JP2009254031A - Non-contact feeder device - Google Patents

Non-contact feeder device Download PDF

Info

Publication number
JP2009254031A
JP2009254031A JP2008095719A JP2008095719A JP2009254031A JP 2009254031 A JP2009254031 A JP 2009254031A JP 2008095719 A JP2008095719 A JP 2008095719A JP 2008095719 A JP2008095719 A JP 2008095719A JP 2009254031 A JP2009254031 A JP 2009254031A
Authority
JP
Japan
Prior art keywords
current
power supply
power
output current
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095719A
Other languages
Japanese (ja)
Inventor
Harumasa Yamamoto
治正 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008095719A priority Critical patent/JP2009254031A/en
Publication of JP2009254031A publication Critical patent/JP2009254031A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact feeder device which suppresses both a loss of an exciting current generated by a primary-side feeder line and the generation of a voltage of a secondary-side power receiving circuit, is reduced in energy loss, small in size, and low in price. <P>SOLUTION: In the non-contact feeder device which feeds power to a transportation vehicle from ground equipment by electromagnetic induction in a non-contact manner, the feeder device comprises a high-frequency power supply device 2 which reduces the primary-side excitation current flowing to a feeder passage when a load is light. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、半導体や液晶工場等のクリーンルーム内において、搬送車に非接触で電力を供給する非接触給電装置に関するものである。   The present invention relates to a non-contact power supply apparatus that supplies power to a transport vehicle in a non-contact manner in a clean room such as a semiconductor or a liquid crystal factory.

非接触で負荷に電力を給電する場合、一定電圧で給電線に励磁電流を流すと、給電線の線路長が長くなるとインダクタンスにより線路に流れる電流が減少する。
このため、通常は励磁電流の実効値が一定になる制御を、励磁電流を給電するインバータ回路で行っている。
When power is supplied to the load in a non-contact manner, if an excitation current is passed through the power supply line at a constant voltage, the current flowing through the line decreases due to the inductance when the line length of the power supply line increases.
For this reason, normally, control that makes the effective value of the excitation current constant is performed by an inverter circuit that supplies the excitation current.

大型化した装置の電力供給を非接触給電で行う場合、給電線の線路長と励磁電流に比例した給電線の電気抵抗によるジュール発熱損失が生じる。
この電力は100kW程度の給電を行う際に、損失が数%あったとしても数kW(キロワット)になり、省エネルギーの観点から好ましくない。
When power is supplied to a large-sized device by non-contact power supply, Joule heat loss is caused by the electrical resistance of the power supply line proportional to the line length of the power supply line and the excitation current.
This power is not preferable from the viewpoint of energy saving, even when there is a loss of several percent when power is supplied at about 100 kW, even if there is a loss of several percent.

また、2次回路の発生電圧が励磁電流に比例するのは公知である。
励磁電流が完全に一定な交流電流でなく、振幅変調がかかったような変動する電流であった場合、2次側の受電回路では、発生電圧を整流した平滑回路の電圧は、軽負荷時に変動の最大電圧で平滑コンデンサを充電し、平滑回路の回路電圧が高くなる。
軽負荷時の発生電圧が定格負荷時の発生電圧よりも高い場合、2次回路に使用する電子部品の耐電圧は、最も電圧が上昇する軽負荷あるいは無負荷時の電圧に合わせて設計するため、部品コストの上昇と装置の大型化を招く欠点があった。
It is well known that the voltage generated in the secondary circuit is proportional to the excitation current.
If the excitation current is not a completely constant alternating current but a fluctuating current with amplitude modulation applied, in the secondary power receiving circuit, the voltage of the smoothing circuit that rectifies the generated voltage fluctuates at light loads. The smoothing capacitor is charged with the maximum voltage of, so that the circuit voltage of the smoothing circuit increases.
When the generated voltage at the light load is higher than the generated voltage at the rated load, the withstand voltage of the electronic components used in the secondary circuit is designed to match the voltage at the light load or no load at which the voltage increases most There are disadvantages that increase the cost of parts and increase the size of the apparatus.

本発明は、上記従来の非接触給電装置が有する問題点に鑑み、1次側の給電線による励磁電流の損失と2次側受電回路の発生電圧の両方を抑え、エネルギー損失の少ない小型で安価な非接触給電装置を提供することを目的とする。   In view of the problems of the above-described conventional non-contact power feeding device, the present invention suppresses both the excitation current loss caused by the primary side feed line and the voltage generated by the secondary side power receiving circuit, and is small and inexpensive with little energy loss. An object of the present invention is to provide a non-contact power feeding device.

上記目的を達成するため、本発明の非接触給電装置は、電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電装置において、給電線路に流す1次側励磁電流を、負荷が軽負荷の場合に低減する高周波電源装置を設けたことを特徴とする。   In order to achieve the above object, a non-contact power feeding device according to the present invention is a non-contact power feeding device that feeds power from a ground facility to a transport vehicle in a non-contact manner by electromagnetic induction. Is provided with a high-frequency power supply device that reduces the load when the load is light.

この場合において、高周波電源装置が、1次側励磁電流を給電するインバータ回路の平滑回路を通過する直流電力に対応する低減係数と、出力電流の平均値あるいは実効値との積に基づいて、低減する1次側励磁電流の出力電流を決定することができる。   In this case, the high frequency power supply device is reduced based on the product of the reduction coefficient corresponding to the DC power passing through the smoothing circuit of the inverter circuit that supplies the primary side excitation current and the average value or effective value of the output current. The output current of the primary side excitation current to be determined can be determined.

また、高周波電源装置が、出力電流の最大値と制御目標値となる基準値とを比較することにより、低減する1次側励磁電流の出力電流を決定することができる。   In addition, the high frequency power supply device can determine the output current of the primary side excitation current to be reduced by comparing the maximum value of the output current with the reference value that is the control target value.

本発明の非接触給電装置によれば、電磁誘導により地上設備から搬送車に非接触で電力を給電する搬送設備において、給電線路に流す1次側励磁電流を、負荷が軽負荷の場合に低減する高周波電源装置を設けることから、1次側の励磁電流を軽負荷時に低減することで、給電線路長による励磁電流の損失と2次側受電回路の発生電圧の両方を低減し、エネルギー損失の少ない、小型で安価な非接触給電システムを構築することができる。
なお、本発明の非接触給電装置は、1台の高周波電源装置で1台の大型装置、例えばスタッカクレーンを動かす場合などで、インバータ回路が受け持つ給電区間に同時に入る装置台数がゼロあるいは1台、多くても2台程度の運用で効果が発揮できる。
多数の小型搬送車に電力を供給する用途では、給電区間に入っている搬送車の台数が1台だけのとき、励磁電流を低減している状態で、規定の電力が得られなくなる不都合が生じるため、多数台数の給電を行うシステムの運用には適さない。
According to the non-contact power feeding device of the present invention, in a transport facility that feeds power from a ground facility to a transport vehicle by electromagnetic induction in a non-contact manner, the primary side excitation current that flows through the feed line is reduced when the load is light. By providing a high-frequency power supply that reduces the primary side excitation current at light load, both the loss of the excitation current due to the feed line length and the voltage generated by the secondary side power receiving circuit are reduced, and the energy loss is reduced. A small, inexpensive and non-contact power feeding system can be constructed.
Note that the non-contact power feeding device of the present invention has zero or one device simultaneously entering the power feeding section that the inverter circuit is responsible for when one large device, for example, a stacker crane is moved by one high-frequency power device. The effect can be demonstrated by the operation of about 2 units at most.
In applications where power is supplied to a large number of small transport vehicles, when only one transport vehicle is in the power supply section, there is a problem that the specified power cannot be obtained with the excitation current reduced. Therefore, it is not suitable for operating a system that supplies a large number of power supplies.

また、高周波電源装置が、1次側励磁電流を給電するインバータ回路の平滑回路を通過する直流電力に対応する低減係数と、出力電流の平均値あるいは実効値との積に基づいて、低減する1次側励磁電流の出力電流を決定することにより、軽負荷状態で更に実効値を低減できるように任意の低減係数を選択することができる。   In addition, the high-frequency power supply device 1 reduces based on the product of the reduction coefficient corresponding to the DC power passing through the smoothing circuit of the inverter circuit that supplies the primary excitation current and the average value or effective value of the output current. By determining the output current of the secondary side excitation current, an arbitrary reduction coefficient can be selected so that the effective value can be further reduced in the light load state.

また、高周波電源装置が、出力電流の最大値と制御目標値となる基準値とを比較することで、低減する1次側励磁電流の出力電流を決定することにより、負荷で消費する有効電力に対する出力電流は、最大値を一定に制御し、実効値は軽負荷の状態では出力電流が変動している分だけ減少する。   In addition, the high frequency power supply device determines the output current of the primary side excitation current to be reduced by comparing the maximum value of the output current with the reference value that is the control target value, thereby reducing the active power consumed by the load. The output current is controlled to a constant maximum value, and the effective value is decreased by the amount of fluctuation of the output current in a light load state.

以下、本発明の非接触給電装置の実施の形態を、図面に基づいて説明する。   Embodiments of a non-contact power feeding device according to the present invention will be described below with reference to the drawings.

図1〜図5に、本発明の非接触給電装置の一実施例を示す。
この非接触給電装置は、電磁誘導により地上設備から搬送車に非接触で電力を給電するもので、給電線路に流す1次側励磁電流を、負荷が軽負荷の場合に低減する高周波電源装置2を備えている。
1 to 5 show an embodiment of the non-contact power feeding device of the present invention.
This non-contact power feeding device feeds electric power from ground equipment to a transport vehicle in a non-contact manner by electromagnetic induction, and a high-frequency power source device 2 that reduces the primary side excitation current flowing through the feed line when the load is light. It has.

高周波電源装置2は、図1に示すように、サイリスタの位相制御により整流電圧を可変する整流回路3と、平滑コンデンサ4と、IGBT等のスイッチング素子で高周波の交流を発生するインバータ回路5と、平滑回路の電圧信号7、平滑回路の電流信号8、出力電圧信号9及び出力電流信号10を入力し、サイリスタの位相制御のためのゲート駆動信号とIGBTのゲート駆動信号とを発生する制御回路6とにより構成されている。
なお、高周波電源装置2は、3相交流等の交流電源1により電力が供給される。
一方、高周波電源装置2の出力側には、給電線路13の誘導性インピーダンスを補償するコンデンサ11、12が一定の給電線路長ごとに分散して配置されている。
As shown in FIG. 1, the high-frequency power supply device 2 includes a rectifier circuit 3 that varies a rectified voltage by phase control of a thyristor, a smoothing capacitor 4, and an inverter circuit 5 that generates high-frequency alternating current using a switching element such as an IGBT, A smoothing circuit voltage signal 7, a smoothing circuit current signal 8, an output voltage signal 9 and an output current signal 10 are inputted, and a control circuit 6 for generating a gate drive signal for phase control of the thyristor and an IGBT gate drive signal. It is comprised by.
The high frequency power supply device 2 is supplied with power by an AC power source 1 such as a three-phase AC.
On the other hand, on the output side of the high frequency power supply device 2, capacitors 11 and 12 that compensate for the inductive impedance of the feed line 13 are arranged in a distributed manner for each constant feed line length.

図2に、高周波電源装置の出力電流の波形を示す。
出力電流が一定となる高周波の交流電流が流れるのが理想的であるが、複数の要因により出力電流が変動する。
変動要因の最たるものは、高周波電源装置2の電流制御の応答時間と、交流電源1の周波数の関係とで発生する平滑回路のリップル電圧である。
高周波電源装置2を、位相制御の整流回路3で可変電圧を生成し、インバータ回路5は高周波電流の1周期の中で180度ごとの位相でスイッチングを行う方形波インバータで構成する場合、平滑コンデンサ4の容量は、その時定数を電流制御の応答時間よりも短く設定する。
もし、平滑回路の時定数が大きいと、電流制御のフィードバックループ内に平滑コンデンサ4の時定数が入り、制御遅れが生じるため、電流制御が正常に行えなくなる。
FIG. 2 shows a waveform of the output current of the high frequency power supply device.
Ideally, a high-frequency alternating current with a constant output current flows, but the output current varies due to a plurality of factors.
The most significant factor is the ripple voltage of the smoothing circuit generated by the current control response time of the high frequency power supply device 2 and the frequency relationship of the AC power supply 1.
When the high-frequency power supply device 2 is formed by a phase control rectifier circuit 3 and a variable voltage is generated, and the inverter circuit 5 is a square wave inverter that performs switching at a phase of every 180 degrees in one cycle of the high-frequency current, For the capacity of 4, the time constant is set shorter than the response time of the current control.
If the time constant of the smoothing circuit is large, the time constant of the smoothing capacitor 4 enters the feedback loop of the current control and a control delay occurs, so that the current control cannot be performed normally.

一方、交流電源1は50Hz又は60Hzの電源で、この3相交流を全波整流した場合、電源周波数の5倍の周波数でリップルが発生する。60Hzの交流では300Hzのリップルが発生する。
このリップルを含んだ平滑回路の直流電流でインバータ回路5を駆動すると、出力電流は図2のごとく、変動周期が電源周波数の5倍の300Hzで振幅変調した波形となる。
On the other hand, the AC power source 1 is a 50 Hz or 60 Hz power source, and when this three-phase AC is full-wave rectified, a ripple occurs at a frequency five times the power frequency. In an alternating current of 60 Hz, a ripple of 300 Hz occurs.
When the inverter circuit 5 is driven by the DC current of the smoothing circuit including the ripple, the output current has a waveform that is amplitude-modulated at 300 Hz, which is five times the power supply frequency, as shown in FIG.

他の変動要因としては、負荷の電力、負荷のインダクタンスが搬送車の負荷状態あるいは搬送車の移動により生じた場合、高周波電源装置2からみた負荷状態は共振状態にきわめて近いため、電流制御が追従しきれずに変動することがある。   As another variation factor, when the power of the load and the inductance of the load are caused by the load state of the transport vehicle or the movement of the transport vehicle, the load state viewed from the high frequency power supply device 2 is very close to the resonance state, so that the current control follows. It may fluctuate without being limited.

搬送車の方に着目すると、全体のシステム構成は図5に示すようになる。
高周波電源装置2で1次側の励磁電流を給電線路13に流す。インピーダンス補償のコンデンサ11、12を給電線路13の途中に分散配置する。
搬送車には、受電コイル14で電磁誘導により誘起した起電力を共振コンデンサ15で共振させ、整流回路16で整流し、負荷回路17に供給する。
なお、1つの受電コイル14の電力だけで搬送車の負荷を供給できない場合には、複数の受電回路の整流回路の出力を並列接続し、適宜、必要な電力を供給する。
When paying attention to the transport vehicle, the entire system configuration is as shown in FIG.
A primary side excitation current is passed through the feed line 13 by the high frequency power supply device 2. Impedance compensating capacitors 11 and 12 are distributed in the middle of the feeder line 13.
In the transport vehicle, the electromotive force induced by electromagnetic induction in the power receiving coil 14 is resonated by the resonance capacitor 15, rectified by the rectifier circuit 16, and supplied to the load circuit 17.
In addition, when the load of a conveyance vehicle cannot be supplied only with the electric power of one receiving coil 14, the output of the rectifier circuit of several receiving circuit is connected in parallel, and required electric power is supplied suitably.

整流回路16に入力される受電コイル14が発生する電圧は、給電線路13に流れる電流に比例するのは公知である。
搬送車の負荷が小さい場合、あるいはゼロの場合、整流回路16の電圧は受電コイル14の発生電圧の最大値で整流回路16の平滑コンデンサを充電する。
振幅が一定の正弦波交流では、波形の最大値と実効値の比率を示す波高率(CrestFactor)は1.4である。
しかし、図2に示すように電流が変動した場合、波高率は更に大きな値で1.8〜2.0程度まで増加する。
2次回路の発生電圧が実効値で200Vを発生する受電回路の場合、振幅一定の場合には280Vまでしか充電しない平滑コンデンサが、波高率2.0では400Vで充電する。
平滑コンデンサに使用するアルミ電解コンデンサは、同一の静電容量に対し、耐電圧が高くなれば大型になりコストも高くなる。
It is well known that the voltage generated by the power receiving coil 14 input to the rectifier circuit 16 is proportional to the current flowing through the feed line 13.
When the load on the transport vehicle is small or zero, the voltage of the rectifier circuit 16 charges the smoothing capacitor of the rectifier circuit 16 with the maximum value of the voltage generated by the power receiving coil 14.
In a sinusoidal alternating current with a constant amplitude, the crest factor (CrestFactor) indicating the ratio between the maximum value and the effective value of the waveform is 1.4.
However, when the current fluctuates as shown in FIG. 2, the crest factor increases to about 1.8 to 2.0 with a larger value.
In the case of a power receiving circuit in which the voltage generated by the secondary circuit is 200 V as an effective value, a smoothing capacitor that charges only up to 280 V when the amplitude is constant charges at 400 V at a crest factor of 2.0.
The aluminum electrolytic capacitor used for the smoothing capacitor becomes larger and costs higher if the withstand voltage is increased for the same capacitance.

図4(a)に、一定電流制御の場合の出力電流の実効値と最大値の関係を示す。
出力電流の実効値はほぼ一定に制御している。これは制御の目標値が実効値で制御しているための結果である。
これに対し、出力電流の最大値は制御量でないため変動する。負荷が小さい場合、インバータ出力は共振状態でインピーダンスの実数部の抵抗が非常に大きな値となり、虚数部が小さくなる。
このため、振動しやすく不安定な状態となり、振動が持続するのに加え、電源周波数の5倍のリップルがインバータ回路に供給する直流電源に重畳するために振動し、ほぼ一定の実効値に対して最大値が増加する。
FIG. 4A shows the relationship between the effective value and the maximum value of the output current in the case of constant current control.
The effective value of the output current is controlled to be almost constant. This is a result of the control target value being controlled by the effective value.
On the other hand, the maximum value of the output current varies because it is not a controlled variable. When the load is small, the inverter output is in a resonance state, the resistance of the real part of the impedance becomes a very large value, and the imaginary part becomes small.
For this reason, it becomes easy to vibrate and becomes unstable, and in addition to continuing the vibration, a ripple that is five times the power supply frequency vibrates because it is superimposed on the DC power supply that is supplied to the inverter circuit. Increases the maximum value.

本実施例では、電流制御の方法を、図3(a)に示す出力電流の平均値と平滑回路の直流部分の平均電力を使用した電流制御と、図3(b)に示す負荷電流の最大値による電流制御の2種類を提案する。   In the present embodiment, the current control method includes current control using the average value of the output current shown in FIG. 3A and the average power of the DC portion of the smoothing circuit, and the maximum load current shown in FIG. Two types of current control by value are proposed.

図3(b)に示す負荷電流の最大値による制御は、インバータ回路の出力電流、すなわち給電線の電流を検出し、この電流の一定時間内、例えば10ミリ秒の時間範囲の最大値と、制御目標値となる基準値とを比較し、PIDコントローラを通して電流指令を生成する。
図1に示す高周波電源装置2の構成では、電流を制御するのは、整流回路3の流通角を制御するサイリスタのゲート信号となり、出力電流が大きい場合にはサイリスタの点弧を遅くし、流通角を小さくして整流した直流電圧を下げる。
一方、出力電流が小さい場合はサイリスタの点弧を早くし、流通角を大きくして直流電圧を上げる一連の制御を連続的に行う。
この制御を行うと、負荷で消費する有効電力に対する出力電流は、図4(b)に示すように最大値を一定に制御し、実効値は軽負荷の状態では出力電流が変動している分だけ減少する。
The control by the maximum value of the load current shown in FIG. 3 (b) detects the output current of the inverter circuit, that is, the current of the feeder line, and within a certain time of this current, for example, the maximum value in the time range of 10 milliseconds, A reference value serving as a control target value is compared, and a current command is generated through the PID controller.
In the configuration of the high-frequency power supply device 2 shown in FIG. 1, the current is controlled by a thyristor gate signal that controls the flow angle of the rectifier circuit 3, and when the output current is large, the ignition of the thyristor is delayed. Reduce the rectified DC voltage by reducing the angle.
On the other hand, when the output current is small, a series of control is performed in which the thyristor is fired earlier, the flow angle is increased, and the DC voltage is increased.
When this control is performed, the output current with respect to the active power consumed by the load is controlled to a constant maximum value as shown in FIG. 4B, and the effective value is the amount that the output current fluctuates in a light load state. Only decrease.

図3(a)に示す方法は、平滑回路からインバータ回路5へ流れる電流、平滑回路の電圧及びインバータ回路5の出力電流の3つを使用する電流制御を示す。
平滑回路は直流回路であるため、その直流電力は電流と電圧の積になる。それぞれの検出した信号はロ一パスフィルタで制御応答の範囲外の高い周波数成分を除去する。
信号の処理方法は電気的な信号処理によるフィルタ処理でも、信号をA/D変換後、CPU処理による計算処理のいずれのフィルタ処理においても、一般的なローパスフィルタ処理では平均値が容易に得られる。
例えば、アナログ処理ではバタワースフィルタ、CPUの計算処理ではFIRフィルタや移動平均などの手法が一般的である。
平滑回路の電力は、インバータ回路5の変換損失を含む給電線路の電力となるが、インバータ回路5の変換効率は、固定周波数の方形波インバータでフルブリッジ構成のIGBTが180度ごとの点弧を繰り返す場合、10kHz近傍の周波数ではその効率は98%程度を実現できるため、インバータの変換損失は無視する。
この平滑回路の電力値に対する低減係数を線形関数で設定し、基準値との積をとる。この積の値を電流指令の基準値として負荷電流と比較し、フィードバック制御を行う。
この制御では、図4(c)に示すように、最大値に対して低減率を設定するため、軽負荷状態で更に実効値を低減できるように任意の低減係数を選択することが可能である。
The method shown in FIG. 3A shows current control using three of the current flowing from the smoothing circuit to the inverter circuit 5, the voltage of the smoothing circuit, and the output current of the inverter circuit 5.
Since the smoothing circuit is a DC circuit, its DC power is the product of current and voltage. Each detected signal is filtered by a low-pass filter to remove high frequency components outside the control response range.
As for the signal processing method, an average value can be easily obtained by a general low-pass filter process, regardless of whether it is a filter process based on electrical signal processing or a filter process based on CPU processing after A / D conversion of a signal. .
For example, methods such as a Butterworth filter are generally used for analog processing and an FIR filter or moving average is used for CPU calculation processing.
The power of the smoothing circuit is the power of the power supply line including the conversion loss of the inverter circuit 5, but the conversion efficiency of the inverter circuit 5 is a fixed frequency square wave inverter, and a full-bridge IGBT is ignited every 180 degrees. In the case of repetition, the efficiency of about 98% can be realized at a frequency in the vicinity of 10 kHz, so the conversion loss of the inverter is ignored.
A reduction coefficient for the power value of the smoothing circuit is set by a linear function, and a product with a reference value is obtained. The product value is compared with the load current as a reference value of the current command, and feedback control is performed.
In this control, as shown in FIG. 4C, since the reduction rate is set with respect to the maximum value, an arbitrary reduction factor can be selected so that the effective value can be further reduced in a light load state. .

非接触給電装置において、電力を供給する装置が1台の搬送車に電力を供給する場合は、定格負荷、すなわち図4に示す有効電力が1の状態で規定の励磁電流が給電線に流れていれば定格電力が供給でき、定格電力以下の電力領域では全領域で励磁電流を低減することができる。
2台の搬送車に電力を供給する場合は、1台が無負荷、1台が定格電力を必要とすることがあり、有効電力の1/2以下の領域で励磁電流を低減することが可能である。
同様に、N台の搬送車が存在する場合は、1/N以下の領域で低減することが可能である。
したがって、搬送車の台数が多い場合、すなわち小型の多数台数の搬送車を1台の大きな電源で動かす用途では、励磁電流を低減できる範囲が小さくなる。
実用的には、2台以下の搬送車台数の場合に好適な制御を提供することができる。
In a non-contact power supply device, when a power supply device supplies power to one transport vehicle, a specified excitation current flows through the power supply line with the rated load, that is, the active power shown in FIG. Accordingly, the rated power can be supplied, and the excitation current can be reduced in the entire region in the power region below the rated power.
When supplying power to two transport vehicles, one unit may require no load, and one unit may require rated power, and the excitation current can be reduced in an area that is 1/2 or less of the effective power. It is.
Similarly, when there are N transport vehicles, it can be reduced in a region of 1 / N or less.
Therefore, when the number of transport vehicles is large, that is, in an application in which a large number of small transport vehicles are moved by one large power source, the range in which the excitation current can be reduced becomes small.
Practically, it is possible to provide suitable control in the case of two or less transport vehicles.

給電線路のジュール発熱損失は、給電線路の電気抵抗と給電線路に流す電流の2乗に比例するため、給電線路に流す励磁電流を軽負荷領域で低減することで、ジュール発熱損失を効果的に低減することができ、軽負荷で電力損失の少ない非接触給電を実現することができる。
また、軽負荷時の2次側受電回路の発生電圧を低減することにより、使用する電子部品の耐電圧を低くし、小型で安価な非接触給電システムを構築することができる。
Since the Joule heat loss of the feed line is proportional to the electrical resistance of the feed line and the square of the current flowing through the feed line, the Joule heat loss can be effectively reduced by reducing the excitation current flowing through the feed line in the light load region. It is possible to reduce non-contact power feeding with light load and low power loss.
In addition, by reducing the voltage generated in the secondary power receiving circuit at light load, the withstand voltage of the electronic components to be used can be lowered, and a small and inexpensive non-contact power feeding system can be constructed.

以上、本発明の非接触給電装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the non-contact electric power feeder of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure is suitably changed in the range which does not deviate from the meaning. Can be changed.

本発明の非接触給電装置は、1次側の励磁電流を軽負荷時に低減することで、1次側の給電線による励磁電流の損失と2次側受電回路の発生電圧の両方を抑えるという特性を有していることから、エネルギー損失の少ない小型で安価な非接触給電装置として広く好適に用いることができる。   The contactless power supply device of the present invention reduces the excitation current on the primary side at a light load, thereby suppressing both the loss of the excitation current caused by the power supply line on the primary side and the voltage generated by the secondary side power receiving circuit. Therefore, it can be used widely and suitably as a small and inexpensive non-contact power feeding device with little energy loss.

本発明の非接触給電装置の高周波電源装置の一実施例を示すブロック図である。It is a block diagram which shows one Example of the high frequency power supply device of the non-contact electric power supply of this invention. 高周波電源装置の出力電流の波形を示すグラフである。It is a graph which shows the waveform of the output current of a high frequency power supply device. 高周波電源装置の電流制御方法を示し、(a)は出力電流の平均値と平滑回路の電力で定電流制御を行った場合のブロック図、(b)は出力電流の最大値で定電流制御を行った場合のブロック図である。The current control method of the high-frequency power supply device is shown, (a) is a block diagram when constant current control is performed with the average value of the output current and the power of the smoothing circuit, and (b) is constant current control with the maximum value of the output current. It is a block diagram at the time of going. 定電流制御における出力電流の実効値と最大値の関係を示し、(a)は出力電流の平均値あるいは実効値で定電流制御を行った場合のグラフ、(b)は出力電流の最大値で定電流制御を行った場合のグラフ、(c)は出力電流の平均値と平滑回路の電力で定電流制御を行った場合のグラフである。The relationship between the effective value and the maximum value of the output current in the constant current control is shown. (A) is a graph when the constant current control is performed with the average value or the effective value of the output current, and (b) is the maximum value of the output current. A graph when the constant current control is performed, (c) is a graph when the constant current control is performed with the average value of the output current and the power of the smoothing circuit. 非接触給電装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of a non-contact electric power feeder.

符号の説明Explanation of symbols

1 交流電源
2 高周波電源装置
3 整流回路
4 平滑コンデンサ
5 インバータ回路
6 制御回路
7 平滑回路の電圧信号
8 平滑回路の電流信号
9 出力電圧信号
10 出力電流信号
11 コンデンサ
12 コンデンサ
13 給電線路
14 受電コイル
15 共振コンデンサ
16 整流回路
17 負荷回路
DESCRIPTION OF SYMBOLS 1 AC power supply 2 High frequency power supply device 3 Rectifier circuit 4 Smoothing capacitor 5 Inverter circuit 6 Control circuit 7 Voltage signal of smoothing circuit 8 Current signal of smoothing circuit 9 Output voltage signal 10 Output current signal 11 Capacitor 12 Capacitor 13 Feeding line 14 Power receiving coil 15 Resonant capacitor 16 Rectifier circuit 17 Load circuit

Claims (3)

電磁誘導により地上設備から搬送車に非接触で電力を給電する非接触給電装置において、給電線路に流す1次側励磁電流を、負荷が軽負荷の場合に低減する高周波電源装置を設けたことを特徴とする非接触給電装置。   In a non-contact power feeding device that feeds electric power from a ground facility to a transport vehicle by electromagnetic induction in a non-contact manner, a high-frequency power source device is provided that reduces the primary-side excitation current that flows through the feed line when the load is light. A non-contact power feeding device. 高周波電源装置が、1次側励磁電流を給電するインバータ回路の平滑回路を通過する直流電力に対応する低減係数と、出力電流の平均値あるいは実効値との積に基づいて、低減する1次側励磁電流の出力電流を決定することを特徴とする請求項1記載の非接触給電装置。   The high frequency power supply apparatus reduces the primary side based on the product of the reduction coefficient corresponding to the DC power passing through the smoothing circuit of the inverter circuit that feeds the primary side excitation current and the average value or effective value of the output current. The non-contact power feeding apparatus according to claim 1, wherein an output current of the exciting current is determined. 高周波電源装置が、出力電流の最大値と制御目標値となる基準値とを比較することにより、低減する1次側励磁電流の出力電流を決定することを特徴とする請求項1又は2記載の非接触給電装置。   The high-frequency power supply apparatus determines the output current of the primary side excitation current to be reduced by comparing the maximum value of the output current with a reference value that is a control target value. Non-contact power feeding device.
JP2008095719A 2008-04-02 2008-04-02 Non-contact feeder device Pending JP2009254031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095719A JP2009254031A (en) 2008-04-02 2008-04-02 Non-contact feeder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095719A JP2009254031A (en) 2008-04-02 2008-04-02 Non-contact feeder device

Publications (1)

Publication Number Publication Date
JP2009254031A true JP2009254031A (en) 2009-10-29

Family

ID=41314175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095719A Pending JP2009254031A (en) 2008-04-02 2008-04-02 Non-contact feeder device

Country Status (1)

Country Link
JP (1) JP2009254031A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176914A (en) * 2010-02-23 2011-09-08 Saitama Univ Non-contact power supplying device
WO2012093423A1 (en) * 2011-01-06 2012-07-12 パナソニック株式会社 Non-contact charging system power supply device
JP2015100256A (en) * 2013-11-19 2015-05-28 大平電子株式会社 Non-contact power supply device
JP5733471B2 (en) * 2012-03-29 2015-06-10 村田機械株式会社 Non-contact power supply system and non-contact power supply method
JP2018046626A (en) * 2016-09-13 2018-03-22 マクセル株式会社 Power transmission device
JP2018182913A (en) * 2017-04-13 2018-11-15 株式会社豊田中央研究所 Transmitter and micro wave power transmission system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176914A (en) * 2010-02-23 2011-09-08 Saitama Univ Non-contact power supplying device
WO2012093423A1 (en) * 2011-01-06 2012-07-12 パナソニック株式会社 Non-contact charging system power supply device
JP5733471B2 (en) * 2012-03-29 2015-06-10 村田機械株式会社 Non-contact power supply system and non-contact power supply method
JP2015100256A (en) * 2013-11-19 2015-05-28 大平電子株式会社 Non-contact power supply device
JP2018046626A (en) * 2016-09-13 2018-03-22 マクセル株式会社 Power transmission device
US11095167B2 (en) 2016-09-13 2021-08-17 Maxell, Ltd. Power transmission device
JP2018182913A (en) * 2017-04-13 2018-11-15 株式会社豊田中央研究所 Transmitter and micro wave power transmission system

Similar Documents

Publication Publication Date Title
US10432026B2 (en) Primary-side power control for inductive power transfer
EP3104493B1 (en) Non-contact electric power transmitting device and electric power transfer system
US10348186B2 (en) Overvoltage limiting of AC voltage generation
CN102484907B (en) Induction heating apparatus
JP2559033Y2 (en) Ballast for gas discharge lamp
JP6136025B2 (en) Non-contact charging device power supply device
JP5342835B2 (en) Non-contact power feeding device
JP2015144554A (en) Power conversion equipment
WO2010062201A1 (en) Primary-side power control for inductive power transfer
WO2013136755A1 (en) Power feed device of inductive charging device
JP2006521078A (en) Power supply unit for gas discharge process
JP2009254031A (en) Non-contact feeder device
JP2006351371A (en) Induction heating cooker
JP6551100B2 (en) Power transmission device and non-contact power feeding system
EP2677651A1 (en) Synchronized isolated AC-AC converter with variable regulated output voltage
JP5708988B2 (en) High frequency power supply
JP2007194228A (en) Electromagnetic induction heating device
JP2007053861A (en) Contactless feeder system
JP6361240B2 (en) Induction heating device control circuit
JP2007194229A (en) Electromagnetic induction heating device
JP2008053070A (en) Induction heating device
JP2007027104A (en) Induction heating apparatus
JP2006238510A (en) Power unit
CN112054674B (en) Power supply device for electric vehicle
WO2023161669A1 (en) Electric-power conversion method and electric-power conversion device