JP2009253830A - Reception light power monitoring device, and reception light power monitoring method - Google Patents

Reception light power monitoring device, and reception light power monitoring method Download PDF

Info

Publication number
JP2009253830A
JP2009253830A JP2008101651A JP2008101651A JP2009253830A JP 2009253830 A JP2009253830 A JP 2009253830A JP 2008101651 A JP2008101651 A JP 2008101651A JP 2008101651 A JP2008101651 A JP 2008101651A JP 2009253830 A JP2009253830 A JP 2009253830A
Authority
JP
Japan
Prior art keywords
optical
power
light receiving
received
photocurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008101651A
Other languages
Japanese (ja)
Other versions
JP5173545B2 (en
Inventor
Masaki Sono
昌樹 曽野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008101651A priority Critical patent/JP5173545B2/en
Publication of JP2009253830A publication Critical patent/JP2009253830A/en
Application granted granted Critical
Publication of JP5173545B2 publication Critical patent/JP5173545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reception light power monitoring device that attain reduction of an error contained in a reception light power monitor output obtained from a photodetector. <P>SOLUTION: The invention relates to a reception light power monitoring device for monitoring reception light power in a light receiving section in an optical communication system, including: a voltage detecting means for detecting an inverse bias voltage to be applied to a photodetector, constituting a photodetecting section, with respect to light power input to the light receiving section; a photo current detecting means for detecting a photo current flowing to the photodetector with respect to the light power input to the light receiving section; an arithmetic means for predetermining a parameter specifying a linear expression of the inverse bias voltage so that a ratio of the light input power and the photo current becomes the linear expression of the inverse bias voltage in adjustment; and a storage means for storing the parameter determined by the arithmetic means, wherein, in reception light power monitoring, the arithmetic means fetches detection outputs of the voltage detecting means and the photo current detecting means and calculates reception light power by using the parameter stored in the storage means on the basis of the detection outputs. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本はめは、光通信システム等の各局の光受信装置における、受信光パワーのモニタ機能に関し、とくにWDM方式の光通信システムに使用するに好適な受信光パワーモニタ装置および受信光パワーモニタ方法に関する。   The present embodiment relates to a received optical power monitoring function in an optical receiving apparatus of each station such as an optical communication system, and more particularly to a received optical power monitoring apparatus and a received optical power monitoring method suitable for use in a WDM optical communication system.

WDM(Wavelength Division Multiplexing)方式等の光通信システムにおいて受信装置側では、装置監視用に光受信パワーモニタ等のモニタ機能を備えることが求められている。
WDM方式の光通信システムの構成を図9に示す。同図において、WDM方式の光通信システムは、多重化装置500と、送信装置501と、光合波器510と、光ファイバ伝送路520と、光分波器530と、受信装置540と、多重分離化装置550とを有している。
In an optical communication system such as a WDM (Wavelength Division Multiplexing) system, a receiving device is required to have a monitoring function such as an optical reception power monitor for device monitoring.
FIG. 9 shows the configuration of a WDM optical communication system. In the figure, a WDM optical communication system includes a multiplexer 500, a transmitter 501, an optical multiplexer 510, an optical fiber transmission line 520, an optical demultiplexer 530, a receiver 540, and a demultiplexer. And a conversion device 550.

送信装置501は、送信符号処理部502と、レーザダイオード(LD)を駆動する駆動回路503と、レーザダイオード(LD)504と、レーザダイオード(LD)504の出力を一定に制御する出力レベル制御部505とを有している。
また、受信装置540は、受光素子541と、等化増幅器542と、AGC回路543と、識別再生部544と、受信符号処理部545と、受信パワーモニタ回路546と、タイミング抽出回路547とを有している。
多重化装置500、送信装置501、受信装置540及び多重化分離装置550は、WDM方式で使用する光信号の波長の数だけ設けられている。
The transmission apparatus 501 includes a transmission code processing unit 502, a drive circuit 503 that drives a laser diode (LD), a laser diode (LD) 504, and an output level control unit that controls the output of the laser diode (LD) 504 to be constant. 505.
The receiving device 540 includes a light receiving element 541, an equalizing amplifier 542, an AGC circuit 543, an identification reproducing unit 544, a received code processing unit 545, a received power monitor circuit 546, and a timing extracting circuit 547. is doing.
Multiplexers 500, transmitters 501, receivers 540, and demultiplexers 550 are provided as many as the number of wavelengths of optical signals used in the WDM system.

上記構成において、信号源からの信号は多重化装置500により、多重化されたディジタル信号となり、送信符号処理部502より入力データに同期情報及び制御情報が付加されるとともに、符号化処理が行われる。
送信信号処理部502の出力は、駆動回路503、レーザダイオード(LD)504及び出力レベル制御部505により光電変換され、光合波器510に出力される。
In the above configuration, the signal from the signal source is converted into a multiplexed digital signal by the multiplexer 500, and the synchronization information and control information are added to the input data from the transmission code processing unit 502, and the encoding process is performed. .
The output of the transmission signal processing unit 502 is photoelectrically converted by the drive circuit 503, the laser diode (LD) 504, and the output level control unit 505, and is output to the optical multiplexer 510.

光合波器510では、複数の送信装置501から出力される異なる複数の波長λ1、λ2、…、λnの光信号が多重化され、光ファイバ伝送路520を介して光分波器530に入力される。
光分波器530では、光合波器510で多重化された複数の光信号を波長毎に分波し、各受信装置540に出力する。
受信装置540では、受光素子541により光信号を受光し、光電変換した出力信号を等化増幅器542、AGC回路543及び受信パワーモニタ回路546に出力する。
In the optical multiplexer 510, optical signals having different wavelengths λ 1, λ 2,..., Λn output from the plurality of transmission devices 501 are multiplexed and input to the optical demultiplexer 530 via the optical fiber transmission line 520. The
The optical demultiplexer 530 demultiplexes the plurality of optical signals multiplexed by the optical multiplexer 510 for each wavelength and outputs the demultiplexed signals to each receiving device 540.
In the receiving device 540, an optical signal is received by the light receiving element 541 and an output signal obtained by photoelectric conversion is output to the equalizing amplifier 542, the AGC circuit 543, and the reception power monitor circuit 546.

受光素子541の出力信号は、AGC回路543によりゲインコントロールされた等化増幅器542により等化増幅され、識別再生部544及びタイミング抽出回路547に出力される。
タイミング抽出回路547では、論理“1”(マーク)と、論理“0”(スペース)とを識別するタイミングを示すクロックが抽出され、タイミング抽出回路547は該クロックを識別再生部544に出力する。
The output signal of the light receiving element 541 is equalized and amplified by the equalizing amplifier 542 whose gain is controlled by the AGC circuit 543, and is output to the identification reproduction unit 544 and the timing extraction circuit 547.
In the timing extraction circuit 547, a clock indicating the timing for identifying the logic “1” (mark) and the logic “0” (space) is extracted, and the timing extraction circuit 547 outputs the clock to the identification reproduction unit 544.

識別再生部544では、論理“1”(マーク)と、論理“0”(スペース)とを識別し、受信符号処理部545に出力する。受信符号処理部545では、送信符号処理部502とは逆の処理が行われ、多重分離装置550により元の信号を取得する。   The discriminating / reproducing unit 544 discriminates the logic “1” (mark) and the logic “0” (space) and outputs the discriminating logic to the reception code processing unit 545. In the reception code processing unit 545, the reverse process of the transmission code processing unit 502 is performed, and the original signal is acquired by the demultiplexing device 550.

上記構成の通信システムにおいて、受信装置540では、受信パワーモニタ回路546により受光した入力光パワーを監視し、受光パワーに応じた電圧信号をモニタ信号として受信装置本体に出力する。
このように、光通信システムでは、受信装置側で受信した光信号の入力パワーをモニタする機能を備えているのが一般的である(例えば、特許文献1参照)。
In the communication system configured as described above, the receiving device 540 monitors the input optical power received by the received power monitor circuit 546, and outputs a voltage signal corresponding to the received light power as a monitor signal to the receiving device body.
As described above, the optical communication system generally has a function of monitoring the input power of the optical signal received on the receiving device side (see, for example, Patent Document 1).

光通信システムの受信装置における光信号を受信する受光素子には一般的にPINダイオードやアバランシェフォトダイオード(APD)等のフォトダイオードが使用される。
PINダイオードは、空乏層の幅を広げて量子効率と応答速度を高めるために、n型半導体領域とp型半導体領域との間に真性半導体領域(i層)を設けたPIN構造を有している。
In general, a photodiode such as a PIN diode or an avalanche photodiode (APD) is used as a light receiving element that receives an optical signal in a receiving device of an optical communication system.
The PIN diode has a PIN structure in which an intrinsic semiconductor region (i layer) is provided between an n-type semiconductor region and a p-type semiconductor region in order to increase the width of the depletion layer and increase quantum efficiency and response speed. Yes.

PINダイオードでは、光入力Pinに比例した光電流Ipdが流れる。したがって、光入力Pinに対するモニタ出力Vmonは、
Vmon=K・Ipd(Kは、比例係数)として比例係数Kの値を調整してモニタ出力Vmonを得ることができる。
In the PIN diode, a photocurrent Ipd proportional to the optical input Pin flows. Therefore, the monitor output Vmon for the optical input Pin is
The monitor output Vmon can be obtained by adjusting the value of the proportional coefficient K as Vmon = K · Ipd (K is a proportional coefficient).

これに対して、高感度用のフォトダイオードとしてアバランシェフォトダイオード(APD)がある。このフォトダイオードは、長距離伝送を行う光通信システムに使用される。
アバランシェフォトダイオード(APD)は、走行キャリアが他の電子と衝突して価電子帯から伝導帯に励起され、キャリア数が増倍されることにより、大きな光電流を得る機能を持っている。すなわち、アバランシェフォトダイオード(APD)には、光入力Pinに比例した光電流が、アバランシェフォトダイオードの逆バイアス電圧VrによりM倍に増倍された光電流Iapdが流れる。
On the other hand, there is an avalanche photodiode (APD) as a photodiode for high sensitivity. This photodiode is used in an optical communication system that performs long-distance transmission.
The avalanche photodiode (APD) has a function of obtaining a large photocurrent when a traveling carrier collides with another electron and is excited from a valence band to a conduction band to increase the number of carriers. That is, a photocurrent Iapd obtained by multiplying a photocurrent proportional to the optical input Pin M times by the reverse bias voltage Vr of the avalanche photodiode flows through the avalanche photodiode (APD).

そこで、光電流Iapdとアバランシェフォトダイオード(APD)に印加される逆バイアス電圧Vrをモニタし、増倍率を考慮して計算を行なうことにより、光入力Pinに対するモニタ出力Vmonを得ることになる。
したがって、光入力Pinに対するモニタ出力Vmonは、
Vmon=F(Iapd,Vr)…(1)
と書ける。
Therefore, the monitor output Vmon for the optical input Pin is obtained by monitoring the photocurrent Iapd and the reverse bias voltage Vr applied to the avalanche photodiode (APD) and calculating in consideration of the multiplication factor.
Therefore, the monitor output Vmon for the optical input Pin is
Vmon = F (Iapd, Vr) (1)
Can be written.

このように、アバランシェフォトダイオード(APD)の受信光パワーのモニタ出力Vmonは、アバランシェフォトダイオードの光電流Iapd及び、アバランシェフォトダイオードに印加される逆バイアス電圧Vrの関数となる。
特開2004−120669号公報
Thus, the monitor output Vmon of the received light power of the avalanche photodiode (APD) is a function of the photocurrent Iapd of the avalanche photodiode and the reverse bias voltage Vr applied to the avalanche photodiode.
JP 2004-120669 A

図10に、図9における受信パワーモニタ回路546の概略構成を模式的に示す。同図において、受信パワーモニタ回路546は、受光素子としてのアバランシェフォトダイオード(APD)541に逆バイアス電圧Vrを印加する高電圧回路600と、電流制限用抵抗R10と、逆バイアス電圧Vrを検出する分圧抵抗R12、R13と、光電流を検出する光電流検出部601と、逆バイアス電圧検出部602とを有している。   FIG. 10 schematically shows a schematic configuration of the reception power monitor circuit 546 in FIG. In the figure, a reception power monitor circuit 546 detects a high voltage circuit 600 that applies a reverse bias voltage Vr to an avalanche photodiode (APD) 541 as a light receiving element, a current limiting resistor R10, and a reverse bias voltage Vr. It has voltage dividing resistors R12 and R13, a photocurrent detector 601 that detects a photocurrent, and a reverse bias voltage detector 602.

上記構成において、高電圧回路600よりアバランシェフォトダイオード(APD)541に抵抗R10、R11を介して逆バイアス電圧Vrが印加された状態下で、波長λ、パワーPinの光信号が受光素子としてのバランシェフォトダイオード(APD)541に入力されると、アバランシェフォトダイオード(APD)541には、パワーPin及び逆バイアス電圧Vrに応じた光電流Iapdが流れる。この光電流Iapdは光電流検出部601により電圧信号として検出される。
また、逆バイアス電圧Vrは、分圧抵抗R12、R13により、分圧した電圧信号として逆バイアス電圧検出部602により検出される。
In the above configuration, an optical signal having a wavelength λ and a power Pin is converted into a valanche as a light receiving element in a state where a reverse bias voltage Vr is applied to the avalanche photodiode (APD) 541 from the high voltage circuit 600 via the resistors R10 and R11. When input to the photodiode (APD) 541, a photocurrent Iapd corresponding to the power Pin and the reverse bias voltage Vr flows through the avalanche photodiode (APD) 541. This photocurrent Iapd is detected as a voltage signal by the photocurrent detector 601.
The reverse bias voltage Vr is detected by the reverse bias voltage detector 602 as a voltage signal divided by the voltage dividing resistors R12 and R13.

上記構成からなる受信パワーモニタ回路546におけるアバランシェフォトダイオード(APD)541の逆バイアス電圧Vrに対する受光感度特性を図11に示す。同図に示すように、アバランシェフォトダイオード(APD)541は、印加される逆バイアス電圧Vr(V)に比例してキャリアの像倍率が大きくなり、光電流Iapdの値が大きくなる。   FIG. 11 shows the light receiving sensitivity characteristic with respect to the reverse bias voltage Vr of the avalanche photodiode (APD) 541 in the reception power monitor circuit 546 configured as described above. As shown in the figure, in the avalanche photodiode (APD) 541, the carrier image magnification increases in proportion to the applied reverse bias voltage Vr (V), and the value of the photocurrent Iapd increases.

このため、逆バイアス電圧Vr(V)に応じて受光感度(mA/mW)が非線形に変化することが判る。図11において、受光感度特性曲線S上の受光感度が1(=10)となる点P1では、入力光パワーPinが1mWで1mAの光電流Iapdが流れ、受光感度が3となる点P2では、1mWの入力光パワーPinで3mAの光電流Iapdが流れ、受光感度が10(=10)となる点P3では、1mWの入力光パワーPinで10mAの光電流Iapdが流れることとなる。 For this reason, it can be seen that the light receiving sensitivity (mA / mW) changes nonlinearly according to the reverse bias voltage Vr (V). In FIG. 11, at the point P1 where the light receiving sensitivity on the light receiving sensitivity characteristic curve S is 1 (= 10 0 ), the photocurrent Iapd of 1 mA flows when the input light power Pin is 1 mW, and at the point P2 where the light receiving sensitivity is 3. A 3 mA photocurrent Iapd flows with an input optical power Pin of 1 mW, and a photocurrent Iapd of 10 mA flows with an input optical power Pin of 1 mW at a point P3 where the light receiving sensitivity becomes 10 (= 10 1 ).

アバランシェフォトダイオード(APD)541の入力光パワーPinに対する光電流Iapd、逆バイアス電圧Vr、受信光パワーモニタ出力Vmonの特性を図12に示す。
図12(a)に示すように、光電流Iapdが入力光パワーPinに対して直線Q0のように線形関係にあれば、受信光パワーモニタ出力Vmonは、図12(d)に示すように入力光パワーPinに対して比例関係となる。
FIG. 12 shows the characteristics of the photocurrent Iapd, the reverse bias voltage Vr, and the received optical power monitor output Vmon with respect to the input optical power Pin of the avalanche photodiode (APD) 541.
As shown in FIG. 12 (a), if the photocurrent Iapd is linearly related to the input optical power Pin as shown by the straight line Q0, the received optical power monitor output Vmon is input as shown in FIG. 12 (d). It is proportional to the optical power Pin.

しかし、実際には、光電流Iapdが入力光パワーPinに対して曲線Q1のように変化するため、受信光パワーモニタ出力Vmonは、入力光パワーPinに対して非線形関係となり、従来装置では、受光素子としてのアバランシェフォトダイオード(APD)からの受信光パワーモニタ出力Vmonに誤差が生じるという問題があった。   However, actually, since the photocurrent Iapd changes with respect to the input optical power Pin as indicated by the curve Q1, the received optical power monitor output Vmon has a non-linear relationship with respect to the input optical power Pin. There is a problem that an error occurs in the received light power monitor output Vmon from the avalanche photodiode (APD) as an element.

本発明は、このような事情に鑑みてなされたものであり、受光素子から得られる受信光パワーモニタ出力に含まれる誤差の低減を図った受信光パワーモニタ装置および受信光パワーモニタ方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a received light power monitor device and a received light power monitor method that reduce errors included in a received light power monitor output obtained from a light receiving element. For the purpose.

上記目的を達成するために、本発明の受信光パワーモニタ装置は、光通信システムにおける光受信部における受光パワーを監視する受信光パワーモニタ装置であって、前記光受信部に入力される光パワーに対する前記受光部を構成する受光素子に印加される逆バイアス電圧を検出する電圧検出手段と、前記光受信部に入力される光パワーに対する前記受光素子に流れる光電流を検出する光電流検出手段と、調整時に、前記光入力パワーと前記光電流との比が前記逆バイアス電圧の一次式となるように該一次式を規定するパラメータを予め決定する演算手段と、前記演算手段により決定された前記パラメータを記憶する記憶手段と、を有し、前記演算手段は、受信光パワーモニタ時に、前記電圧検出手段及び前記光電流検出手段の検出出力を取り込み、これらの検出出力に基づいて前記記憶手段に記憶されている前記パラメータを使用して受信光パワーを算出することを特徴とする。   In order to achieve the above object, a received optical power monitor apparatus according to the present invention is a received optical power monitor apparatus that monitors received light power in an optical receiving section in an optical communication system, and is an optical power input to the optical receiving section. Voltage detecting means for detecting a reverse bias voltage applied to a light receiving element constituting the light receiving section with respect to the light, and a photocurrent detecting means for detecting a photocurrent flowing in the light receiving element with respect to the optical power input to the optical receiving section; Calculating means for predetermining a parameter defining the primary expression so that a ratio of the optical input power and the photocurrent becomes a primary expression of the reverse bias voltage at the time of adjustment; and Storage means for storing parameters, and the calculation means obtains the detection outputs of the voltage detection means and the photocurrent detection means when monitoring the received optical power. Inclusive, and calculates the received optical power by using the parameters stored in the storage means based on the detected output.

上記構成からなる本発明の受信光パワーモニタ装置では、電圧検出手段により前記光受信部に入力される光パワーに対するに印加される逆バイアス電圧が検出され、光電流検出手段により前記光受信部に入力される光パワーに対する前記受光素子に流れる光電流が検出される。
また、調整時に、演算手段は、前記光入力パワーと前記光電流との比が前記逆バイアス電圧の一次式となるように該一次式を規定するパラメータが予め決定し、記憶手段により前記決定された前記パラメータが記憶される。
In the received optical power monitoring apparatus of the present invention having the above-described configuration, a reverse bias voltage applied to the optical power input to the optical receiving unit is detected by the voltage detecting unit, and the photocurrent detecting unit detects the reverse bias voltage applied to the optical receiving unit. A photocurrent flowing in the light receiving element with respect to the input optical power is detected.
Further, at the time of adjustment, the computing means predetermines a parameter that defines the primary expression so that the ratio of the optical input power to the photocurrent becomes a primary expression of the reverse bias voltage, and the storage means determines the parameter. The parameters are stored.

受信光パワーモニタ時には、前記演算手段は、前記電圧検出手段及び前記光電流検出手段の検出出力を取り込み、これらの検出出力に基づいて前記記憶手段に記憶されている前記パラメータを使用して受信光パワーを算出する。
これにより、光受信部に入力される光パワーと、該光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。
At the time of monitoring the received light power, the calculation means takes in the detection outputs of the voltage detection means and the photocurrent detection means, and receives the received light using the parameters stored in the storage means based on these detection outputs. Calculate power.
As a result, the optical power input to the optical receiver and the monitor output of the received optical power with respect to the optical power input to the optical receiver have a linear relationship, and the error in the monitor output of the detected received optical power is reduced. Is done.

また、本発明の受信光パワーモニタ装置は、前記演算手段は、調整時に、前記受信部に入力される光パワーをPin,前記受光素子に流れる光電流をIapd‘、前記受光素子に印加される逆バイアス電圧をVr、取得した光電流Iapd’の誤差を考慮したオフセットをC(T)、前記光入力パワーPinと前記光電流Iapd‘との比を、逆バイアス電圧Vrを変数とした一次式で表したときの逆バイアス電圧Vrの係数をA(T),定数項をB(T)(ただし、Tは温度を示し、A(T)、B(T)、C(T)は温度の関数である。)として、
次式(2)
Pin/(Iapd‘−C(T))=A(T)・Vr+B(T)…(2)
からパラメータA(T)、B(T)、C(T)を算出し、求めたパラメータA(T)、B(T)、C(T)を前記記憶手段に格納することを特徴とする。
In the received light power monitoring apparatus of the present invention, the calculating means applies the optical power input to the receiving unit to Pin, the photocurrent flowing through the light receiving element to Iapd ′, and the light receiving element during adjustment. A linear expression in which the reverse bias voltage is Vr, the offset considering the error of the obtained photocurrent Iapd 'is C (T), and the ratio between the optical input power Pin and the photocurrent Iapd' is the reverse bias voltage Vr as a variable. Where the coefficient of the reverse bias voltage Vr is A (T), the constant term is B (T) (where T indicates temperature, and A (T), B (T), and C (T) indicate temperature As a function)
The following formula (2)
Pin / (Iapd′−C (T)) = A (T) · Vr + B (T) (2)
Parameters A (T), B (T), C (T) are calculated from the parameters, and the obtained parameters A (T), B (T), C (T) are stored in the storage means.

上記構成からなる本発明の受信光パワーモニタ装置では、前記演算手段は、受信部に入力される光パワーPinに対する前記受光素子に流れる光電流Iapd‘、及び前記受光素子に印加される逆バイアス電圧Vrを取得し、取得した光電流Iapd’にオフセットC(T)を加え、上式(2)において、右辺が最も一次式に近い状態となるようにオフセットC(T)を決定する。
次いで、線形回帰法により係数A(T),定数項B(T)を算出して求める。
このようにして求めたパラメータA(T)、B(T)、C(T)を記憶手段に格納し、受信モニタ時の演算処理のために備える。
In the received light power monitoring apparatus of the present invention having the above-described configuration, the calculation means includes a photocurrent Iapd ′ flowing through the light receiving element with respect to the optical power Pin input to the receiving unit, and a reverse bias voltage applied to the light receiving element. Vr is acquired, offset C (T) is added to the acquired photocurrent Iapd ′, and in the above equation (2), the offset C (T) is determined so that the right side is closest to the primary equation.
Next, the coefficient A (T) and the constant term B (T) are calculated and obtained by a linear regression method.
The parameters A (T), B (T), and C (T) obtained in this way are stored in the storage means and provided for arithmetic processing during reception monitoring.

このようにパラメータパラメータA(T)、B(T)、C(T)が決定されることにより、受光素子に入力される光入力パワーと受光素子の光電流との比が前記逆バイアス電圧の一次式となり、光受信部に入力される光パワーと、光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。   By determining the parameter parameters A (T), B (T), and C (T) in this way, the ratio of the optical input power input to the light receiving element and the photocurrent of the light receiving element is the reverse bias voltage. This is a linear expression, and the optical power input to the optical receiver and the monitor output of the received optical power with respect to the optical power input to the optical receiver have a linear relationship, reducing the error in the monitor output of the detected received optical power. Is done.

また、本発明の受信光パワーモニタ装置は、前記演算手段は、受信光パワーモニタ時に、前記受光素子に流れる光電流Iapd‘を示す信号及び該受光素子に印加される逆バイアス電圧Vrを示す信号を取り込み、前記記憶手段に記憶されている前記パラメータA(T)、B(T)、C(T)を使用して、次式(3)
Vmon=(A(T)・Vr+B(T))・(Iapd‘−C(T))…(3)
から受信パワーモニタ出力Vmonを求めることを特徴とする。
Further, in the received light power monitoring apparatus of the present invention, the calculating means is a signal indicating a photocurrent Iapd ′ flowing through the light receiving element and a signal indicating a reverse bias voltage Vr applied to the light receiving element when the received light power is monitored. And using the parameters A (T), B (T), C (T) stored in the storage means, the following equation (3)
Vmon = (A (T) .Vr + B (T)). (Iapd'-C (T)) (3)
The reception power monitor output Vmon is obtained from the above.

上記構成からなる本発明の受信光パワーモニタ装置では、前記演算手段は、受信光パワーモニタ時に、前記受光素子に流れる光電流Iapdを示す信号及び該受光素子に印加される逆バイアス電圧Vrを示す信号を取り込み、前記記憶手段に記憶されている前記パラメータA(T)、B(T)、C(T)を使用して、上式(3)から受信パワーモニタ出力Vmonを算出し、出力する。
これにより、受光素子に入力される光入力パワーと受光素子の光電流との比が前記逆バイアス電圧の一次式として算出され、この結果、光受信部に入力される光パワーと、光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。
In the received light power monitoring apparatus of the present invention having the above-described configuration, the calculation means indicates a signal indicating the photocurrent Iapd flowing through the light receiving element and a reverse bias voltage Vr applied to the light receiving element when the received light power is monitored. Using the parameters A (T), B (T), and C (T) stored in the storage means, the received power monitor output Vmon is calculated from the above equation (3) and output. .
As a result, a ratio between the optical input power input to the light receiving element and the photocurrent of the light receiving element is calculated as a primary expression of the reverse bias voltage. As a result, the optical power input to the optical receiving unit and the optical receiving unit are calculated. The monitor output of the received optical power has a linear relationship with the optical power input to, and the error in the monitor output of the detected received optical power is reduced.

また、本発明の受信光パワーモニタ装置は、前記演算手段は、
調整時に、通信に使用する最も波長の短い光信号と最も波長の長い光信号を前記受光素子に入力して、それぞれ求めた前記パラメータA(T)、B(T)、C(T)の平均値を算出し、該算出したパラメータA(T)、B(T)、C(T)の平均値を受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として、前記記憶手段に格納することを特徴とする。
Further, in the received light power monitoring device of the present invention, the calculation means includes:
At the time of adjustment, an optical signal having the shortest wavelength and an optical signal having the longest wavelength used for communication are input to the light receiving element, and averages of the parameters A (T), B (T), and C (T) respectively obtained Parameters A (T), B (T), B (T), which are used when calculating the received power monitor output Vmon using the average values of the calculated parameters A (T), B (T), C (T) C (T) is stored in the storage means.

上記構成からなる本発明の受信光パワーモニタ装置では、前記演算手段は、調整時に、通信に使用する最も波長の短い光信号と最も波長の長い光信号を光受信部に入力し、各波長の光信号について、前記パラメータA(T)、B(T)、C(T)を算出し、該出したパラメータA(T)、B(T)、C(T)の平均値を受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として前記記憶手段に格納する。   In the received light power monitoring apparatus of the present invention having the above-described configuration, the calculation means inputs the shortest wavelength optical signal and the longest wavelength optical signal used for communication to the optical receiving unit during adjustment, and adjusts each wavelength. For the optical signal, the parameters A (T), B (T), and C (T) are calculated, and the average values of the parameters A (T), B (T), and C (T) that are output are received power monitor output The parameters A (T), B (T), and C (T) used when calculating Vmon are stored in the storage means.

アバランシェフォトダイオード(APD)やPINフォトダイオード等の受光素子は、受光する光信号に対し、波長依存性を有するために、受信する光信号の波長により受信光パワーモニタ出力Vmonに誤差が生じるが、受信パワーモニタ出力Pin’を算出する際に上記記憶手段に格納されたパラメータA(T))、B(T)、C(T)を使用することにより、通信に使用する複数の全ての異なる波長の光信号について、目標とする仕様で決めた範囲内に誤差を低減させることができる。   A light receiving element such as an avalanche photodiode (APD) or a PIN photodiode has a wavelength dependency with respect to the received optical signal, and therefore an error occurs in the received optical power monitor output Vmon depending on the wavelength of the received optical signal. By using the parameters A (T)), B (T), and C (T) stored in the storage means when calculating the received power monitor output Pin ′, a plurality of all different wavelengths used for communication are used. With respect to the optical signal, the error can be reduced within a range determined by the target specification.

また、本発明の受信光パワーモニタ方法は、光通信システムにおける光受信部における受信光パワーを監視する受信光パワーモニタ方法であって、前記光受信部に入力される光パワーに対する前記受光部を構成する受光素子に印加される逆バイアス電圧を電圧検出手段により検出する第1のステップと、前記光受信部に入力される光パワーに対する前記受光素子に流れる光電流を電流検出手段により検出する第2のステップと、調整時に、前記光入力パワーと前記光電流との比が前記逆バイアス電圧の一次式となるように該一次式を規定するパラメータを演算手段により予め決定する第3のステップと、前記演算手段により決定された前記パラメータを記憶手段に記憶させる第4のステップと、受信光パワーモニタ時に、前記演算手段により前記電圧検出手段及び前記光電流検出手段の検出出力を取り込み、これらの検出出力に基づいて前記記憶手段に記憶されている前記パラメータを使用して受信光パワーを算出する第5のステップとを有することを特徴とする。   Further, the received optical power monitoring method of the present invention is a received optical power monitor method for monitoring received optical power in an optical receiving unit in an optical communication system, wherein the light receiving unit for optical power input to the optical receiving unit is provided. A first step of detecting a reverse bias voltage applied to the light receiving element constituting by the voltage detecting means, and a current detecting means for detecting a photocurrent flowing in the light receiving element with respect to the optical power input to the optical receiver. And a third step of pre-determining a parameter defining the primary expression by a calculation means so that a ratio of the optical input power to the photocurrent becomes a primary expression of the reverse bias voltage at the time of adjustment. A fourth step of storing the parameter determined by the calculating means in the storage means, and the calculating means at the time of monitoring the received light power. A fifth step of fetching detection outputs of the recording voltage detection means and the photocurrent detection means and calculating received optical power using the parameters stored in the storage means based on the detection outputs; It is characterized by that.

上記構成からなる受信光パワーモニタ方法では、第1のステップにおいて、前記光受信部に入力される光パワーに対する前記受光部を構成する受光素子に印加される逆バイアス電圧を電圧検出手段により検出し、次いで第2のステップで前記光受信部に入力される光パワーに対する前記受光素子に流れる光電流を電流検出手段により検出する。
調整時に、第3のステップで、前記光入力パワーと前記光電流との比が前記逆バイアス電圧の一次式となるように該一次式を規定するパラメータを演算手段により予め決定し、さらに第4のステップで、前記演算手段により決定された前記パラメータを記憶手段に記憶させる。
In the received light power monitoring method configured as described above, in the first step, the reverse bias voltage applied to the light receiving element constituting the light receiving unit with respect to the optical power input to the optical receiving unit is detected by the voltage detecting means. Then, in a second step, the photocurrent flowing in the light receiving element with respect to the optical power input to the optical receiving unit is detected by a current detecting means.
At the time of adjustment, in a third step, a parameter that defines the primary expression is determined in advance by a calculation means so that the ratio of the optical input power to the photocurrent becomes a linear expression of the reverse bias voltage, In this step, the parameter determined by the calculation means is stored in the storage means.

また、受信光パワーモニタ時には、第5のステップにおいて、前記演算手段により前記電圧検出手段及び前記光電流検出手段の検出出力を取り込み、これらの検出出力に基づいて前記記憶手段に記憶されている前記パラメータを使用して受信光パワーを算出する。
これにより、光受信部に入力される光パワーと、該光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。
At the time of monitoring the received light power, in the fifth step, the calculation means fetches the detection outputs of the voltage detection means and the photocurrent detection means, and stores them in the storage means based on these detection outputs. The received optical power is calculated using the parameters.
As a result, the optical power input to the optical receiver and the monitor output of the received optical power with respect to the optical power input to the optical receiver have a linear relationship, and the error in the monitor output of the detected received optical power is reduced. Is done.

また、本発明の受信光パワーモニタ方法は、前記第3のステップにおいて、
調整時に、前記受信部に入力される光パワーをPin,前記受光素子に流れる光電流をIapd‘、前記受光素子に印加される逆バイアス電圧をVr、取得した光電流Iapd’の誤差を考慮したオフセットをC(T)、前記光入力パワーPinと前記光電流Iapd‘との比を、逆バイアス電圧Vrを変数とした一次式で表したときの逆バイアス電圧Vrの係数をA(T),定数項をB(T)(ただし、Tは温度を示し、A(T)、B(T)、C(T)は温度の関数である。)として、前記演算手段により、次式(4)
Pin/(Iapd‘−C(T))=A(T)・Vr+B(T)…(4)
からパラメータA(T)、B(T)、C(T)を算出し、
前記第4のステップにおいて、求めたパラメータA(T)、B(T)、C(T)を前記記憶手段に格納することを特徴とする。
In the third step, the received light power monitoring method of the present invention includes:
At the time of adjustment, the optical power input to the receiving unit is Pin, the photocurrent flowing through the light receiving element is Iapd ′, the reverse bias voltage applied to the light receiving element is Vr, and the error of the acquired photocurrent Iapd ′ is considered. The coefficient of the reverse bias voltage Vr when the offset is C (T) and the ratio between the optical input power Pin and the photocurrent Iapd ′ is expressed by a linear expression using the reverse bias voltage Vr as a variable is A (T), The constant term is B (T) (where T represents temperature, and A (T), B (T), and C (T) are functions of temperature).
Pin / (Iapd′−C (T)) = A (T) · Vr + B (T) (4)
Parameter A (T), B (T), C (T) from
In the fourth step, the obtained parameters A (T), B (T), and C (T) are stored in the storage means.

上記構成からなる受信光パワーモニタ方法では、前記第3のステップにおいて、演算手段は、調整時に、受信部に入力される光パワーPinに対する前記受光素子に流れる光電流Iapd‘、及び前記受光素子に印加される逆バイアス電圧Vrを取得し、取得した光電流Iapd’にオフセットC(T)を加え、上式(4)において、右辺が最も一次式に近い状態となるようにオフセットC(T)を決定する。
次いで、線形回帰法により係数A(T),定数項B(T)を算出して求める。
このようにして求めたパラメータA(T)、B(T)、C(T)を記憶手段に格納し、受信モニタ時の演算処理のために備える。
In the received light power monitoring method having the above-described configuration, in the third step, the calculating means includes a photocurrent Iapd ′ that flows through the light receiving element with respect to the optical power Pin input to the receiving unit during adjustment, and the light receiving element. The applied reverse bias voltage Vr is acquired, the offset C (T) is added to the acquired photocurrent Iapd ′, and the offset C (T) is set so that the right side is closest to the primary expression in the above equation (4). To decide.
Next, the coefficient A (T) and the constant term B (T) are calculated and obtained by a linear regression method.
The parameters A (T), B (T), and C (T) obtained in this way are stored in the storage means and provided for arithmetic processing during reception monitoring.

このようにパラメータパラメータA(T)、B(T)、C(T)が決定されることにより、受光素子に入力される光入力パワーと受光素子の光電流との比が前記逆バイアス電圧の一次式となり、光受信部に入力される光パワーと、光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。   By determining the parameter parameters A (T), B (T), and C (T) in this way, the ratio of the optical input power input to the light receiving element and the photocurrent of the light receiving element is the reverse bias voltage. This is a linear expression, and the optical power input to the optical receiver and the monitor output of the received optical power with respect to the optical power input to the optical receiver have a linear relationship, reducing the error in the monitor output of the detected received optical power. Is done.

また、本発明の受信光パワーモニタ方法は、前記第5のステップにおいて、受信光パワーモニタ時に、前記演算手段により前記受光素子に流れる光電流Iapdを示す信号及び該受光素子に印加される逆バイアス電圧Vrを示す信号を取り込み、前記記憶手段に記憶されている前記パラメータA(T)、B(T)、C(T)を使用して、次式(5)
Vmon=(A(T)・Vr+B(T))・(Iapd‘−C(T))…(5)
から受信パワーモニタ出力Vmonを求めることを特徴とする。
In the received light power monitoring method of the present invention, in the fifth step, at the time of received light power monitoring, a signal indicating a photocurrent Iapd flowing through the light receiving element by the calculating means and a reverse bias applied to the light receiving element. A signal indicating the voltage Vr is taken in, and using the parameters A (T), B (T), C (T) stored in the storage means, the following equation (5)
Vmon = (A (T) .Vr + B (T)). (Iapd'-C (T)) (5)
The reception power monitor output Vmon is obtained from the above.

上記構成からなる受信光パワーモニタ方法では、前記第5のステップにおいて、受信光パワーモニタ時に、前記演算手段により、前記受光素子に流れる光電流Iapdを示す信号及び該受光素子に印加される逆バイアス電圧Vrを示す信号を取り込み、前記記憶手段に記憶されている前記パラメータA(T)、B(T)、C(T)を使用して、上式(5)から受信パワーモニタ出力Vmonを算出し、出力する。   In the received light power monitoring method having the above-described configuration, in the fifth step, a signal indicating the photocurrent Iapd flowing through the light receiving element and a reverse bias applied to the light receiving element are calculated by the calculation means during the received light power monitoring. A signal indicating the voltage Vr is taken in, and the received power monitor output Vmon is calculated from the above equation (5) using the parameters A (T), B (T) and C (T) stored in the storage means. And output.

これにより、受光素子に入力される光入力パワーと受光素子の光電流との比が前記逆バイアス電圧の一次式として算出され、この結果、光受信部に入力される光パワーと、光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。   As a result, a ratio between the optical input power input to the light receiving element and the photocurrent of the light receiving element is calculated as a primary expression of the reverse bias voltage. As a result, the optical power input to the optical receiving unit and the optical receiving unit are calculated. The monitor output of the received optical power has a linear relationship with the optical power input to, and the error in the monitor output of the detected received optical power is reduced.

また、本発明の受信光パワーモニタ方法は、前記第3のステップにおいて、調整時に、前記演算手段により通信に使用する最も波長の短い光信号と最も波長の長い光信号を前記受光素子に入力して、それぞれ求めた前記パラメータA(T)、B(T)、C(T)の平均値を算出し、前記第4のステップにおいて、前記算出したパラメータA(T)、B(T)、C(T)の平均値を、受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として、前記記憶手段に格納することを特徴とする。   In the received light power monitoring method of the present invention, in the third step, at the time of adjustment, an optical signal having the shortest wavelength and an optical signal having the longest wavelength that are used for communication are input to the light receiving element by the calculating means. Then, average values of the parameters A (T), B (T), and C (T) obtained are calculated, and in the fourth step, the calculated parameters A (T), B (T), and C are calculated. The average value of (T) is stored in the storage means as parameters A (T), B (T), and C (T) used when calculating the received power monitor output Vmon.

上記構成からなる受信光パワーモニタ方法では、前記第3のステップにおいて、調整時に、前記演算手段により、通信に使用する最も波長の短い光信号と最も波長の長い光信号を光受信部に入力し、各波長の光信号について、前記パラメータA(T)、B(T)、C(T)を算出し、該算出したパラメータA(T)、B(T)、C(T)の平均値を受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として前記記憶手段に格納する。   In the received light power monitoring method configured as described above, in the third step, at the time of adjustment, an optical signal having the shortest wavelength and an optical signal having the longest wavelength used for communication are input to the optical receiving unit by the calculating means. For the optical signals of each wavelength, the parameters A (T), B (T), and C (T) are calculated, and the average values of the calculated parameters A (T), B (T), and C (T) are calculated. The received power monitor output Vmon is stored in the storage means as parameters A (T), B (T), and C (T) used when calculating the received power monitor output Vmon.

アバランシェフォトダイオード(APD)やPINフォトダイオード等の受光素子は、受光する光信号に対し、波長依存性を有するために、受信する光信号の波長により受信光パワーモニタ出力Vmonに誤差が生じるが、受信パワーモニタ出力Vmonを算出する際に上記記憶手段に格納されたパラメータA(T)、B(T)、C(T)を使用することにより、通信に使用する複数の全ての異なる波長の光信号について、目標とする仕様で決めた範囲内に誤差を低減させることができる。   A light receiving element such as an avalanche photodiode (APD) or a PIN photodiode has a wavelength dependency with respect to the received optical signal, and therefore an error occurs in the received optical power monitor output Vmon depending on the wavelength of the received optical signal. By using the parameters A (T), B (T), and C (T) stored in the storage means when calculating the received power monitor output Vmon, a plurality of light of all different wavelengths used for communication. The error of the signal can be reduced within a range determined by the target specification.

以上説明したように、本発明によれば、調整時に、演算手段により光入力パワーと受光素子に流れる光電流との比が受光素子の逆バイアス電圧の一次式となるように該一次式を規定するパラメータを予め決定し、記憶手段により前記決定された前記パラメータを格納しておき、受信光パワーモニタ時には、前記電圧検出手段及び前記光電流検出手段の検出出力を取り込み、これらの検出出力に基づいて前記記憶手段に記憶されている前記パラメータを使用して受信光パワーを算出するようにしたので、光受信部に入力される光パワーと、該光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。     As described above, according to the present invention, at the time of adjustment, the primary expression is defined so that the ratio between the optical input power and the photocurrent flowing through the light receiving element is the primary expression of the reverse bias voltage of the light receiving element. Parameters to be determined are stored in advance, and the determined parameters are stored by a storage unit, and at the time of received light power monitoring, detection outputs of the voltage detection unit and the photocurrent detection unit are captured, and based on these detection outputs Since the received optical power is calculated using the parameter stored in the storage means, the optical power input to the optical receiver and the received light with respect to the optical power input to the optical receiver The power monitor output has a linear relationship, and the error in the monitor output of the detected received light power is reduced.

また、本発明によれば、通信に使用する最も波長の短い光信号と最も波長の長い光信号を光受信部に入力し、演算手段により各波長の光信号について、前記パラメータA(T)、B(T)、C(T)を算出し、該出したパラメータA(T)、B(T)、C(T)の平均値を受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として前記記憶手段に格納するようにしたので、受信パワーモニタ出力Vmonを算出する際に上記記憶手段に格納されたパラメータA(T)、B(T)、C(T)を使用することにより、通信に使用する最も波長の短い光信号と最も波長の長い光信号について、目標とする仕様で決めた範囲内に誤差を低減させることができる。   Further, according to the present invention, the optical signal having the shortest wavelength and the optical signal having the longest wavelength used for communication are input to the optical receiver, and the parameter A (T), B (T) and C (T) are calculated, and the average value of the output parameters A (T), B (T) and C (T) is used to calculate the parameter A ( Since T), B (T), and C (T) are stored in the storage unit, the parameters A (T) and B (T) stored in the storage unit when calculating the reception power monitor output Vmon are calculated. ), By using C (T), the error can be reduced within the range determined by the target specification for the shortest wavelength optical signal and the longest wavelength optical signal used for communication.

以下、本発明の実施形態を、図面を参照して説明する。図1に本発明の実施形態に係る受信光パワーモニタ装置の構成を図1に示す。同図において、本発明の実施形態に係る受信光パワーモニタ装置1は、高電圧発生回路10と、受光素子12と、光電流検出部14と、逆バイアス電圧検出部16と、演算処理回路20とを有している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a received light power monitoring apparatus according to an embodiment of the present invention. In the figure, a received light power monitoring apparatus 1 according to an embodiment of the present invention includes a high voltage generation circuit 10, a light receiving element 12, a photocurrent detection unit 14, a reverse bias voltage detection unit 16, and an arithmetic processing circuit 20. And have.

高電圧回路10は、電流制限用抵抗R1、光電流検出部14を介して受光素子12に逆バイアス電圧Vrを印加する。
受光素子12は、本実施形態では、アバランシェフォトダイオード(APD)である。
逆バイアス電圧検出部16は、受光素子12に印加されるバイアス電圧Vrを分圧抵抗R2、R3で分圧した電圧信号として検出する。
The high voltage circuit 10 applies a reverse bias voltage Vr to the light receiving element 12 via the current limiting resistor R1 and the photocurrent detector 14.
In the present embodiment, the light receiving element 12 is an avalanche photodiode (APD).
The reverse bias voltage detector 16 detects the bias voltage Vr applied to the light receiving element 12 as a voltage signal divided by the voltage dividing resistors R2 and R3.

光電流検出部14は、受光素子12に流れる光電流Iapdを電圧信号として出力する。
また、演算処理回路20は、光電流/逆バイアス電圧取得部200と、パラメータ演算部202と、記憶部204と、受信パワー演算部206とを有している。
The photocurrent detector 14 outputs the photocurrent Iapd flowing through the light receiving element 12 as a voltage signal.
The arithmetic processing circuit 20 includes a photocurrent / reverse bias voltage acquisition unit 200, a parameter calculation unit 202, a storage unit 204, and a reception power calculation unit 206.

光電流/逆バイアス電圧取得部200は、逆バイアス電圧検出部16及び光電流検出部14の検出出力を取り込み、これらの検出出力をA/D変換して、ディジタル信号に変換し、所定の形式のデータにして記憶部204に格納する機能を有している。
パラメータ演算部202は、後述する演算処理に必要なパラメータA(T),B(T),C(T)を算出する機能を有している。
The photocurrent / reverse bias voltage acquisition unit 200 takes in detection outputs of the reverse bias voltage detection unit 16 and the photocurrent detection unit 14, A / D converts these detection outputs, converts them into digital signals, and has a predetermined format. The data is stored in the storage unit 204.
The parameter calculation unit 202 has a function of calculating parameters A (T), B (T), and C (T) necessary for calculation processing described later.

記憶部204には、調整時に算出される上記パラメータA(T),B(T),C(T)の他に、演算処理に必要な各種のデータが格納される。
受信パワー演算部206は、予め定められている演算式に基づいて上記パラメータA(T),B(T),C(T)を使用して受信光パワーを算出し、受信光パワーモニタ出力Vmonとして出力する機能を有している。
In addition to the parameters A (T), B (T), and C (T) calculated at the time of adjustment, the storage unit 204 stores various types of data necessary for arithmetic processing.
The reception power calculation unit 206 calculates the reception optical power using the parameters A (T), B (T), and C (T) based on a predetermined arithmetic expression, and receives the reception optical power monitor output Vmon. As an output function.

上記構成からなる受信光パワーモニタ装置の動作を説明するに先立ち、受光素子12に入力される光パワーをPin,受光素子12に流れる光電流(オフセット電流を無視したときの光電流)をIapd、受光素子12に印加される逆バイアス電圧をVrとしたときの、光パワーPin、光電流Iapd及び逆バイアス電圧をVrの間の関係式について検討する。ここで、受光素子12としてのアバランシェフォトダイオード(APD)における増倍率1のときの変換効率(受信光の吸収により発生する電子数の比率)をα(A/W)、アバランシェフォトダイオードのブレークダウン電圧をVbとすると、
一般に次式が成立する。
Prior to describing the operation of the received light power monitoring device having the above-described configuration, the optical power input to the light receiving element 12 is Pin, the photocurrent flowing through the light receiving element 12 (photocurrent when the offset current is ignored) is Iapd, Consider a relational expression among the optical power Pin, the photocurrent Iapd, and the reverse bias voltage Vr when the reverse bias voltage applied to the light receiving element 12 is Vr. Here, α (A / W) is the conversion efficiency (ratio of the number of electrons generated by absorption of received light) at the multiplication factor 1 in the avalanche photodiode (APD) as the light receiving element 12, and the breakdown of the avalanche photodiode If the voltage is Vb,
In general, the following equation holds.

Iapd/αPin=1/(1−(Vr/Vb)) …(6)
上式(6)において、n=1とすると、
Pin/Iapd=(1/α)・(1−(Vr/Vb)) …(7)
となる。
また、上式(7)は、
Pin/Iapd=(−1/αVb)・Vr+1/α …(8)
と変形できる。
Iapd / αPin = 1 / (1- (Vr / Vb) n ) (6)
In the above equation (6), when n = 1,
Pin / Iapd = (1 / α) · (1− (Vr / Vb)) (7)
It becomes.
Also, the above equation (7) is
Pin / Iapd = (− 1 / αVb) · Vr + 1 / α (8)
And can be transformed.

上式(8)において、(−1/αVb)をA,1/αをBとおくと、
Pin/Iapd=AVr+B …(9)
となる。
ここで、A,Bは受信光パワーモニタ装置のモジュール調整時に実測して取得するパラメータであり、アバランシェフォトダイオードの変換効率α、ブレークダウン電圧Vbに温度依存性が有るために温度Tの関数であるので、A(T)、B(T)とする。
In the above equation (8), if (−1 / αVb) is A and 1 / α is B,
Pin / Iapd = AVr + B (9)
It becomes.
Here, A and B are parameters obtained by actual measurement during module adjustment of the received light power monitoring device. Since the conversion efficiency α of the avalanche photodiode and the breakdown voltage Vb are temperature dependent, they are functions of the temperature T. There are A (T) and B (T).

また、上記モジュール調整時に取得するアバランシェフォトダイオードの光電流Iapd‘には、回路上、アバランシェフォトダイオードに流れ込むオフセット電流(誤差)が含まれているので、これをC(T)として式(9)におけるIapdをIapd’−C(T)とすると、式(9)は、
Pin/(Iapd‘−C(T))=A(T)・Vr+B(T)…(10)
となる。
Further, since the photocurrent Iapd ′ of the avalanche photodiode acquired at the time of module adjustment includes an offset current (error) flowing into the avalanche photodiode on the circuit, this is expressed as C (T) and the expression (9) When Iapd in is Iapd′-C (T), the formula (9) is
Pin / (Iapd′−C (T)) = A (T) · Vr + B (T) (10)
It becomes.

次に、図1に示す本発明の実施形態に係る受信光パワーモニタ装置の調整時の動作を図2乃至図4を参照して説明する。図2は、調整時の処理手順を示すフローチャートであり、図3はパラメータ演算部202の調整時の演算処理内容を示している。
これらの図において、まず、受光素子12の光入力パワーPinに対する高電圧発生回路10により受光素子12に印加される逆バイアス電圧Vrが分圧抵抗R4、R5を介して逆バイアス電圧検出部14により検出される(ステップ301)。
Next, the operation at the time of adjustment of the received light power monitoring apparatus according to the embodiment of the present invention shown in FIG. 1 will be described with reference to FIGS. FIG. 2 is a flowchart showing a processing procedure at the time of adjustment, and FIG. 3 shows calculation processing contents at the time of adjustment of the parameter calculation unit 202.
In these figures, first, the reverse bias voltage Vr applied to the light receiving element 12 by the high voltage generation circuit 10 for the optical input power Pin of the light receiving element 12 is detected by the reverse bias voltage detecting unit 14 via the voltage dividing resistors R4 and R5. It is detected (step 301).

また、受光素子12の光入力パワーPinに対する受光素子12に流れる光電流Iapd‘(オフセット電流を含む)が分流抵抗R3を介して光電流検出部16により検出される(ステップ302)。
光電流/逆バイアス電圧取得部200は、バイアス電圧検出部14及び光電流検出部16の検出出力である、逆バイアス電圧Vr、光電流Iapd‘を取り込み、これらの検出出力をA/D変換して、ディジタル信号に変換し、所定の形式のデータにして図4に示す内容のテーブルにして記憶部204に格納する(ステップ303)。
The photocurrent Iapd ′ (including the offset current) flowing in the light receiving element 12 with respect to the optical input power Pin of the light receiving element 12 is detected by the photocurrent detection unit 16 via the shunt resistor R3 (step 302).
The photocurrent / reverse bias voltage acquisition unit 200 takes in the reverse bias voltage Vr and the photocurrent Iapd ′, which are detection outputs of the bias voltage detection unit 14 and the photocurrent detection unit 16, and performs A / D conversion on these detection outputs. Then, it is converted into a digital signal, converted into data of a predetermined format, and stored in the storage unit 204 as a table having the contents shown in FIG. 4 (step 303).

次いで、パラメータ演算部202は、実際に受光素子12に流れる、オフセット電流を加味した光電流(Iapd‘−C(T))を加算器310により算出する(304)。
また、パラメータ演算部202は、逆算器311により光電流(Iapd‘−C(T))の逆数を算出する(ステップ305)。
さらに、パラメータ演算部202は、乗算器312によりステップ305で求めた光電流(Iapd‘−C(T))の逆数に光入力パワーPinを乗算して光入力パワーPinと光電流との比Pin/(Iapd‘−C(T))を算出する(ステップ306)。
Next, the parameter calculation unit 202 calculates the photocurrent (Iapd′−C (T)) taking into account the offset current that actually flows through the light receiving element 12 by the adder 310 (304).
Further, the parameter calculation unit 202 calculates the reciprocal of the photocurrent (Iapd′−C (T)) by the inverse calculator 311 (step 305).
Further, the parameter calculation unit 202 multiplies the inverse of the photocurrent (Iapd′−C (T)) obtained in step 305 by the multiplier 312 by the optical input power Pin, and the ratio Pin between the optical input power Pin and the photocurrent. / (Iapd'-C (T)) is calculated (step 306).

次に、パラメータ演算部202は、横軸に逆バイアス電圧Vr、縦軸にて光入力パワーPinと光電流との比Pin/(Iapd‘−C(T))をとり、て光入力パワーPinと光電流との比Pin/(Iapd‘−C(T))が逆バイアス電圧Vrに対して一次式の関係となるようにパラメータC(T)を決定し、決定したパラメータC(T)を記憶部204に格納する(ステップ307)。   Next, the parameter calculation unit 202 takes the reverse bias voltage Vr on the horizontal axis and the ratio Pin / (Iapd′−C (T)) between the optical input power Pin and the photocurrent on the vertical axis, and uses the optical input power Pin. The parameter C (T) is determined so that the ratio Pin / (Iapd'-C (T)) between the current and the photocurrent is in a linear relationship with the reverse bias voltage Vr, and the determined parameter C (T) is The data is stored in the storage unit 204 (step 307).

さらに、パラメータ演算部202は、線形回帰法により、
Pin/(Iapd‘−C(T))=A(T)・Vr+B(T)…(10)
となるパラメータA(T),B(T)を算出し、算出したパラメータA(T),B(T)を記憶部204に格納する(ステップ308)。
このようにして、調整時にパラメータA(T),B(T)、C(T)を取得し、受信モニタ時の演算処理のために備える。る。
Furthermore, the parameter calculation unit 202 uses a linear regression method,
Pin / (Iapd′−C (T)) = A (T) · Vr + B (T) (10)
The parameters A (T) and B (T) are calculated, and the calculated parameters A (T) and B (T) are stored in the storage unit 204 (step 308).
In this way, the parameters A (T), B (T), and C (T) are acquired at the time of adjustment, and are prepared for arithmetic processing at the time of reception monitoring. The

このようにパラメータパラメータA(T)、B(T)、C(T)が決定されることにより、受光素子に入力される光入力パワーと受光素子の光電流との比Pin/(Iapd‘−C(T))が逆バイアス電圧Vrの一次式となり、光受信部に入力される光パワーと、光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差を低減することが可能となる。   By determining the parameter parameters A (T), B (T), and C (T) in this way, the ratio Pin / (Iapd′− between the optical input power input to the light receiving element and the photocurrent of the light receiving element. C (T)) is a linear expression of the reverse bias voltage Vr, and the optical power input to the optical receiver and the monitor output of the received optical power with respect to the optical power input to the optical receiver have a linear relationship and are detected. It is possible to reduce the error in the monitor output of the received optical power.

次に、図1に示した本発明の実施形態に係る受信光パワーモニタ装置の受信光パワーモニタ時の動作を図5及び図6を参照して説明する。図5は、受信光パワーモニタ時の処理手順を示すフローチャートであり、図6は受信光パワーモニタ時のパラメータ演算部202の演算処理内容を示している。
これらの図において、まず、受光素子12の光入力パワーPinに対する高電圧発生回路10により受光素子12に印加される逆バイアス電圧Vrが分圧抵抗R2、R3を介して逆バイアス電圧検出部16により検出される(ステップ401)。
Next, the operation at the time of received light power monitoring of the received light power monitoring apparatus according to the embodiment of the present invention shown in FIG. 1 will be described with reference to FIGS. FIG. 5 is a flowchart showing a processing procedure when monitoring the received light power, and FIG. 6 shows the contents of the calculation processing of the parameter calculation unit 202 when monitoring the received light power.
In these drawings, first, the reverse bias voltage Vr applied to the light receiving element 12 by the high voltage generation circuit 10 for the optical input power Pin of the light receiving element 12 is detected by the reverse bias voltage detecting unit 16 via the voltage dividing resistors R2 and R3. It is detected (step 401).

また、受光素子12の光入力パワーPinに対する受光素子12に流れる光電流Iapd‘(オフセット電流を含む)が光電流検出部14により検出される(ステップ402)。
光電流/逆バイアス電圧取得部200は、逆バイアス電圧検出部16及び光電流検出部14の検出出力である、逆バイアス電圧Vr、光電流Iapd‘を取り込み、これらの検出出力をA/D変換して、ディジタル信号に変換し、所定の形式のデータにして記憶部204に格納する(ステップ403)。
Further, the photocurrent detection unit 14 detects the photocurrent Iapd ′ (including the offset current) flowing in the light receiving element 12 with respect to the optical input power Pin of the light receiving element 12 (step 402).
The photocurrent / reverse bias voltage acquisition unit 200 takes in the reverse bias voltage Vr and the photocurrent Iapd ′, which are detection outputs of the reverse bias voltage detection unit 16 and the photocurrent detection unit 14, and A / D converts these detection outputs. Then, it is converted into a digital signal and stored in the storage unit 204 as data in a predetermined format (step 403).

次いで、パラメータ演算部202は、実際に受光素子12に流れる、オフセット電流を加味した光電流(Iapd‘−C(T))を加算器410により算出する(404)。
また、パラメータ演算部202は、係数乗算器411により取得した、逆バイアス電圧VrにパラメータA(T)を乗算してA(T)・Vrを算出し、かつこの乗算結果に加算器412によりパラメータB(T)を加算して、A(T)・Vr+B(T)を算出する(ステップ405)。
Next, the parameter calculation unit 202 calculates the photocurrent (Iapd′−C (T)) that takes into account the offset current that actually flows through the light receiving element 12 by the adder 410 (404).
Also, the parameter calculation unit 202 calculates A (T) · Vr by multiplying the reverse bias voltage Vr acquired by the coefficient multiplier 411 by the parameter A (T), and the adder 412 adds the parameter to the multiplication result. B (T) is added to calculate A (T) · Vr + B (T) (step 405).

さらに、パラメータ演算部202は、ステップ404で算出した光電流(Iapd‘−C(T))と、ステップ405で算出したA(T)・Vr+B(T)とを乗算器413により乗算し、受信光パワーモニタ出力Vmon(=(Iapd‘−C(T))・(A(T)・Vr+B(T)))を算出する(ステップ407)。
これにより、受光素子に入力される光入力パワーと受光素子の光電流との比が前記逆バイアス電圧の一次式として算出され、この結果、光受信部に入力される光パワーと、光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。
Further, the parameter calculation unit 202 multiplies the photocurrent (Iapd′−C (T)) calculated in step 404 by A (T) · Vr + B (T) calculated in step 405 by the multiplier 413, and receives it. The optical power monitor output Vmon (= (Iapd′−C (T)) · (A (T) · Vr + B (T))) is calculated (step 407).
As a result, a ratio between the optical input power input to the light receiving element and the photocurrent of the light receiving element is calculated as a primary expression of the reverse bias voltage. As a result, the optical power input to the optical receiving unit and the optical receiving unit are calculated. The monitor output of the received optical power has a linear relationship with the optical power input to, and the error in the monitor output of the detected received optical power is reduced.

ところで、WDM方式の光通信システムでは、広波長範囲の波長の光信号を使用する。受信部の受光素子(アバランシェフォトダイオード(APD))の受光感度は波長特性を有するため、受光する信号光の波長により、受信光パワーモニタ出力Vmonに誤差を生じる。図7は受光パワーに対する受信光パワーモニタ出力の特性を示しており、図7(A〕は、単一の波長の光信号についての特性を、図7(B〕は複数の波長の光信号についての特性を夫々、示している。   Incidentally, in a WDM optical communication system, an optical signal having a wavelength in a wide wavelength range is used. Since the light receiving sensitivity of the light receiving element (avalanche photodiode (APD)) of the receiving unit has a wavelength characteristic, an error occurs in the received light power monitor output Vmon depending on the wavelength of the received signal light. FIG. 7 shows the characteristics of the received light power monitor output with respect to the received light power. FIG. 7A shows the characteristics of an optical signal having a single wavelength, and FIG. 7B shows the optical signals of a plurality of wavelengths. The characteristics of each are shown.

また、上記受光素子の受光感度の波長特性は、図8に示すように温度によっても変化するので、前記パラメータは温度の関数となる。
本発明の実施形態に係る受信光パワーモニタ装置で、パラメータ演算部202は、調整時に、通信に使用する最も波長の短い光信号と最も波長の長い光信号を受光素子12に入力して、それぞれ求めた前記パラメータA(T)、B(T)、C(T)の平均値を算出し、該算出したパラメータA(T)、B(T)、C(T)の平均値を、受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として、記憶部204に格納するようにしている。
Further, since the wavelength characteristic of the light receiving sensitivity of the light receiving element also changes depending on the temperature as shown in FIG. 8, the parameter is a function of temperature.
In the received light power monitoring apparatus according to the embodiment of the present invention, the parameter calculation unit 202 inputs the shortest wavelength optical signal and the longest wavelength optical signal used for communication to the light receiving element 12 during adjustment, respectively. An average value of the obtained parameters A (T), B (T), and C (T) is calculated, and the calculated average values of the parameters A (T), B (T), and C (T) are calculated as received power. Parameters A (T), B (T), and C (T) used when calculating the monitor output Vmon are stored in the storage unit 204.

アバランシェフォトダイオード(APD)やPINフォトダイオード等の受光素子は、受光する光信号に対し、波長依存性を有するために、受信する光信号の波長により受信光パワーモニタ出力Vmonに誤差が生じるが、受信パワーモニタ出力Vmonを算出する際に上記記憶手段に格納されたパラメータA(T)、B(T)、C(T)を使用することにより、通信に使用する複数の全ての異なる波長の光信号について、目標とする仕様で決めた範囲内に誤差を低減させることができる。   A light receiving element such as an avalanche photodiode (APD) or a PIN photodiode has a wavelength dependency with respect to the received optical signal, and therefore an error occurs in the received optical power monitor output Vmon depending on the wavelength of the received optical signal. By using the parameters A (T), B (T), and C (T) stored in the storage means when calculating the received power monitor output Vmon, a plurality of light of all different wavelengths used for communication. The error of the signal can be reduced within a range determined by the target specification.

以上、本発明の実施形態によれば、光通信システムにおける光受信部における受光パワーを監視する受信光パワーモニタ装置において、調整時に、演算手段により光入力パワーと受光素子に流れる光電流との比が受光素子の逆バイアス電圧の一次式となるように該一次式を規定するパラメータを予め決定し、記憶手段により前記決定された前記パラメータを格納しておき、受信光パワーモニタ時には、前記電圧検出手段及び前記光電流検出手段の検出出力を取り込み、これらの検出出力に基づいて前記記憶手段に記憶されている前記パラメータを使用して受信光パワーを算出するようにしたので、光受信部に入力される光パワーと、該光受信部に入力される光パワーに対する受信光パワーのモニタ出力とが線形関係となり、検出される受信光パワーのモニタ出力の誤差が低減される。   As described above, according to the embodiment of the present invention, in the received light power monitoring device that monitors the received light power in the optical receiving unit in the optical communication system, the ratio between the optical input power and the photocurrent that flows through the light receiving element by the calculating means during adjustment. Is determined in advance so as to be a linear expression of the reverse bias voltage of the light receiving element, the determined parameter is stored by a storage means, and the received voltage is monitored when the received light power is monitored. And the detection output of the photocurrent detection means is taken in, and based on these detection outputs, the received optical power is calculated using the parameters stored in the storage means. And the received optical power monitor output with respect to the optical power input to the optical receiver has a linear relationship, and the detected received light Error of word monitor output is reduced.

また、本発の実施形態によれば光通信システムにおける光受信部における受光パワーを監視する受信光パワーモニタ装置において、通信に使用する最も波長の短い光信号と最も波長の長い光信号を光受信部に入力し、演算手段により各波長の光信号について、前記パラメータA(T)、B(T)、C(T)を算出し、該算出したパラメータA(T)、B(T)、C(T)の平均値を受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として前記記憶手段に格納するようにしたので、受信パワーモニタ出力Vmonを算出する際に上記記憶手段に格納されたパラメータA(T)、B(T)、C(T)を使用することにより、通信に使用する複数の全ての異なる波長の光信号について、目標とする仕様で決めた範囲内に誤差を低減させることができる   Further, according to the present embodiment, in the received light power monitoring device that monitors the received light power in the optical receiving unit in the optical communication system, the optical signal having the shortest wavelength and the optical signal having the longest wavelength used for communication are optically received. The parameters A (T), B (T), C (T) are calculated for the optical signals of the respective wavelengths by the calculation means, and the calculated parameters A (T), B (T), C Since the average value of (T) is stored in the storage means as parameters A (T), B (T), and C (T) used when calculating the received power monitor output Vmon, the received power monitor output By using the parameters A (T), B (T), and C (T) stored in the storage means when calculating Vmon, the target for all of the optical signals having a plurality of different wavelengths used for communication is obtained. Determined by the specifications Thereby reduce the error in the range

本発明の実施形態に係る受信光パワーモニタ装置の構成を示すブロック図。The block diagram which shows the structure of the received light power monitor apparatus which concerns on embodiment of this invention. 図1に示した本発明の実施形態に係る受信光パワーモニタ装置における演算処理回路の調整時の処理手順を示すフローチャート。The flowchart which shows the process sequence at the time of adjustment of the arithmetic processing circuit in the received light power monitor apparatus which concerns on embodiment of this invention shown in FIG. 図1に示した本発明の実施形態に係る受信光パワーモニタ装置におけるパラメータ演算部の調整時の演算処理内容を示す説明図。Explanatory drawing which shows the calculation processing content at the time of adjustment of the parameter calculating part in the received light power monitor apparatus which concerns on embodiment of this invention shown in FIG. 図1に示した本発明の実施形態に係る受信光パワーモニタ装置における記憶部に記憶されるデータの内容を示す説明図。Explanatory drawing which shows the content of the data memorize | stored in the memory | storage part in the received light power monitor apparatus which concerns on embodiment of this invention shown in FIG. 図1に示した本発明の実施形態に係る受信光パワーモニタ装置における演算処理回路の受信光パワーモニタ時の処理手順を示すフローチャート。The flowchart which shows the process sequence at the time of the received light power monitoring of the arithmetic processing circuit in the received light power monitor apparatus which concerns on embodiment of this invention shown in FIG. 図1に示した本発明の実施形態に係る受信光パワーモニタ装置におけるパラメータ演算部202の受信光パワーモニタ時の演算処理内容を示す説明図。Explanatory drawing which shows the calculation processing content at the time of the received light power monitoring of the parameter calculating part 202 in the received light power monitor apparatus which concerns on embodiment of this invention shown in FIG. 本発明の実施形態に係る受信光パワーモニタ装置における受光パワーに対する受信光パワーモニタ出力の特性を示す特性図。The characteristic view which shows the characteristic of the reception light power monitor output with respect to the light reception power in the reception light power monitor apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る受信光パワーモニタ装置における受光素子の受光感度の温度をパラメータとする波長特性を示す特性図。The characteristic view which shows the wavelength characteristic which uses the temperature of the light reception sensitivity of the light receiving element in the received light power monitor apparatus which concerns on embodiment of this invention as a parameter. WDM方式の光通信システムの構成を示すブロック図。1 is a block diagram showing a configuration of a WDM optical communication system. 図9に示したWDM方式の光通信システムにおる受信パワーモニタ回路の概略構成を模式的に示す図。FIG. 10 is a diagram schematically illustrating a schematic configuration of a reception power monitor circuit in the WDM optical communication system illustrated in FIG. 9. 図9に示したWDM方式の光通信システムにおる受信パワーモニタ回路における受光素子の逆バイアス電圧Vrに対する受光感度特性を示す特性図。FIG. 10 is a characteristic diagram illustrating a light receiving sensitivity characteristic with respect to a reverse bias voltage Vr of a light receiving element in a reception power monitor circuit in the WDM optical communication system illustrated in FIG. 9. 図9に示したWDM方式の光通信システムにおる受信パワーモニタ回路における受光素子の入力光パワーPinに対する光電流Iapd、逆バイアス電圧Vr、受信光パワーモニタ出力Vmonの各特性を示す図。FIG. 10 is a diagram illustrating characteristics of a photocurrent Iapd, a reverse bias voltage Vr, and a received optical power monitor output Vmon with respect to an input optical power Pin of a light receiving element in the received power monitor circuit in the WDM optical communication system illustrated in FIG. 9.

符号の説明Explanation of symbols

10…高電圧発生回路、12…受光素子、14…光電流検出部、16…逆バイアス電圧検出部、20…演算処理回路、200…光電流/逆バイアス電圧取得部、202…パラメータ取得部、204…記憶部、206…受信パワー演算部   DESCRIPTION OF SYMBOLS 10 ... High voltage generation circuit, 12 ... Light receiving element, 14 ... Photocurrent detection part, 16 ... Reverse bias voltage detection part, 20 ... Arithmetic processing circuit, 200 ... Photocurrent / reverse bias voltage acquisition part, 202 ... Parameter acquisition part, 204: Storage unit, 206: Received power calculation unit

Claims (8)

光通信システムにおける光受信部における受光パワーを監視する受信光パワーモニタ装置であって、
前記光受信部に入力される光パワーに対する前記受光部を構成する受光素子に印加される逆バイアス電圧を検出する電圧検出手段と、
前記光受信部に入力される光パワーに対する前記受光素子に流れる光電流を検出する光電流検出手段と、
調整時に、前記光入力パワーと前記光電流との比が前記逆バイアス電圧の一次式となるように該一次式を規定するパラメータを予め決定する演算手段と、
前記演算手段により決定された前記パラメータを記憶する記憶手段と、
を有し、
前記演算手段は、受信光パワーモニタ時に、前記電圧検出手段及び前記光電流検出手段の検出出力を取り込み、これらの検出出力に基づいて前記記憶手段に記憶されている前記パラメータを使用して受信光パワーを算出することを特徴とする受信光パワーモニタ装置。
A received light power monitoring device for monitoring a received light power in an optical receiver in an optical communication system,
Voltage detecting means for detecting a reverse bias voltage applied to a light receiving element constituting the light receiving unit with respect to optical power input to the light receiving unit;
A photocurrent detection means for detecting a photocurrent flowing in the light receiving element with respect to the optical power input to the optical receiver;
Arithmetic means for pre-determining a parameter defining the primary expression so that a ratio of the optical input power and the photocurrent becomes a primary expression of the reverse bias voltage at the time of adjustment;
Storage means for storing the parameters determined by the calculation means;
Have
The calculation means captures the detection outputs of the voltage detection means and the photocurrent detection means during reception light power monitoring, and uses the parameters stored in the storage means based on these detection outputs to receive light. A received light power monitoring apparatus characterized by calculating power.
前記演算手段は、
調整時に、前記受信部に入力される光パワーをPin,前記受光素子に流れる光電流をIapd‘、前記受光素子に印加される逆バイアス電圧をVr、取得した光電流Iapdの誤差を考慮したオフセットをC(T)、前記光入力パワーPinと前記光電流Iapdとの比を、逆バイアス電圧Vrを変数とした一次式で表したときの逆バイアス電圧Vrの係数をA(T),定数項をB(T)(ただし、Tは温度を示し、A(T)、B(T)、C(T)は温度の関数である。)として、次式(1)
Pin/(Iapd‘−C(T))=A(T)・Vr+B(T)…(1)
からパラメータA(T)、B(T)、C(T)を算出し、
求めたパラメータA(T)、B(T)、C(T)を前記記憶手段に格納することを特徴とする請求項1に記載の受信光パワーモニタ装置。
The computing means is
At the time of adjustment, the optical power input to the receiving unit is Pin, the photocurrent flowing through the light receiving element is Iapd ', the reverse bias voltage applied to the light receiving element is Vr, and an offset considering the error of the acquired photocurrent Iapd C (T), the ratio of the optical input power Pin and the photocurrent Iapd is expressed by a linear expression with the reverse bias voltage Vr as a variable, the coefficient of the reverse bias voltage Vr is A (T), a constant term As B (T) (where T represents temperature, and A (T), B (T), and C (T) are functions of temperature), the following equation (1)
Pin / (Iapd′−C (T)) = A (T) · Vr + B (T) (1)
Parameter A (T), B (T), C (T) from
The received optical power monitoring apparatus according to claim 1, wherein the obtained parameters A (T), B (T), and C (T) are stored in the storage means.
前記演算手段は、
受信光パワーモニタ時に、前記受光素子に流れる光電流Iapd‘を示す信号及び該受光素子に印加される逆バイアス電圧Vrを示す信号を取り込み、
前記記憶手段に記憶されている前記パラメータA(T)、B(T)、C(T)を使用して、次式(2)
Vmon=(A(T)・Vr+B(T))・(Iapd‘−C(T))…(2)
から受信パワーモニタ出力Vmonを求めることを特徴とする請求項2に記載の受信光パワーモニタ装置。
The computing means is
At the time of reception light power monitoring, a signal indicating a photocurrent Iapd ′ flowing through the light receiving element and a signal indicating a reverse bias voltage Vr applied to the light receiving element are captured,
Using the parameters A (T), B (T), C (T) stored in the storage means, the following equation (2)
Vmon = (A (T) .Vr + B (T)). (Iapd'-C (T)) (2)
3. The received light power monitor apparatus according to claim 2, wherein a received power monitor output Vmon is obtained from the received light power.
前記演算手段は、
調整時に、通信に使用する最も波長の短い光信号と最も波長の長い光信号を前記受光素子に入力して、それぞれ求めた前記パラメータA(T)、B(T)、C(T)の平均値を算出し、該算出したパラメータA(T)、B(T)、C(T)の平均値を受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として、前記記憶手段に格納することを特徴とする請求項2に記載の受信光パワーモニタ装置。
The computing means is
At the time of adjustment, an optical signal having the shortest wavelength and an optical signal having the longest wavelength used for communication are input to the light receiving element, and the averages of the parameters A (T), B (T), and C (T) obtained respectively. Parameters A (T), B (T), B (T), which are used when calculating the received power monitor output Vmon using the average values of the calculated parameters A (T), B (T), C (T) The received light power monitoring apparatus according to claim 2, wherein C (T) is stored in the storage unit.
光通信システムにおける光受信部における受信光パワーを監視する受信光パワーモニタ方法であって、
前記光受信部に入力される光パワーに対する前記受光部を構成する受光素子に印加される逆バイアス電圧を電圧検出手段により検出する第1のステップと、
前記光受信部に入力される光パワーに対する前記受光素子に流れる光電流を電流検出手段により検出する第2のステップと、
調整時に、前記光入力パワーと前記光電流との比が前記逆バイアス電圧の一次式となるように該一次式を規定するパラメータを演算手段により予め決定する第3のステップと、
前記演算手段により決定された前記パラメータを記憶手段に記憶させる第4のステップと、
受信光パワーモニタ時に、前記演算手段により前記電圧検出手段及び前記光電流検出手段の検出出力を取り込み、これらの検出出力に基づいて前記記憶手段に記憶されている前記パラメータを使用して受信光パワーを算出する第5のステップと、
を有することを特徴とする受信光パワーモニタ方法。
A received optical power monitoring method for monitoring received optical power in an optical receiver in an optical communication system,
A first step of detecting, by a voltage detection means, a reverse bias voltage applied to a light receiving element constituting the light receiving unit with respect to an optical power input to the light receiving unit;
A second step of detecting a photocurrent flowing in the light receiving element with respect to the optical power input to the light receiving unit by a current detecting unit;
A third step of pre-determining by a calculation means a parameter that defines the linear expression so that a ratio of the optical input power to the photocurrent becomes a linear expression of the reverse bias voltage at the time of adjustment;
A fourth step of storing in the storage means the parameter determined by the calculation means;
At the time of received light power monitoring, the calculation means fetches the detection outputs of the voltage detection means and the photocurrent detection means, and based on these detection outputs, the received light power is stored using the parameters stored in the storage means. A fifth step of calculating
A received light power monitoring method comprising:
前記第3のステップにおいて、
調整時に、前記受信部に入力される光パワーをPin,前記受光素子に流れる光電流をIapd‘、前記受光素子に印加される逆バイアス電圧をVr、取得した光電流Iapd’の誤差を考慮したオフセットをC(T)、前記光入力パワーPinと前記光電流Iapdとの比を、逆バイアス電圧Vrを変数とした一次式で表したときの逆バイアス電圧Vrの係数をA(T),定数項をB(T)(ただし、Tは温度を示し、A(T)、B(T)、C(T)は温度の関数である。)として、前記演算手段により、次式(1)
Pin/(Iapd‘−C(T))=A(T)・Vr+B(T)…(1)
からパラメータA(T)、B(T)、C(T)を算出し、
前記第4のステップにおいて、求めたパラメータA(T)、B(T)、C(T)を前記記憶手段に格納することを特徴とする請求項5に記載の受信光パワーモニタ方法。
In the third step,
At the time of adjustment, the optical power input to the receiving unit is Pin, the photocurrent flowing through the light receiving element is Iapd ′, the reverse bias voltage applied to the light receiving element is Vr, and the error of the acquired photocurrent Iapd ′ is considered. The coefficient of the reverse bias voltage Vr when the offset is C (T) and the ratio between the optical input power Pin and the photocurrent Iapd is expressed by a linear expression with the reverse bias voltage Vr as a variable is A (T), a constant The term is B (T) (where T represents temperature, and A (T), B (T), and C (T) are functions of temperature).
Pin / (Iapd′−C (T)) = A (T) · Vr + B (T) (1)
Parameter A (T), B (T), C (T) from
6. The received optical power monitoring method according to claim 5, wherein in the fourth step, the obtained parameters A (T), B (T), and C (T) are stored in the storage unit.
前記第5のステップにおいて、
受信光パワーモニタ時に、前記演算手段により前記受光素子に流れる光電流Iapd‘を示す信号及び該受光素子に印加される逆バイアス電圧Vrを示す信号を取り込み、
前記記憶手段に記憶されている前記パラメータA(T)、B(T)、C(T)を使用して、次式(2)
Vmon=(A(T)・Vr+B(T))・(Iapd‘−C(T))…(2)
から受信パワーモニタ出力Vmonを求めることを特徴とする請求項6に記載の受信光パワーモニタ方法。
In the fifth step,
During reception light power monitoring, a signal indicating a photocurrent Iapd ′ flowing through the light receiving element and a signal indicating a reverse bias voltage Vr applied to the light receiving element are fetched by the calculating means,
Using the parameters A (T), B (T), C (T) stored in the storage means, the following equation (2)
Vmon = (A (T) .Vr + B (T)). (Iapd'-C (T)) (2)
7. The received light power monitoring method according to claim 6, wherein the received power monitor output Vmon is obtained from the received light power.
前記第3のステップにおいて、
調整時に、前記演算手段により通信に使用する最も波長の短い光信号と最も波長の長い光信号を前記受光素子に入力して、それぞれ求めた前記パラメータA(T)、B(T)、C(T)の平均値を算出し、
前記第4のステップにおいて、
前記算出したパラメータA(T)、B(T)、C(T)の平均値を受信パワーモニタ出力Vmonを算出する際に使用するパラメータA(T)、B(T)、C(T)として、前記記憶手段に格納することを特徴とする請求項6に記載の受信光パワーモニタ方法。
In the third step,
At the time of adjustment, an optical signal having the shortest wavelength and an optical signal having the longest wavelength used for communication are input to the light receiving element by the calculation means, and the parameters A (T), B (T), C ( T) is averaged,
In the fourth step,
The average values of the calculated parameters A (T), B (T), and C (T) are used as parameters A (T), B (T), and C (T) used when calculating the received power monitor output Vmon. The received light power monitoring method according to claim 6, wherein the received light power is stored in the storage means.
JP2008101651A 2008-04-09 2008-04-09 Received light power monitoring apparatus and received light power monitoring method Expired - Fee Related JP5173545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101651A JP5173545B2 (en) 2008-04-09 2008-04-09 Received light power monitoring apparatus and received light power monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101651A JP5173545B2 (en) 2008-04-09 2008-04-09 Received light power monitoring apparatus and received light power monitoring method

Publications (2)

Publication Number Publication Date
JP2009253830A true JP2009253830A (en) 2009-10-29
JP5173545B2 JP5173545B2 (en) 2013-04-03

Family

ID=41314028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101651A Expired - Fee Related JP5173545B2 (en) 2008-04-09 2008-04-09 Received light power monitoring apparatus and received light power monitoring method

Country Status (1)

Country Link
JP (1) JP5173545B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163430A (en) * 2016-03-10 2017-09-14 株式会社フジクラ Coherent light reception device and manufacturing method therefor
CN112367116A (en) * 2020-10-14 2021-02-12 武汉光迅科技股份有限公司 Calibration method and device for optical power, electronic equipment and storage medium
WO2023013139A1 (en) * 2021-08-03 2023-02-09 ソニーセミコンダクタソリューションズ株式会社 Negative voltage monitoring circuit, and light receiving device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120669A (en) * 2002-09-30 2004-04-15 Opnext Japan Inc Optical receiver
JP2004289206A (en) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp Optical receiver
JP2006319427A (en) * 2005-05-10 2006-11-24 Sumitomo Electric Ind Ltd Optical receiver
JP2007173969A (en) * 2005-12-19 2007-07-05 Fujitsu Ltd Optical power adjustment method, optical transmission apparatus, and optical receiving apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120669A (en) * 2002-09-30 2004-04-15 Opnext Japan Inc Optical receiver
JP2004289206A (en) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp Optical receiver
JP2006319427A (en) * 2005-05-10 2006-11-24 Sumitomo Electric Ind Ltd Optical receiver
JP2007173969A (en) * 2005-12-19 2007-07-05 Fujitsu Ltd Optical power adjustment method, optical transmission apparatus, and optical receiving apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163430A (en) * 2016-03-10 2017-09-14 株式会社フジクラ Coherent light reception device and manufacturing method therefor
CN112367116A (en) * 2020-10-14 2021-02-12 武汉光迅科技股份有限公司 Calibration method and device for optical power, electronic equipment and storage medium
WO2023013139A1 (en) * 2021-08-03 2023-02-09 ソニーセミコンダクタソリューションズ株式会社 Negative voltage monitoring circuit, and light receiving device

Also Published As

Publication number Publication date
JP5173545B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5648416B2 (en) Method and system for protection switching
JP5075816B2 (en) Wavelength lock and output control system for multi-channel optical integrated circuits (PICS)
JP4791334B2 (en) Optical receiver and bias voltage control method for optical receiver
JP2009182220A (en) Optical transmission module, wavelength monitor, and wavelength shift detecting method
US20120076506A1 (en) Coherent optical receiving apparatus and coherent optical receiving method
US7860409B2 (en) Optical receiver, optical receiving apparatus using the optical receiver and optical receiving method thereof
JP5173545B2 (en) Received light power monitoring apparatus and received light power monitoring method
JP2011055092A (en) Optical transmission device, transmission and reception module for optical transmission device and optical transmission system, and wavelength dispersion compensation method in optical transmission device
US10256938B2 (en) Optical receiver, optical transceiver, and optical signal reception control method
JP4223304B2 (en) Optical receiver
JP2012165127A (en) Optical receiver module
JP4900481B2 (en) Wavelength division multiplexing apparatus and optical signal input interruption detection method
US20120008941A1 (en) Optical channel monitor and method of calculating signal light level of optical channel monitor
US20100166437A1 (en) Optical detecting circuit, optical transmitting apparatus, and optical detecting method
JPWO2017212537A1 (en) Optical receiver, optical transceiver using the same, and optical signal reception control method
JP2005085815A (en) Wavelength stabilizing unit
JP6127568B2 (en) Optical receiver, optical reception method, and optical communication system
JP5885467B2 (en) Light reception level acquisition device, optical receiver, optical communication system, light reception level acquisition method, and program
KR20150057353A (en) Method and apparatus for controlling of optical signal of the laser diode
JP5266785B2 (en) Photodetection device and photodetection method
JP2012175228A (en) Light-receiving power monitor circuit, optical receiver, method and program
JP2011061790A (en) Optical network unit and method of operating the same
JP6294902B2 (en) Coherent optical receiver and method for manufacturing coherent optical receiver
JP2010154446A (en) Optical receiving module
US11901939B2 (en) Optical receiver and optical transceiver module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R151 Written notification of patent or utility model registration

Ref document number: 5173545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees