JP2009257795A - Covering depth management method for reinforced concrete structure - Google Patents

Covering depth management method for reinforced concrete structure Download PDF

Info

Publication number
JP2009257795A
JP2009257795A JP2008104169A JP2008104169A JP2009257795A JP 2009257795 A JP2009257795 A JP 2009257795A JP 2008104169 A JP2008104169 A JP 2008104169A JP 2008104169 A JP2008104169 A JP 2008104169A JP 2009257795 A JP2009257795 A JP 2009257795A
Authority
JP
Japan
Prior art keywords
concrete
reinforcing bar
electrode
detection electrode
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008104169A
Other languages
Japanese (ja)
Inventor
Tetsushi Kanda
徹志 閑田
Katsunori Yamaki
克則 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2008104169A priority Critical patent/JP2009257795A/en
Publication of JP2009257795A publication Critical patent/JP2009257795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for extensively and quantitatively obtaining/controlling the covering depth of a reinforced concrete structure. <P>SOLUTION: Prior to concrete 4 being placed, detection electrodes 10 each having a prescribed area S are firmly fixed on form confronting surfaces of a row 3 of rebars 2, confronting a form 5 with the detection electrodes insulated from the row 3 while substantially maintaining concrete adhesive areas of the row 3, and counter electrodes 14, each having the prescribed area, S are stuck to detection electrode confronting parts on rebar confronting surfaces of the form 5 or on opposite side surfaces thereof. In placing the concrete 4, capacitance C between the detection electrodes 10 and the counter electrodes 14 is measured, thereby the covering depths d of the concrete 4 relevant to the row 3 is controlled. Preferably, the detection electrodes 10 are fixed firmly on the form confronting surfaces of the row 3, along the entire horizontal and/or vertical lengths thereof. With the detection electrodes 10 embedded in the concrete 4, actual concrete thicknesses d can be also inspected by measuring the capacitance C between the detection electrodes 10 in the concrete 4 and the counter electrodes 14 stuck to the surface of the concrete 4, after the completion of the structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は鉄筋コンクリート構造物の被り厚さ管理方法に関し、とくに施工管理の一環として鉄筋に対するコンクリートの被り厚さを管理する方法に関する。   The present invention relates to a method for managing the covering thickness of a reinforced concrete structure, and more particularly to a method for managing the covering thickness of concrete on a reinforcing bar as part of construction management.

鉄筋コンクリート構造物は優れた耐久性を有し、住宅や橋梁・トンネル等の社会資本の主要な構成要素となっている。但し、鉄筋コンクリート構造は材料・設計・施工・維持管理・外的環境の影響等を受けて品質に差を生じるため、耐久性を確保するためには適切な材料選定・設計・施工・維持管理が前提となる。とくに、鉄筋コンクリート構造物の鉄筋を被覆するコンクリートの厚さ(以下、被り厚さということがある。)は、鉄筋の腐蝕防止ひいては構造物の耐久性を確保するために極めて重要な要素であり、構造部位毎に適切な被り厚さの基準が定められている。このため鉄筋コンクリート構造物では、基準以上の被り厚さが確保されているか否かを確認する施工管理と、完成後に所要の被り厚さが存在しているか否かを検査する維持管理とが必要となる。   Reinforced concrete structures have excellent durability and are a major component of social capital such as houses, bridges and tunnels. However, reinforced concrete structures are affected by the influence of materials, design, construction, maintenance, external environment, etc., and quality will vary, so appropriate material selection, design, construction, and maintenance are necessary to ensure durability. It is a premise. In particular, the thickness of the concrete covering the reinforcing bars of a reinforced concrete structure (hereinafter sometimes referred to as the covering thickness) is an extremely important factor for preventing corrosion of the reinforcing bars and thus ensuring the durability of the structure. An appropriate cover thickness standard is defined for each structural part. For this reason, in reinforced concrete structures, it is necessary to perform construction management to check whether or not the cover thickness exceeding the standard is secured, and maintenance management to check whether or not the required cover thickness exists after completion. Become.

従来、鉄筋コンクリート構造物の施工時における被り厚さは、メジャー等による鉄筋と型枠との間隔の測定や、スペーサと呼ばれる部材の鉄筋と型枠との間への配置等によって管理する方法が一般的である(例えば非特許文献1)。また、構造物の完成後においては、レーダ探査法・電磁誘導法・X線透過法等の非破壊検査システムにより被り厚さを検査して維持管理する方法が試みられている(非特許文献2)。レーダ探査法とは、コンクリート表面からコンクリート内部へ向け放射した電磁波の鉄筋からの反射波によりコンクリート表面から鉄筋まで深さ(被り厚さ)を測定する方法である。また電磁誘導法とは、励磁コイルと検出コイルを用い検出コイルに流れる渦電流により鉄筋までの距離(被り厚さ)を調査する方法である。
嶋本恒雄ほか「建築学小事典」理工学社、1999年3月25日第4版第5刷、10章25頁 魚本健人「コンクリ−ト構造物の非破壊検査」ダム技術No.158、1999年11月 特願2003−214841公報
Conventionally, the covering thickness during construction of reinforced concrete structures is generally managed by measuring the distance between the reinforcing bar and the formwork using a measure, etc., or placing the member called the spacer between the reinforcing bar and the formwork. (For example, Non-Patent Document 1). Further, after the structure is completed, a method of inspecting and maintaining the cover thickness by a nondestructive inspection system such as a radar exploration method, an electromagnetic induction method, or an X-ray transmission method has been attempted (Non-Patent Document 2). ). The radar exploration method is a method of measuring the depth (cover thickness) from the concrete surface to the reinforcing bar by the reflected wave from the reinforcing bar of the electromagnetic wave radiated from the concrete surface to the inside of the concrete. The electromagnetic induction method is a method of investigating a distance (cover thickness) to a reinforcing bar by using an eddy current flowing in a detection coil using an excitation coil and a detection coil.
Tsuneo Shimamoto et al. “Science of Architecture”, Science and Engineering Company, March 25, 1999, 4th edition, 5th edition, 10:25 Kento Uomoto “Non-destructive inspection of concrete structures” Dam Technology No. 158, November 1999 Japanese Patent Application No. 2003-214841

しかし、従来の施工時における被り厚さの管理方法は、被り厚さを広範囲に亘り定量的にチェックすることが難しい問題点がある。例えばスペーサを用いて被り厚さを管理する方法ではスペーサの位置ズレ等が発生することがあり、施工担当者が目視でスペーサの有無を確認するだけでは信頼性の高い被り厚さの施工管理は困難である。また、鉄筋と型枠との間にメジャー等を当てて被り厚さを定量的に把握する方法は手間がかかるので、限られた工期内に広範囲に亘る被り厚さを定量的に把握することは実際上困難である。   However, the conventional method for managing the cover thickness at the time of construction has a problem that it is difficult to quantitatively check the cover thickness over a wide range. For example, in the method of managing the cover thickness using a spacer, the position of the spacer may be misaligned. Have difficulty. In addition, the method of quantitatively grasping the covering thickness by applying a measure between the reinforcing bar and the formwork takes time, so it is necessary to quantitatively grasp the covering thickness over a wide range within a limited construction period. Is practically difficult.

他方、従来のレーダ探査法・電磁誘導法・X線透過法等の非破壊検査システムは、構造物完成後における被り厚さの定量的な把握が可能であるものの、いちどきには比較的狭い範囲の被り厚さしか把握することができず、また検出精度が必ずしも高くないので、施工段階において広い範囲の被り厚さを把握するには適していない。   On the other hand, conventional non-destructive inspection systems such as radar exploration methods, electromagnetic induction methods, and X-ray transmission methods can quantitatively grasp the covering thickness after the structure is completed, but at the same time they are in a relatively narrow range. Since only the covering thickness can be grasped and the detection accuracy is not necessarily high, it is not suitable for grasping the covering thickness in a wide range at the construction stage.

最近では、鉄筋コンクリート構造物の要求性能について完成時における確認だけでなく施工中における検査(工事検査)の必要性が高まっており、施工中の被り厚さを記録・保存することが施工者に求められてきている。また、完成後に被り厚さ不足が判明した場合は補修に莫大なコストを要するので、施工中に被り厚さが定量的に管理できれば合理的且つ経済的である。鉄筋コンクリート構造物の耐久性への社会要求性能の更なる高まりが今後予想されることから、施工中に広範囲の被り厚さを定量的に且つ容易に把握できる施工管理技術の確立が望まれている。   Recently, there is a growing need for inspections during construction (construction inspection) as well as confirmation of the required performance of reinforced concrete structures at the time of completion, and construction personnel are required to record and store the covering thickness during construction. It has been. In addition, if the covering thickness is found to be insufficient after completion, a huge cost is required for repair. Therefore, if the covering thickness can be managed quantitatively during construction, it is reasonable and economical. Since further increase in social performance required for durability of reinforced concrete structures is expected in the future, establishment of construction management technology that can easily and quantitatively grasp a wide range of covering thickness during construction is desired. .

そこで本発明の目的は、鉄筋コンクリート構造物の被り厚さを広範囲に亘り定量的に把握して管理する方法を提供することにする。   Accordingly, an object of the present invention is to provide a method for quantitatively grasping and managing the covering thickness of a reinforced concrete structure over a wide range.

図1の実施例を参照するに、本発明の鉄筋コンクリート構造物の被り厚さ管理方法は、鉄筋コンクリート構造物1の鉄筋2に対するコンクリート4の被り厚さdを管理する方法において、コンクリート4の打設前に型枠5と対向する鉄筋2の列3の型枠対向面上に所定面積Sの検出電極10を該鉄筋列3から絶縁し且つ該鉄筋列3のコンクリート付着面積を実質的に維持しつつ固着し、型枠5の鉄筋対向面又は反対側面上の検出電極対向部位に前記所定面積Sの対向電極14を貼付し、コンクリート4の打設時に検出電極10及び対向電極14の間の静電容量Cを測定することにより鉄筋列3に対するコンクリート4の被り厚さdを管理してなるものである。   Referring to the embodiment of FIG. 1, the covering thickness management method for a reinforced concrete structure according to the present invention is a method for managing the covering thickness d of the concrete 4 with respect to the reinforcing bar 2 of the reinforced concrete structure 1. The detection electrode 10 having a predetermined area S is insulated from the reinforcing bar row 3 on the surface facing the mold of the row 3 of the reinforcing bars 2 facing the form 5 before, and the concrete adhesion area of the reinforcing bar row 3 is substantially maintained. The counter electrode 14 having the predetermined area S is pasted to the detection electrode facing portion on the reinforcing bar facing surface or the opposite side surface of the form 5 and the static electricity between the detecting electrode 10 and the facing electrode 14 is placed when the concrete 4 is placed. The covering thickness d of the concrete 4 with respect to the reinforcing bar row 3 is managed by measuring the electric capacity C.

好ましくは、検出電極10を鉄筋列3の型枠対向面上の水平及び/又は垂直方向の全長に亘り固着する。更に好ましくは、検出電極10をコンクリート4中に埋め込み、構造物完成後に検出電極10と対向するコンクリート4の表面上の部位に対向電極14を貼付し、コンクリート4中の検出電極10とコンクリート4表面の対向電極14との間の静電容量Cを測定することにより鉄筋列3に対する現実のコンクリート厚さdを検査する。   Preferably, the detection electrode 10 is fixed over the entire length in the horizontal and / or vertical direction on the mold facing surface of the reinforcing bar row 3. More preferably, the detection electrode 10 is embedded in the concrete 4, and after the structure is completed, the counter electrode 14 is pasted on the surface of the concrete 4 facing the detection electrode 10, and the detection electrode 10 and the surface of the concrete 4 in the concrete 4 are adhered. The actual concrete thickness d for the reinforcing bar row 3 is inspected by measuring the capacitance C between the counter electrode 14 and the counter electrode 14.

本発明による鉄筋コンクリート構造物の被り厚さ管理方法及び装置は、コンクリート打設前に型枠と対向する鉄筋列の型枠対向面上に所定面積の検出電極を鉄筋列から絶縁し且つ鉄筋列のコンクリート付着面積を維持しつつ固着し、型枠上の検出電極対向部位に所定面積の対向電極を貼付し、コンクリート打設時に検出電極と対向電極との間の静電容量を測定することにより鉄筋列に対するコンクリートの被り厚さを管理するので、次の有利な効果を奏する。   The covering thickness management method and apparatus for a reinforced concrete structure according to the present invention includes a method in which a detection electrode having a predetermined area is insulated from a reinforcing bar array on a surface of the reinforcing bar array facing the mold frame before placing the concrete, and the reinforcing bar array Reinforcement by sticking while maintaining the adhesion area of concrete, sticking a counter electrode of a predetermined area to the detection electrode facing part on the mold, and measuring the capacitance between the detection electrode and the counter electrode when placing concrete Since the concrete covering thickness for the row is managed, the following advantageous effects are obtained.

(イ)被り厚さのチェックを広範囲にわたり容易に行い且つ被り厚さを定量的に検出できるので、現場の省力化及び施工品質の信頼性向上に貢献できる。
(ロ)鉄筋・型枠工事において被り厚さを定量的に確認して被り厚さ不足の危険に対処できるので、完成後の被り厚さ検査に比し被り厚さ不足の補修の低コスト化が図れる。
(ハ)従来面倒であった施工中における被り厚さを定量的に記録・保存する手段としての利用が期待できる。
(ニ)コンクリート打設前の確認だけでなく、コンクリート打設中の充填確認に利用できる。
(ホ)検出電極をコンクリート中に埋め込むので、構造物完成後における被り厚さ検査等に利用できる。
(B) Cover thickness can be easily checked over a wide range and the cover thickness can be detected quantitatively, thereby contributing to labor saving at the site and improvement in the reliability of construction quality.
(B) Since the cover thickness can be checked quantitatively in rebar and formwork to deal with the danger of insufficient cover thickness, the cost of repair of insufficient cover thickness can be reduced compared to the cover thickness inspection after completion. Can be planned.
(C) It can be expected to be used as a means for quantitatively recording and storing the thickness of the cover during construction, which has conventionally been troublesome.
(D) It can be used not only for confirmation before placing concrete, but also for filling during concrete placement.
(E) Since the detection electrode is embedded in the concrete, it can be used for covering thickness inspection after the structure is completed.

図1は、この場合柱躯体である鉄筋コンクリート構造物1の施工管理に本発明を適用した実施例を示す。同図の鉄筋コンクリート構造物1は、柱躯体の主筋及び帯筋となる鉄筋2を配筋すると共にその鉄筋2を取り囲む形状で型枠5を組み立て、型枠5内にコンクリート4を打ち込んで養生し、コンクリート硬化後に型枠5を取り外すことにより構築する。本発明は、鉄筋2に対するコンクリート4の被り厚さを、型枠5と対向する鉄筋2の列3と型枠5との間の間隔dを定量的に把握することにより管理する。   FIG. 1 shows an embodiment in which the present invention is applied to construction management of a reinforced concrete structure 1 which is a columnar frame in this case. In the reinforced concrete structure 1 shown in the figure, a reinforcing bar 2 serving as a main reinforcing bar and a reinforcing bar of a pillar frame is arranged, and a form 5 is assembled in a shape surrounding the reinforcing bar 2, and concrete 4 is driven into the form 5 and cured. It is constructed by removing the formwork 5 after the concrete is hardened. The present invention manages the covering thickness of the concrete 4 with respect to the reinforcing bar 2 by quantitatively grasping the distance d between the row 3 of the reinforcing bars 2 facing the mold 5 and the mold 5.

鉄筋列3と型枠5との間隔dは、鉄筋列3上に固着した検出電極10と型枠5に貼り付けた対向電極14との間の静電容量Cを測定することにより把握する。検出電極10は所定の面積Sとし、例えば図1のように鉄筋列3の型枠対向面上に水平方向の全長に亘り、鉄筋列3から電気的に絶縁して固着する。検出電極10を筋列3から絶縁する理由は、検出電極10の面積S及び測定対象の距離dを限定するためである。例えば図1に示すように、所定幅の絶縁層11と導電層(例えば亜鉛メッキ、銅、導電性不織布等)12とを重ね合わせた帯状の積層テープを検出電極10とし、その絶縁層11を鉄筋列3の型枠対向面上に密着させて取り付けることにより検出電極10と鉄筋列3から絶縁する。この場合、積層テープの長さにより検出電極10の面積Sを定めることができる。但し、検出電極10は鉄筋列3から絶縁して固着すれば足り積層テープに限定されない。   The distance d between the reinforcing bar row 3 and the mold 5 is grasped by measuring the capacitance C between the detection electrode 10 fixed on the reinforcing bar row 3 and the counter electrode 14 attached to the mold 5. The detection electrode 10 has a predetermined area S. For example, as shown in FIG. 1, the detection electrode 10 is electrically insulated and fixed from the reinforcing bar row 3 over the entire length of the reinforcing bar row 3 in the horizontal direction. The reason why the detection electrode 10 is insulated from the muscle row 3 is to limit the area S of the detection electrode 10 and the distance d to be measured. For example, as shown in FIG. 1, a strip-shaped laminated tape in which an insulating layer 11 having a predetermined width and a conductive layer (for example, galvanized, copper, conductive nonwoven fabric, etc.) 12 are overlapped is used as a detection electrode 10, and the insulating layer 11 is The detection electrode 10 and the reinforcing bar row 3 are insulated from each other by attaching the reinforcing bar row 3 on the surface facing the formwork. In this case, the area S of the detection electrode 10 can be determined by the length of the laminated tape. However, the detection electrode 10 is not limited to the laminated tape as long as it is insulated and fixed from the reinforcing bar row 3.

鉄筋コンクリート構造では鉄筋2とコンクリート4との一体化の確保が必須条件であり、検出電極10は鉄筋列3とコンクリート4との一体化を阻害しないように固着する必要がある。鉄筋2とコンクリート4との一体化は鉄筋表面とコンクリートとの付着作用により得られる。このため検出電極10は、鉄筋列3の各鉄筋2とコンクリート4との付着面積が実質的に維持されるように固着する。例えば検出電極10を積層テープとした図1の実施例では、積層テープが鉄筋2の周方向に巻きつかないように注意しながら、積層テープを鉄筋2との接着面が線状となるように鉄筋列3に固着する。   In the reinforced concrete structure, it is essential to ensure the integration of the reinforcing bar 2 and the concrete 4, and the detection electrode 10 needs to be fixed so as not to hinder the integration of the reinforcing bar row 3 and the concrete 4. The integration of the reinforcing bar 2 and the concrete 4 is obtained by the adhesion between the reinforcing bar surface and the concrete. Therefore, the detection electrode 10 is fixed so that the adhesion area between the reinforcing bars 2 and the concrete 4 of the reinforcing bar row 3 is substantially maintained. For example, in the embodiment of FIG. 1 in which the detection electrode 10 is a laminated tape, the adhesive surface of the laminated tape to the reinforcing bar 2 is linear so that the laminated tape does not wrap around the reinforcing bar 2 in the circumferential direction. It is fixed to the reinforcing bar row 3.

対向電極14は、例えば型枠工事の際に、検出電極10と対向する型枠5上の部位に貼り付ける。対向電極14は型枠5の鉄筋対向面に貼付する方が型枠5の厚さの影響がないため若干精度の向上が望めるが、例えば図2に示すように型枠5の鉄筋対向面と反対側面に貼り付けてもよい。対向電極14の面積Sを検出電極10の面積Sと同一とすることにより、鉄筋群3の型枠対向面と型枠5との間に平行電極対を形成する。   The counter electrode 14 is affixed to a portion on the mold 5 that faces the detection electrode 10 at the time of, for example, mold work. Affixing the counter electrode 14 to the reinforcing bar-facing surface of the mold 5 is not affected by the thickness of the mold 5 so that a slight improvement in accuracy can be expected. For example, as shown in FIG. You may affix on the opposite side. By making the area S of the counter electrode 14 the same as the area S of the detection electrode 10, a parallel electrode pair is formed between the mold frame facing surface of the reinforcing bar group 3 and the mold 5.

鉄筋・型枠工事が終了しコンクリート4を打設する前に、検出電極10と対向電極14との間に、両電極10、14間の静電容量Cを測定して両電極10、14間の間隔dを検出する検出手段16を接続する。図1の検出手段16は、両電極10、14間の静電容量Cを測定する静電容量測定手段18と記憶手段17とを有する。静電容量測定手段18の一例は、数百ボルト程度の高周波交流電圧を印加して両電極10、14間のインピーダンス変化から静電容量Cを測定する従来技術に属する静電容量計である。   Before the rebar and formwork work is completed and the concrete 4 is placed, the capacitance C between the electrodes 10 and 14 is measured between the detection electrode 10 and the counter electrode 14 to measure between the electrodes 10 and 14. The detecting means 16 for detecting the interval d is connected. The detection means 16 in FIG. 1 has a capacitance measurement means 18 and a storage means 17 for measuring the capacitance C between the electrodes 10 and 14. An example of the capacitance measuring means 18 is a capacitance meter belonging to the prior art that measures a capacitance C from a change in impedance between both electrodes 10 and 14 by applying a high frequency AC voltage of about several hundred volts.

検出手段16の測定原理を示す図4を参照するに、検出電極10と対向電極14との間の静電容量Cは(1)式で表わすことができる。(1)式においてSは両電極10、14の面積、dは両電極10、14間の距離、εは両電極10、14間の誘電率(コンクリート打設前は空気の誘電率)を表わす。例えば、検出手段16の記憶手段17に空気の誘電率ε及び両電極10、14の面積Sを記憶しておけば、両電極10、14間の静電容量Cの測定値と(1)式とから両電極10、14間の距離dを算出できる。図1の検出手段16の一例は、静電容量Cの測定値と(1)式とから距離dを算出するプログラム内蔵のコンピュータである。   Referring to FIG. 4 showing the measurement principle of the detection means 16, the capacitance C between the detection electrode 10 and the counter electrode 14 can be expressed by equation (1). In equation (1), S represents the area of both electrodes 10 and 14, d represents the distance between both electrodes 10 and 14, and ε represents the dielectric constant between both electrodes 10 and 14 (the dielectric constant of air before placing concrete). . For example, if the storage unit 17 of the detection unit 16 stores the dielectric constant ε of air and the area S of the electrodes 10 and 14, the measured value of the capacitance C between the electrodes 10 and 14 and the equation (1) From this, the distance d between the electrodes 10 and 14 can be calculated. An example of the detection means 16 in FIG. 1 is a computer with a built-in program for calculating the distance d from the measured value of the capacitance C and the equation (1).

C=ε・S/d ………………………………………………………………………(1)
C=2πε/log(b/a) ……………………………………………………(2)
C = ε · S / d ……………………………………………………………………… (1)
C = 2πε / log (b / a) ……………………………………………… (2)

(1)式は距離dに対して面積Sが十分大きい場合に成立するが、一般に鉄筋2に対するコンクリート4の被り厚さdは30〜70mm程度であるのに対し、本発明では検出電極10及び対向電極14を鉄筋列3の型枠対向面の水平方向全長に亘る5〜10m以上とすることができるので、(1)式に基づき距離dを有効に算出できる。算出した距離dにより、コンクリート打設前の被り厚さdを定量的に把握することができ、例えば検出手段16の記憶手段17に記憶した被り厚さdの規定値と比較することにより被り厚さdの不足等を検出する。なお、対向電極14を鉄筋対向面と反対側面に貼付した場合は、型枠5の誘電率を考慮して検出電極10と対向電極14との間の距離を算出し、その距離dから型枠5の厚さを減算することにより被り厚さdを算出する。   Equation (1) is established when the area S is sufficiently large with respect to the distance d. In general, the covering thickness d of the concrete 4 with respect to the reinforcing bar 2 is about 30 to 70 mm. Since the counter electrode 14 can be set to 5 to 10 m or more over the entire length in the horizontal direction of the mold frame facing surface of the reinforcing bar row 3, the distance d can be calculated effectively based on the equation (1). From the calculated distance d, it is possible to quantitatively grasp the covering thickness d before placing concrete, for example, by comparing with the specified value of the covering thickness d stored in the storage means 17 of the detecting means 16 Detect d shortage or the like. When the counter electrode 14 is affixed to the side opposite to the reinforcing bar facing surface, the distance between the detection electrode 10 and the counter electrode 14 is calculated in consideration of the dielectric constant of the mold 5, and the mold is calculated from the distance d. The cover thickness d is calculated by subtracting the thickness of 5.

本発明では、検出電極10及び対向電極14を鉄筋列3の型枠対向面上に水平方向の全長に亘り設けることができるので、いちどきに広い範囲の被り厚さdを確認することが可能である。例えば鉄筋列3の水平方向の一部分にゆがみ等が生じている場合でも、検出手段16による被り厚さdに変化を生じることから、そのゆがみを検出することができる。また図1のように鉄筋列3の異なる高さ部位に複数の電極対10、14を設けておけば、異なる高さ部位における鉄筋列3のゆがみを検出できる。   In the present invention, since the detection electrode 10 and the counter electrode 14 can be provided over the entire length in the horizontal direction on the form-frame facing surface of the reinforcing bar row 3, it is possible to confirm the covering thickness d in a wide range at a time. . For example, even when a distortion or the like is generated in a part of the reinforcing bar row 3 in the horizontal direction, since the covering thickness d is changed by the detecting means 16, the distortion can be detected. Further, as shown in FIG. 1, if a plurality of electrode pairs 10 and 14 are provided at different height portions of the reinforcing bar row 3, it is possible to detect distortion of the reinforcing bar row 3 at different height portions.

検出電極10及び対向電極14は水平方向に限らず、例えば図2に示すように鉄筋列3の型枠対向面の垂直方向全長に亘して設けてもよい。図2は柱躯体の鉄筋群の四隅に垂直方向全長に亘る電極対10、14を設けた例であり、例えば検出手段16を四隅の電極対10、14に順次接続することにより、四隅における被り厚さdの不足等を確認できる。図1に示す水平方向の電極対10、14の配置と図2に示す垂直方向の電極対10、14の配置とを組み合わせることにより、鉄筋列3の型枠対向面上におけるゆがみの位置を検出することも可能である。但し、検出電極10及び対向電極14の配置は(1)式が成立する範囲内で任意に選択可能であり、図1及び2の実施例に限定されない。   The detection electrode 10 and the counter electrode 14 are not limited to the horizontal direction, and may be provided over the entire length in the vertical direction of the mold frame facing surface of the reinforcing bar row 3 as shown in FIG. FIG. 2 shows an example in which electrode pairs 10 and 14 extending in the vertical direction are provided at the four corners of the reinforcing bar group of the columnar frame. For example, by sequentially connecting the detection means 16 to the electrode pairs 10 and 14 at the four corners, the cover at the four corners is provided. The lack of thickness d can be confirmed. By detecting the horizontal arrangement of the electrode pairs 10, 14 shown in FIG. 1 and the arrangement of the vertical electrode pairs 10, 14 shown in FIG. It is also possible to do. However, the arrangement of the detection electrode 10 and the counter electrode 14 can be arbitrarily selected within the range in which the expression (1) is satisfied, and is not limited to the embodiment of FIGS.

図3は、鉄筋2の群(鉄筋籠)の周囲における被り厚さdを計測する本発明の他の実施例を示す。この場合は、鉄筋群(鉄筋籠)の周縁の型枠対向面上に検出電極10を周縁に沿って環状に固着し、型枠5上の対向部位に対向電極14を環状に貼付することにより、鉄筋群の周囲における被り厚さdを(1)式により検出することができる。また、図3に示すように断面矩形の鉄筋籠の中心点Oから検出電極10(鉄筋2)までを距離aとし、中心点Oから対向電極14(型枠5)の対抗面までを距離bとした場合は、検出電極10と対向電極14との間の静電容量Cを(2)式で近似することができ、両電極10、14間の静電容量Cの測定値と(2)式とから両電極10、14間の距離d(=b−a)を算出してもよい。   FIG. 3 shows another embodiment of the present invention for measuring the covering thickness d around the group of reinforcing bars 2 (rebar bar). In this case, the detection electrode 10 is fixed in a ring shape along the periphery on the mold facing surface of the periphery of the reinforcing bar group (rebar bar), and the counter electrode 14 is attached in a ring shape on the facing portion on the mold 5 in a ring shape. The covering thickness d around the reinforcing bar group can be detected by the equation (1). Further, as shown in FIG. 3, the distance a is from the center point O of the reinforcing bar rod having a rectangular cross section to the detection electrode 10 (rebar 2), and the distance b is from the center point O to the opposing surface of the counter electrode 14 (form 5). In this case, the capacitance C between the detection electrode 10 and the counter electrode 14 can be approximated by the equation (2), and the measured value of the capacitance C between the electrodes 10 and 14 and (2) The distance d (= b−a) between the electrodes 10 and 14 may be calculated from the equation.

こうして本発明の目的である「鉄筋コンクリート構造物の広範囲に亘る被り厚さを定量的に把握して管理する方法」の提供が達成できる。   Thus, provision of “a method for quantitatively grasping and managing the covering thickness of a reinforced concrete structure over a wide range”, which is an object of the present invention, can be achieved.

本発明は、コンクリート4を打設する前における被り厚さdの管理だけでなく、コンクリート4の打設時におけるコンクリート充填確認にも利用できる。例えば、打設するコンクリート4の誘電率εを検出手段16の記憶装置17に記憶しておけば、コンクリート4の打設時に静電容量Cの測定値と(1)式(又は(2)式)とから検出電極10及び対向電極14間のコンクリート4の充填厚さdを算出できる。例えば算出した充填厚さdとコンクリート打設前に確認した被り厚さdとの相異に基づき、検出手段16により両電極10、14間におけるコンクリート4の未充填を検出する。コンクリート未充填が検出された場合は、未充填がなくなるまでバイブレーションを施すことによりコンクリート未充填を防止する。   The present invention can be used not only for the management of the covering thickness d before placing the concrete 4 but also for the concrete filling confirmation when placing the concrete 4. For example, if the dielectric constant ε of the concrete 4 to be placed is stored in the storage device 17 of the detecting means 16, the measured value of the capacitance C and the formula (1) (or (2) formula when the concrete 4 is placed. ), The filling thickness d of the concrete 4 between the detection electrode 10 and the counter electrode 14 can be calculated. For example, based on the difference between the calculated filling thickness d and the covering thickness d confirmed before placing the concrete, the detecting means 16 detects whether the concrete 4 is not filled between the electrodes 10 and 14. When the concrete unfilling is detected, the concrete unfilling is prevented by applying vibration until the unfilling disappears.

また、本発明では検出電極10をコンクリート4中に埋め込むので、検出電極10に接続したケーブル等をコンクリート表面に導き出しておけば、構造物完成後にコンクリート4の被り厚さの検査に利用することも可能である。すなわち、完成後のコンクリート表面上の検出電極10と対向する部位に対向電極14を貼付し、コンクリート4の誘電率εを検出手段16の記憶装置17に記憶し、検出電極10に接続されたケーブルと対向電極14とを検出手段16に接続して両電極10、14間の静電容量Cを測定する。静電容量Cの測定値と(1)式(又は(2)式)とから、鉄筋列3に対する現実のコンクリート4の被り厚さdを検査することができる。この検査方法によれば、従来の非破壊検査システムは困難であった広い範囲の被り厚さdを容易に把握することが可能である。   In the present invention, since the detection electrode 10 is embedded in the concrete 4, if the cable connected to the detection electrode 10 is led to the concrete surface, it can be used for the inspection of the covering thickness of the concrete 4 after the structure is completed. Is possible. That is, the counter electrode 14 is affixed to a portion facing the detection electrode 10 on the finished concrete surface, the dielectric constant ε of the concrete 4 is stored in the storage device 17 of the detection means 16, and the cable connected to the detection electrode 10 And the counter electrode 14 are connected to the detection means 16, and the capacitance C between the electrodes 10 and 14 is measured. From the measured value of the capacitance C and the formula (1) (or (2)), the actual covering thickness d of the concrete 4 with respect to the reinforcing bar row 3 can be inspected. According to this inspection method, it is possible to easily grasp the covering thickness d in a wide range, which has been difficult for the conventional nondestructive inspection system.

以上、検出電極10及び対向電極14間の静電容量Cに基づく被り厚さdの管理方法について説明したが、実際の鉄筋コンクリート構造物1の建築現場では周囲の鉄筋2や重機等からの外乱の影響があり、(1)式(又は(2)式)による被り厚さdの測定値に誤差が生じ得る。図5は、外乱の影響を避けるため、鉄筋列3の型枠対向面上に検出電極10と隣接させて対照電極対20を固着した本発明の実施例を示す。なお、同図(B)では、検出電極10を上述した絶縁層11と導電層12とを重ね合わせた積層テープとしている。   In the above, the management method of the covering thickness d based on the capacitance C between the detection electrode 10 and the counter electrode 14 has been described. However, in the actual construction site of the reinforced concrete structure 1, the disturbance from the surrounding rebar 2 or heavy machinery is There is an influence, and an error may occur in the measurement value of the covering thickness d according to the equation (1) (or (2)). FIG. 5 shows an embodiment of the present invention in which the reference electrode pair 20 is fixed adjacent to the detection electrode 10 on the surface facing the form of the reinforcing bar row 3 in order to avoid the influence of disturbance. In FIG. 5B, the detection electrode 10 is a laminated tape in which the above-described insulating layer 11 and conductive layer 12 are overlaid.

図示例の対象電極対20は、同図(C)に示すように、所定厚さd2及び誘電率ε2の絶縁層21を挟持した所定面積S2の一対の電極20a、20bと、該電極対20a、20bを鉄筋列3の型枠対向面上に該鉄筋列3から絶縁して固着する絶縁固着層23とを有する。対照電極対20の絶縁層21の厚さは例えば1〜10mm程度とすることができる。例えば、同図(B)に示す絶縁層11と導電層12とを有する積層テープを二重に重ね合わせて同図(C)に示す対照電極対20としてもよい。   As shown in FIG. 2C, the target electrode pair 20 in the illustrated example includes a pair of electrodes 20a and 20b having a predetermined area S2 sandwiching an insulating layer 21 having a predetermined thickness d2 and a dielectric constant ε2, and the electrode pair 20a. , 20b is provided on the surface facing the form of the reinforcing bar row 3 and has an insulating fixing layer 23 that is insulated and fixed from the reinforcing bar row 3. The thickness of the insulating layer 21 of the reference electrode pair 20 can be set to about 1 to 10 mm, for example. For example, a laminated tape having an insulating layer 11 and a conductive layer 12 shown in FIG. 5B may be overlapped to form the reference electrode pair 20 shown in FIG.

対照電極対20を設けた図5の実施例に適用する被り厚さdの検出手段16の一例を図6に示す。同図の検出手段16は、検出電極10及び対向電極14間の静電容量C1を測定する静電容量測定手段18と、電極対20a、20b間の静電容量C2を測定する静電容量測定手段25と、静電容量C1の測定値と静電容量C2の測定値との比を算出する比較手段26とを有する。静電容量測定手段18、25の一例は、上述した静電容量計である。   An example of the covering thickness d detecting means 16 applied to the embodiment of FIG. 5 provided with the reference electrode pair 20 is shown in FIG. The detection means 16 in the figure includes a capacitance measurement means 18 that measures the capacitance C1 between the detection electrode 10 and the counter electrode 14, and a capacitance measurement that measures the capacitance C2 between the electrode pairs 20a and 20b. Means 25 and comparison means 26 for calculating the ratio of the measured value of capacitance C1 and the measured value of capacitance C2. An example of the capacitance measuring means 18, 25 is the capacitance meter described above.

外乱の影響を考慮した場合、面積S1、間隔d1の検出電極10及び対向電極14の間の誘電率をε1とした場合、両電極10、14間の静電容量C1は(11)式で表わすことができる。(11)式のαは、外乱の影響を示すパラメタである。他方、対照電極20a、20bを面積S2、対照電極20a、20bが挟持する絶縁層21を厚さd2、誘電率ε2とした場合、対象電極対20a、20b間の静電容量C2は(12)式で表わすことができる。(11)式及び(12)式はパラメタαを含むので、外乱の影響により測定値C1、C2に誤差が生じ得る。これに対し(13)式に示す静電容量C1、C2の比(=C1/C2)は、パラメタαを含まないので外乱の影響を除くことができる。   When the influence of disturbance is taken into account, when the dielectric constant between the detection electrode 10 and the counter electrode 14 with the area S1 and the distance d1 is ε1, the capacitance C1 between the electrodes 10 and 14 is expressed by the equation (11). be able to. Α in equation (11) is a parameter indicating the influence of disturbance. On the other hand, when the control electrode 20a, 20b has an area S2, the insulating layer 21 sandwiched between the control electrodes 20a, 20b has a thickness d2, and a dielectric constant ε2, the capacitance C2 between the target electrode pair 20a, 20b is (12) It can be expressed by an expression. Since the equations (11) and (12) include the parameter α, an error may occur in the measured values C1 and C2 due to the influence of disturbance. On the other hand, since the ratio of the capacitances C1 and C2 (= C1 / C2) shown in the equation (13) does not include the parameter α, the influence of disturbance can be excluded.

C1=α・ε1・S1/d1 ………………………………………………………(11)
C2=α・ε2・S2/d2 ………………………………………………………(12)
C1/C2=(ε1/ε2)・(S1/S2)・(d2/d1) ……………(13)
δ=20log(C1/C2) ……………………………………………………(14)
C1 = α ・ ε1 ・ S1 / d1 ……………………………………………………… (11)
C2 = α ・ ε2 ・ S2 / d2 ………………………………………………… (12)
C1 / C2 = (ε1 / ε2) · (S1 / S2) · (d2 / d1) (13)
δ = 20log (C1 / C2) …………………………………………………… (14)

本発明者は、実際の鉄筋コンクリート構造物の工事現場において、被り厚さd=25、30、35、40cmの間隔で検出電極10と対向電極14とを設けると共に、検出電極10に隣接して対象電極対20を設け、電極10、14間の静電容量C1と対照電極対20a、20b間の静電容量C2との比を確認する実験を行った。本実験では、幅100mm及び長さ5mの亜鉛メッキ製の積層テープを検出電極10として用い、その積層テープを二重に重ね合わせたものを対象電極対20とした。また、静電容量C1、C2の比を(14)式によりδとして算出した。実験結果を表1及び図7のグラフに示す。図7のグラフから分かるように、静電容量C1、C2の比δは被り厚さdに極めてよく比例していることが確認できた。   The present inventor provided the detection electrode 10 and the counter electrode 14 at intervals of covering thickness d = 25, 30, 35, and 40 cm at the actual construction site of the reinforced concrete structure, and the object adjacent to the detection electrode 10. An electrode pair 20 was provided, and an experiment was conducted to confirm the ratio between the capacitance C1 between the electrodes 10 and 14 and the capacitance C2 between the control electrode pair 20a and 20b. In this experiment, a galvanized laminated tape having a width of 100 mm and a length of 5 m was used as the detection electrode 10, and the laminated tape was doubled and used as the target electrode pair 20. Further, the ratio of the capacitances C1 and C2 was calculated as δ by the equation (14). The experimental results are shown in Table 1 and the graph of FIG. As can be seen from the graph of FIG. 7, it was confirmed that the ratio δ of the capacitances C1 and C2 was very well proportional to the covering thickness d.

例えば、図6の検出手段16の記憶手段17に表1又は図7のグラフに示した被り厚さdと静電容量C1、C2の比δとの関係を記憶しておけば、検出手段16の比較手段26で算出した静電容量C1、C2の測定値の比と前記関係とから、検出手段16により外乱の影響を受けずに被り厚さdを高精度に求めることが可能となる。   For example, if the storage means 17 of the detection means 16 in FIG. 6 stores the relationship between the covering thickness d and the ratio δ of the capacitances C1 and C2 shown in the graph of FIG. From the ratio of the measured values of the capacitances C1 and C2 calculated by the comparison means 26 and the above relationship, the covering thickness d can be obtained with high accuracy by the detection means 16 without being affected by disturbance.

Figure 2009257795
Figure 2009257795

本発明の一実施例の説明図である。It is explanatory drawing of one Example of this invention. 本発明の他の一実施例の説明図である。It is explanatory drawing of other one Example of this invention. 本発明の更に他の一実施例の説明図である。It is explanatory drawing of another one Example of this invention. 本発明の原理を示す説明図である。It is explanatory drawing which shows the principle of this invention. 本発明の更に他の実施例の説明図である。It is explanatory drawing of other Example of this invention. 図5の実施例の原理を示す説明図である。It is explanatory drawing which shows the principle of the Example of FIG. 図5の実施例の実験結果の一例を示すグラフである。It is a graph which shows an example of the experimental result of the Example of FIG.

符号の説明Explanation of symbols

1…鉄筋コンクリート構造物
2…鉄筋 3…鉄筋列
4…コンクリート 5…型枠
7…鉄筋・型枠間の空隙
10…検出電極 11…絶縁層
12…導電層 14…対向電極
16…検出手段 17…記憶手段
18…静電容量測定手段
20…対照電極対 21a、21b…対象電極
22…絶縁層 23…絶縁固着手段
25…静電容量測定手段 26…比較手段
DESCRIPTION OF SYMBOLS 1 ... Reinforced concrete structure 2 ... Reinforcing bar 3 ... Reinforcement row 4 ... Concrete 5 ... Formwork 7 ... Gap between rebar and formwork
10 ... Detection electrode 11 ... Insulating layer
12… Conductive layer 14… Counter electrode
16 ... Detection means 17 ... Storage means
18 ... Capacitance measurement means
20… Control electrode pair 21a, 21b… Target electrode
22… Insulating layer 23… Insulation fixing means
25 ... Capacitance measurement means 26 ... Comparison means

Claims (5)

鉄筋コンクリート構造物の鉄筋に対するコンクリートの被り厚さを管理する方法において、コンクリート打設前に型枠と対向する鉄筋列の型枠対向面上に所定面積の検出電極を該鉄筋列から絶縁し且つ該鉄筋列のコンクリート付着面積を実質的に維持しつつ固着し、型枠の鉄筋対向面又は反対側面上の検出電極対向部位に前記所定面積の対向電極を貼付し、コンクリート打設時に前記検出及び対向電極間の静電容量を測定することにより前記鉄筋列に対するコンクリートの被り厚さを管理してなる鉄筋コンクリート構造物の被り厚さ管理方法。 In the method for managing the concrete covering thickness of the reinforced concrete structure with respect to the reinforcing bars, a detection electrode having a predetermined area is insulated from the reinforcing bar row on the surface of the reinforcing bar row facing the mold frame before placing the concrete, and It adheres while maintaining the concrete adhesion area of the reinforcing bar row, sticks the counter electrode of the predetermined area to the detection electrode facing part on the reinforcing bar facing surface or the opposite side surface of the formwork, and the detection and facing when placing concrete A method for managing the covering thickness of a reinforced concrete structure in which the covering thickness of the concrete with respect to the reinforcing bar row is managed by measuring the capacitance between the electrodes. 請求項1の管理方法において、前記検出電極を前記鉄筋列の型枠対向面上の水平及び/又は垂直方向の全長に亘り固着してなる鉄筋コンクリート構造物の被り厚さ管理方法。 2. The method of managing a covering thickness of a reinforced concrete structure according to claim 1, wherein the detection electrode is fixed over the entire length in the horizontal and / or vertical direction on the form facing surface of the reinforcing bar row. 請求項1又は2の管理方法において、前記検出電極をコンクリート中に埋め込み、構造物完成後に検出電極と対向するコンクリート表面上の部位に対向電極を貼付し、前記コンクリート中の検出電極とコンクリート表面の対向電極との間の静電容量を測定することにより前記鉄筋列に対する現実のコンクリート厚さを検査してなる鉄筋コンクリート構造物の被り厚さ管理方法。 In the management method of Claim 1 or 2, the said detection electrode is embedded in concrete, a counter electrode is affixed on the site | part on the concrete surface facing a detection electrode after completion of a structure, and the detection electrode in the said concrete and a concrete surface are attached. A covering thickness management method for a reinforced concrete structure in which an actual concrete thickness with respect to the reinforcing bar row is inspected by measuring a capacitance between the counter electrode and the counter electrode. 請求項1から3の何れかの管理方法において、前記検出電極を、絶縁層及び導電層を重ね合わせた所定幅の積層テープとしてなる鉄筋コンクリート構造物の被り厚さ管理方法。 4. The method of managing a covering thickness of a reinforced concrete structure according to claim 1, wherein the detection electrode is a laminated tape having a predetermined width in which an insulating layer and a conductive layer are overlapped. 請求項1から4の何れかの管理方法において、前記鉄筋列の型枠対向面上に検出電極と隣接させて所定絶縁層を挟持した所定面積の対照電極対を前記鉄筋列から絶縁して固着し、コンクリート打設時に前記検出及び対向電極間の静電容量の測定値と前記対照電極対間の静電容量の測定値との比に基づき前記コンクリートの被り厚さを管理してなる鉄筋コンクリート構造物の被り厚さ管理方法。 5. The control method according to claim 1, wherein a reference electrode pair having a predetermined area, which is adjacent to a detection electrode and sandwiches a predetermined insulating layer, is fixedly insulated from the reinforcing bar row on the form-facing surface of the reinforcing bar row. And a concrete reinforced concrete structure in which the concrete covering thickness is managed based on a ratio between the measured value of the capacitance between the detection and counter electrodes and the measured value of the capacitance between the reference electrode pair during concrete placement. How to control the thickness of objects.
JP2008104169A 2008-04-12 2008-04-12 Covering depth management method for reinforced concrete structure Pending JP2009257795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104169A JP2009257795A (en) 2008-04-12 2008-04-12 Covering depth management method for reinforced concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104169A JP2009257795A (en) 2008-04-12 2008-04-12 Covering depth management method for reinforced concrete structure

Publications (1)

Publication Number Publication Date
JP2009257795A true JP2009257795A (en) 2009-11-05

Family

ID=41385414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104169A Pending JP2009257795A (en) 2008-04-12 2008-04-12 Covering depth management method for reinforced concrete structure

Country Status (1)

Country Link
JP (1) JP2009257795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573051B1 (en) * 2018-11-01 2019-09-11 中国電力株式会社 Capacitance strain gauge and strain measurement system
CN112630270A (en) * 2020-12-28 2021-04-09 青岛理工大学 Method for detecting state of reinforcing steel bar in concrete structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573051B1 (en) * 2018-11-01 2019-09-11 中国電力株式会社 Capacitance strain gauge and strain measurement system
WO2020090087A1 (en) * 2018-11-01 2020-05-07 中国電力株式会社 Capacitive strain gauge and strain measurement system
CN112630270A (en) * 2020-12-28 2021-04-09 青岛理工大学 Method for detecting state of reinforcing steel bar in concrete structure

Similar Documents

Publication Publication Date Title
Liu et al. Concrete damage diagnosis using electromechanical impedance technique
Xu et al. Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis
Maierhofer et al. Application of impulse-thermography for non-destructive assessment of concrete structures
Nassr et al. Coplanar capacitance sensors for detecting water intrusion in composite structures
Carpinteri et al. Damage analysis of reinforced concrete buildings by the acoustic emission technique
CN103388378B (en) Based on the intelligent reinforcing bar and preparation method thereof of piezoceramics crystal
Fan et al. Techniques of corrosion monitoring of steel rebar in reinforced concrete structures: A review
Helmerich et al. Multi-tool inspection and numerical analysis of an old masonry arch bridge
Du et al. Assessment of corrosion of reinforcing steel bars in concrete using embedded piezoelectric transducers based on ultrasonic wave
WO2018103463A1 (en) Apparatus and method for detecting chloride ion content in concrete on the basis of graphene/cement composite material
Bunnori et al. The use of acoustic emission for the early detection of cracking in concrete structures
Nygaard et al. Measuring the corrosion rate of steel in concrete–effect of measurement technique, polarisation time and current
US11879885B2 (en) Electrochemical measurement system and method for monitoring a concrete structure
Wan Using fiber-reinforced polymer (FRP) composites in bridge construction and monitoring their performance: an overview
Garhwal et al. Performance of expanded polystyrene (EPS) sandwiched concrete panels subjected to accelerated corrosion
JP2009257795A (en) Covering depth management method for reinforced concrete structure
Nassr et al. Improved interdigital sensors for structural health monitoring of composite retrofit systems
Budelmann et al. Non-destructive measurement toolkit for corrosion monitoring and fracture detection of bridge tendons
Scuro et al. An innovative structural health monitoring system for the preliminary study of an ancient anti-seismic construction technique
Wichmann et al. Magnetoelastic stress measurement and material defect detection in prestressed tendons using coil sensors
CN108872319B (en) Corrosion sensor
Giri et al. Detection of gap in concrete-metal structures using piezoelectric sensor technique
Hou Wireless and electromechanical approaches for strain sensing and crack detection in fiber reinforced cementitious materials
Whelan et al. Post-fire nondestructive evaluation of a prestressed concrete double-tee joist roof
JP2011180118A (en) Concrete filling state inspecting method