JP2009255747A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2009255747A
JP2009255747A JP2008107250A JP2008107250A JP2009255747A JP 2009255747 A JP2009255747 A JP 2009255747A JP 2008107250 A JP2008107250 A JP 2008107250A JP 2008107250 A JP2008107250 A JP 2008107250A JP 2009255747 A JP2009255747 A JP 2009255747A
Authority
JP
Japan
Prior art keywords
pneumatic tire
elastic layer
elastic material
low elastic
land portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008107250A
Other languages
Japanese (ja)
Inventor
Hiroshi Kadowaki
弘 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008107250A priority Critical patent/JP2009255747A/en
Publication of JP2009255747A publication Critical patent/JP2009255747A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure compatibility of enhancement of friction coefficient with a road surface and increase of a ground-contact area on a surface of a land part without sacrificing water discharge performance on a wet road surface, and without using a vulcanization mold of a complicated shape. <P>SOLUTION: In the pneumatic tire, the land part 11 brought into ground-contact with the road surface and a groove part 9 brought into non-ground-contact with the road surface formed lower than this, are formed on a tread part 1. The land part 11 has a low elastic layer 13 formed by a low elastic material having relatively lower modulus of elasticity, and a high elastic layer formed by a high elastic material having relatively higher modulus of elasticity than the low elastic material. The low elastic layer 13 and the high elastic layer are alternately superposed in a tire radial direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、トレッド部に、路面に対して接地する陸部と、これよりも低く形成され路面に対して非接地な溝部とが形成された空気入りタイヤに関し、特に路面との摩擦係数の向上と陸部の倒れ込み変形の抑制を共に図り得る空気入りタイヤに関する。   The present invention relates to a pneumatic tire in which a tread portion is formed with a land portion that is in contact with the road surface and a groove portion that is formed lower than this and is not grounded with respect to the road surface, and in particular, an improvement in a coefficient of friction with the road surface. The present invention relates to a pneumatic tire that can simultaneously suppress the deformation of the land part.

空気入りタイヤのトレッド部には、制駆動性や操縦安定性の向上を図る観点からタイヤ周方向、タイヤ幅方向又はこれらに傾斜する方向に延びる溝やサイプが形成されるのが一般的である。   In general, a tread portion of a pneumatic tire is formed with a groove or a sipe extending in the tire circumferential direction, the tire width direction, or a direction inclined to the tire from the viewpoint of improving braking / driving performance and steering stability. .

そして、図6(a)に示すように、このような溝やサイプ109によって区画形成された陸部111又はブロックは、タイヤを車両に装着して使用する際には、踏面に垂直な荷重を受けるばかりでなく、駆動、制動及び旋回動作等に起因して路面に対して平行方向にせん断力も受ける。このとき陸部111には図6(b)に示すように斜めに倒れ込む変形が生じる。この変形によって、陸部表面の一部が路面から浮き上がり、接地面積が減少することによってタイヤと路面との間の摩擦力が減少してしまうという問題がある。   As shown in FIG. 6 (a), the land portion 111 or block defined by the groove or sipe 109 applies a load perpendicular to the tread when the tire is mounted on a vehicle. In addition to receiving, shearing force is also received in a direction parallel to the road surface due to driving, braking, turning operation, and the like. At this time, the land portion 111 is deformed so as to fall obliquely as shown in FIG. Due to this deformation, a part of the surface of the land portion is lifted from the road surface, and there is a problem that the frictional force between the tire and the road surface is reduced by reducing the contact area.

このようなせん断力入力時の接地面積の減少は夏用のタイヤにおいても発生するが、特に冬用のスタッドレスタイヤではより顕著に現れる。なぜなら、スタッドレスタイヤでは、雪氷路面での陸部表面と路面の間の摩擦係数を高くするためにトレッド部に低弾性率のゴムが用いられ、かつ、路面の引っ掻き効果を高めるとともに著しい摩擦係数の低下をもたらす氷上の水膜を除去する目的でタイヤ一本あたり数千本ものサイプが形成されており、これにより陸部の剛性が低下し倒れ込み変形が増大するからである。   Such a decrease in the contact area when a shear force is input also occurs in summer tires, but it is more noticeable particularly in winter studless tires. This is because, in studless tires, rubber with low elastic modulus is used in the tread to increase the friction coefficient between the land surface and the road surface on snow and ice road surfaces, and the scratching effect on the road surface is enhanced and a significant friction coefficient is obtained. This is because thousands of sipes are formed per tire for the purpose of removing the water film on the ice that causes the decrease, and this reduces the rigidity of the land portion and causes the collapse and the deformation increase.

そのため従来は、せん断力入力時の接地面積の減少を回避するため、トレッド部の材料として弾性率の高いゴムを用いたり、陸部間の溝やサイプを部分的に浅くしたりしていた。また、特許文献1に示すように、溝やサイプを深さ方向に予め湾曲又は屈曲させておくことにより、陸部が接地した際にサイプ壁面同士を接触させて陸部の倒れ込み変形を抑制する手法も採用されていた。
特開平11−78432号明細書
For this reason, conventionally, in order to avoid a decrease in the contact area when a shear force is input, a rubber having a high elastic modulus is used as a material of the tread portion, or grooves and sipes between land portions are partially shallowed. Also, as shown in Patent Document 1, by previously bending or bending a groove or sipe in the depth direction, the sipe wall surfaces are brought into contact with each other when the land portion comes in contact with the land portion, thereby suppressing the collapse of the land portion. The method was also adopted.
Japanese Patent Application Laid-Open No. 11-78432

しかしながら、トレッド部の材料として弾性率の高いゴムを用いた場合、せん断力入力時の接地面積の減少は回避し得るものの、陸部表面と路面との間に高い摩擦係数を確保することは困難となる。また、溝やサイプを浅くした場合には、水膜で覆われた路面上を走行する際に接地面に侵入した水を排出するための溝容積が小さくなり、湿潤路面や氷路面での排水性能が低下するおそれがある。さらに、深さ方向に予め湾曲又は屈曲した溝やサイプを形成するには、複雑な形状の加硫用モールドを用いる必要があり、加硫モールドの製作が複雑かつコスト高になるという問題がある。   However, when rubber with a high elastic modulus is used as the material for the tread, it is difficult to ensure a high coefficient of friction between the land surface and the road surface, although it is possible to avoid a reduction in the contact area when shear force is input. It becomes. In addition, when the groove or sipe is shallow, the volume of the groove for discharging water that has entered the ground surface when traveling on a road surface covered with a water film is reduced, and drainage on wet or icy road surfaces is reduced. Performance may be reduced. Furthermore, in order to form a groove or sipe that is curved or bent in advance in the depth direction, it is necessary to use a vulcanization mold having a complicated shape, and there is a problem that the production of the vulcanization mold is complicated and expensive. .

それゆえ、この発明は、これらの問題点を解決することを課題とするものであり、その目的は、湿潤路面での排水性能を犠牲にしたり、複雑な形状の加硫用モールドを用いたりすることなしに、路面との摩擦係数の向上及び陸部表面における接地面積の増大の両立を図り得る空気入りタイヤを提供することにある。   Therefore, the present invention aims to solve these problems, and its purpose is to sacrifice drainage performance on wet road surfaces or to use a vulcanization mold having a complicated shape. It is an object of the present invention to provide a pneumatic tire that can achieve both improvement in the coefficient of friction with the road surface and increase in the contact area on the land surface.

前記の目的は、トレッド部に、路面に対して接地する陸部と、これよりも低く形成され路面に対して非接地な溝部とが形成された空気入りタイヤにおいて、前記陸部は、相対的に弾性率の低い低弾性材料によって形成された低弾性層と、前記低弾性材料よりも相対的に弾性率の高い高弾性材料によって形成された高弾性層とを有し、これら低弾性層及び高弾性層は、タイヤ径方向に交互に積層されていることを特徴とする空気入りタイヤによって達成される。なお、ここでいう「弾性率」とは、室温にて計測した縦弾性率を意味する。かかる構成を採用し、陸部を弾性率の異なる材料をタイヤ径方向に交互に積層することで、相対的に弾性率の低い低弾性層は、相対的に弾性率の高い高弾性層によってその変形が抑制されるので、せん断力入力時の陸部の倒れ込み変形は小さくなり、従って、せん断力入力時における陸部表面の接地面積は従来に比べて増大する。また、接地面に弾性率の低い低弾性層が露出するので、従来技術で示したように陸部全体を高弾性率の材料で形成した場合に比べ、路面との摩擦係数が向上する。さらに、溝やサイプを浅くする必要がないので、湿潤路面や氷路面での排水性能が低下するおそれがない。しかも、複雑な形状の加硫用モールドを用いる必要もない。なお、上記構成からなる空気入りタイヤは、例えば安全タイヤや重荷重用タイヤ、スタッドレスタイヤ等種々のタイヤに好適に適用し得るものである。   The object is to provide a pneumatic tire in which a tread portion includes a land portion that is in contact with the road surface and a groove portion that is lower than the land portion and is not grounded with respect to the road surface. A low elastic layer formed of a low elastic material having a low elastic modulus, and a high elastic layer formed of a high elastic material having a relatively higher elastic modulus than the low elastic material. The highly elastic layer is achieved by a pneumatic tire characterized by being alternately laminated in the tire radial direction. Here, the “elastic modulus” means a longitudinal elastic modulus measured at room temperature. By adopting such a configuration and alternately laminating materials with different elastic moduli in the tire radial direction on the land portion, the low elastic layer having a relatively low elastic modulus is replaced by the high elastic layer having a relatively high elastic modulus. Since the deformation is suppressed, the falling deformation of the land portion when the shear force is input is reduced, and therefore the contact area of the land surface when the shear force is input is increased as compared with the conventional case. Further, since the low elastic layer having a low elastic modulus is exposed on the ground contact surface, the friction coefficient with the road surface is improved as compared with the case where the entire land portion is formed of a high elastic modulus material as shown in the prior art. Furthermore, since it is not necessary to make the grooves and sipes shallow, there is no possibility that the drainage performance on wet road surfaces or ice road surfaces will deteriorate. Moreover, it is not necessary to use a vulcanization mold having a complicated shape. In addition, the pneumatic tire which consists of the said structure can be applied suitably for various tires, such as a safety tire, a heavy load tire, and a studless tire, for example.

なお、低弾性材料はゴムであることが好ましい。   The low elastic material is preferably rubber.

また、高弾性材料はゴムであることが好ましい。   The highly elastic material is preferably rubber.

さらに、陸部は少なくとも2層の高弾性層を含み、各高弾性層の厚さは、該陸部の高さの2.5%以上10%以下であることが好ましい。なお、ここでいう「高弾性層の厚さ」は、高弾性層のタイヤ半径方向の距離を指し、「陸部の高さ」は、陸部の接地面から溝底までのタイヤ半径方向の距離を指すものとする。   Further, the land portion includes at least two high elastic layers, and the thickness of each high elastic layer is preferably 2.5% or more and 10% or less of the height of the land portion. The “high elastic layer thickness” here refers to the distance in the tire radial direction of the high elastic layer, and the “land height” refers to the tire radial direction from the ground contact surface of the land to the groove bottom. Refer to distance.

さらに、高弾性層の厚さは、低弾性層の厚さの10%以上50%以下であることが好ましい。なお、ここでいう「低弾性層の厚さ」は、低弾性層のタイヤ半径方向の距離を指すものとする。   Furthermore, the thickness of the high elastic layer is preferably 10% or more and 50% or less of the thickness of the low elastic layer. Here, the “thickness of the low elastic layer” refers to the distance in the tire radial direction of the low elastic layer.

さらに、低弾性材料の弾性率は2〜6MPaの範囲内にあることが好ましい。   Furthermore, the elastic modulus of the low elastic material is preferably in the range of 2 to 6 MPa.

さらに、高弾性材料の弾性率は6〜30MPaの範囲内にあることが好ましい。   Furthermore, the elastic modulus of the highly elastic material is preferably in the range of 6 to 30 MPa.

さらに、高弾性材料の弾性率は、低弾性材料の弾性率の1.5倍以上15倍以下であることが好ましい。   Further, the elastic modulus of the high elastic material is preferably 1.5 times or more and 15 times or less than the elastic modulus of the low elastic material.

しかも、同一接地領域内に陸部を少なくとも2つ有し、これらの陸部における高弾性層と低弾性層の積層順序は互い異なることが好ましい。なお、ここでいう「接地領域」とは、空気入りタイヤを正規リムにリム組みし、且つ、正規内圧を充填するとともに正規荷重の負荷をかけたときにこの空気入りタイヤが路面と接地する際のタイヤの接触面をいう。ここで、正規リムとは、JATMAで規定する「標準リム」、TRAで規定する「Design Rim」、あるいはETRTOで規定する「Measuring Rim」である。また、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「INFLATION PRESSURES」である。また、正規荷重とは、JATMAで規定する「最大負荷能力」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「LOAD CAPACITY」である。   Moreover, it is preferable that at least two land portions are provided in the same ground contact region, and the stacking order of the high elastic layer and the low elastic layer in these land portions is different from each other. The term “landing area” as used herein refers to a case where the pneumatic tire contacts the road surface when the pneumatic tire is assembled on a regular rim, filled with a regular internal pressure, and loaded with a regular load. The contact surface of the tire. Here, the regular rim is “standard rim” defined by JATMA, “Design Rim” defined by TRA, or “Measuring Rim” defined by ETRTO. The normal internal pressure is “maximum air pressure” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO. The normal load is “maximum load capacity” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “LOAD CAPACITY” defined by ETRTO.

この発明によれば、湿潤路面での排水性能を犠牲にしたり、複雑な形状の加硫用モールドを用いたりすることなく、路面との摩擦係数の向上及び陸部表面における接地面積の増大の両立を図り得る。   According to the present invention, both the improvement of the coefficient of friction with the road surface and the increase of the ground contact area on the land surface can be achieved without sacrificing the drainage performance on the wet road surface or using a complex-shaped vulcanization mold. Can be planned.

この発明に従う実施の形態につき図面を参照しつつ詳細に説明する。ここに、図1は、この発明の実施形態にかかる空気入りタイヤのトレッドパターン形状を展開した平面図である。図2は、上記実施形態の空気入りタイヤにおいて、図1中のX−X線に沿う断面を示す拡大断面図である。   An embodiment according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view in which the tread pattern shape of the pneumatic tire according to the embodiment of the present invention is developed. FIG. 2 is an enlarged cross-sectional view showing a cross section taken along line XX in FIG. 1 in the pneumatic tire of the embodiment.

この実施形態の空気入りタイヤは、一対のビード部と、これらビード部からタイヤ径方向外側に延びる一対のサイドウォール部と、その外側に延びる一対のショルダー部と、両ショルダー部間に跨って延在するトレッド部とを備え、その内部構造は一般的なラジアルタイヤと同様であるので、その説明は省略する。   The pneumatic tire of this embodiment includes a pair of bead portions, a pair of sidewall portions extending from the bead portions to the outer side in the tire radial direction, a pair of shoulder portions extending outwardly, and extending between both shoulder portions. Since the internal structure is the same as that of a general radial tire, the description thereof will be omitted.

図1に示すように、この実施形態において空気入りタイヤのトレッド部1には、タイヤ周方向に沿って延びる複数の主溝3と、タイヤ幅方向に延びこれらの主溝3と交わる多数のラグ溝5とが形成されており、これらの主溝3とラグ溝5とによってブロック形状をなす多数の陸部7が区画形成されている。   As shown in FIG. 1, in this embodiment, the tread portion 1 of the pneumatic tire includes a plurality of main grooves 3 extending along the tire circumferential direction and a number of lugs extending in the tire width direction and intersecting with the main grooves 3. Grooves 5 are formed, and a large number of land portions 7 having a block shape are defined by these main grooves 3 and lug grooves 5.

この実施形態では、各陸部7は、タイヤ幅方向に沿って延びる3本のサイプ9によって4つの小陸部11に区画されている。この実施形態では、サイプ9の溝深さは、主溝3の溝深さよりも小さい。   In this embodiment, each land portion 7 is partitioned into four small land portions 11 by three sipes 9 extending along the tire width direction. In this embodiment, the groove depth of the sipe 9 is smaller than the groove depth of the main groove 3.

図2に示すように、陸部7における各小陸部11は、互いに異なる弾性率を有する弾性材料、すなわち相対的に弾性率の低い低弾性材料と相対的に弾性率の高い高弾性材料とによってそれぞれ形成された低弾性層13と高弾性層15とを有する。そしてこれらの低弾性層13と高弾性層15とはタイヤ径方向に交互に積層されている。この実施形態では、低弾性材料及び高弾性材料は共にゴムであるが、ゴム以外に有機繊維、金属シート及び有機材料のフィルム等を適宜選択して適用することができる。   As shown in FIG. 2, each small land portion 11 in the land portion 7 includes elastic materials having different elastic moduli, that is, a low elastic material having a relatively low elastic modulus and a high elastic material having a relatively high elastic modulus. The low elastic layer 13 and the high elastic layer 15 are formed respectively. These low elastic layers 13 and high elastic layers 15 are alternately laminated in the tire radial direction. In this embodiment, both the low-elasticity material and the high-elasticity material are rubbers, but organic fibers, metal sheets, organic material films, and the like can be appropriately selected and applied in addition to rubber.

次にこの実施形態の作用を説明する。この実施形態の空気入りタイヤを車両に装着して使用する場合、小陸部11は踏面に垂直な荷重を受けるばかりでなく、駆動、制動及び旋回動作等に起因して、図2中に矢印Aで示す、路面に対して平行方向にせん断力をも受け、すなわち、駆動時や制動時には、路面との摩擦によって小陸部11にタイヤ周方向の力が作用し、旋回時にはタイヤ幅方向の力が作用する。この結果、小陸部11はタイヤ周方向やタイヤ幅方向又はこれらに傾斜する方向に倒れ込み変形しようとする。しかし、当該小陸部11は、弾性率が互いに異なる弾性層によって構成されていることから、相対的に弾性率の高い高弾性層15が低弾性層13の変形を抑制するよう作用し、小陸部全体としての倒れ込み変形量は低減され、小陸部11の表面における残存する接地面積は増大する。その一方で、接地面には弾性率の低い低弾性層13が露出し得るので、陸部全体を高弾性率の材料で形成した場合に比べ路面との摩擦係数は向上することとなる。   Next, the operation of this embodiment will be described. When the pneumatic tire of this embodiment is used while being mounted on a vehicle, the small land portion 11 receives not only a load perpendicular to the tread, but also due to driving, braking, turning operation, and the like in FIG. A shear force is also received in a direction parallel to the road surface indicated by A. That is, during driving or braking, a force in the tire circumferential direction acts on the small land portion 11 due to friction with the road surface, and when turning, in the tire width direction. Force acts. As a result, the small land portion 11 tends to fall and deform in the tire circumferential direction, the tire width direction, or the direction inclined to these. However, since the small land portion 11 is composed of elastic layers having different elastic moduli, the high elastic layer 15 having a relatively high elastic modulus acts so as to suppress the deformation of the low elastic layer 13. The fall deformation amount of the entire land portion is reduced, and the remaining ground contact area on the surface of the small land portion 11 is increased. On the other hand, since the low elastic layer 13 having a low elastic modulus can be exposed on the contact surface, the friction coefficient with the road surface is improved as compared with the case where the entire land portion is formed of a high elastic modulus material.

なお、図2において、小陸部11は少なくとも2層の高弾性層15を含み、各高弾性層15の厚さhは、該小陸部11の高さHの2.5%以上10%以下とすることが好ましい。各高弾性層15の厚さhが小陸部11の高さHの2.5%未満の場合には、小陸部11の倒れ込み変形の抑制が十分に達成されないおそれがあるからであり、各高弾性層15の厚さhが小陸部の高さHの10%を超える場合は、小陸部11の倒れ込み変形の抑制は十分に達成し得るものの、低弾性層13が接地面に露出する期間が短くなる結果、路面との摩擦係数の向上が十分に実現されないおそれがあるからである。 In FIG. 2, the small land portion 11 includes at least two high elastic layers 15, and the thickness h H of each high elastic layer 15 is not less than 2.5% of the height H of the small land portion 10. % Or less is preferable. This is because, when the thickness h H of each high elastic layer 15 is less than 2.5% of the height H of the small land portion 11, the collapse of the small land portion 11 may not be sufficiently suppressed. When the thickness h H of each high elastic layer 15 exceeds 10% of the height H of the small land portion, although the collapse deformation of the small land portion 11 can be sufficiently suppressed, the low elastic layer 13 is in contact with the high elastic layer 15. This is because, as a result of shortening the period of exposure to the ground, there is a possibility that the improvement of the friction coefficient with the road surface may not be sufficiently realized.

小陸部11の倒れ込み変形を抑制するために配置した高弾性層15は、接地面に露出した際に、低弾性層13が接地面に露出した場合に比べ摩擦係数が低くなるおそれがある。そこで、倒れ込み変形の十分な抑制を図りつつ、高い摩擦力を発揮する期間をより長くする観点から、高弾性層15の厚さhは、低弾性層13の厚さhの10%以上50%以下とすることが好適である。なお、高弾性層15の厚さhが低弾性層13の厚さhの10%未満であると小陸部11の倒れ込み変形の抑制が十分に行い得ず、50%を超えると十分な摩擦力を得ることができないおそれがある。 When the high elastic layer 15 disposed to suppress the collapse of the small land portion 11 is exposed to the ground surface, the friction coefficient may be lower than when the low elastic layer 13 is exposed to the ground surface. Therefore, the thickness h H of the high elastic layer 15 is 10% or more of the thickness h L of the low elastic layer 13 from the viewpoint of extending the period during which a high frictional force is exerted while sufficiently suppressing the collapse deformation. It is preferable to set it to 50% or less. Note that if the thickness h H of the high elastic layer 15 is less than 10% of the thickness h L of the low elastic layer 13, the collapse of the land land portion 11 cannot be sufficiently suppressed, and if it exceeds 50%, it is sufficient. May not be able to obtain a sufficient frictional force.

低弾性材料の弾性率は、好適には2〜6MPaの範囲内とすることができる。低弾性材料の弾性率が2MPa未満の場合は、路面との高い密着性は確保し得るが、過度に柔軟となり小陸部11の倒れ込み変形が増大し、低弾性材料の弾性率が6MPaを超えると、小陸部の倒れ込み変形は減少するが路面との密着性が十分に確保し得ないおそれがあるからである。また、高弾性材料の弾性率は、好適には6〜30MPaの範囲内とすることができる。高弾性材料の弾性率が6MPa未満の場合は、小陸部11の倒れ込み変形の抑制が十分に行い得ないおそれがあり、高弾性材料の弾性率が30MPaを超えると、小陸部の倒れ込み変形は十分に抑制し得るものの、高弾性層15が接地面に露出した際に路面との摩擦係数が小さ過ぎて十分なグリップ性が確保し得ないおそれがあるからである。そして、高弾性材料の弾性率は、低弾性材料の弾性率の1.5倍以上15倍以下にあることが好ましい。その理由は、高弾性材料の弾性率が低弾性材料の弾性率の1.5倍未満では、十分に倒れ込みを抑制することができず、15倍を超えると剛性差が大き過ぎ不均一な摩耗の原因となるからである。   The elastic modulus of the low elastic material can be preferably in the range of 2 to 6 MPa. When the elastic modulus of the low elastic material is less than 2 MPa, high adhesion to the road surface can be ensured, but it becomes excessively soft and the falling deformation of the small land portion 11 increases, and the elastic modulus of the low elastic material exceeds 6 MPa. This is because although the falling deformation of the small land portion is reduced, there is a possibility that sufficient adhesion with the road surface cannot be ensured. The elastic modulus of the highly elastic material can be preferably in the range of 6 to 30 MPa. If the elastic modulus of the highly elastic material is less than 6 MPa, the collapse deformation of the small land portion 11 may not be sufficiently suppressed. If the elastic modulus of the highly elastic material exceeds 30 MPa, the collapse deformation of the small land portion may occur. Although it can be sufficiently suppressed, when the highly elastic layer 15 is exposed to the ground contact surface, the coefficient of friction with the road surface is too small, and there is a possibility that sufficient grip performance cannot be ensured. And it is preferable that the elasticity modulus of a highly elastic material exists in 1.5 times or more and 15 times or less of the elasticity modulus of a low elastic material. The reason is that if the elastic modulus of the high elastic material is less than 1.5 times that of the low elastic material, the collapse cannot be sufficiently suppressed, and if it exceeds 15 times, the rigidity difference is too large and uneven wear. It is because it becomes the cause.

この発明に従う他の実施形態を図3(a)、(b)に従って説明する。ここに、図3(a)は、この発明の他の実施形態にかかる空気入りタイヤのトレッドパターン形状を展開した平面図であり、(b)は、図3(a)中のY−Y線に沿う拡大断面図である。なお、前記の実施形態と同一の構成に関しては同一符号を付し、その説明は省略する。   Another embodiment according to the present invention will be described with reference to FIGS. FIG. 3A is a plan view of a developed tread pattern of a pneumatic tire according to another embodiment of the present invention, and FIG. 3B is a YY line in FIG. FIG. In addition, the same code | symbol is attached | subjected about the structure same as the said embodiment, and the description is abbreviate | omitted.

図3(a)に示すように、この実施形態の空気入りタイヤにおけるトレッド部1には、タイヤ周方向に沿って延びる複数の主溝3と、該主溝3に交差してタイヤ幅方向に延びる複数のラグ溝5が形成されており、ブロック形状をなす多数の陸部17が区画形成されている。   As shown in FIG. 3A, the tread portion 1 in the pneumatic tire of this embodiment includes a plurality of main grooves 3 extending along the tire circumferential direction, and intersects the main grooves 3 in the tire width direction. A plurality of extending lug grooves 5 are formed, and a number of land portions 17 having a block shape are defined.

図3(b)に示すように、各陸部17は、互いに異なる弾性率を有する弾性材料、すなわち相対的に弾性率の低い低弾性材料と相対的に弾性率の高い高弾性材料とによってそれぞれ形成された低弾性層13と高弾性層15とを有する。そしてこれらの低弾性層13と高弾性層15とはタイヤ径方向に交互に積層されている。この実施形態では、低弾性材料及び高弾性材料は共にゴムであるが、ゴム以外に有機繊維、金属シート及び有機材料のフィルム等を適宜選択して適用することができる。   As shown in FIG. 3B, each land portion 17 is made of an elastic material having a different elastic modulus, that is, a low elastic material having a relatively low elastic modulus and a high elastic material having a relatively high elastic modulus. The low elastic layer 13 and the high elastic layer 15 are formed. These low elastic layers 13 and high elastic layers 15 are alternately laminated in the tire radial direction. In this embodiment, both the low-elasticity material and the high-elasticity material are rubbers, but organic fibers, metal sheets, organic material films, and the like can be appropriately selected and applied in addition to rubber.

この発明に従うさらに別の実施形態を図4に従って説明する。ここに、図4(a)は、この発明の他の実施形態にかかる空気入りタイヤのトレッドパターン形状を展開した平面図であり、図4(b)は、図4(a)中のB−B線に沿う拡大断面図であり、図4(c)は、図4(a)中のC−C線に沿う拡大断面図である。なお、前記の実施形態と同一の構成に関しては同一符号を付し、その説明は省略する。   Still another embodiment according to the present invention will be described with reference to FIG. FIG. 4A is a plan view in which a tread pattern shape of a pneumatic tire according to another embodiment of the present invention is developed, and FIG. 4B is a cross-sectional view taken along line B- in FIG. It is an expanded sectional view which follows a B line, and Drawing 4 (c) is an expanded sectional view which meets a CC line in Drawing 4 (a). In addition, the same code | symbol is attached | subjected about the structure same as the said embodiment, and the description is abbreviate | omitted.

図4(a)に示すように、この実施形態の空気入りタイヤにおけるトレッド部1には、タイヤ周方向に沿って延びる複数の主溝3と、該主溝3に交差してタイヤ幅方向に延びる複数のラグ溝5が形成されており、ブロック形状をなす多数の陸部27が区画形成されている。   As shown in FIG. 4A, the tread portion 1 in the pneumatic tire of this embodiment includes a plurality of main grooves 3 extending along the tire circumferential direction, and intersects the main grooves 3 in the tire width direction. A plurality of extending lug grooves 5 are formed, and a large number of land portions 27 having a block shape are defined.

図4(b)に示すように、各陸部27は、互いに異なる弾性率を有する弾性材料、すなわち相対的に弾性率の低い低弾性材料と相対的に弾性率の高い高弾性材料とによってそれぞれ形成された低弾性層13と高弾性層15とを有する。そしてこれらの低弾性層13と高弾性層15とはタイヤ径方向に交互に積層されている。この実施形態では、低弾性材料及び高弾性材料は共にゴムであるが、ゴム以外に有機繊維、金属シート及び有機材料のフィルム等を適宜選択して適用することができる。   As shown in FIG. 4B, each land portion 27 is made of an elastic material having a different elastic modulus, that is, a low elastic material having a relatively low elastic modulus and a high elastic material having a relatively high elastic modulus. The low elastic layer 13 and the high elastic layer 15 are formed. These low elastic layers 13 and high elastic layers 15 are alternately laminated in the tire radial direction. In this embodiment, both the low-elasticity material and the high-elasticity material are rubbers, but organic fibers, metal sheets, organic material films, and the like can be appropriately selected and applied in addition to rubber.

この実施形態では、図3に示す実施形態とは異なり、同一接地領域内に、高弾性層15と低弾性層13の積層順序が異なる互いに陸部27b、27cが存在する。すなわち、図4(a)に仮想線で囲んで示す接地領域内において、陸部27bは、図4(b)に示す積層順序を有し、陸部27cは、図4(c)に示す積層順序を有する。これにより、例えば陸部27bにて低弾性層13が路面との摩擦により摩耗し高弾性層15が露出しても、同一接地領域内にある他の陸部27cでは高弾性層15が路面との摩擦により磨耗し低弾性層13が露出し得るので、タイヤ全体として常に高い摩擦係数を確保することが可能となる。積層順序は、隣接する陸部ごとに異ならせても良く、隣接する陸部列ごとに異ならせても良い。   In this embodiment, unlike the embodiment shown in FIG. 3, the land portions 27 b and 27 c exist in the same grounding region in which the stacking order of the high elastic layer 15 and the low elastic layer 13 is different. That is, the land portion 27b has the stacking order shown in FIG. 4B and the land portion 27c is the stacking shown in FIG. Have an order. Thereby, for example, even if the low elastic layer 13 is worn by friction with the road surface in the land portion 27b and the high elastic layer 15 is exposed, the high elastic layer 15 is in contact with the road surface in the other land portion 27c in the same ground contact area. Since the low elastic layer 13 can be exposed due to the friction of the tire, it is possible to always ensure a high coefficient of friction for the entire tire. The stacking order may be different for each adjacent land portion, or may be different for each adjacent land portion row.

なお、図1〜4に示す実施形態において、主溝3及びラグ溝5は共に直線状に延びているが、主溝3はジグザグ状や波状をなしてタイヤ周方向に延びるものでも良く、ラグ溝5も同様にジグザグ状や波状、への字状をなすものでも良い。また、陸部7、17、27の形状や小陸部11の形状も、長方形以外の形状であっても良く、例えば円形状、楕円形状、多角形形状又は他の不規則な閉鎖形状としても良い。   In the embodiment shown in FIGS. 1 to 4, both the main groove 3 and the lug groove 5 extend linearly, but the main groove 3 may extend in the tire circumferential direction in a zigzag shape or a wave shape. Similarly, the groove 5 may have a zigzag shape, a wave shape, or a square shape. Further, the shape of the land portions 7, 17, 27 and the shape of the small land portion 11 may be shapes other than a rectangle, for example, a circular shape, an elliptical shape, a polygonal shape, or other irregular closed shapes. good.

また、図1〜3に示す実施形態の空気入りタイヤは、例えば、成形ドラム上で円筒状のベルト等を成形し、その表面に帯状に形成されたトレッドゴムを貼り付けることによりベルト表面にトレッドゴム層を形成するに当り、押出機により低弾性材料からなる低弾性層と高弾性材料からなる高弾性層の積層構造を有するトレッドゴム層を形成し、そのトレッドゴム層を成形ドラム上でベルト等の表面に貼り付けることにより製造することができる他、低弾性材料と高弾性材料とを成形ドラム上で順次積層させることにより製造することができる。また、図4に示す実施形態にあっては、例えば、押出機により互いに積層順序の異なる小幅のトレッドゴム層を複数形成し、それらを成形ドラム上でタイヤ幅方向に並べるように配置することで製造することができる。   The pneumatic tire according to the embodiment shown in FIGS. 1 to 3 is formed, for example, by forming a cylindrical belt or the like on a forming drum and attaching a tread rubber formed in a belt shape to the surface of the tread on the belt surface. In forming the rubber layer, a tread rubber layer having a laminated structure of a low elastic layer made of a low elastic material and a high elastic layer made of a high elastic material is formed by an extruder, and the tread rubber layer is belted on a molding drum. In addition to being able to be manufactured by sticking to a surface such as, it is possible to manufacture by sequentially laminating a low elastic material and a high elastic material on a molding drum. Further, in the embodiment shown in FIG. 4, for example, by forming a plurality of small tread rubber layers having different stacking orders from each other by an extruder and arranging them in a tire width direction on a molding drum. Can be manufactured.

タイヤサイズが195/65R15の乗用車用のスタッドレスタイヤにつき、表1に示す従来例1のタイヤ及び実施例1〜11のタイヤのモデルを作成し、平均接地圧約300kPaの下で前後方向にせん断力(μ=0.2)を与えたときの小陸部の接地面積を、有限要素法を用いて計算し、その結果を図5にグラフにて示す。なお、図5のグラフにおいて、横軸は実施例1〜11のタイヤにおける陸部の高弾性層の縦弾性係数を従来例1の小陸部の縦弾性係数を1として指数で示したものであり、縦軸は実施例1〜11の小陸部の残存する接地面積を従来例1の陸部の残存する接地面積を1として指数で示したものである。   For a studless tire for a passenger car having a tire size of 195 / 65R15, a tire model of Conventional Example 1 and a tire of Examples 1 to 11 shown in Table 1 was prepared, and shear force ( The contact area of the small land portion when μ = 0.2) is calculated using the finite element method, and the result is shown in a graph in FIG. In the graph of FIG. 5, the horizontal axis shows the longitudinal elastic modulus of the high elastic layer of the land portion in the tires of Examples 1 to 11 as an index with the longitudinal elastic modulus of the small land portion of Conventional Example 1 being 1. Yes, the vertical axis shows the remaining ground contact area of the small land portions of Examples 1 to 11 as an index with the remaining ground contact area of the land portion of Conventional Example 1 being 1.

Figure 2009255747
Figure 2009255747

図5のグラフに示す結果から明らかなように、低弾性層13と高弾性層とをタイヤ径方向に積層することにより、従来例1に比べ小陸部の残存する接地面積が約10%〜50%増大することが分かる。また、高弾性材料の弾性率を大きくすればするほど、及び高弾性層の厚さを厚くすればするほど小陸部の残存する接地面積が増大することが分かる。   As is apparent from the results shown in the graph of FIG. 5, by laminating the low elastic layer 13 and the high elastic layer in the tire radial direction, the remaining ground contact area of the small land portion is about 10% compared to the conventional example 1 It can be seen that it increases by 50%. It can also be seen that the larger the elastic modulus of the highly elastic material and the greater the thickness of the highly elastic layer, the greater the remaining ground contact area of the small land portion.

この発明によって、湿潤路面での排水性能を犠牲にしたり、複雑な形状の加硫用モールドを用いたりすることなく、路面との摩擦係数の向上し、かつ陸部表面における接地面積の増大した空気入りタイヤを提供することが可能となった。   By this invention, without sacrificing drainage performance on a wet road surface or using a complex-shaped vulcanization mold, the coefficient of friction with the road surface is improved and the air contact area on the land surface is increased. It has become possible to provide tires containing tires.

図1は、この発明の実施形態にかかる空気入りタイヤのトレッドパターン形状を展開した平面図である。FIG. 1 is a developed plan view of a tread pattern shape of a pneumatic tire according to an embodiment of the present invention. 図2は、上記実施形態の空気入りタイヤにおいて、図1中のX−X線に沿う断面を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing a cross section taken along line XX in FIG. 1 in the pneumatic tire of the embodiment. 図3(a)は、この発明の他の実施形態にかかる空気入りタイヤのトレッドパターン形状を展開した平面図であり、(b)は、図3(a)中のY−Y線に沿う拡大断面図である。Fig.3 (a) is the top view which expand | deployed the tread pattern shape of the pneumatic tire concerning other embodiment of this invention, (b) is an expansion along the YY line in Fig.3 (a). It is sectional drawing. 図4(a)は、この発明の他の実施形態にかかる空気入りタイヤのトレッドパターン形状を展開した平面図であり、図4(b)は、図4(a)中のB−B線に沿う拡大断面図であり、図4(c)は、図4(a)中のC−C線に沿う拡大断面図である。Fig.4 (a) is the top view which expanded the tread pattern shape of the pneumatic tire concerning other embodiment of this invention, FIG.4 (b) is BB line in Fig.4 (a). FIG. 4C is an enlarged cross-sectional view taken along line CC in FIG. 4A. 従来例及び各実施例のタイヤにおける残存する接地面積を示すグラフである。It is a graph which shows the contact area remaining in the tire of a prior art example and each Example. 従来技術に従う空気入りタイヤにおける陸部のタイヤ周方向に沿う拡大断面図である。It is an expanded sectional view in alignment with the tire peripheral direction of the land part in the pneumatic tire according to a prior art.

符号の説明Explanation of symbols

1 トレッド部
3 主溝
5 ラグ溝
7、17、27 陸部
9 サイプ
11 小陸部
13 低弾性層
15 高弾性層
DESCRIPTION OF SYMBOLS 1 Tread part 3 Main groove 5 Lag groove 7, 17, 27 Land part 9 Sipe 11 Small land part 13 Low elastic layer 15 High elastic layer

Claims (9)

トレッド部に、路面に対して接地する陸部と、これよりも低く形成され路面に対して非接地な溝部とが形成された空気入りタイヤにおいて、
前記陸部は、相対的に弾性率の低い低弾性材料によって形成された低弾性層と、前記低弾性材料よりも相対的に弾性率の高い高弾性材料によって形成された高弾性層とを有し、これら低弾性層及び高弾性層は、タイヤ径方向に交互に積層されていることを特徴とする空気入りタイヤ。
In a pneumatic tire in which a tread portion is formed with a land portion that is in contact with the road surface and a groove portion that is formed lower than this and is not grounded with respect to the road surface,
The land portion has a low elastic layer formed of a low elastic material having a relatively low elastic modulus and a high elastic layer formed of a high elastic material having a relatively higher elastic modulus than the low elastic material. The pneumatic tire is characterized in that the low elastic layer and the high elastic layer are alternately laminated in the tire radial direction.
前記低弾性材料はゴムである、請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the low elastic material is rubber. 前記高弾性材料はゴムである、請求項1又は2に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the highly elastic material is rubber. 前記陸部は少なくとも2層の高弾性層を含み、各高弾性層の厚さは、該陸部の高さの2.5%以上10%以下である、請求項1〜3の何れか一項に記載の空気入りタイヤ。   The land portion includes at least two high elastic layers, and the thickness of each high elastic layer is not less than 2.5% and not more than 10% of the height of the land portion. The pneumatic tire according to item. 前記高弾性層の厚さは、前記低弾性層の厚さの10%以上50%以下である、請求項1〜4の何れか一項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 4, wherein a thickness of the high elasticity layer is 10% or more and 50% or less of a thickness of the low elasticity layer. 前記低弾性材料の弾性率は2〜6MPaの範囲内にある、請求項1〜5の何れか一項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 5, wherein the low elastic material has an elastic modulus in a range of 2 to 6 MPa. 前記高弾性材料の弾性率は6〜30MPaの範囲内にある、請求項1〜6の何れか一項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 6, wherein the elastic modulus of the highly elastic material is in a range of 6 to 30 MPa. 前記高弾性材料の弾性率は、前記低弾性材料の弾性率の1.5倍以上15倍以下である、請求項1〜7の何れか一項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 7, wherein an elastic modulus of the high elastic material is 1.5 to 15 times an elastic modulus of the low elastic material. 同一接地領域内に前記陸部を少なくとも2つ有し、これらの陸部における前記高弾性層と前記低弾性層の積層順序は互い異なる、請求項1〜8の何れか一項に記載の空気入りタイヤ。   The air according to any one of claims 1 to 8, wherein at least two of the land portions are provided in the same ground contact region, and a stacking order of the high elastic layer and the low elastic layer in the land portions is different from each other. Enter tire.
JP2008107250A 2008-04-16 2008-04-16 Pneumatic tire Pending JP2009255747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107250A JP2009255747A (en) 2008-04-16 2008-04-16 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107250A JP2009255747A (en) 2008-04-16 2008-04-16 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2009255747A true JP2009255747A (en) 2009-11-05

Family

ID=41383741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107250A Pending JP2009255747A (en) 2008-04-16 2008-04-16 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2009255747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472998A (en) * 2015-12-22 2018-08-31 米其林集团总公司 The composite material of mechanical couplings being made of hard-soft mixture of oriented stack is used in the preparation of tire tread
FR3115234A1 (en) * 2020-10-19 2022-04-22 Compagnie Generale Des Etablissements Michelin Tire comprising a tread consisting of several elastomeric compounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104205A (en) * 1995-10-12 1997-04-22 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH1178413A (en) * 1997-09-16 1999-03-23 Bridgestone Corp Pneumatic radial tire
JP2001080314A (en) * 1999-09-13 2001-03-27 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2001206012A (en) * 2000-01-28 2001-07-31 Bridgestone Corp Pneumatic tire for heavy load

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104205A (en) * 1995-10-12 1997-04-22 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH1178413A (en) * 1997-09-16 1999-03-23 Bridgestone Corp Pneumatic radial tire
JP2001080314A (en) * 1999-09-13 2001-03-27 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2001206012A (en) * 2000-01-28 2001-07-31 Bridgestone Corp Pneumatic tire for heavy load

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472998A (en) * 2015-12-22 2018-08-31 米其林集团总公司 The composite material of mechanical couplings being made of hard-soft mixture of oriented stack is used in the preparation of tire tread
FR3115234A1 (en) * 2020-10-19 2022-04-22 Compagnie Generale Des Etablissements Michelin Tire comprising a tread consisting of several elastomeric compounds
WO2022084607A1 (en) * 2020-10-19 2022-04-28 Compagnie Generale Des Etablissements Michelin Tyre having a tread made up of multiple elastomeric compounds

Similar Documents

Publication Publication Date Title
JP5875814B2 (en) Pneumatic tire
JP5144721B2 (en) Heavy duty radial tire
JP5519721B2 (en) Pneumatic tire
JP6472023B2 (en) Pneumatic tire and its mold
WO2002100664A1 (en) Off-the-road tire
JP2004262295A (en) Heavy duty pneumatic tire for construction vehicle
JP2009067378A (en) Pneumatic tire, shoe, tire chain, and pneumatic tire vulcanization-mold
JP2017088098A (en) Pneumatic tire
JP5374565B2 (en) Pneumatic tire
JPH03143707A (en) Heavy load pneumatic tire suited for use in winter season
JP2008189165A (en) Pneumatic tire
JP4843661B2 (en) Heavy duty tire
JP2008290521A (en) Pneumatic tire
JP2006264455A (en) Pneumatic tire
JP5479935B2 (en) Pneumatic tire
JP2006327298A (en) Pneumatic tire
WO2021004012A1 (en) Winter tire equipped with multilayer stereoscopic steel sheet structure
JP2009255747A (en) Pneumatic tire
JP4692825B2 (en) Pneumatic tire
JP6472022B2 (en) Pneumatic tire and its mold
JP5129855B2 (en) Heavy duty tire
JP5693124B2 (en) Pneumatic tire
JP5977851B2 (en) Pneumatic tire
JP2007191020A (en) Pneumatic tire and its manufacturing method
JP5156309B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205