JP2009257656A - Hot water storage facility using cogeneration means, and hot water storage method - Google Patents

Hot water storage facility using cogeneration means, and hot water storage method Download PDF

Info

Publication number
JP2009257656A
JP2009257656A JP2008105991A JP2008105991A JP2009257656A JP 2009257656 A JP2009257656 A JP 2009257656A JP 2008105991 A JP2008105991 A JP 2008105991A JP 2008105991 A JP2008105991 A JP 2008105991A JP 2009257656 A JP2009257656 A JP 2009257656A
Authority
JP
Japan
Prior art keywords
hot water
water supply
water
storage tank
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008105991A
Other languages
Japanese (ja)
Inventor
Yosuke Sadakane
洋祐 貞包
Iwao Azuma
岩男 東
Shinsuke Ide
晋介 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chofu Seisakusho Co Ltd
Original Assignee
Chofu Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chofu Seisakusho Co Ltd filed Critical Chofu Seisakusho Co Ltd
Priority to JP2008105991A priority Critical patent/JP2009257656A/en
Publication of JP2009257656A publication Critical patent/JP2009257656A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water storage facility which uses a cogeneration means capable of preventing water from freezing in a water supply passage by a simple structure and stably performing continuous operation, without having to add a special device, and to provide hot water storage method. <P>SOLUTION: The hot water storage facility 10 uses the cogeneration means having a storage tank 11 for storing water; a cogeneration means 12 for generating heat for heating the water in the storage tank 11 during power generation; the water supply passage 13 for connecting the storage tank 11 to the cogeneration means 12 and feeding the water inside the storage tank 11 to the cogeneration means 12; a hot water supply passage 14 for feeding the water heated by the cogeneration means 12 to the storage tank 11; and a bypass passage 15 for connecting the water supply passage 13 to the hot water supply passage 14. A portion or all of the heated water flowing in the hot water supply passage 14 under cold weather is made to flow to the water supply passage 13 via the bypass passage 15 due to a flow path switching facility 27 installed in the hot water supply passage 14 , and the temperature of the water flowing in the water supply passage 13 is raised; and the water flowing in the water supply passage 13 is prevented from freezing by the outside air. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、エンジン発電機や燃料電池のような熱電併給手段が発生する電力を負荷に供給すると共に、熱電併給手段の運転に伴って発生する排熱で水を加熱する貯湯設備及びその貯湯方法に関する。 The present invention provides, for example, a hot water storage facility that supplies power generated by a combined heat and power means such as an engine generator and a fuel cell to a load, and heats water with exhaust heat generated by the operation of the combined heat and power means, and its It relates to a hot water storage method.

従来、電力発生時に熱を発生する熱電併給手段と、熱電併給手段の排熱を回収する冷却水循環路と、この熱電併給手段の排熱で加熱された水を貯留する貯留タンクを備え、この貯留タンク内の湯を給湯に利用するコージェネレーションシステムが使用されている。この冷却水循環路は、貯留タンク内の水を熱電併給手段へ送る水供給用配管と、熱電併給手段で加熱された水を貯留タンクへ送る湯供給用配管を有し、熱電併給手段の排熱を吸収して高温となった冷却水を取り出し、貯留タンクへ貯留して給湯に利用し、給湯に伴い水流入用配管より貯留タンクに供給された水を、冷却水として熱電併給手段に還流する循環路である。
この水供給用配管は、屋外に配置され、しかも外気に曝されるため、外気の温度によっては、水供給用配管内で水が凍結し、水供給用配管等を損傷する場合があった。
そこで、冷却水循環路内の冷却水の凍結を防止する装置を備えたコージェネレーションシステムが、各種提案されている。
Conventionally, it has a cogeneration means that generates heat when power is generated, a cooling water circulation path that collects exhaust heat of the cogeneration means, and a storage tank that stores water heated by the exhaust heat of the cogeneration means. A cogeneration system that uses hot water in the tank for hot water supply is used. This cooling water circulation path has a water supply pipe for sending water in the storage tank to the cogeneration means and a hot water supply pipe for sending water heated by the cogeneration means to the storage tank. The cooling water that has become hot due to absorption of water is taken out, stored in a storage tank and used for hot water supply, and the water supplied to the storage tank from the water inflow piping along with the hot water supply is returned to the combined heat and power supply means as cooling water It is a circuit.
Since the water supply pipe is disposed outdoors and exposed to the outside air, depending on the temperature of the outside air, the water may freeze in the water supply pipe, and the water supply pipe and the like may be damaged.
Therefore, various cogeneration systems including a device for preventing freezing of the cooling water in the cooling water circulation path have been proposed.

例えば、特許文献1には、熱電併給手段と貯留タンクと循環路を備え、この循環路に設けられた温度センサーにより循環路を流れる水の温度を取得する温度取得手段と、温度取得手段により取得された温度が所定値以下であるか否かを判断する温度判断手段と、温度判断手段により温度が所定値以下であると判断された場合に、湯供給用配管内の水をヒータにより加熱する加熱制御手段と、温度判断手段により温度が所定値以下であると判断された場合に、循環路の途中に設けられたポンプにより、循環路の水を循環させる循環制御手段とを有するコージェネレーションシステムが開示されている。 For example, Patent Document 1 includes a thermoelectric power supply unit, a storage tank, and a circulation path, and a temperature acquisition unit that acquires a temperature of water flowing through the circulation path by a temperature sensor provided in the circulation path, and a temperature acquisition unit that acquires the temperature. Temperature determining means for determining whether the measured temperature is equal to or lower than a predetermined value, and when the temperature determining means determines that the temperature is equal to or lower than the predetermined value, water in the hot water supply pipe is heated by the heater A cogeneration system having heating control means and circulation control means for circulating water in the circulation path using a pump provided in the middle of the circulation path when the temperature is determined to be equal to or lower than a predetermined value by the temperature determination means Is disclosed.

また、特許文献2には、熱電併給手段と貯留タンクと循環路を備え、熱電併給手段と貯留タンクの少なくとも一方に設けられた温度センサーにより環境温度を取得する温度取得手段と、温度取得手段により取得された環境温度が所定値以下であるか否かを判断する温度判断手段と、温度判断手段により環境温度が所定値以下であると判断された場合に、循環路の水をヒータにより加熱する加熱制御手段と、温度判断手段により環境温度が所定値以下であると判断された場合に、循環路の途中に設けられたポンプにより、循環路の水を循環させる循環制御手段とを有するコージェネレーションシステムが開示されている。 Patent Document 2 includes a temperature acquisition unit that includes a combined heat and power supply unit, a storage tank, and a circulation path, and that acquires an environmental temperature using a temperature sensor provided in at least one of the combined heat and power supply unit and the storage tank. Temperature determining means for determining whether or not the acquired environmental temperature is equal to or lower than a predetermined value; and when the temperature determining means determines that the environmental temperature is equal to or lower than the predetermined value, the water in the circulation path is heated by the heater A cogeneration system comprising heating control means and circulation control means for circulating water in the circulation path by a pump provided in the middle of the circulation path when the environmental temperature is determined to be lower than a predetermined value by the temperature determination means A system is disclosed.

特許文献3には、熱電併給手段と、この熱電併給手段に水素を供給する改質器と、改質器を加熱する改質器用燃焼装置と、熱電併給手段と改質器用燃焼装置を収納する発電ユニットハウジングと、貯留タンクと、循環路と、熱電併給手段が非発電中で水の温度が所定温度以下のときに、改質器用燃焼装置を強制的に運転させる制御装置を有するコージェネレーションシステムが開示されている。また、この特許文献3には、熱電併給手段と、貯留タンクと、循環路と、貯留タンク内の温水を設定温度まで加熱して温水利用箇所に供給する調温用燃焼装置と、貯留タンクに水を給水する給水管と、少なくとも給水管と調温用燃焼装置を収納する蓄熱ユニットハウジングと、熱電併給手段が非発電中で水の温度が所定温度以下のときに、調温用燃焼装置を強制的に運転させる制御装置を有するコージェネレーションシステムが開示されている。 Patent Document 3 houses a cogeneration unit, a reformer that supplies hydrogen to the cogeneration unit, a reformer combustion device that heats the reformer, a thermoelectric supply unit, and a reformer combustion unit. A cogeneration system having a control device for forcibly operating the reformer combustion device when the power generation unit housing, the storage tank, the circulation path, and the combined heat and power supply means non-power generation and the water temperature is below a predetermined temperature Is disclosed. Further, in Patent Document 3, a combined heat and power supply means, a storage tank, a circulation path, a temperature control combustion device that heats hot water in the storage tank to a set temperature and supplies the hot water to a place where the hot water is used, and a storage tank A water supply pipe for supplying water, a heat storage unit housing for housing at least the water supply pipe and the temperature control combustion device, and the temperature control combustion device when the combined heat and power supply means is not generating electricity and the water temperature is equal to or lower than a predetermined temperature. A cogeneration system having a control device for forced operation is disclosed.

そして、特許文献4には、熱電併給手段と、貯留タンクと、循環路と、貯留タンクに水を補給する第1給水路と、貯留タンクからの出湯管に混合する水を給水する第2給水路と、貯留タンクを通過して第1給水路と第2給水路に併行し、伝熱する経路を含む凍結防止経路と、凍結防止経路の湯水を循環させるポンプと、外気温が第1所定温度以下又は給水温度が第2所定温度以下のときにポンプを駆動するポンプ制御装置とを有するコージェネレーションシステムが開示されている。 And in patent document 4, the 2nd water supply which supplies the water mixed to the hot water pipe from a storage tank, the 1st water supply path which replenishes water to a storage tank, a storage tank, a circulation path, and a storage tank. A freezing prevention path including a passage, a storage tank and a first water supply path and a second water supply path, including a heat transfer path, a pump for circulating hot water in the antifreezing path, and an outside temperature is a first predetermined value. A cogeneration system having a pump control device that drives a pump when the temperature is equal to or lower than the temperature or the feed water temperature is equal to or lower than a second predetermined temperature is disclosed.

更に、特許文献5には、熱電併給手段と、貯留タンクと、循環路と、この循環路の温水を循環させるポンプと、熱電併給手段が運転停止中であって、外気温が所定温度以下のときに、ポンプを強制駆動するポンプ制御装置とを備えるコージェネレーションシステムが開示されている。 Further, in Patent Document 5, the combined heat and power means, the storage tank, the circulation path, the pump for circulating the hot water in the circulation path, and the combined heat and power means are stopped, and the outside air temperature is below a predetermined temperature. Sometimes, a cogeneration system is disclosed that includes a pump control device that forcibly drives the pump.

特開2008−32320号公報JP 2008-32320 A 特開2008−32321号公報JP 2008-32321 A 特開2004−108173号公報JP 2004-108173 A 特開2004−60980号公報JP 2004-60980 A 特開2003−254621号公報JP 2003-254621 A

しかしながら、前記従来のコージェネレーションシステムには、未だ解決すべき以下のような問題があった。
特許文献1では、循環路にヒータを設けなければならず、電力消費量が増大して経済的でない。特に、最も凍結の恐れがある水供給用配管内を流れる水のみを、加熱の対象とするものではないため、無駄な電力が消費されるという問題もある。
また、水を加熱するヒータや、この加熱された水を循環させるためのポンプが新たに必要となり、設備コストがかかって経済的でない。
However, the conventional cogeneration system still has the following problems to be solved.
In Patent Document 1, a heater must be provided in the circulation path, which increases power consumption and is not economical. In particular, there is also a problem that wasteful power is consumed because only water flowing in the water supply pipe that is most likely to freeze is not intended for heating.
In addition, a heater for heating water and a pump for circulating the heated water are newly required, which is not economical because of equipment costs.

また、特許文献2も、特許文献1と同様、循環路にヒータを設けなければならないため、電力消費量が増大して経済的でなく、更にヒータやポンプが新たに必要となるため、設備コストがかかって経済的でない。
また、熱電併給手段又は貯留タンクに設けられた温度センサーから取得した環境温度に基づき、ヒータやポンプを駆動させているため、最も凍結の恐れがある水供給用配管内の水の温度を対象としていない。このため、外気の温度によっては、水供給用配管内の水が凍結する恐れがある。
Also, in Patent Document 2, similarly to Patent Document 1, since a heater must be provided in the circulation path, power consumption is increased, which is not economical, and a heater and a pump are newly required. Is not economical.
Also, because the heater and pump are driven based on the environmental temperature obtained from the temperature sensor provided in the combined heat and power supply means or storage tank, the temperature of the water in the water supply pipe that is most likely to freeze is targeted. Not in. For this reason, depending on the temperature of the outside air, the water in the water supply pipe may be frozen.

また、特許文献3では、改質器用燃焼装置又は調温用燃焼装置の燃焼ガスを、発電ユニットハウジング内又は蓄熱ユニットハウジング内に放出することにより、各ハウジング内の機器を加熱しているので、各ハウジング内の全機器(凍結防止の必要の無い機器も含む)の熱容量に見合うだけの発熱量が必要となり、燃料消費が大きくなるという問題があった。また、発電ユニットハウジングと蓄熱ユニットハウジングを接続する配管は、直接外気に曝され、凍結の危険性が高いが、この配管を直接加熱する手段がなく、配管内の水の凍結を効果的に防止できないという問題もある。 Further, in Patent Document 3, since the combustion gas of the reformer combustion device or the temperature control combustion device is discharged into the power generation unit housing or the heat storage unit housing, the devices in each housing are heated. There is a problem in that the amount of heat generated needs to be commensurate with the heat capacity of all the devices in each housing (including devices that do not need to be protected from freezing), resulting in increased fuel consumption. In addition, the piping connecting the power generation unit housing and the heat storage unit housing is directly exposed to the outside air, and there is a high risk of freezing, but there is no means to directly heat this piping, effectively preventing freezing of water in the piping There is also a problem that it cannot be done.

そして、特許文献4では、第1給水路と第2給水路に併行し、伝熱する経路を含む専用の凍結防止経路が必要なので、構造が複雑になり、コストの上昇を招くという問題があった。 And in patent document 4, since the exclusive anti-freezing path | route including the path | route which heats along with a 1st water supply path and a 2nd water supply path is required, there exists a problem that a structure becomes complicated and raises a cost. It was.

更に、特許文献5では、貯留タンク内の温水を循環路の凍結防止に使用するので、貯留タンク内の温水の温度が低下するという問題があった。 Furthermore, in patent document 5, since the hot water in a storage tank is used for the freeze prevention of a circulation path, there existed a problem that the temperature of the hot water in a storage tank fell.

本発明はかかる事情に鑑みてなされたもので、特別な装置を付加することなく、簡単な構成で水供給路での水の凍結を防止でき、安定に連続運転できる熱電併給手段を用いた貯湯設備及びその貯湯方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and without adding a special device, it is possible to prevent freezing of water in the water supply path with a simple configuration, and to use hot and cold storage means that can stably operate continuously. It aims at providing equipment and its hot water storage method.

前記目的に沿う第1の発明に係る熱電併給手段を用いた貯湯設備は、外部から供給された水を貯留する貯留タンク、電力発生時に該貯留タンク内の水を加熱する熱を発生する熱電併給手段、前記貯留タンクと前記熱電併給手段を接続し前記貯留タンク内の水を前記熱電併給手段へ送る水供給路、前記貯留タンクと前記熱電併給手段を接続し該熱電併給手段で加熱された水を前記貯留タンクへ送る湯供給路、及び前記水供給路と前記湯供給路を接続するバイパス路を有し、外気により前記水供給路を流れる水が凍結することを防止する熱電併給手段を用いた貯湯設備であって、
前記湯供給路に、寒冷時に該湯供給路を流れる加熱された水の一部又は全部を、前記バイパス路を経由して前記水供給路に流し、該水供給路を流れる水の温度を上昇させる流路切替え機構を設けた。
The hot water storage facility using the combined heat and power means according to the first aspect of the present invention includes a storage tank for storing water supplied from the outside, and a combined heat and power generation for generating heat for heating the water in the storage tank when power is generated Means, a water supply path for connecting the storage tank and the combined heat and power supply means to send the water in the storage tank to the combined heat and power supply means, water connected to the storage tank and the combined heat and power supply means and heated by the combined heat and power supply means A hot water supply passage that sends water to the storage tank, and a bypass passage that connects the water supply passage and the hot water supply passage, and uses a combined heat and power supply means that prevents water flowing through the water supply passage from being frozen by outside air. A hot water storage facility,
A part or all of the heated water that flows through the hot water supply passage through the hot water supply passage through the hot water supply passage through the bypass passage to the water supply passage at the time of cold, and the temperature of the water flowing through the water supply passage is increased. A flow path switching mechanism is provided.

第1の発明に係る熱電併給手段を用いた貯湯設備において、前記流路切替え機構は、前記湯供給路と前記バイパス路との接続箇所に設けられる三方弁で構成されることが好ましい。
第1の発明に係る熱電併給手段を用いた貯湯設備において、前記流路切替え機構は、前記湯供給路と前記バイパス路にそれぞれ設けられる開閉弁で構成されることが好ましい。
In the hot water storage facility using the cogeneration means according to the first aspect of the invention, the flow path switching mechanism is preferably constituted by a three-way valve provided at a connection point between the hot water supply path and the bypass path.
In the hot water storage facility using the cogeneration means according to the first aspect of the present invention, it is preferable that the flow path switching mechanism is composed of on-off valves respectively provided in the hot water supply path and the bypass path.

前記目的に沿う第2の発明に係る熱電併給手段を用いた貯湯方法は、外部から供給し貯留された貯留タンク内の水を、水供給路を介して電力発生時に熱を発生する熱電併給手段へ送って加熱し、該熱電併給手段で加熱された水を、湯供給路を介して前記貯留タンクへ送って貯留するに際し、外気により前記水供給路を流れる水が凍結することを防止する熱電併給手段を用いた貯湯方法であって、
前記湯供給路に設けられた流路切替え機構により、寒冷時に該湯供給路を流れる加熱された水の一部又は全部を、前記水供給路と前記湯供給路を接続するバイパス路を経由して前記水供給路に流し、該水供給路を流れる水の温度を上昇させる。
The hot water storage method using the combined heat and power supply means according to the second aspect of the present invention is the combined heat and power supply means for generating heat at the time of electric power generation through the water supply path in the storage tank supplied and stored from the outside. When the water heated by the combined heat and power supply means is sent to the storage tank via the hot water supply path and stored, the thermoelectric power prevents the water flowing through the water supply path from being frozen by the outside air. A hot water storage method using a combination means,
The flow path switching mechanism provided in the hot water supply path allows a part or all of the heated water flowing through the hot water supply path to pass through a bypass path connecting the water supply path and the hot water supply path when cold. To flow through the water supply path and raise the temperature of the water flowing through the water supply path.

請求項1〜3記載の熱電併給手段を用いた貯湯設備、及び請求項4記載の熱電併給手段を用いた貯湯方法は、湯供給路を流れる加熱された水の一部又は全部を、流路切替え機構によりバイパス路を経由して水供給路に流すので、水供給路を流れる水の温度を、水が凍結しない温度まで上昇させることができ、水供給路での水の凍結を防止できる。
ここで、湯供給路を流れる加熱された水の一部を水供給路に流した場合は、水供給路での水の凍結を防止しながら、加熱された水を貯留タンクへ供給することもできるので、貯留タンク内の加熱された水の貯留量を高いレベルに維持できる。
これにより、特別な装置を付加することなく簡単な構成で、熱電併給手段を用いた貯湯設備を、安定に連続運転できる。
A hot water storage facility using the cogeneration means according to claims 1 to 3 and a hot water storage method using the cogeneration means according to claim 4, wherein a part or all of the heated water flowing through the hot water supply path is Since the switching mechanism causes the water supply path to flow through the bypass path, the temperature of the water flowing through the water supply path can be increased to a temperature at which the water does not freeze, and water freezing in the water supply path can be prevented.
Here, when a part of the heated water flowing through the hot water supply path flows through the water supply path, the heated water may be supplied to the storage tank while preventing freezing of the water in the water supply path. As a result, the amount of heated water stored in the storage tank can be maintained at a high level.
Accordingly, the hot water storage facility using the combined heat and power means can be stably operated continuously with a simple configuration without adding a special device.

特に、請求項2記載の熱電併給手段を用いた貯湯設備は、流路切替え機構を、湯供給路とバイパス路との接続箇所に設けられる三方弁で構成するので、設備構成を簡単かつ安価にできる。
請求項3記載の熱電併給手段を用いた貯湯設備は、流路切替え機構を、湯供給路とバイパス路にそれぞれ設けられる開閉弁で構成するので、例えば、従来から湯供給路に設けられている開閉弁を利用することができ、設備構成の変更箇所を少なくできて経済的である。
In particular, in the hot water storage facility using the combined heat and power supply means according to claim 2, the flow path switching mechanism is constituted by a three-way valve provided at the connection point between the hot water supply path and the bypass path, so that the equipment configuration is simple and inexpensive. it can.
In the hot water storage facility using the combined heat and power supply means according to claim 3, since the flow path switching mechanism is constituted by on-off valves respectively provided in the hot water supply path and the bypass path, for example, it has conventionally been provided in the hot water supply path. An on-off valve can be used, and the number of places where the equipment configuration is changed can be reduced, which is economical.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る熱電併給手段を用いた貯湯設備の説明図、図2(A)は同熱電併給手段を用いた貯湯設備の流路切替え機構の部分拡大図、(B)、(C)はそれぞれ第1、第2の変形例に係る流路切替え機構の部分拡大図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory diagram of a hot water storage facility using a combined heat and power supply unit according to an embodiment of the present invention, and FIG. 2A is a partially enlarged view of a flow path switching mechanism of the hot water storage facility using the combined heat and power supply unit. FIGS. 5B and 5C are partially enlarged views of the flow path switching mechanism according to the first and second modifications, respectively.

図1、図2(A)に示すように、本発明の一実施の形態に係る熱電併給手段を用いた貯湯設備(以下、単に貯湯設備ともいう)10は、水を貯留する貯留タンク11と、電力発生時に貯留タンク11内の水を加熱する熱を発生する燃料電池(熱電併給手段の一例)12と、貯留タンク11と燃料電池12を接続する水供給用配管(水供給路の一例)13及び湯供給用配管(湯供給路の一例)14と、水供給用配管13と湯供給用配管14を接続するバイパス用配管(バイパス路の一例)15とを有し、外気により水供給用配管13内を流れる水が凍結することを防止する設備である。以下、詳しく説明する。 As shown in FIGS. 1 and 2A, a hot water storage facility (hereinafter also simply referred to as hot water storage facility) 10 using a combined heat and power supply unit according to an embodiment of the present invention includes a storage tank 11 that stores water and A fuel cell (an example of a combined heat and power supply unit) 12 that generates heat for heating water in the storage tank 11 when power is generated, and a water supply pipe (an example of a water supply channel) that connects the storage tank 11 and the fuel cell 12 13 and a hot water supply pipe (an example of a hot water supply path) 14 and a bypass pipe (an example of a bypass path) 15 for connecting the water supply pipe 13 and the hot water supply pipe 14 to supply water by outside air. This is equipment for preventing water flowing in the pipe 13 from freezing. This will be described in detail below.

貯留タンク11は、常時は加熱された水、即ち湯(例えば、60℃以上80℃以下程度)を貯留するものである。
この貯留タンク11の下部には、水道(外部)から水を取入れるための水流入用配管16が接続され、この水流入用配管16には開閉弁17が取付けられている。この開閉弁17を開閉することにより、貯留タンク11内に水を供給できる。
また、貯留タンク11の上部(頭頂部)には、必要に応じて湯を供給する湯排出用配管18が接続され、この湯排出用配管18には開閉弁19が取付けられている。この開閉弁19を開閉することにより、必要に応じて、給湯(例えば、浴槽のお湯はり)できる。
なお、貯留タンク11内の湯は、貯留タンク11内に滞留時間の経過と共に、熱を失って温度が低下するため、この温度が低下した湯が、貯留タンク11内の下部に溜まる。
The storage tank 11 normally stores heated water, that is, hot water (for example, about 60 ° C. to 80 ° C.).
A water inflow pipe 16 for taking water from the tap water (external) is connected to the lower part of the storage tank 11, and an open / close valve 17 is attached to the water inflow pipe 16. By opening and closing the on-off valve 17, water can be supplied into the storage tank 11.
In addition, a hot water discharge pipe 18 for supplying hot water as needed is connected to the upper portion (head portion) of the storage tank 11, and an open / close valve 19 is attached to the hot water discharge pipe 18. By opening and closing this on-off valve 19, hot water can be supplied as needed (for example, hot water in a bathtub).
The hot water in the storage tank 11 loses heat and decreases in temperature with the lapse of the residence time in the storage tank 11, so that the hot water whose temperature has decreased accumulates in the lower part of the storage tank 11.

燃料電池12は、電力負荷20に供給する電力の副産物として生じる排熱を、冷却水に吸収させて排出する冷却管21とポンプ22を備えている。なお、ここでは、ポンプを燃料電池12に組み込んでいるが、ポンプは、水供給用配管13とバイパス用配管15の接続箇所より燃料電池12側で、しかも湯供給用配管14とバイパス用配管15の接続箇所より燃料電池12側であれば、いずれの位置に配置しても構わない。
熱電併給手段は、燃料電池12のように、電気化学的な発電手段を含むものだけでなく、エンジン発電機のように、熱機関等を動力とする発電機等も含まれる。即ち、電力を発生させると、その副産物として熱を排出する装置は、全て熱電併給手段に含まれる。
この燃料電池12で加熱された水には、燃料電池12の排熱により加熱された冷却水のみならず、燃料電池12内で生成する高温の水も含まれる。
The fuel cell 12 includes a cooling pipe 21 and a pump 22 that exhaust heat generated as a by-product of power supplied to the power load 20 is absorbed by the cooling water and discharged. Although the pump is incorporated in the fuel cell 12 here, the pump is closer to the fuel cell 12 than the connection point between the water supply pipe 13 and the bypass pipe 15, and the hot water supply pipe 14 and the bypass pipe 15. As long as it is on the fuel cell 12 side from the connection point, it may be arranged at any position.
The cogeneration unit includes not only an electrochemical power generation unit such as the fuel cell 12 but also a generator powered by a heat engine or the like such as an engine generator. In other words, all devices that discharge heat as a by-product when power is generated are included in the combined heat and power supply means.
The water heated by the fuel cell 12 includes not only cooling water heated by exhaust heat of the fuel cell 12 but also high-temperature water generated in the fuel cell 12.

上記した貯留タンク11の下部には、水供給用配管13の上流側端部が接続され、この水供給用配管13の下流側端部が、燃料電池12の冷却管21の一側に接続されている。これにより、貯留タンク11内の水を燃料電池12へ送り、加熱することができる。
この水供給用配管13の貯留タンク11側には、ファンを備えるラジエータ23と温度センサー24が設けられ、温度センサー24で測定された水供給用配管13内を流れる水の温度が高過ぎる場合には、ラジエータ23により水温を低下できる構成となっている。なお、温度センサー24は、ラジエータ23の下流側に配置されているが、上流側でもよい。
The lower end of the storage tank 11 is connected to the upstream end of the water supply pipe 13, and the downstream end of the water supply pipe 13 is connected to one side of the cooling pipe 21 of the fuel cell 12. ing. Thereby, the water in the storage tank 11 can be sent to the fuel cell 12 and heated.
A radiator 23 having a fan and a temperature sensor 24 are provided on the storage tank 11 side of the water supply pipe 13, and the temperature of the water flowing through the water supply pipe 13 measured by the temperature sensor 24 is too high. Is configured such that the water temperature can be lowered by the radiator 23. The temperature sensor 24 is arranged on the downstream side of the radiator 23, but may be on the upstream side.

また、貯留タンク11の上部には、湯供給用配管14の下流側端部が接続され、この湯供給用配管14の上流側端部が、燃料電池12の冷却管21の他側に接続されている。これにより、燃料電池12で加熱された水を貯留タンク11へ送り貯留できる。
この湯供給用配管14の燃料電池12近傍には、温度センサー25が設けられ、燃料電池12から排出された湯供給用配管14内を流れる湯の温度を測定可能な構成となっている。また、湯供給用配管14の貯留タンク11近傍には、開閉弁26が設けられ、燃料電池12で加熱された水の貯留タンク11への流れ込みを停止できる構成となっている。
In addition, a downstream end of the hot water supply pipe 14 is connected to the upper portion of the storage tank 11, and an upstream end of the hot water supply pipe 14 is connected to the other side of the cooling pipe 21 of the fuel cell 12. ing. Thereby, the water heated by the fuel cell 12 can be sent to the storage tank 11 and stored.
A temperature sensor 25 is provided in the vicinity of the fuel cell 12 of the hot water supply pipe 14 so that the temperature of the hot water flowing through the hot water supply pipe 14 discharged from the fuel cell 12 can be measured. An open / close valve 26 is provided in the vicinity of the storage tank 11 of the hot water supply pipe 14 so that the flow of water heated by the fuel cell 12 to the storage tank 11 can be stopped.

以上に示した水供給用配管13と湯供給用配管14は、バイパス用配管15で接続されている。
水供給用配管13とバイパス用配管15との接続箇所は、ラジエータ23と貯留タンク11の間(ラジエータ23の上流側)である。なお、水供給用配管13に取付ける温度センサーを、ラジエータ23の上流側に配置した場合は、温度センサーと貯留タンク11の間(温度センサーの上流側)にする。
また、湯供給用配管14とバイパス用配管15との接続箇所は、貯留タンク11近傍であって、しかも湯供給用配管14に設けられた開閉弁26よりも上流側位置である。
The water supply pipe 13 and the hot water supply pipe 14 described above are connected by a bypass pipe 15.
The connection point between the water supply pipe 13 and the bypass pipe 15 is between the radiator 23 and the storage tank 11 (upstream side of the radiator 23). When the temperature sensor attached to the water supply pipe 13 is arranged on the upstream side of the radiator 23, the temperature sensor is placed between the temperature sensor and the storage tank 11 (upstream side of the temperature sensor).
Further, the connection point between the hot water supply pipe 14 and the bypass pipe 15 is in the vicinity of the storage tank 11 and further upstream than the on-off valve 26 provided in the hot water supply pipe 14.

図2(A)に示すように、湯供給用配管14とバイパス用配管15との接続箇所には、三方弁(流路切替え機構の一例)27が設けられている。
この三方弁27は、燃料電池12で加熱され湯供給用配管14を流れる湯が、所定の割合(例えば、全流量の10〜90%の割合、ここでは50%)バイパス用配管15へ流れるようになっている。
なお、湯供給用配管14とバイパス用配管15との接続箇所に、湯供給用配管14(貯留タンク11側)とバイパス用配管15へ、それぞれ流す湯の割合を可変にできる流量調整弁を設けることもできる。
As shown in FIG. 2A, a three-way valve (an example of a flow path switching mechanism) 27 is provided at a connection location between the hot water supply pipe 14 and the bypass pipe 15.
The three-way valve 27 is configured so that hot water heated by the fuel cell 12 and flowing through the hot water supply pipe 14 flows into the bypass pipe 15 at a predetermined rate (for example, 10% to 90% of the total flow rate, 50% here). It has become.
It should be noted that a flow rate adjusting valve is provided at the connection point between the hot water supply pipe 14 and the bypass pipe 15 so that the ratio of hot water flowing through the hot water supply pipe 14 (storage tank 11 side) and the bypass pipe 15 can be varied. You can also.

ここで、図2(B)に示すように、湯供給用配管14とバイパス用配管15との接続箇所に、湯供給用配管14を流れる湯の流路を切替えることができ、湯供給用配管14のみ、又はバイパス用配管15のみに流す三方弁(流路切替え機構の一例)28を設けてもよい。
また、図2(C)に示すように、湯供給用配管14とバイパス用配管15との接続箇所29よりも下流側位置の湯供給用配管14とバイパス用配管15に、開閉弁30、31をそれぞれ設け、湯供給用配管14(貯留タンク11側)とバイパス用配管15へ、それぞれ所定の割合(例えば、バイパス用配管15へ、全流量の10〜90%の割合)で、湯を流すこともできる。なお、開閉弁30と開閉弁31で、流路切替え機構が構成されている。
Here, as shown in FIG. 2 (B), the flow path of hot water flowing through the hot water supply pipe 14 can be switched to the connection location between the hot water supply pipe 14 and the bypass pipe 15. A three-way valve (an example of a flow path switching mechanism) 28 that flows only to 14 or only to the bypass pipe 15 may be provided.
Further, as shown in FIG. 2C, on-off valves 30 and 31 are connected to the hot water supply pipe 14 and the bypass pipe 15 at positions downstream of the connection point 29 between the hot water supply pipe 14 and the bypass pipe 15. And supply hot water to the hot water supply pipe 14 (on the storage tank 11 side) and the bypass pipe 15 at a predetermined rate (for example, 10 to 90% of the total flow rate to the bypass pipe 15). You can also. The opening / closing valve 30 and the opening / closing valve 31 constitute a flow path switching mechanism.

以上に示した燃料電池12、各開閉弁17、19、26、30、31、各三方弁27、28、ポンプ22、及びラジエータ23の各動作は、貯湯設備10に設けられた制御手段(図示しない)により制御されている。
これにより、湯供給用配管14を流れる湯の一部を、バイパス用配管15を経由して水供給用配管13に流し、水供給用配管13を流れる水の温度を上昇させることができるので、水供給用配管13を流れる水が外気により凍結することを防止できる。なお、湯を貯留タンク11へ供給しない場合は、湯供給用配管14に設けられた開閉弁26を閉状態にすることで、湯供給用配管14を流れる全ての湯をバイパス用配管15へ流すことができる。
The operations of the fuel cell 12, the on-off valves 17, 19, 26, 30, 31, the three-way valves 27, 28, the pump 22, and the radiator 23 described above are controlled by control means (illustrated) provided in the hot water storage facility 10. Not).
Thereby, a part of the hot water flowing through the hot water supply pipe 14 can be flowed to the water supply pipe 13 via the bypass pipe 15, and the temperature of the water flowing through the water supply pipe 13 can be raised. It is possible to prevent water flowing through the water supply pipe 13 from being frozen by outside air. When hot water is not supplied to the storage tank 11, all the hot water flowing through the hot water supply pipe 14 flows to the bypass pipe 15 by closing the on-off valve 26 provided in the hot water supply pipe 14. be able to.

続いて、本発明の一実施の形態に係る熱電併給手段を用いた貯湯方法について、前記した貯湯設備10を参照しながら説明する。
まず、開閉弁17を開状態にすることにより、貯留タンク11の下部から水を供給する。
この貯留タンク11内に供給された水は、水供給用配管13を通って燃料電池12へ送られ、燃料電池12の排熱によって加熱された後、湯供給用配管14を通って貯留タンク11の上部から、貯留タンク11内へ送られる。
Next, a hot water storage method using the combined heat and power unit according to the embodiment of the present invention will be described with reference to the hot water storage facility 10 described above.
First, water is supplied from the lower portion of the storage tank 11 by opening the on-off valve 17.
The water supplied into the storage tank 11 is sent to the fuel cell 12 through the water supply pipe 13, heated by the exhaust heat of the fuel cell 12, and then passed through the hot water supply pipe 14 to the storage tank 11. From the upper part of the storage tank 11 into the storage tank 11.

この操作を順次繰り返すことで、貯留タンク11内の湯の温度を、例えば、60℃以上80℃以下程度にできる。なお、この温度は、貯留タンク11に設けられた温度センサー(図示しない)により検出され、制御手段へ送信される。
このとき、湯供給用配管14に取付けられた温度センサー25が、例えば、50℃以下であれば、貯留タンク11へ供給しても、湯としての使用価値がないため、湯供給用配管14に設けられた開閉弁26を閉状態とし、この湯をバイパス用配管15を介して水供給用配管13へ流し、再度燃料電池12へ送って加熱する。
これにより、貯留タンク11内の湯の温度を、適切なレベルに維持できる。
By sequentially repeating this operation, the temperature of the hot water in the storage tank 11 can be set to about 60 ° C. or more and 80 ° C. or less, for example. This temperature is detected by a temperature sensor (not shown) provided in the storage tank 11 and transmitted to the control means.
At this time, if the temperature sensor 25 attached to the hot water supply pipe 14 is, for example, 50 ° C. or less, even if it is supplied to the storage tank 11, there is no utility value as hot water. The provided on-off valve 26 is closed, and this hot water is supplied to the water supply pipe 13 via the bypass pipe 15 and sent again to the fuel cell 12 for heating.
Thereby, the temperature of the hot water in the storage tank 11 can be maintained at an appropriate level.

また、開閉弁19を開状態として貯留タンク11内の湯を使用した場合は、貯留タンク11内の圧力が下がるので、水道水の給水圧力により補給される。なお、開閉弁17は、通常開の状態である。
貯留タンク11内の湯は、貯留タンク11内に滞留時間の経過と共に温度が低下して、貯留タンク11の下部に溜まるため、この湯と共に補った水を燃料電池12へ送って加熱し、再度貯留タンク11内に貯留する。
ここで、水供給用配管13を流れる水の温度が、例えば、40℃以上の場合は、燃料電池12の冷却ができなくなるため、ラジエータ23により水の温度を40℃未満に低下させながら、燃料電池12へ送る。これにより、燃料電池12を連続運転できる。
In addition, when hot water in the storage tank 11 is used with the on-off valve 19 open, the pressure in the storage tank 11 decreases, and therefore, the water is replenished by the tap water supply pressure. The on-off valve 17 is normally open.
Since the temperature of the hot water in the storage tank 11 decreases in the storage tank 11 with the passage of the residence time and accumulates in the lower part of the storage tank 11, the water supplemented with this hot water is sent to the fuel cell 12 to be heated and heated again. Store in the storage tank 11.
Here, when the temperature of the water flowing through the water supply pipe 13 is, for example, 40 ° C. or higher, the fuel cell 12 cannot be cooled. Therefore, the radiator 23 reduces the temperature of the water to below 40 ° C. Send to battery 12. Thereby, the fuel cell 12 can be continuously operated.

常時は、上記した方法により、貯留タンク11内の湯の温度を目的とする温度レベルに維持しながら、貯湯設備10を安定に連続運転できるが、例えば、冬季になると、外気温が低下するため、水供給用配管13内を流れる水の温度が低ければ(例えば、5℃未満)、水供給用配管13内で水が凍結する可能性がある。
そこで、水供給用配管13に取付けられた温度センサー24により、水供給用配管13内を流れる水の温度を検出し、凍結する可能性があれば、三方弁27により、湯供給用配管14を流れる湯の一部又は全部を、バイパス用配管15を経由して水供給用配管13に流し、水供給用配管13を流れる水の温度を、現状より上昇させる(例えば、10℃以上)。
Normally, the hot water storage facility 10 can be stably operated continuously while maintaining the temperature of the hot water in the storage tank 11 at a target temperature level by the above-described method. However, for example, the outdoor temperature decreases in the winter season. If the temperature of the water flowing in the water supply pipe 13 is low (for example, less than 5 ° C.), the water may freeze in the water supply pipe 13.
Therefore, if there is a possibility that the temperature of the water flowing in the water supply pipe 13 is detected by the temperature sensor 24 attached to the water supply pipe 13 and freezes, the hot water supply pipe 14 is connected by the three-way valve 27. Part or all of the flowing hot water is caused to flow to the water supply pipe 13 via the bypass pipe 15, and the temperature of the water flowing through the water supply pipe 13 is increased from the current level (for example, 10 ° C. or higher).

ここで、湯供給用配管14とバイパス用配管15へ流す湯の割合を可変にする場合は、水供給用配管13に取付けられた温度センサー24の測定結果から、水供給用配管13内を流れる水が凍結しない条件、例えば、10℃以上15℃以下となるように、三方弁27の開度を調節する。
以上の方法により、水供給用配管13内を流れる水の凍結を防止しながら、貯留タンク11内へ可能な限り多くの湯を供給できる。
Here, when the ratio of hot water flowing to the hot water supply pipe 14 and the bypass pipe 15 is made variable, it flows in the water supply pipe 13 from the measurement result of the temperature sensor 24 attached to the water supply pipe 13. The opening degree of the three-way valve 27 is adjusted so that the water does not freeze, for example, 10 ° C. or more and 15 ° C. or less.
By the above method, as much hot water as possible can be supplied into the storage tank 11 while preventing freezing of the water flowing in the water supply pipe 13.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の熱電併給手段を用いた貯湯設備及びその貯湯方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where a hot water storage facility and a hot water storage method using the combined heat and power unit of the present invention are configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.

本発明の一実施の形態に係る熱電併給手段を用いた貯湯設備の説明図である。It is explanatory drawing of the hot water storage equipment using the combined heat and power means which concerns on one embodiment of this invention. (A)は同熱電併給手段を用いた貯湯設備の流路切替え機構の部分拡大図、(B)、(C)はそれぞれ第1、第2の変形例に係る流路切替え機構の部分拡大図である。(A) is the elements on larger scale of the flow path switching mechanism of the hot water storage facility using the same heat and power supply means, and (B) and (C) are partial enlarged views of the flow path switching mechanism according to the first and second modifications, respectively. It is.

符号の説明Explanation of symbols

10:熱電併給手段を用いた貯湯設備、11:貯留タンク、12:燃料電池(熱電併給手段)、13:水供給用配管(水供給路)、14:湯供給用配管(湯供給路)、15:バイパス用配管(バイパス路)、16:水流入用配管、17:開閉弁、18:湯排出用配管、19:開閉弁、20:電力負荷、21:冷却管、22:ポンプ、23:ラジエータ、24、25:温度センサー、26:開閉弁、27、28:三方弁(流路切替え機構)、29:接続箇所、30、31:開閉弁 10: Hot water storage equipment using a combined heat and power supply means, 11: Storage tank, 12: Fuel cell (heat and power supply means), 13: Water supply pipe (water supply path), 14: Hot water supply pipe (hot water supply path), 15: bypass pipe (bypass path), 16: water inflow pipe, 17: on-off valve, 18: hot water discharge pipe, 19: on-off valve, 20: power load, 21: cooling pipe, 22: pump, 23: Radiator, 24, 25: Temperature sensor, 26: Open / close valve, 27, 28: Three-way valve (flow path switching mechanism), 29: Connection location, 30, 31: Open / close valve

Claims (4)

外部から供給された水を貯留する貯留タンク、電力発生時に該貯留タンク内の水を加熱する熱を発生する熱電併給手段、前記貯留タンクと前記熱電併給手段を接続し前記貯留タンク内の水を前記熱電併給手段へ送る水供給路、前記貯留タンクと前記熱電併給手段を接続し該熱電併給手段で加熱された水を前記貯留タンクへ送る湯供給路、及び前記水供給路と前記湯供給路を接続するバイパス路を有し、外気により前記水供給路を流れる水が凍結することを防止する熱電併給手段を用いた貯湯設備であって、
前記湯供給路に、寒冷時に該湯供給路を流れる加熱された水の一部又は全部を、前記バイパス路を経由して前記水供給路に流し、該水供給路を流れる水の温度を上昇させる流路切替え機構を設けたことを特徴とする熱電併給手段を用いた貯湯設備。
A storage tank for storing water supplied from the outside, a thermoelectric supply means for generating heat for heating the water in the storage tank when electric power is generated, and connecting the storage tank and the heat / electric supply means to supply water in the storage tank A water supply path for sending to the cogeneration means, a hot water supply path for connecting the storage tank and the thermoelectric supply means and sending water heated by the cogeneration means to the storage tank, and the water supply path and the hot water supply path A hot water storage facility using a combined heat and power means for preventing water flowing through the water supply path from being frozen by outside air,
A part or all of the heated water that flows through the hot water supply passage through the hot water supply passage through the hot water supply passage through the bypass passage to the water supply passage at the time of cold, and the temperature of the water flowing through the water supply passage is increased. A hot water storage facility using a combined heat and power supply means characterized in that a flow path switching mechanism is provided.
請求項1記載の熱電併給手段を用いた貯湯設備において、前記流路切替え機構は、前記湯供給路と前記バイパス路との接続箇所に設けられる三方弁で構成されることを特徴とする熱電併給手段を用いた貯湯設備。 The hot water storage facility using the combined heat and power supply means according to claim 1, wherein the flow path switching mechanism includes a three-way valve provided at a connection point between the hot water supply path and the bypass path. Hot water storage facilities using means. 請求項1記載の熱電併給手段を用いた貯湯設備において、前記流路切替え機構は、前記湯供給路と前記バイパス路にそれぞれ設けられる開閉弁で構成されることを特徴とする熱電併給手段を用いた貯湯設備。 The hot water storage facility using the combined heat and power supply means according to claim 1, wherein the flow path switching mechanism includes open / close valves respectively provided in the hot water supply path and the bypass path. Had hot water storage facilities. 外部から供給し貯留された貯留タンク内の水を、水供給路を介して電力発生時に熱を発生する熱電併給手段へ送って加熱し、該熱電併給手段で加熱された水を、湯供給路を介して前記貯留タンクへ送って貯留するに際し、外気により前記水供給路を流れる水が凍結することを防止する熱電併給手段を用いた貯湯方法であって、
前記湯供給路に設けられた流路切替え機構により、寒冷時に該湯供給路を流れる加熱された水の一部又は全部を、前記水供給路と前記湯供給路を接続するバイパス路を経由して前記水供給路に流し、該水供給路を流れる水の温度を上昇させることを特徴とする熱電併給手段を用いた貯湯方法。
The water in the storage tank supplied and stored from the outside is heated through the water supply path to the cogeneration means that generates heat when power is generated, and the water heated by the cogeneration means is supplied with the hot water supply path. A hot water storage method using a combined heat and power means for preventing water flowing through the water supply path from being frozen by outside air when being sent to the storage tank via the storage,
The flow path switching mechanism provided in the hot water supply path allows a part or all of the heated water flowing through the hot water supply path to pass through a bypass path connecting the water supply path and the hot water supply path when cold. A hot water storage method using a combined heat and power supply means, wherein the temperature of the water flowing through the water supply path is increased.
JP2008105991A 2008-04-15 2008-04-15 Hot water storage facility using cogeneration means, and hot water storage method Pending JP2009257656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105991A JP2009257656A (en) 2008-04-15 2008-04-15 Hot water storage facility using cogeneration means, and hot water storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105991A JP2009257656A (en) 2008-04-15 2008-04-15 Hot water storage facility using cogeneration means, and hot water storage method

Publications (1)

Publication Number Publication Date
JP2009257656A true JP2009257656A (en) 2009-11-05

Family

ID=41385305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105991A Pending JP2009257656A (en) 2008-04-15 2008-04-15 Hot water storage facility using cogeneration means, and hot water storage method

Country Status (1)

Country Link
JP (1) JP2009257656A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220145A (en) * 2011-04-12 2012-11-12 Purpose Co Ltd Heat storage device and freeze prevention method of the same
WO2013129493A1 (en) 2012-02-29 2013-09-06 Jx日鉱日石エネルギー株式会社 Method for controlling and device for controlling cogeneration system
WO2013129476A1 (en) 2012-02-29 2013-09-06 Jx日鉱日石エネルギー株式会社 Method for controlling and device for controlling cogeneration system
KR101987293B1 (en) * 2018-05-16 2019-06-10 (주)나노에너텍 Hot water supply apparatus and method for controlling the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020075A (en) * 2002-06-18 2004-01-22 Mitsubishi Electric Corp Heat pump type water heater
JP2005098568A (en) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd Water heater
JP2006029745A (en) * 2004-07-21 2006-02-02 Osaka Gas Co Ltd Hot water storage type hot water supplying heat source device
JP2007278579A (en) * 2006-04-05 2007-10-25 Rinnai Corp Hot water storage type hot water supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020075A (en) * 2002-06-18 2004-01-22 Mitsubishi Electric Corp Heat pump type water heater
JP2005098568A (en) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd Water heater
JP2006029745A (en) * 2004-07-21 2006-02-02 Osaka Gas Co Ltd Hot water storage type hot water supplying heat source device
JP2007278579A (en) * 2006-04-05 2007-10-25 Rinnai Corp Hot water storage type hot water supply system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220145A (en) * 2011-04-12 2012-11-12 Purpose Co Ltd Heat storage device and freeze prevention method of the same
WO2013129493A1 (en) 2012-02-29 2013-09-06 Jx日鉱日石エネルギー株式会社 Method for controlling and device for controlling cogeneration system
WO2013129476A1 (en) 2012-02-29 2013-09-06 Jx日鉱日石エネルギー株式会社 Method for controlling and device for controlling cogeneration system
CN104114954A (en) * 2012-02-29 2014-10-22 吉坤日矿日石能源株式会社 Method for controlling and device for controlling cogeneration system
CN104114955A (en) * 2012-02-29 2014-10-22 吉坤日矿日石能源株式会社 Method for controlling and device for controlling cogeneration system
KR101987293B1 (en) * 2018-05-16 2019-06-10 (주)나노에너텍 Hot water supply apparatus and method for controlling the same

Similar Documents

Publication Publication Date Title
JP5415428B2 (en) Heat pump equipment
JP5410833B2 (en) Power generation system and auxiliary unit
JP2007132612A (en) Cogeneration system, its control method, and program
JP6977332B2 (en) Hot water storage and hot water supply device
JP2008145096A (en) Hot water supply system and hot water supply method
JP2016136081A (en) Exhaust heat recovery device, heat supply system and method for operating exhaust heat recovery device
JP5410832B2 (en) Power generation system and auxiliary unit
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP2005353292A (en) Fuel cell system
JP2009257656A (en) Hot water storage facility using cogeneration means, and hot water storage method
JP2007278579A (en) Hot water storage type hot water supply system
KR102434736B1 (en) Self-sufficient Heating and Cooling System and Method using New Renewable Energy
JP5478981B2 (en) Power generation system and auxiliary unit of power generation system
JP2004060980A (en) Co-generation system
JP5667856B2 (en) Water heater
JP5153177B2 (en) Fuel cell device
JP5410831B2 (en) Power generation system and auxiliary unit
JP2009281647A (en) Heating system
JP5317810B2 (en) Water heater
JP4304601B2 (en) Storage water heater and cogeneration system
JP2007263388A (en) Exhaust heat recovering device
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
KR20170042486A (en) Heating device
JP2005344953A (en) Hybrid type geothermal heat utilization system
JP2017116192A (en) Cogeneration system, control device, control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226