態では上記第2電極と上記第3電極とを電気的及び機械的に接続する低融点導体と、上記第2電極に一端が取り付けられ、上記第2電極を上記第3電極から引き離す方向への付勢力を有し、上記低融点導体の軟化又は溶融に応じて上記付勢力にて上記可撓導体を変形させて上記第2電極を上記第1電極側へ移動させる付勢部材とを備えたことを特徴とする。
In order to achieve the above object, the present invention is configured as follows.
That is, the current interrupting device according to the first aspect of the present invention includes a first electrode that forms a part of the current path and is fixed, and a second electrode that forms a part of the current path and is disposed through the gap with the first electrode. An electrode, a third electrode that forms a part of a current path and is arranged and fixed to overlap with the second electrode, and is provided in the gap portion between the first electrode and the second electrode, The first electrode and the second electrode are electrically connected to each other and provided at one place in the overlapping portion of the flexible conductor having flexibility and the second electrode and the third electrode, and the second electrode And a low melting point conductor having a melting point lower than the melting point of the third electrode and electrically connecting the second electrode and the third electrode in a normal state, and one end attached to the second electrode, The second electrode has a biasing force in a direction separating the third electrode from the third electrode, and the low melting point conductor Characterized in that a biasing member is moved by deforming the flexible conductor with the urging force of the second electrode to the first electrode side according to reduction or melting.

又、本発明の第2態様における電流遮断装置の製造方法は、電流通路の一部をなす電極で、加熱により軟化又は溶融する低融点導体を充填する厚み方向に貫通した導体形成部を有する第2電極と、電流通路の一部をなす第3電極とを上記導体形成部を含む重畳部にて重ね合わせた後、上記低融点導体にて上記第2電極と上記第3電極とを接続し、電流通路の一部をなす第1電極、及び上記第3電極を、上記第1電極と上記第2電極との間に隙間を設けて絶縁体ケースに組み付け、可撓性を有する可撓導体を上記隙間部分に設けて上記第1電極と上記第2電極とを電気的に接続し、上記可撓導体を設けた後、上記第2電極を上記第3電極から引き離す方向への付勢力を有し、上記低融点導体が軟化又は溶融したときには上記付勢力にて上記可撓導体を変形させて上記第2電極を上記第1電極側へ移動させる付勢部材を上記第2電極と上記絶縁体ケースとの間に掛け渡すことを備えたことを特徴とする。   The current interrupting device manufacturing method according to the second aspect of the present invention includes a conductor forming portion penetrating in a thickness direction filled with a low melting point conductor that is softened or melted by heating with an electrode forming a part of a current path. After the two electrodes and the third electrode forming a part of the current path are overlapped by the overlapping portion including the conductor forming portion, the second electrode and the third electrode are connected by the low melting point conductor. A flexible conductor having flexibility by assembling the first electrode forming a part of the current path and the third electrode to the insulator case with a gap between the first electrode and the second electrode. Is provided in the gap portion to electrically connect the first electrode and the second electrode, and after providing the flexible conductor, an urging force in a direction in which the second electrode is separated from the third electrode is applied. And when the low melting point conductor is softened or melted, the biasing force causes the flexibility. To deform the body, characterized in that it comprises to pass over the biasing member for moving the second electrode to the first electrode side between the second electrode and the insulator casing.

本発明の第1態様における電流遮断装置によれば、第1電極と、第1電極と可撓導体にて接続される第2電極と、第2電極と重畳されこの重畳部分に形成した低融点導体を介して接続される第3電極と、第2電極を付勢する付勢部材とが設けられる。そして、第2電極と第3電極とは一箇所に設けられた低融点導体にて接合されて、低融点導体が軟化又は溶融したときには付勢部材の付勢力にて第2電極は、第3電極から引き離され、かつ上記付勢力にて可撓導体が変形して、第3電極との距離を離す方向、つまり第1電極側へ移動する。又、第2電極は、可撓導体を介して第1電極と接続されていることから、移動する第2電極の移動方向は、限定される。したがって、第2電極と第3電極との絶縁距離を短時間で大きく確保でき、導体溶断時に発生するアーク放電を、素早く確実に消弧することが可能である。   According to the current interrupt device in the first aspect of the present invention, the first electrode, the second electrode connected to the first electrode by the flexible conductor, and the low melting point formed on the overlapped portion overlapping the second electrode. A third electrode connected via the conductor and a biasing member that biases the second electrode are provided. The second electrode and the third electrode are joined by a low melting point conductor provided in one place, and when the low melting point conductor is softened or melted, the second electrode is The flexible conductor is deformed by the urging force and is separated from the electrode, and moves toward the first electrode side, that is, in a direction away from the third electrode. Moreover, since the 2nd electrode is connected with the 1st electrode via the flexible conductor, the moving direction of the 2nd electrode which moves is limited. Therefore, it is possible to secure a large insulation distance between the second electrode and the third electrode in a short time, and it is possible to quickly and surely extinguish arc discharge generated when the conductor is blown.

又、変形可能な可撓導体を設けたことにより、当該電流遮断装置の取り付けの際などにおいて、第1電極と第3電極との間に変位が発生した場合でも、可撓導体にて上記変位を吸収することができる。   Further, by providing a deformable flexible conductor, even when a displacement occurs between the first electrode and the third electrode when the current interrupting device is attached, the above-mentioned displacement is caused by the flexible conductor. Can be absorbed.

又、本発明の第2態様における電流遮断装置の製造方法によれば、付勢部材は、最終工程にて第2電極と絶縁体ケースとの間に設けられる。したがって、付勢部材以外の部材について、付勢力が作用した状態で組み立てることは無く、電流遮断装置の組み立てが容易になる。   Moreover, according to the manufacturing method of the electric current interruption apparatus in the 2nd aspect of this invention, a biasing member is provided between a 2nd electrode and an insulator case in the last process. Therefore, members other than the urging member are not assembled in a state where the urging force is applied, and the assembly of the current interrupting device is facilitated.

本発明の実施形態である電流遮断装置、及び該電流遮断装置の製造方法について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。各図間の図示では、対応する各構成部分のサイズや縮尺はそれぞれ独立しており、例えば対応関係にある断面図と平明図との間で同一構成部分の図示が異なる場合もある。   A current interrupting device as an embodiment of the present invention and a method for manufacturing the current interrupting device will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals. In the illustrations between the drawings, the sizes and scales of the corresponding component parts are independent of each other. For example, the same component parts may be differently shown between the cross-sectional view and the plain view.

実施の形態1.
実施の形態1による電流遮断装置について、図1から図5を参照して説明する。
本実施の形態1における電流遮断装置101は、基本的な構成部分として、それぞれが電流通路の一部をなす第1電極1、第2電極2、及び第3電極3と、第1電極1と第2電極2との間に設けられる可撓導体5と、第2電極2と第3電極3との間に設けられる低融点導体4と、付勢部材6とを有する。これらの構成部分は、当該電流遮断装置101のケーシングを構成する絶縁体ケース7に取り付けられる。これらの構成部分について、以下に詳しく説明する。
Embodiment 1 FIG.
A current interrupting device according to Embodiment 1 will be described with reference to FIGS.
The current interrupt device 101 according to the first embodiment includes, as basic components, a first electrode 1, a second electrode 2, a third electrode 3, and a first electrode 1, each forming a part of a current path. It has a flexible conductor 5 provided between the second electrode 2, a low melting point conductor 4 provided between the second electrode 2 and the third electrode 3, and an urging member 6. These components are attached to the insulator case 7 that forms the casing of the current interrupt device 101. These components will be described in detail below.

絶縁体ケース7は、図1及び図3に示すように、例えばPBT(ポリブチレン テレフタレート:プラスチック樹脂)やPPS(ポリフェニレン サルファイド:プラスチック樹脂)などからなり、凹部7aを形成した箱状形状にてなる。尚、絶縁体ケース7の材料は、これらに限定するものではなく、絶縁物であれば他の材料で構成してもよい。   As shown in FIGS. 1 and 3, the insulator case 7 is made of, for example, PBT (polybutylene terephthalate: plastic resin), PPS (polyphenylene sulfide: plastic resin), or the like, and has a box shape with a recess 7 a. In addition, the material of the insulator case 7 is not limited to these, and may be made of other materials as long as it is an insulator.

第1電極1、第2電極2、及び第3電極3は、本実施形態では、図2に示すように、長方形の平板形状であり、それぞれ厚さ1mm程度の銅板からなり、長手方向50に直交する電極幅方向51において、それぞれ同じサイズを有している。尚、各電極1〜3は、電極幅方向51において、必ずしも同サイズである必要はない。又、各電極1〜3の材料は、銅に限定するものではなく、銅を主成分とした金属材料や、例えばアルミニウムのような電気抵抗率の低い金属材料を使用することができる。   In the present embodiment, the first electrode 1, the second electrode 2, and the third electrode 3 are rectangular flat plates as shown in FIG. 2, each made of a copper plate having a thickness of about 1 mm, and in the longitudinal direction 50. In the orthogonal electrode width direction 51, each has the same size. The electrodes 1 to 3 do not necessarily have the same size in the electrode width direction 51. Moreover, the material of each electrode 1-3 is not limited to copper, The metal material which has copper as a main component, For example, a metal material with low electrical resistivity, such as aluminum, can be used.

第1電極1は、絶縁体ケース7の凹部7aの底部7bに長手方向50に沿って配置され、凹部7aを形成する側壁7d−1を貫通して絶縁体ケース7の外部へ突出する一端部1aを有する。このようにして第1電極1は、絶縁体ケース7の底部7bに固定されている。   The first electrode 1 is disposed along the longitudinal direction 50 at the bottom 7b of the recess 7a of the insulator case 7, and passes through the side wall 7d-1 forming the recess 7a and projects to the outside of the insulator case 7. 1a. In this way, the first electrode 1 is fixed to the bottom 7 b of the insulator case 7.

第2電極2は、底部7bにて、第1電極1と隙間53を介して長手方向50に沿って配置され、凹部7a内に収まる長さを有する。第2電極2は、底部7bに固定されていない。又、第2電極2は、突出部2cと、導体形成部2dとを有する。突出部2cは、第2電極2の一端部2aに突設された部分であり、付勢部材6の一端6aを固定する。導体形成部2dは、第2電極2の一箇所にて、各電極の厚み方向52に第2電極2を貫通して形成され、低融点導体4が充填される部分である。   The second electrode 2 is disposed along the longitudinal direction 50 at the bottom 7b via the first electrode 1 and the gap 53, and has a length that can be accommodated in the recess 7a. The second electrode 2 is not fixed to the bottom 7b. Further, the second electrode 2 has a protruding portion 2c and a conductor forming portion 2d. The protruding portion 2 c is a portion protruding from the one end 2 a of the second electrode 2, and fixes the one end 6 a of the urging member 6. The conductor forming portion 2 d is a portion that is formed through the second electrode 2 in the thickness direction 52 of each electrode at one location of the second electrode 2 and is filled with the low melting point conductor 4.

尚、導体形成部2dの形成は、電極2に限るものではなく、電極3又は電極2及び電極3の両方に行っても良い。但し、電極3を絶縁体ケース7に固定する前に低融点導体4を形成しなければならないため、導体形成部2dは、電極2に形成することが望ましい。   The formation of the conductor forming portion 2d is not limited to the electrode 2, and may be performed on the electrode 3 or both the electrode 2 and the electrode 3. However, since the low melting point conductor 4 must be formed before the electrode 3 is fixed to the insulator case 7, the conductor forming portion 2 d is preferably formed on the electrode 2.

第3電極3は、上記厚み方向52において、第2電極2の一部、つまり少なくとも第2電極2の導体形成部2dと重なり合う領域を有し、絶縁体ケース7の凹部7aの底部7cにて、長手方向50に沿って配置される。又、第3電極3は、凹部7aを形成する側壁7d−2を貫通して絶縁体ケース7の外部へ突出する一端部3aを有する。よって、第3電極3は、絶縁体ケース7の底部7cに固定されている。尚、第2電極2と第3電極3とが厚み方向52にて重なり合った領域を重畳部54とする。   The third electrode 3 has a part of the second electrode 2 in the thickness direction 52, that is, a region overlapping at least the conductor forming portion 2 d of the second electrode 2, and a bottom portion 7 c of the recess 7 a of the insulator case 7. , Arranged along the longitudinal direction 50. The third electrode 3 has an end portion 3 a that protrudes outside the insulator case 7 through the side wall 7 d-2 that forms the recess 7 a. Therefore, the third electrode 3 is fixed to the bottom portion 7 c of the insulator case 7. A region where the second electrode 2 and the third electrode 3 overlap in the thickness direction 52 is defined as an overlapping portion 54.

第2電極2の導体形成部2dに設けられ、第2電極2と第3電極3とを電気的及び機械的に接続する低融点導体4は、各電極1〜3の融点よりも低い融点を有し、各電極1〜3の電気抵抗率よりも高い電気抵抗率を有する金属であり、本実施形態では例えばSnを主成分としたSn−Ag−Cu半田、つまり鉛フリー半田を使用している。鉛フリー半田を用いることで、環境保全を図ることができる。尚、Ag,Cu,In,Bi,Zn,Ni等を主成分とする半田で、各電極1〜3の融点よりも低い融点を有し、各電極1〜3の電気抵抗率よりも高い電気抵抗率を有するものであれば、他の金属でもかまわない。
低融点導体4として上述の半田材料を用いることで、後述するように、低融点導体4を過電流が流れることで低融点導体4は軟化又は溶融可能である。
The low melting point conductor 4 provided in the conductor forming portion 2d of the second electrode 2 and electrically and mechanically connecting the second electrode 2 and the third electrode 3 has a melting point lower than the melting points of the electrodes 1 to 3. In the present embodiment, for example, Sn-Ag-Cu solder containing Sn as a main component, that is, lead-free solder is used. Yes. Environmental conservation can be achieved by using lead-free solder. In addition, it is the solder which has Ag, Cu, In, Bi, Zn, Ni etc. as a main component, has melting | fusing point lower than melting | fusing point of each electrode 1-3, and is higher than the electrical resistivity of each electrode 1-3. Other metals may be used as long as they have resistivity.
By using the above-described solder material as the low melting point conductor 4, the low melting point conductor 4 can be softened or melted by an overcurrent flowing through the low melting point conductor 4, as will be described later.

図4には、実施の形態1による電流遮断装置101において、上記重畳部54付近を拡大して図示している。尚、絶縁体ケース7等については、図示を省略している。
上述のように、第2電極2は一つの導体形成部2dを有し、該導体形成部2dに低融点導体4が充填されることで、第2電極2と第3電極3とは、一箇所にて結合されている。導体形成部2dの平面形状は、本実施形態では、第2電極2の幅方向51におけるサイズよりも小さい直径にてなる円形である。しかしながら、導体形成部2dの形状は、円形に限定されるものではなく、低融点導体4が目的の形状に形成でき、第2電極2と第3電極3とを電気的及び機械的に接続可能な形状であればよく、例えば切欠きなどでもよい。尚、溶融した低融点導体4を導体形成部2dに充填し凝固させる製法が簡便であることから、導体形成部2dの形状は、第2電極2を貫通した穴形状であるのが好ましい。
FIG. 4 is an enlarged view of the vicinity of the overlapping portion 54 in the current interrupt device 101 according to the first embodiment. Note that the illustration of the insulator case 7 and the like is omitted.
As described above, the second electrode 2 has one conductor forming portion 2d, and the low melting point conductor 4 is filled in the conductor forming portion 2d, so that the second electrode 2 and the third electrode 3 are one It is joined at a point. The planar shape of the conductor forming portion 2d is a circle having a diameter smaller than the size of the second electrode 2 in the width direction 51 in the present embodiment. However, the shape of the conductor forming portion 2d is not limited to a circle, and the low melting point conductor 4 can be formed in a desired shape, and the second electrode 2 and the third electrode 3 can be electrically and mechanically connected. For example, a notch may be used. The shape of the conductor forming portion 2d is preferably a hole shape penetrating the second electrode 2 because the method of filling the molten low melting point conductor 4 into the conductor forming portion 2d and solidifying it is simple.

本実施形態では、図4に示すように、第2電極2と第3電極3とは直接には接触させておらず、例えば1mm程度の間隔54aを形成している。このように隙間54aを形成した状態において、導体形成部2dに低融点導体4を流し込むことで、導体形成部2dのみならず隙間54aにも低融点導体4を充填することができる。このように構成することで、第2電極2及び第3電極3と接触する低融点導体4の表面積を増加させることができ、規定値以上の電流が各電極1〜3を通して流れたとき、確実に低融点導体4を軟化あるいは溶融させることが可能となる。このような理由から隙間54aを形成するのが好ましいが、もちろん、隙間54aを形成せずに、第2電極2と第3電極3とを直接に接触させた状態で、導体形成部2dに低融点導体4を充填してもよい。   In the present embodiment, as shown in FIG. 4, the second electrode 2 and the third electrode 3 are not in direct contact with each other, and an interval 54a of, for example, about 1 mm is formed. In such a state where the gap 54a is formed, by pouring the low melting point conductor 4 into the conductor forming portion 2d, not only the conductor forming portion 2d but also the gap 54a can be filled with the low melting point conductor 4. By comprising in this way, the surface area of the low melting-point conductor 4 which contacts the 2nd electrode 2 and the 3rd electrode 3 can be increased, and when the electric current more than a regulation value flows through each electrode 1-3, it is reliable. In addition, the low melting point conductor 4 can be softened or melted. For this reason, it is preferable to form the gap 54a. Of course, the gap 54a is not formed, and the second electrode 2 and the third electrode 3 are in direct contact with each other, and the conductor forming portion 2d is lowered. The melting point conductor 4 may be filled.

尚、隙間54aにおいて、低融点導体4が所定形状に形成されるように、第2電極2又は第3電極3には、上記所定形状に応じてレジスト部8を設けておくことが好ましい。このレジスト部8は、第2電極2と第3電極3との間に一定の間隔を保持するためのスペーサとしての機能を有していると、より好ましい。   In addition, it is preferable to provide the resist part 8 in the 2nd electrode 2 or the 3rd electrode 3 according to the said predetermined shape so that the low melting-point conductor 4 may be formed in the clearance gap 54a in a predetermined shape. It is more preferable that the resist portion 8 has a function as a spacer for maintaining a constant distance between the second electrode 2 and the third electrode 3.

又、上述のように配置された第1電極1と第2電極2との隙間53部分には、第1電極1の他端部1bと第2電極2の他端部2bとを電気的に接続する、可撓性を有する可撓導体5が設けられる。可撓導体5は、図2に示すように、長手方向50に沿って延在し、幅方向51において、一若しくは複数個配置される。可撓導体5は、低融点導体4よりも高い融点を有する金属材料にて形成され、例えば厚さ200μmのAlリボンや薄いCu板を1枚〜5枚程、積層したり、AlワイヤやCuワイヤなどの細線状の金属の集合体にて形成される。よって、可撓導体5は、容易に変形することができ、後述するように第2電極2を第1電極1に支持しながら第3電極3から分離可能とする。よって、可撓導体5を設けたことで、第2電極2は、図3に示すように、可撓導体5を中心として回動するように移動可能となる。又、可撓導体5を設けたことで、第2電極2の移動方向を限定することができる。又、より容易に変形が生じるように、可撓導体5は、隙間53付近にて厚み方向52に凸とした形状にて設けられている。又、幅方向51において複数の可撓導体5を設ける場合、図2に示すように、サイズの異なる可撓導体5を用いたり、種類の異なる可撓導体5を用いてもよい。   In addition, in the gap 53 between the first electrode 1 and the second electrode 2 arranged as described above, the other end 1b of the first electrode 1 and the other end 2b of the second electrode 2 are electrically connected. A flexible conductor 5 having flexibility is provided for connection. As shown in FIG. 2, the flexible conductor 5 extends along the longitudinal direction 50, and one or more flexible conductors 5 are arranged in the width direction 51. The flexible conductor 5 is formed of a metal material having a melting point higher than that of the low melting point conductor 4. For example, about 1 to 5 Al ribbons or thin Cu plates having a thickness of 200 μm are laminated, Al wires or Cu It is formed of an aggregate of fine metal wires such as wires. Therefore, the flexible conductor 5 can be easily deformed, and can be separated from the third electrode 3 while supporting the second electrode 2 on the first electrode 1 as described later. Therefore, by providing the flexible conductor 5, the second electrode 2 can move so as to rotate around the flexible conductor 5, as shown in FIG. Moreover, the movement direction of the 2nd electrode 2 can be limited by providing the flexible conductor 5. FIG. Further, the flexible conductor 5 is provided in a shape protruding in the thickness direction 52 in the vicinity of the gap 53 so that the deformation is more easily generated. Moreover, when providing the some flexible conductor 5 in the width direction 51, as shown in FIG. 2, you may use the flexible conductor 5 from which size differs, or the flexible conductor 5 from which a kind differs.

可撓導体5の両端部は、本実施形態では、超音波接合や溶接等の直接接合によって第1電極1及び第2電極2に接合されている。特に、超音波接合は、加熱を要さずに接合可能なことから、低融点導体4に影響を与えず、好ましい接合手段といえる。尚、接合方法は、これらに限定するものではなく、例えば、ろう材やはんだ、導電性接着剤等を用いた間接接合でもよく、又、かしめやネジ止め等の機械的接合を用いてもよい。   In this embodiment, both ends of the flexible conductor 5 are joined to the first electrode 1 and the second electrode 2 by direct joining such as ultrasonic joining or welding. In particular, since ultrasonic bonding can be performed without requiring heating, it can be said to be a preferable bonding means without affecting the low melting point conductor 4. Note that the joining method is not limited to these, and for example, indirect joining using a brazing material, solder, conductive adhesive, or the like, or mechanical joining such as caulking or screwing may be used. .

又、上述のように第2電極2と第3電極3とが常態において低融点導体4で接続され、第1電極1と第2電極2とが可撓導体5にて電気的に接続されることで、第1電極1と第3電極3とは電気的に接続され、常態では、低融点導体4を介して第1電極1と第3電極3との間は導通状態となる。   Further, as described above, the second electrode 2 and the third electrode 3 are normally connected by the low melting point conductor 4, and the first electrode 1 and the second electrode 2 are electrically connected by the flexible conductor 5. Thus, the first electrode 1 and the third electrode 3 are electrically connected, and in a normal state, the first electrode 1 and the third electrode 3 are in a conductive state via the low melting point conductor 4.

付勢部材6は、第2電極2の突出部2cに一端6aが取り付けられ、第1電極1の近傍で第2電極2から離れた位置に形成され支持部に他端6bが支持される。尚、本実施形態では、上記支持部は、絶縁体ケース7の凹部7aを形成する側壁7d−1に相当する。本実施形態では、付勢部材6は、引張りバネを用いており、第2電極2を第3電極3から引き離す方向への付勢力を有し、例えばSUS(ステンレス ユーズド スティール:ステンレス鋼)で形成している。又、上記引き離す方向とは、具体的には、第2電極2の一端部2aを、可撓導体5を中心にして、図3に示すように、反時計方向に回転させるような方向である。又、可撓導体5が有する付勢力は、第2電極2と第3電極3との電気的な接続を遮断し、第2電極2と第3電極3との距離を大きく離すような力であればよく、例えば第2電極2を単純に第1電極1の方向へ引張る力でもよい。尚、この場合、可撓導体5が第2電極2と第3電極3との距離をあけることを妨げないように、例えば引張りバネによって第2電極2が移動したときに、可撓導体5において第1電極1との接合部が外れるようにしておく等の工夫が必要である。   The urging member 6 has one end 6 a attached to the protruding portion 2 c of the second electrode 2, formed at a position away from the second electrode 2 in the vicinity of the first electrode 1, and the other end 6 b supported by the support portion. In the present embodiment, the support portion corresponds to the side wall 7 d-1 that forms the recess 7 a of the insulator case 7. In this embodiment, the urging member 6 uses a tension spring and has an urging force in a direction in which the second electrode 2 is separated from the third electrode 3, and is formed of, for example, SUS (stainless steel used: stainless steel). is doing. Further, the direction of separating is specifically a direction in which the one end portion 2a of the second electrode 2 is rotated counterclockwise around the flexible conductor 5 as shown in FIG. . The urging force of the flexible conductor 5 is a force that cuts off the electrical connection between the second electrode 2 and the third electrode 3 and greatly increases the distance between the second electrode 2 and the third electrode 3. For example, a force that simply pulls the second electrode 2 toward the first electrode 1 may be used. In this case, when the second electrode 2 is moved by, for example, a tension spring so as not to prevent the flexible conductor 5 from increasing the distance between the second electrode 2 and the third electrode 3, It is necessary to devise such that the joint with the first electrode 1 is removed.

一実施例として、第2電極2の長さは、例えば8mmであり、常態よりも数mm伸張させた状態の付勢部材6を突出部2cと側壁7d−1との間に張架して引張りバネとしている。尚、付勢部材6は、引張りバネに限るものではない。即ち、低融点導体4の分離前には可撓導体5に力を加えることがなく、低融点導体4の分離時には、第2電極2を図において反時計方向に回動させ、かつ低融点導体4の分離後には、第2電極2や分離した低融点導体4の一部、そして付勢部材6自身が絶縁体ケース7の凹部7aの所定位置に納まり、各電極1〜3を含む電気回路を再び導通させることのない機能を有しているものであれば、バネ以外の手段であってもよい。例えばこのような機能を有するゴム等を用いてもよい。   As an example, the length of the second electrode 2 is, for example, 8 mm, and an urging member 6 that is extended several millimeters from the normal state is stretched between the protruding portion 2 c and the side wall 7 d-1. It is a tension spring. The urging member 6 is not limited to a tension spring. That is, no force is applied to the flexible conductor 5 before the low melting point conductor 4 is separated, and when the low melting point conductor 4 is separated, the second electrode 2 is rotated counterclockwise in the figure, and the low melting point conductor 4 is separated. After the separation of 4, the second electrode 2, a part of the separated low-melting-point conductor 4, and the biasing member 6 itself are placed in a predetermined position of the recess 7 a of the insulator case 7, and each of the electric circuits including the electrodes 1 to 3 Any means other than a spring may be used as long as it has a function that does not cause the current to be conducted again. For example, rubber having such a function may be used.

上述したような構成を有する本実施の形態1による電流遮断装置101は、図11に示すような工程にて製造される。
即ち、まず、ステップS61では、導体形成部2dを有する第2電極2と第3電極3とを重ね合わせ、かつ長手方向50に沿って一直線状に配置した後、導体形成部2dに低融点導体4を充填して、第2電極2と第3電極3とを接続する。次に、ステップS62では、第1電極1、及びステップS61で作製した第2電極2付きの第3電極3を絶縁体ケース7に組み付ける。このとき、第1電極1と第2電極2とは、長手方向50において隙間53をあけて配置する。次のステップS63では、第1電極1と第2電極2との隙間53部分に対応して、可撓導体5を設けて、第1電極1と第2電極2とを可撓導体5によって接続する。最後に、ステップS64にて、第2電極2の突出部2cと、絶縁体ケース7において第1電極1に近傍の側壁7d−1との間に、付勢部材6を張架する。
The current interrupting device 101 according to the first embodiment having the above-described configuration is manufactured by a process as shown in FIG.
That is, first, in step S61, the second electrode 2 and the third electrode 3 having the conductor forming portion 2d are overlapped and arranged in a straight line along the longitudinal direction 50, and then the low melting point conductor is placed in the conductor forming portion 2d. 4 is filled, and the second electrode 2 and the third electrode 3 are connected. Next, in step S62, the first electrode 1 and the third electrode 3 with the second electrode 2 produced in step S61 are assembled to the insulator case 7. At this time, the first electrode 1 and the second electrode 2 are arranged with a gap 53 in the longitudinal direction 50. In the next step S63, the flexible conductor 5 is provided corresponding to the gap 53 between the first electrode 1 and the second electrode 2, and the first electrode 1 and the second electrode 2 are connected by the flexible conductor 5. To do. Finally, in step S64, the urging member 6 is stretched between the protruding portion 2c of the second electrode 2 and the side wall 7d-1 in the vicinity of the first electrode 1 in the insulator case 7.

尚、上述のようにステップS61からステップS64の順に組み立てを行うのが好ましいが,ステップS64が最後であれば、ステップS61からステップS63の順番は前後してもかまわない。   As described above, the assembly is preferably performed in the order from step S61 to step S64. However, if step S64 is the last, the order from step S61 to step S63 may be changed.

以上のように構成された実施の形態1による電流遮断装置101の動作について説明する。
図1に示す通常の構成において、規定値未満の電流が低融点導体4及び可撓導体5を介して第1、第2、第3の電極1、2、3に流れているときには、低融点導体4における抵抗発熱は低い。従って低融点導体4が軟化あるいは溶融するまでには至らない。
The operation of the current interrupt device 101 according to the first embodiment configured as described above will be described.
In the normal configuration shown in FIG. 1, when a current less than a specified value flows through the low melting point conductor 4 and the flexible conductor 5 to the first, second, and third electrodes 1, 2, 3, the low melting point Resistance heat generation in the conductor 4 is low. Therefore, the low melting point conductor 4 is not softened or melted.

一方、規定値以上の電流が低融点導体4及び可撓導体5を介して第1、第2、第3の電極1、2、3に流れたときには、低融点導体4における抵抗発熱により低融点導体4に局所的な温度上昇が生じる。そして低融点導体4の融点付近にまで、低融点導体4の温度が上昇すると、低融点導体4は、軟化あるいは溶融する。第2電極2には、付勢部材6の付勢力が作用していることから、該付勢力により、軟化あるいは溶融した低融点導体4は、図3にて符号4A、4Bにて示すように分離され、かつ、第2電極2は、可撓導体5が変形しながらも可撓導体5により第1電極1に支持されながら可撓導体5を回動中心として、図において反時計方向に回動する。この一連の動作により、第2電極2と第3電極3との間の導通は遮断される。   On the other hand, when a current of a specified value or more flows to the first, second, and third electrodes 1, 2, and 3 through the low melting point conductor 4 and the flexible conductor 5, the low melting point is generated by resistance heat generation in the low melting point conductor 4. A local temperature rise occurs in the conductor 4. When the temperature of the low melting point conductor 4 rises to near the melting point of the low melting point conductor 4, the low melting point conductor 4 is softened or melted. Since the urging force of the urging member 6 acts on the second electrode 2, the low melting point conductor 4 softened or melted by the urging force is indicated by reference numerals 4A and 4B in FIG. The second electrode 2 is separated and rotated counterclockwise in the drawing with the flexible conductor 5 as the center of rotation while being supported by the first electrode 1 while the flexible conductor 5 is deformed. Move. By this series of operations, conduction between the second electrode 2 and the third electrode 3 is interrupted.

このとき、付勢部材6の力によって分離された第2電極2、及び第2電極2の導体形成部2dにおける低融点導体4Aは、可撓導体5が変形して付勢部材6に引っ張られた状態にて、絶縁体ケース7の凹部7aの所定位置に納まり、再び回路を導通させない。このように、付勢部材6及び可撓導体5によって、第3電極3から引き離された第2電極2が移動する方向及び距離を限定することができる。したがって、電流遮断装置101の全体サイズ、ひいては電流遮断装置101の包装サイズを小さくすることができる。   At this time, the second electrode 2 separated by the force of the biasing member 6 and the low melting point conductor 4A in the conductor forming portion 2d of the second electrode 2 are pulled by the biasing member 6 as the flexible conductor 5 is deformed. In this state, the insulator case 7 is placed in a predetermined position of the recess 7a, and the circuit is not conducted again. As described above, the direction and distance in which the second electrode 2 separated from the third electrode 3 moves can be limited by the biasing member 6 and the flexible conductor 5. Therefore, the overall size of the current interrupting device 101, and hence the packaging size of the current interrupting device 101 can be reduced.

従来においては、上述したように、溶融可能なヒューズ導体が複数箇所に設けられている場合には、これらの全てを同時に分断することは、極めて困難であった。又、バネを圧縮した状態でヒューズ導体を凝固させる必要があり、電流遮断装置の製造に手間を要した。
これに対し本実施形態の電流遮断装置101では、上述のように、回路を遮断する第2電極2と第3電極3とは、一箇所にて形成した導体形成部2dに充填した低融点導体4にて接合されている。よって、軟化又は溶融する部分は、一箇所であり、確実に低融点導体4を分離することが可能となる。又、低融点導体4が軟化あるいは溶融した後に、第2電極2が付勢部材6の付勢力によって反時計方向に回動し、絶縁距離を素早く、大きく確保することが可能となる。よって、回路遮断動作が起こったときに発生するアーク放電を、より短時間で確実に消弧することが可能となる。従って、高電圧におけるアーク遮断特性が高められる。
Conventionally, as described above, in the case where a meltable fuse conductor is provided at a plurality of locations, it has been extremely difficult to divide all of them at the same time. In addition, it is necessary to solidify the fuse conductor in a state where the spring is compressed, and it takes time to manufacture the current interrupting device.
On the other hand, in the current interrupt device 101 of this embodiment, as described above, the second electrode 2 and the third electrode 3 that interrupt the circuit are low melting point conductors filled in the conductor forming portion 2d formed at one place. 4 is joined. Therefore, the part to be softened or melted is one place, and the low melting point conductor 4 can be reliably separated. In addition, after the low melting point conductor 4 is softened or melted, the second electrode 2 is rotated counterclockwise by the urging force of the urging member 6 so that the insulation distance can be secured quickly and largely. Therefore, it is possible to reliably extinguish arc discharge generated when the circuit breaking operation occurs in a shorter time. Therefore, the arc interruption characteristic at a high voltage is improved.

さらに、低融点導体4は、第2電極2と第3電極3との重畳部54の領域に含まれる第2電極2の導体形成部2dに低融点導体4を充填することで形成可能であり、また、付勢部材6は、各電極1〜3の接続が完了した後で取り付けられる。よって、従来に比べて容易に電流遮断装置101を製造することができ、作業性も高められる。   Furthermore, the low melting point conductor 4 can be formed by filling the low melting point conductor 4 in the conductor forming portion 2d of the second electrode 2 included in the region where the second electrode 2 and the third electrode 3 overlap each other. The biasing member 6 is attached after the connection of the electrodes 1 to 3 is completed. Therefore, the current interrupting device 101 can be easily manufactured as compared with the conventional case, and workability is improved.

尚、低融点導体4の分離後、付勢部材6による第2電極2の回動あるいは変位の距離が十分でない場合や、低融点導体4の量が過剰である場合、あるいはこれらの両方が組み合わさった場合には、たとえ低融点導体4が分離されても、発生したアーク放電を素早く消弧できない事態や、変位した第2電極2が、付勢部材6の反動によって図における時計回り方向に回動して、再び第3電極3に接触する事態が発生し、回路が再び導通してしまい、アーク放電が再発生することも起こり得る。
よって、このような事態を避けるため、付勢部材6の伸び量、低融点導体4の量や形状、第2電極2の厚みと長さ、及び、上記重畳部54の長手方向50における長さは、低融点導体4が軟化あるいは溶融した時には、第2電極2と第3電極3との間の導通が確実に遮断されるように設定する必要がある。
In addition, after separation of the low melting point conductor 4, when the distance of rotation or displacement of the second electrode 2 by the biasing member 6 is not sufficient, or when the amount of the low melting point conductor 4 is excessive, or both of these are combined. In such a case, even if the low melting point conductor 4 is separated, the generated arc discharge cannot be extinguished quickly, or the displaced second electrode 2 is moved in the clockwise direction in FIG. It is possible that a situation occurs in which the third electrode 3 comes into contact with the third electrode 3 again, the circuit is turned on again, and the arc discharge is regenerated.
Therefore, in order to avoid such a situation, the extension amount of the urging member 6, the amount and shape of the low melting point conductor 4, the thickness and length of the second electrode 2, and the length of the overlapping portion 54 in the longitudinal direction 50. It is necessary to set so that the conduction between the second electrode 2 and the third electrode 3 is reliably interrupted when the low melting point conductor 4 is softened or melted.

又、本実施形態では、付勢部材6の他端6bを絶縁体ケース7に固定し、この絶縁体ケース7に第1電極1及び第3電極3を固定している。よって、付勢部材6を電路として使用せず、かつ付勢部材6の付勢力により変位した第2電極2を、絶縁体ケース7内の所定の位置に収めることができる。また、低融点導体4の分離前においては付勢部材6の付勢力を可撓導体5に作用させないようにすることができる。   In the present embodiment, the other end 6 b of the urging member 6 is fixed to the insulator case 7, and the first electrode 1 and the third electrode 3 are fixed to the insulator case 7. Therefore, the urging member 6 is not used as an electric circuit, and the second electrode 2 displaced by the urging force of the urging member 6 can be stored in a predetermined position in the insulator case 7. In addition, the urging force of the urging member 6 can be prevented from acting on the flexible conductor 5 before the low melting point conductor 4 is separated.

又、本実施形態では絶縁体ケース7を用いているが、電流遮断装置101において、絶縁体ケース7は、必須の構成部分ではない。例えば図5に示す電流遮断装置101−1のように、絶縁体ケース7を用いずに構成することもできる。この場合、低融点導体4の分断前に可撓導体5に変形力が作用しないように、付勢部材6を電流遮断装置101−1に取り付ける前に、まず、第1電極1及び第3電極3を固定具12等によって回路導体13に取り付ける等して、第1電極1及び第3電極3の位置を固定しておく必要がある。   In this embodiment, the insulator case 7 is used. However, in the current interrupt device 101, the insulator case 7 is not an essential component. For example, it can also comprise without using the insulator case 7 like the electric current interruption apparatus 101-1 shown in FIG. In this case, first, before attaching the urging member 6 to the current interrupting device 101-1, the first electrode 1 and the third electrode so that the deformation force does not act on the flexible conductor 5 before the low melting point conductor 4 is divided. It is necessary to fix the positions of the first electrode 1 and the third electrode 3 by attaching 3 to the circuit conductor 13 with a fixture 12 or the like.

尚、絶縁体ケース7を用いない構成では、付勢部材6の他端6bを支持する部分を形成する必要が生じる。図5に示すように、その支持部分を第1電極1の一端部1aに形成した場合、付勢部材6を絶縁材料にて形成しない限り、付勢部材6も電路の一部を構成してしまう。よって、電流遮断装置をより安全で確実に使用するためには、絶縁体ケース7を使用するのが好ましい。   In the configuration that does not use the insulator case 7, it is necessary to form a portion that supports the other end 6 b of the urging member 6. As shown in FIG. 5, when the supporting portion is formed at one end 1a of the first electrode 1, the urging member 6 also constitutes a part of the electric circuit unless the urging member 6 is formed of an insulating material. End up. Therefore, it is preferable to use the insulator case 7 in order to use the current interruption device more safely and reliably.

又、可撓導体5について、様々な方向に変形可能な導体を使用して、第1電極1と第2電極2との隙間53の距離を、例えば1mm程度確保しておくことにより、第1電極1及び第3電極3の絶縁体ケース7への取り付けに応じて予期せずに力が第1電極1及び第3電極3に生じたときでも、上記力を可撓導体5にて吸収することが可能となる。   Further, for the flexible conductor 5, by using a conductor that can be deformed in various directions, the distance of the gap 53 between the first electrode 1 and the second electrode 2 is secured, for example, by about 1 mm. Even when a force is unexpectedly generated in the first electrode 1 and the third electrode 3 according to the attachment of the electrode 1 and the third electrode 3 to the insulator case 7, the force is absorbed by the flexible conductor 5. It becomes possible.

実施の形態2.
次に、本発明の実施の形態2における電流遮断装置について、図6から図9を参照して以下に説明する。
本実施の形態2における電流遮断装置102と、図1を参照し上述した電流遮断装置101との大きな相違点は、第2電極2と第3電極3との重畳部54に対応してヒータ9を設けた点である。以下では、上記相違点に伴う変更部分についてのみ説明を行い、上述の電流遮断装置101と同じ構成部分についてはここでの説明を省略する。
Embodiment 2. FIG.
Next, a current interrupting device according to Embodiment 2 of the present invention will be described below with reference to FIGS.
The major difference between the current interrupt device 102 in the second embodiment and the current interrupt device 101 described above with reference to FIG. 1 is that the heater 9 corresponds to the overlapping portion 54 of the second electrode 2 and the third electrode 3. This is the point. Below, only the change part accompanying the said difference is demonstrated, and description here is abbreviate | omitted about the same component as the above-mentioned electric current interruption apparatus 101. FIG.

実施形態1にて説明した第3電極3に相当する、本実施の形態2での第3電極3−1では、第2電極2の導体形成部2dに対応して、第3電極3−1を厚み方向52に貫通して導体形成部3dが形成されている。尚、導体形成部3dに関する説明は、導体形成部2dについて上述した説明をそのまま適用可能であり、ここでの説明は省略する。
又、実施形態1にて説明した絶縁体ケース7に相当する、本実施の形態2での絶縁体ケース7−1では、重畳部54に対応してヒータ9が埋設される。さらに絶縁体ケース7−1は、ヒータ9と第3電極3−1との間に隙間7eを形成する凹部を有する。この隙間7eには、導体形成部2d及び導体形成部3dを通して低融点導体4が充填される。又、低融点導体4の充填範囲を規定するために、隙間7eには、レジスト部8を形成するのが好ましい。
その他の構成部分は、上述の電流遮断装置101と同じである。
In the third electrode 3-1 in the second embodiment, which corresponds to the third electrode 3 described in the first embodiment, the third electrode 3-1 corresponding to the conductor forming portion 2 d of the second electrode 2. Is formed in the thickness direction 52 to form a conductor forming portion 3d. In addition, the description regarding the conductor formation part 3d can apply the description mentioned above about the conductor formation part 2d as it is, and description here is abbreviate | omitted.
In addition, in the insulator case 7-1 according to the second embodiment, which corresponds to the insulator case 7 described in the first embodiment, the heater 9 is embedded corresponding to the overlapping portion 54. Furthermore, the insulator case 7-1 has a recess that forms a gap 7e between the heater 9 and the third electrode 3-1. The gap 7e is filled with the low melting point conductor 4 through the conductor forming portion 2d and the conductor forming portion 3d. In order to define the filling range of the low melting point conductor 4, it is preferable to form a resist portion 8 in the gap 7e.
Other components are the same as those of the current interrupt device 101 described above.

上述の相違箇所について詳しく説明する。
ヒータ9は、低融点導体4を能動的に加熱し軟化あるいは溶融する加熱手段の一例に相当し、本実施形態ではセラミックヒータにて構成される。ヒータ9は、シース部9Aと、その下面に装着された発熱体10と、発熱体10に電気的に接続され電力供給を行うリード線11とを有する。シース部9Aの材料は、絶縁体であればよいが、例えばアルミナ等が高融点で絶縁性も高いため適している。実施の形態2では、厚み1mmのアルミナを使用している。ヒータ9は、当該電流遮断装置102が接続される回路とは電気的に接続されておらず、電流遮断装置102の動作を妨げない。ヒータ9は、このような機能を有するものであればよく、セラミックヒータに限定されない。
The above differences will be described in detail.
The heater 9 corresponds to an example of a heating unit that actively heats and softens or melts the low-melting-point conductor 4, and is configured by a ceramic heater in this embodiment. The heater 9 includes a sheath portion 9A, a heating element 10 mounted on the lower surface thereof, and a lead wire 11 that is electrically connected to the heating element 10 and supplies power. The material of the sheath portion 9A may be an insulator, but for example, alumina or the like is suitable because it has a high melting point and high insulation. In the second embodiment, alumina having a thickness of 1 mm is used. The heater 9 is not electrically connected to the circuit to which the current interrupt device 102 is connected, and does not hinder the operation of the current interrupt device 102. The heater 9 has only to have such a function, and is not limited to a ceramic heater.

シース部9Aは、本実施形態では、平板形状であり、図8に示すように、幅方向51において第3電極3−1の幅寸法以下のサイズにてなり、長手方向50において重畳部54の長さにほぼ等しい長さを有する。
発熱体10は、幅方向51においてシース部9Aの幅寸法以下の幅寸法、及び長手方向50においてシース部9Aの長さ寸法以下の長さを有するが、可能な限り広いのが好ましい。但し、発熱体10の幅寸法は、第3電極3−1の幅寸法を超えることはないのが好ましく、低融点導体4の幅寸法を超えるのが好ましい。即ち、セラミックヒータ9のシース部9Aに接触している第3電極3−1、低融点導体4の領域に対応して発熱体10が配置されていることが好ましい。
In this embodiment, the sheath portion 9 </ b> A has a flat plate shape, and has a size equal to or smaller than the width dimension of the third electrode 3-1 in the width direction 51 as shown in FIG. 8. It has a length approximately equal to the length.
The heating element 10 has a width dimension equal to or less than the width dimension of the sheath portion 9A in the width direction 51 and a length equal to or less than the length dimension of the sheath portion 9A in the longitudinal direction 50, but is preferably as wide as possible. However, the width of the heating element 10 preferably does not exceed the width of the third electrode 3-1, and preferably exceeds the width of the low melting point conductor 4. That is, it is preferable that the heating element 10 is disposed corresponding to the region of the third electrode 3-1 and the low melting point conductor 4 that are in contact with the sheath portion 9 </ b> A of the ceramic heater 9.

このように、セラミックヒータ9のシース部9Aと発熱体10とを配置することで、セラミックヒータ9から発生する熱を効率的に低融点導体4に伝達し、セラミックヒータ9の温度上昇を抑制しながら、効率的に低融点導体4を加熱することが可能となる。もちろん、本実施形態のような構成に限定するものではなく、シース部9Aの幅寸法が第3電極3−1の幅寸法を超えるようにしてもよいし、発熱体10の幅寸法が第3電極3−1を超えるようにしてもよい。   Thus, by arranging the sheath portion 9A of the ceramic heater 9 and the heating element 10, the heat generated from the ceramic heater 9 is efficiently transmitted to the low melting point conductor 4, and the temperature rise of the ceramic heater 9 is suppressed. However, the low melting point conductor 4 can be efficiently heated. Of course, the configuration is not limited to the configuration of the present embodiment, and the width dimension of the sheath portion 9A may exceed the width dimension of the third electrode 3-1, and the width dimension of the heating element 10 is the third dimension. You may make it exceed the electrode 3-1.

又、上述の電流遮断装置102では図6に示すように、重畳部54に形成される第2電極2の導体形成部2dと第3電極3−1の導体形成部3dとは、同形状で同サイズである。しかしながら、これに限定するものではなく、第2電極2の導体形成部2dと、第3電極3−1の導体形成部3dとにおける形状及びサイズの少なくとも一方を、互いに異ならせても良い。図9は、実施の形態2による電流遮断装置102の変形例である電流遮断装置102−1における重畳部54の拡大図であり、この図9では、第3電極3−1の導体形成部3dに比べて第2電極2の導体形成部2dのサイズを大きくした場合を示している。   Further, in the above-described current interrupting device 102, as shown in FIG. 6, the conductor forming portion 2d of the second electrode 2 and the conductor forming portion 3d of the third electrode 3-1 formed in the overlapping portion 54 have the same shape. It is the same size. However, the present invention is not limited to this, and at least one of the shape and size of the conductor forming portion 2d of the second electrode 2 and the conductor forming portion 3d of the third electrode 3-1 may be different from each other. FIG. 9 is an enlarged view of the overlapping portion 54 in the current interrupt device 102-1 which is a modification of the current interrupt device 102 according to the second embodiment. In FIG. 9, the conductor forming portion 3d of the third electrode 3-1. The case where the size of the conductor formation part 2d of the 2nd electrode 2 was enlarged compared with is shown.

低融点導体4は、第2電極2の導体形成部2d、第3電極3−1の導体形成部3d、及び第3電極3−1とシース部9Aとの隙間7eに充填される。これによって、第2電極2と、第3電極3−1と、セラミックヒータ9との結合が行われる。導体形成部2d及び導体形成部3dの平面形状は、それぞれを有する第2電極2及び第3電極3−1の幅寸法よりも小さい、例えば円形等であるが、低融点導体4を目的の形状に形成でき、第2電極2と第3電極3−1とを電気的及び機械的に接続でき、セラミックヒータ9に接触もしくは機械的に接続できる形状であればよい。   The low melting point conductor 4 is filled in the conductor forming portion 2d of the second electrode 2, the conductor forming portion 3d of the third electrode 3-1, and the gap 7e between the third electrode 3-1 and the sheath portion 9A. As a result, the second electrode 2, the third electrode 3-1, and the ceramic heater 9 are coupled. The planar shapes of the conductor forming portion 2d and the conductor forming portion 3d are smaller than the width dimensions of the second electrode 2 and the third electrode 3-1, respectively, for example, circular, but the low melting point conductor 4 is the target shape. Any shape can be used as long as the second electrode 3 and the third electrode 3-1 can be electrically and mechanically connected, and can be in contact with or mechanically connected to the ceramic heater 9.

上記隙間7eは、厚み方向52において本実施形態では例えば0.5mm程度の大きさである。隙間7eにも低融点導体4を充填することで、セラミックヒータ9から発生する熱をより効率的に低融点導体4に伝達することが可能となる。この場合、隙間7eにおいて所望の範囲に低融点導体4を形成するため、レジスト部8を第3電極3−1又はセラミックヒータ9に設けるのが好ましい。   In the present embodiment, the gap 7e has a size of about 0.5 mm in the thickness direction 52, for example. By filling the gap 7e with the low melting point conductor 4, the heat generated from the ceramic heater 9 can be transmitted to the low melting point conductor 4 more efficiently. In this case, it is preferable to provide the resist portion 8 on the third electrode 3-1 or the ceramic heater 9 in order to form the low melting point conductor 4 in a desired range in the gap 7e.

セラミックヒータ9から発生する熱を効率的に低融点導体4に伝達させ、また、電流遮断装置102が動作したときにセラミックヒータ9を移動させないようにするために、上述した図6から図9に示す構成を採るのが好ましい。しかしながら、隙間7eを形成せず、セラミックヒータ9を直接に第3電極3−1に接触あるいは機械的に接続させてもよいし、また、第3電極3−1に導体形成部3dを形成せず、つまり第3電極3−1には低融点導体4が充填されず、セラミックヒータ9が間接的に第2電極2の導体形成部2dを加熱するようにしてもよい。さらには、第2電極2と第3電極3−1との電気的接続を図りながらセラミックヒータ9が第2電極2の低融点導体4を直接に加熱可能なようにセラミックヒータ9を第2電極2に接触させて配置してもよい。   In order to efficiently transfer the heat generated from the ceramic heater 9 to the low melting point conductor 4 and not to move the ceramic heater 9 when the current interrupting device 102 operates, the above-described FIGS. It is preferable to adopt the structure shown. However, the ceramic heater 9 may be directly contacted or mechanically connected to the third electrode 3-1, without forming the gap 7e, or the conductor forming portion 3d may be formed on the third electrode 3-1. That is, the third electrode 3-1 may not be filled with the low melting point conductor 4, and the ceramic heater 9 may indirectly heat the conductor forming portion 2 d of the second electrode 2. Further, the ceramic heater 9 is connected to the second electrode so that the ceramic heater 9 can directly heat the low melting point conductor 4 of the second electrode 2 while the second electrode 2 and the third electrode 3-1 are electrically connected. You may arrange | position in contact with 2.

リード線11は、電流遮断装置102、102−1の動作を阻害せず、かつ電流遮断装置102,102−1と電気的に接触することのないように発熱体10に電気的に接続する。即ち、リード線11は発熱体10との接続部を除いて絶縁性の被膜等で覆われ、電気的に絶縁されていることが好ましい。   The lead wire 11 is electrically connected to the heating element 10 so as not to interfere with the operation of the current interrupting devices 102 and 102-1, and not to be in electrical contact with the current interrupting devices 102 and 102-1. That is, the lead wire 11 is preferably electrically insulated by being covered with an insulating film or the like except for the connection portion with the heating element 10.

以上のように構成された実施の形態2による電流遮断装置102,102−1の製造方法は、基本的に図11に示す電流遮断装置101の製造方法と同様であり、ステップS61とステップS62との間、又は、ステップS62とステップS63との間にて、セラミックヒータ9を低融点導体4の下方に配設する工程を追加することで実行可能である。   The manufacturing method of the current interrupting devices 102 and 102-1 according to the second embodiment configured as described above is basically the same as the manufacturing method of the current interrupting device 101 shown in FIG. 11, and step S61, step S62, Or between step S62 and step S63 can be performed by adding a step of disposing the ceramic heater 9 below the low melting point conductor 4.

以上のように構成された実施の形態2による電流遮断装置102,102−1の動作について説明する。
電流遮断装置102,102−1の基本的動作は、上述した実施の形態1の電流遮断装置101の動作に同じであり、規定値以上の過電流が第1電極1、第2電極2、及び第3電極3−1を流れたときには、低融点導体4が軟化又は溶融し、付勢部材6の付勢力により第2電極2が第3電極3−1から引き離され、第1電極1と第3電極3−1との間の導通が遮断される。
よって、上述した電流遮断装置101が奏する効果については、本実施の形態2による電流遮断装置102,102−1も奏することができる。
The operation of the current interrupting devices 102 and 102-1 according to the second embodiment configured as described above will be described.
The basic operation of the current interrupting devices 102 and 102-1 is the same as the operation of the current interrupting device 101 of the first embodiment described above, and an overcurrent exceeding a specified value is caused by the first electrode 1, the second electrode 2, and When flowing through the third electrode 3-1, the low melting point conductor 4 is softened or melted, and the second electrode 2 is separated from the third electrode 3-1, by the biasing force of the biasing member 6. The conduction between the three electrodes 3-1 is interrupted.
Therefore, the current interrupting devices 102 and 102-1 according to the second embodiment can also be achieved with respect to the effect exhibited by the current interrupting device 101 described above.

さらに、本実施形態の電流遮断装置102,102−1では、電流遮断装置102,102−1とは独立してリード線11からの通電によりセラミックヒータ9の発熱体10を加熱し、低融点導体4を予め加熱可能である。よって、予めセラミックヒータ9を加熱することで、規定値以上の電流が第1電極1、第2電極2、及び第3電極3−1を流れたとき、つまり低融点導体4に流れた場合に、低融点導体4を通常よりも軟化あるいは溶融し易い状態にすることが可能である。したがって、実施の形態1における電流遮断装置101に比べて、より迅速に第1電極1と第3電極3−1との間の導通を遮断することが可能となる。よって、回路遮断動作が起こったときに発生するアーク放電を、より短時間で確実に消弧することができる。このように、実施の形態2による電流遮断装置は高電圧におけるアーク遮断特性が高められている。   Furthermore, in the current interrupting devices 102 and 102-1 of this embodiment, the heating element 10 of the ceramic heater 9 is heated by energization from the lead wire 11 independently of the current interrupting devices 102 and 102-1, and the low melting point conductor 4 can be preheated. Therefore, by heating the ceramic heater 9 in advance, when a current exceeding a specified value flows through the first electrode 1, the second electrode 2, and the third electrode 3-1, that is, when the current flows through the low melting point conductor 4. The low melting point conductor 4 can be made softer or more easily melted than usual. Therefore, it is possible to interrupt the conduction between the first electrode 1 and the third electrode 3-1 more quickly than the current interrupt device 101 in the first embodiment. Therefore, the arc discharge generated when the circuit breaking operation occurs can be surely extinguished in a shorter time. Thus, the current interruption device according to the second embodiment has improved arc interruption characteristics at a high voltage.

更には、実施の形態2においては、低融点導体4に流れている電流に関係なく、セラミックヒータ9によって低融点導体4を軟化あるいは溶融させることが可能である。又、セラミックヒータ9の発熱量を調節することで、低融点導体4を分離させるまでの時間を、ある程度任意に設定することが可能になるという効果を得ることができる。   Furthermore, in the second embodiment, the low melting point conductor 4 can be softened or melted by the ceramic heater 9 regardless of the current flowing through the low melting point conductor 4. Further, by adjusting the amount of heat generated by the ceramic heater 9, it is possible to obtain an effect that the time until the low melting point conductor 4 is separated can be arbitrarily set to some extent.

又、実施の形態1における電流遮断装置101の場合と同様に、本実施の形態2においても、付勢部材6の取り付け作業は、各電極1〜3を全て接続した後に行うため、電流遮断装置の組み立てを容易に行うことができ、組み立て時の作業性も高められている。   Further, as in the case of the current interrupt device 101 in the first embodiment, also in the second embodiment, the attaching operation of the urging member 6 is performed after all the electrodes 1 to 3 are connected. Can be easily assembled, and the workability during assembly is also improved.

実施の状態3.
次に、本発明の実施の形態3における電流遮断装置について、図10を参照して説明する。
上述の実施形態2における電流遮断装置102では、図8に示すように、可撓導体5としてAlリボンやCu板等の薄い金属板を使用している。これに対し、本実施形態3における電流遮断装置103では、可撓導体5として、金属ワイヤ14を用いている点で相違する。尚、電流遮断装置103におけるその他の構成部分は、電流遮断装置102の構成に同じである。
2. State of implementation
Next, a current interrupting device according to Embodiment 3 of the present invention will be described with reference to FIG.
In the current interrupt device 102 according to the second embodiment described above, as shown in FIG. 8, a thin metal plate such as an Al ribbon or a Cu plate is used as the flexible conductor 5. On the other hand, the current interrupt device 103 according to the third embodiment is different in that a metal wire 14 is used as the flexible conductor 5. The other components of the current interrupt device 103 are the same as the configuration of the current interrupt device 102.

金属ワイヤ14として、本実施形態では、例えば直径400μmのAlワイヤを使用しているが、低融点導体4よりも高い融点を有する導体であれば他の材料でもよい。例えば、Cuは高融点で電気抵抗率も低く、接合も容易であるため適している。又、金属ワイヤ14の断面形状は、円形の他、楕円形、四角形、三角形等であってもよい。又、金属ワイヤ14を用いた場合、扱う電流値に応じて使用する金属ワイヤ14の本数や、形状について、金属板を使用する場合に比較して、自由に変更可能であるという利点がある。又、変形の自由度も高く、その配置も上下に重ねて設けることが可能であるという利点もある。
尚、実施の形態3における電流遮断装置103の動作及び製造方法については、実施の形態1又は2における電流遮断装置101等と同様であるため説明を省略する。
In this embodiment, for example, an Al wire having a diameter of 400 μm is used as the metal wire 14, but other materials may be used as long as the conductor has a melting point higher than that of the low melting point conductor 4. For example, Cu is suitable because it has a high melting point, low electrical resistivity, and easy bonding. Further, the cross-sectional shape of the metal wire 14 may be an ellipse, a quadrangle, a triangle, etc. in addition to a circle. Further, when the metal wire 14 is used, there is an advantage that the number and shape of the metal wires 14 used according to the current value to be handled can be freely changed as compared with the case where a metal plate is used. In addition, there is also an advantage that the degree of freedom of deformation is high, and the arrangement can be provided so as to be stacked one above the other.
Note that the operation and manufacturing method of the current interrupt device 103 according to the third embodiment are the same as those of the current interrupt device 101 according to the first or second embodiment, and the description thereof is omitted.

尚、上述した各実施の形態1〜3を適宜組み合わせた構成を採ることも可能である。   In addition, it is also possible to take the structure which combined each Embodiment 1-3 mentioned above suitably.

本発明の実施の形態1による電流遮断装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electric current interruption apparatus by Embodiment 1 of this invention. 図1に示す電流遮断装置の構成を示す平面図である。It is a top view which shows the structure of the electric current interruption apparatus shown in FIG. 図1に示す電流遮断装置において、低融点導体の溶断時の状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state when a low melting point conductor is blown in the current interrupting device shown in FIG. 1. 図1に示す電流遮断装置における低融点導体部分を拡大した断面図である。It is sectional drawing to which the low melting-point conductor part in the electric current interruption apparatus shown in FIG. 1 was expanded. 図1に示す電流遮断装置の変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification of the electric current interruption apparatus shown in FIG. 本発明の実施の形態2による電流遮断装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electric current interruption apparatus by Embodiment 2 of this invention. 図6に示す電流遮断装置において、低融点導体の溶断時の状態を示す断面図である。FIG. 7 is a cross-sectional view showing a state where a low melting point conductor is blown in the current interrupt device shown in FIG. 6. 本発明の実施の形態2による電流遮断装置の構成を示す平面図である。It is a top view which shows the structure of the electric current interruption apparatus by Embodiment 2 of this invention. 図8に示す電流遮断装置における低融点導体部分の変形例における構成を示す断面図である。It is sectional drawing which shows the structure in the modification of the low melting-point conductor part in the electric current interruption apparatus shown in FIG. 本発明の実施の形態3による電流遮断装置の構成を示す平面図である。It is a top view which shows the structure of the electric current interruption apparatus by Embodiment 3 of this invention. 図1に示す電流遮断装置の製造方法の概略を説明するフローチャートである。It is a flowchart explaining the outline of the manufacturing method of the electric current interruption apparatus shown in FIG.

符号の説明Explanation of symbols

1 第1電極、2 第2電極、3 第3電極、4 低融点導体、5 可撓導体、
6 付勢部材、7 絶縁体ケース、9 セラミックヒータ、9A シース部、
10 発熱体、14 金属ワイヤ、54 重畳部、
101〜103 電流遮断装置。
1 first electrode, 2 second electrode, 3rd electrode, 4 low melting point conductor, 5 flexible conductor,
6 biasing member, 7 insulator case, 9 ceramic heater, 9A sheath part,
10 heating element, 14 metal wire, 54 overlapping part,
101-103 Current interrupting device.

Claims (9)

電流通路の一部をなし固定された第1電極と、
電流通路の一部をなし上記第1電極と隙間を介して配置される第2電極と、
電流通路の一部をなし上記第2電極と一部を重畳して配置され固定された第3電極と、
上記第1電極と上記第2電極との上記隙間部分に設けられ、上記第1電極と上記第2電極とを電気的に接続しかつ可撓性を有する可撓導体と、
上記第2電極と上記第3電極との重畳部における一箇所に設けられ、上記第2電極及び上記第3電極の融点よりも低い融点を有し常態では上記第2電極と上記第3電極とを電気的及び機械的に接続する低融点導体と、
上記第2電極に一端が取り付けられ、上記第2電極を上記第3電極から引き離す方向への付勢力を有し、上記低融点導体の軟化又は溶融に応じて上記付勢力にて上記可撓導体を変形させて上記第2電極を上記第1電極側へ移動させる付勢部材と、
を備えたことを特徴とする電流遮断装置。
A first electrode fixed as a part of a current path;
A second electrode that forms part of the current path and is disposed with a gap between the first electrode,
A third electrode that forms a part of the current path and is arranged and fixed to overlap with the second electrode;
A flexible conductor provided in the gap portion between the first electrode and the second electrode, electrically connecting the first electrode and the second electrode, and having flexibility;
The second electrode and the third electrode are provided at one place in the overlapping portion of the second electrode and the third electrode, and have a melting point lower than the melting points of the second electrode and the third electrode, and normally the second electrode and the third electrode, A low melting conductor that electrically and mechanically connects,
One end is attached to the second electrode and has an urging force in a direction to separate the second electrode from the third electrode, and the flexible conductor is urged by the urging force according to softening or melting of the low melting point conductor. And a biasing member that moves the second electrode toward the first electrode,
A current interrupting device comprising:
上記第2電極は、上記重畳部における一箇所にて当該第2電極を貫通して形成され上記低融点導体が充填される導体形成部を有する、請求項1記載の電流遮断装置。   2. The current interrupting device according to claim 1, wherein the second electrode has a conductor forming portion that is formed through the second electrode at one position in the overlapping portion and is filled with the low melting point conductor. 上記第3電極の厚み方向において上記低融点導体に対応して配置され、上記低融点導体を加熱して強制的に軟化又は溶融させるヒータをさらに備えた、請求項1又は2記載の電流遮断装置。   3. The current interrupting device according to claim 1, further comprising a heater arranged corresponding to the low melting point conductor in a thickness direction of the third electrode and forcibly softening or melting the low melting point conductor by heating. . 上記第1電極、上記第2電極及び上記第3電極は平板形状であり、
上記ヒータは、上記各電極の幅より小さい幅の平板状の絶縁体からなるシース部と、上記シース部の一面に装着され上記各電極または上記低融点導体の幅より小さい幅の発熱体とを有する、請求項3記載の電流遮断装置。
The first electrode, the second electrode, and the third electrode are plate-shaped,
The heater includes a sheath portion made of a flat plate-like insulator having a width smaller than the width of each electrode, and a heating element having a width smaller than the width of each electrode or the low melting point conductor attached to one surface of the sheath portion. The electric current interruption apparatus of Claim 3 which has.
上記第3電極は、上記重畳部における一箇所にて当該第3電極を貫通して形成され上記低融点導体が充填される導体形成部を有する、請求項3又は4記載の電流遮断装置。   5. The current interrupting device according to claim 3, wherein the third electrode has a conductor forming portion that is formed through the third electrode at one position in the overlapping portion and is filled with the low melting point conductor. 絶縁性部材から形成され、上記第1電極及び上記第3電極を固定し、上記第1電極の近傍で上記第2電極から離れた位置に形成され上記付勢部材の他端を支持する支持部を有し、上記付勢部材にて上記第1電極側へ移動された上記第2電極を上記第3電極との導通遮断状態で収容する絶縁体ケースをさらに備えた、請求項1から5のいずれか1項に記載の電流遮断装置。   A support portion that is formed of an insulating member, fixes the first electrode and the third electrode, and is formed at a position near the first electrode and away from the second electrode, and supports the other end of the biasing member. And further comprising an insulator case that accommodates the second electrode moved to the first electrode side by the biasing member in a state of disconnection from the third electrode. The current interrupting device according to any one of the above. 上記可撓導体は、薄板状金属若しくはそれらの積層体、又は細線状金属若しくはそれらの集合体により形成されている、請求項1から6のいずれか1項に記載の電流遮断装置。   The current interrupt device according to any one of claims 1 to 6, wherein the flexible conductor is formed of a thin plate metal or a laminate thereof, or a thin metal or an assembly thereof. 電流通路の一部をなす電極で、加熱により軟化又は溶融する低融点導体を充填する厚み方向に貫通した導体形成部を有する第2電極と、電流通路の一部をなす第3電極とを上記導体形成部を含む重畳部にて重ね合わせた後、上記低融点導体にて上記第2電極と上記第3電極とを接続し、
電流通路の一部をなす第1電極、及び上記第3電極を、上記第1電極と上記第2電極との間に隙間を設けて絶縁体ケースに組み付け、
可撓性を有する可撓導体を上記隙間部分に設けて上記第1電極と上記第2電極とを電気的に接続し、
上記可撓導体を設けた後、上記第2電極を上記第3電極から引き離す方向への付勢力を有し、上記低融点導体が軟化又は溶融したときには上記付勢力にて上記可撓導体を変形させて上記第2電極を上記第1電極側へ移動させる付勢部材を上記第2電極と上記絶縁体ケースとの間に掛け渡す、
ことを備えたことを特徴とする電流遮断装置の製造方法。
A second electrode having a conductor forming portion penetrating in a thickness direction filled with a low-melting-point conductor that is softened or melted by heating, and a third electrode that forms a part of the current path. After overlapping at the overlapping portion including the conductor forming portion, connecting the second electrode and the third electrode with the low melting point conductor,
Assembling the first electrode forming a part of the current path and the third electrode to the insulator case with a gap between the first electrode and the second electrode,
Providing a flexible conductor in the gap portion to electrically connect the first electrode and the second electrode;
After providing the flexible conductor, the flexible conductor has an urging force in a direction to separate the second electrode from the third electrode. When the low melting point conductor is softened or melted, the flexible conductor is deformed by the urging force. An urging member that moves the second electrode toward the first electrode is bridged between the second electrode and the insulator case.
The manufacturing method of the electric current interruption apparatus characterized by the above-mentioned.
上記低融点導体にて上記第2電極と上記第3電極とを接続した後、上記第1電極と上記第2電極とを上記可撓導体にて電気的に接続する前に、上記第3電極の厚み方向において上記導体形成部の下方に、上記低融点導体を強制的に軟化又は溶融させるヒータを設けることをさらに備えた、請求項8記載の電流遮断装置の製造方法。   After the second electrode and the third electrode are connected by the low melting point conductor, and before the first electrode and the second electrode are electrically connected by the flexible conductor, the third electrode The method for manufacturing a current interrupting device according to claim 8, further comprising providing a heater for forcibly softening or melting the low-melting-point conductor below the conductor forming portion in the thickness direction.
JP2008106714A 2008-04-16 2008-04-16 Current interrupt device Active JP5197121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106714A JP5197121B2 (en) 2008-04-16 2008-04-16 Current interrupt device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106714A JP5197121B2 (en) 2008-04-16 2008-04-16 Current interrupt device

Publications (2)

Publication Number Publication Date
JP2009259569A true JP2009259569A (en) 2009-11-05
JP5197121B2 JP5197121B2 (en) 2013-05-15

Family

ID=41386747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106714A Active JP5197121B2 (en) 2008-04-16 2008-04-16 Current interrupt device

Country Status (1)

Country Link
JP (1) JP5197121B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109078A (en) * 2010-11-16 2012-06-07 Otowa Denki Kogyo Kk Spd with separator
JP2019046767A (en) * 2017-09-07 2019-03-22 Littelfuseジャパン合同会社 Protection element
CN112289655A (en) * 2020-11-24 2021-01-29 绍兴市科业电器有限公司 Fuse protector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49146462U (en) * 1973-04-16 1974-12-18
JPS61153267U (en) * 1985-03-14 1986-09-22
JPH0515237U (en) * 1991-04-26 1993-02-26 松下電工株式会社 Contact switch
JPH08167370A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Integrated circuit device and power module using thereof
JPH11260222A (en) * 1998-03-10 1999-09-24 Yazaki Corp Circuit breaker
JP2008027883A (en) * 2006-06-19 2008-02-07 Mitsubishi Electric Corp Circuit breaker device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49146462U (en) * 1973-04-16 1974-12-18
JPS61153267U (en) * 1985-03-14 1986-09-22
JPH0515237U (en) * 1991-04-26 1993-02-26 松下電工株式会社 Contact switch
JPH08167370A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Integrated circuit device and power module using thereof
JPH11260222A (en) * 1998-03-10 1999-09-24 Yazaki Corp Circuit breaker
JP2008027883A (en) * 2006-06-19 2008-02-07 Mitsubishi Electric Corp Circuit breaker device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109078A (en) * 2010-11-16 2012-06-07 Otowa Denki Kogyo Kk Spd with separator
JP2019046767A (en) * 2017-09-07 2019-03-22 Littelfuseジャパン合同会社 Protection element
CN112289655A (en) * 2020-11-24 2021-01-29 绍兴市科业电器有限公司 Fuse protector

Also Published As

Publication number Publication date
JP5197121B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5608942B2 (en) Thermal overload protection device for protecting electrical elements, and configuration including the device
JP2007027135A (en) Reactive fuse element having heating reactive member
KR102232981B1 (en) Production method for mounting body, mounting method for temperature fuse elements, and temperature fuse element
KR102300950B1 (en) Switch element, switch circuit, and warning circuit
KR102089478B1 (en) Protection element
JP5197121B2 (en) Current interrupt device
JP6491431B2 (en) Fuse element and fuse element
JP7256667B2 (en) protective element
JP6707377B2 (en) Protective element
JP2007087783A (en) Fuse with resistor
JP4679526B2 (en) Power semiconductor device having shut-off mechanism
JP2012212689A (en) Power semiconductor device having breaking mechanism
CN107408474B (en) Switching element
JP2009099404A (en) Current interrupting device
TW202215470A (en) Protection element
WO2017041242A1 (en) Reflowable temperature fuse
JP5111592B2 (en) Power semiconductor device having shut-off mechanism
JP2005235680A (en) Chip type fuse and its manufacturing method
TWI670740B (en) Switching element, switching circuit, alarm circuit, redundant circuit and switching method
TWI677002B (en) Switching element
JP6306893B2 (en) Resistor with fuse function
JP5489750B2 (en) Resistance thermal fuse package and resistance thermal fuse
JP6959964B2 (en) Protective element
JP2002050271A (en) Thermal fuse
JP2006155966A (en) Temperature-sensitive type circuit breaking film device and electricity switching-on circuit device using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5197121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250